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Abstract: The influence of high-frequency vibrations on the shape of a compressible drop placed on
an oscillating solid substrate is studied in this paper. Due to the significant difference in characteristic
temporal scales, the average and pulsating motions of the drop can be considered separately. For
nearly hemispherical drop, the solution to the problem of pulsating motion is found in the form
of series in Legendre polynomials. Frequencies of natural sound oscillations of hemispherical
axisymmetric drop are obtained. Resonances of the acoustic mode of drop oscillations are found. The
problem of forced oscillations of hemispherical drop in the limit of weakly compressible liquid is
considered. It is found that drop oscillation amplitude grows with vibration intensity according to
quadratic law, which is consistent with the solution of the pulsation problem for finite compressibility
assumption. A variational principle for calculation of average drop shape is formulated based on
minimization of energy functional for the case, so the compressibility of the liquid should be taken
into account. It is shown that the functional (the sum of the kinetic and potential energies of the
pulsating flow, the kinetic energy of the averaged flow, and the surface tension energy of the drop)
decreases and reaches a minimum value at quasi-equilibrium state, in which the average shape of
the drop becomes static. The influence of vibrations on the drop shape is studied for small values
of the vibrational parameter. The surface of the drop in the absence of vibrations is assumed to be
hemispherical. Calculations showed that under vibrations, drop height decreases, while the area of
the base increases.

Keywords: vibrations; resonance; natural frequencies; hemispherical drop; drop shape; Legendre
polynomials; variational principle

MSC: 76M45; 76D45; 76N17

1. Introduction

Vibrations are one of the promising ways of controlling inhomogeneous hydrodynamic
systems. It is known that many technological processes can be significantly improved by
proper vibration impact. On the other hand, vibrations are often an intractable accompany-
ing phenomenon of technological processes, which also necessitates studying the effects
they lead. Situations where gas and liquid phases exist in the state of liquid droplets are
very common in technology; for instance, in the process of phase separation in containers
with cryogenic fuel [1], in boiling processes [2], in prilling processes [3], etc.

Problems on a drop or bubble dynamics under high-frequency vibrations can be
divided into two classes. In the first case, the vibration frequency is high enough to state
that the vibration period is much smaller than viscous dissipation time and the fluid
can be considered inviscid, but is comparable to the natural frequencies of the problem.
Resonant phenomena of various nature arise in these systems caused by linear, nonlinear
or parametric resonances. At vibration frequencies that are much larger compared to the
first natural frequency of the system, the main modes of natural oscillations are not excited.
At the same time, motion corresponding to high modes is usually very small-scale, and
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therefore it is suppressed by viscosity. Thus, in this case, the averaged effects play the
main role. It is worth noting that for intermediate frequencies, both resonant and averaged
effects can be important.

The influence of high-frequency vibrations on the dynamics of interfaces in hydrody-
namic system is studied in [4]. It is shown that in all cases, the interface under vibrations is
oriented perpendicularly to the vibration axis. On the other hand, vibrations also cause
viscous fluid flow generation in inhomogeneous hydrodynamic systems. The generation of
flows in a closed container is studied experimentally in [5] for the case of a solid walls and
in [6] for the container with a deformable boundary. Vibrations can also suppress instability
development at the interface [7].

Vibrations can induce a variety of behaviors in liquid drops and bubbles. At low
vibration frequencies or amplitudes, drops remain pinned in place due to contact angle
hysteresis. However, as the vibration frequency and amplitude increase, the drops can
slide or climb [8], or exhibit subharmonic modes and stick–slip motion [9]. The direction
of drop motion depends on the contact angle of the drop [8]. More hydrophilic drops
do not climb, only slide [10]. Brunet et al. [8] found that drops on an inclined vibrating
surface can move upward against gravity, linking this to drop deformation and symmetry
breaking. The effects of micro-texture placed on the inclined plate on drop dynamics are
studied experimentally and numerically by Xu et al. [11]. In [12] the effects of a dual-plate
enclosure on droplet transport for the anisotropic ratchet conveyor system are studied,
in which an asymmetric pattern of hydrophilic rungs is used to move droplets by means
of vibration.

Influence of viscosity on the vibration-induced motion of a gas bubble near a solid
wall was reported in [13]. It has been observed that with the increase in viscosity, the
vibrational attraction to the wall diminishes, subsequently being replaced by repulsion.
This phenomenon can be attributed to the influence of viscosity in the boundary layer near
the rigid surface, where the average flow becomes less intense.

The interfacial dynamics of a sessile water drop were investigated experimentally
in [14]. The drop went through a series of motions during which the force was gradually
increased from zero, including small asymmetrical waves at the interface, small waves
that were asymmetrical at the contact line, full waves that were both asymmetrical and
asymmetrical, lattice waves, a disordered pre-ejection mode, and finally, droplets ejecting
from individual wave cells.

An alternating electric field has a similar vibrational effect on a water drop due to the
polar properties of the water molecules or an electric charge. The impact of electric charges
on the behavior of single sessile drops is investigated experimentally by Löwe et al. [15]. In
the work of [16], it is demonstrated that the effect of the electric field can be described by
an effective condition at the contact line. The specific geometry of a drop’s base also affects
its oscillations. Tankovsky et al. [17] found that the boundary conditions at the drop’s base
depend on the shape and material of the base, impacting the resonant frequency of the
drop. However, for hemispherical drops, the influence of the base can be calibrated out,
making surface tension measurement possible.

Multiple papers have explored how the shape and material of the substrate under
the drop affect its motion. In [18] the influence of the properties of the plate surface
on the oscillations of the cramped drop is studied. The forced oscillations of a drop
clamped between different surfaces is discussed in [19] for normal vibration and in [20] for
translational vibration.

Boughzala et al. [21] found that polyhedral bubbles of different shapes oscillate at
frequencies similar to spheres of the same volume. Vos et al. [22] used high-speed imaging
to observe that microbubbles deform when oscillating near a wall, changing between oblate
and prolate shapes. Geng et al. [23] studied how the aspect ratio of acoustically levitated
drops affects their vertical oscillation frequency, and found that the frequency increases
with the aspect ratio.
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Lyubimov et al. [24] found that the natural oscillations of a hemispherical drop
attenuate over time due to energy loss at the contact line between the drop and surface.
The drop’s oscillations can also be forced by vibrating the surface it is located on, resulting
in resonant oscillations at certain frequencies. Shklyaev and Straube [25] studied how
hemispherical bubbles oscillate on solid substrates, and identified resonant phenomena
and interactions between shape and volume oscillations. They determined when bubble
compressibility can be neglected and found that compressible hemispherical bubbles also
demonstrate interactions between shape and volume oscillations, as well as a double
resonance causing unbounded growth.

This work is devoted to studying the dynamics of a drop placed on a vibrating solid
substrate, in the case in which the vibrational frequency is so high that drop compressibility
should be taken into account. The influence of the compressibility of the drop on its
averaged shape was not considered before, although the fluid compressibility can be
important for various applications [26]. The paper is organized as follows. In Section 2,
the mathematical statement of the problem is given, and the main assumptions used are
formulated. Then, the equations of averaged and pulsating flow are derived. In Section 3,
the variational principle is formulated. In Section 4, the solution of the pulsating flow is
given for natural and forced oscillations. Finally, in Section 5, the averaged shape of the
drop is found, and all results are outlined and discussed in the Conclusion.

2. Problem Statement
2.1. Governing Equations

We consider the behavior of a liquid drop placed on a planar vibrating solid substrate.
Vibrations are normal to the substrate plane and are described by the harmonic law:
~rs =~r0 + a~γ cos ωt, where~rs is radius vector of arbitrary point of substrate, ω and a are the
vibration frequency and amplitude respectively, t is time, and ~γ is a unit vector directed
along the z axis (the geometry of the problem and the coordinate axes is shown in Figure 1).

Figure 1. Geometry of the problem.

The vibration amplitude is assumed to be small compared to the average droplet
radius. The drop is surrounded by a gaseous medium, the density of which is low; the
effect of gravity is neglected. It is supposed that the thickness of the dynamic boundary
layer formed near the solid surface is small compared to the equilibrium droplet radius

ω � ν

R2 , (1)

where ν is the kinematic viscosity of the liquid and R is the average droplet radius. In
addition, we will assume that vibration frequency is comparable to the frequency of acoustic
oscillations of the drop (i.e., the length of the sound wave corresponding to the frequency
ω is comparable to the size of the drop):

ω ∼ c
R

. (2)

Here, c is the speed of sound in the liquid. In this case, to describe the dynamics of the
drop, it is necessary to take the compressibility of the liquid into account.
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The governing equations describing oscillations of the drop in the frame of reference
associated with the substrate have the following form:

∂~υ

∂t
+~υ · ∇~υ = −1

ρ
∇p + ν∆~υ +

(
ξ

ρ
+

ν

3

)
∇div~υ + aω2~γ cos(ωt),

∂ρ

∂t
+ div(ρ~υ) = 0.

(3)

where p is the pressure, ρ is the density,~υ is the velocity and ξ is the bulk viscosity coefficient
and ~γ is the unit vector directed upward. In the present study, we neglect the volume
viscosity, assuming that the bulk viscosity coefficient is small.

The shape of the drop is given by

F(~r, t) = 0. (4)

The dynamic boundary conditions on the free surface are

p− σnn = αK,

σnτ = 0,
(5)

where σnn, σnτ are normal and tangential components of the viscous stress tensor, K is
the average curvature of the free surface, and α is the surface tension coefficient of the
liquid. The pressure in the external gaseous environment is taken as the reference point for
pressure. The kinematic boundary condition is also satisfied on the surface:

∂F
∂t

+~υ · ∇F = 0. (6)

On the solid boundary, the no-slip conditions are set

z = 0 : ~υ = 0. (7)

Due to significant differences in characteristic dissipative and vibrational temporal
scales, one could divide velocity, density, and pressure fields into averaged and fluctuating
parts. We will use the method of multiple scales to achieve this.

p = p0(t) + q(τ),

ρ = ρ0(t) + g(τ),

~υ = ~u(t) + ~w(τ).

(8)

Here, q, g, ~w are the pulsating parts, for which characteristic time is comparable with the
period of the substrate vibrations, τ is the fast time; p, ρ0 ,~u are the averaged parts, that
change slowly over vibration period. The relative changes in the density of the liquid in
the drop caused by vibrations of the substrate are small, i.e., g� ρ0. The interface can also
be given by an equation containing a sum of two functions that vary slowly and rapidly
with time

F = F0(t) + f (τ) = 0, (9)

where F0 describes its average position, f represents the deviation from the average value.
Problem (3)–(7) using expressions (8) and (9) is divided into two, describing the pulsating
and averaged dynamics of the system.

We will use a spherical coordinate system (r, ϑ, Ψ), where ϑ is the polar angle and r is
the radial coordinate, as well as the Cartesian coordinate system (x, y, z), where z is axis
normal to the substrate surface, as shown in Figure 1.
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2.2. The Problem of Pulsating Motion

Splitting velocity and pressure fields into fluctuating and averaged parts is an effective
method for describing the dynamics of an oscillating drop, since there are reasons to neglect
nonlinear terms in the equation for the fluctuating component of motion. Indeed, let us
compare, for example, the values of the first and second terms in (3). The pulsating velocity
of the liquid is determined by the vibration intensity; therefore, its value has the same order
of magnitude as aω. The characteristic time of the pulsation motion is equal to the period
of the substrate vibration, i.e., order ω−1. The order of spatial derivatives is R−1 outside
the boundary layers. As a result, we find that the ratio of the nonlinear term to the first
term is of order a/R ∣∣∣∣ ~w · ∇~w

∂~w/∂t

∣∣∣∣ ∼ a
R
� 1 (10)

According to condition (1), the characteristic vibration temporal scale is much less
than the hydrodynamic time, i.e., the thickness of the viscous skin layer

√
ν/ω is small,

which makes it possible to neglect the existence of the boundary layer. As a result, when
considering pulsating motion, one can discard the dissipative term in the equation of
motion (3) [27].

By removing from (3) all terms that do not depend on the fast time, we obtain the
following equations for the pulsating motion:

∂~w
∂τ

= − 1
ρ0
∇q + aω2~γ cos(ωt),

∂g
∂τ

+ ρ0div~w = 0.
(11)

Thus, the vibrational behavior of the drop is described by the equations of linear acoustics
with an inhomogeneous term due to the force of inertia.

Boundary conditions (5), (6) for pulsating motion are written as follows:

F0 = 0 :
∂ f
∂τ

+ ~w · ∇F0 + ~u · ∇ f = 0,

q = αK̃.
(12)

Here, K̃ is the fluctuating part of the surface curvature. Due to the smallness of the
oscillation amplitude, the boundary conditions can be shifted from the moving free surface
to the averaged surface of the drop. Obviously, the characteristic average velocity can be
viewed as small, compared to the speed of sound, then relation (2) allows us to neglect the
term ~u · ∇ f in the kinematic boundary condition.

Since energy dissipation is neglected when solving the pulsating problem, the order of
the pulsating motion equation is reduced. Consequently, the condition on the free surface
for shear stresses can be discarded, and the no-slip condition (7) must be replaced by the
impermeability condition:

z = 0 : wn = 0. (13)

Here, wn is the component of the fluctuating part of the velocity normal to the substrate.
The system of Equation (11) is not closed; to solve the pulsating problem, it is necessary

to add the equation of state of the system. Since irreversible dissipation processes are
insignificant for pulsating motion, the adiabatic law can be used as follows.

g =
q
c2 . (14)

Let us rewrite the problem in dimensionless form, choosing R as a unit of distance,
R/c as a unit of time, a as a unit of surface deviations from the mean, aω as a unit of
velocity, ρ0a/R as a unit of density, ρ0ac2/R as a unit of pressure, and α/R2aω as a unit of
drop shape curvature.
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By rewriting Equations (11)–(14) and introducing the velocity potential ~w = ∇ϕ, we
obtain the dimensionless form of the pulsating motion problem:

k
∂ϕ

∂τ
= −q + k2z cos kτ,

∂q
∂τ

+ k∆ϕ = 0,

g = q,

(15)

where k = ωR/c is a dimensionless wavenumber. Boundary conditions (12), (13) can be
written as

z = 0 :
∂ϕ

∂z
= 0,

F0 = 0 :
∂ f
∂τ

= −∇ϕ · ∇F0,

q = βK̃.

(16)

where β = α
/(

ρ0c2R
)

is a dimensionless parameter characterizing the surface tension
of the liquid. Since substrate vibration frequency is assumed to be comparable with the
acoustic frequencies (12), for many liquids, the parameter β will be small. Indeed, for a
water drop with a radius of 1 cm, β ≈ 10−5. The parameter β can be equal to one only if
the radius of the drop is of the order of 10−7 m, and in this case, condition (1) is violated,
i.e., the viscosity of the liquid cannot be neglected. Thus, we will assume

β� 1. (17)

Surface Equation (9) in dimensionless variables has the following form:

F = F0(t) + ε f (τ) = 0, (18)

where ε = a/R is a dimensionless parameter characterizing the vibration amplitude of the
substrate. As noted above, the vibration amplitude is assumed to be small; hence ε� 1.

Let us represent the pulsating pressure, the surface deviation and the velocity potential
in the form:

q = q̃(~r) cos kτ; f = f̃ (~r) cos kτ; ϕ = ϕ̃(~r) sin kτ, (19)

where q̃(~r), f̃ (~r), ϕ̃(~r) are functions that do not depend on fast time. Substituting (19)
into (16), we obtain a system of equations and boundary conditions for the amplitudes:

k2 ϕ̃ = −q̃ + k2z,

− q̃ + ∆ϕ̃ = 0,
(20)

z = 0 :
∂ϕ̃

∂z
= 0,

F0 = 0 : k2 ϕ̃− βK̃ = k2z,

f̃ = ∇ϕ̃ · ∇F0.

(21)

By eliminating the pulsating pressure from these equations, we obtain the wave equation
for the velocity potential

∆ϕ̃ + k2 ϕ̃ = k2z. (22)

The tilde sign over the amplitudes of pulsating pressure, velocity potential, etc., is omitted
from this point forward.
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2.3. The Averaged Motion Problem

Describing the slow average dynamics of the system, the compressibility of the fluid
can be neglected, while the viscosity and surface tension must be taken into account .
Substituting expansions (8) into (3)–(5) and removing terms that depend on fast time, we
obtain the equation system describing the averaged dynamics of the drop. The equations
of average motion in dimensional form are written as follows:

∂~u
∂t

+ ~u · ∇~u + ~w · ∇~w = −
(
∇p
ρ0
− g

ρ2
0
∇q

)
+ ν∆~u,

div~u = 0,

(23)

where the bar denotes the operation of averaging over period of substrate vibration. Note
that neither pulsation motion equations nor averaged motion equations contain terms
dependent on bulk viscosity.

Boundary conditions (12), (13) can be written as:

z = 0 : ~u = 0,

F0 = 0 :
∂F0

∂t
+ ~u · ∇F0 + ~w · ∇ f = 0,

p + q̄|F0+ f − σnn = αdiv~n,

σnτ = 0,

(24)

where~n is the unit vector, normalized to the free surface of the drop. The dynamic boundary
condition contains a term equal to the average of the fluctuating pressure q̄|F0+ f . When
averaging this term, it is necessary to take fluctuating deviations of the droplet surface into
account. The last term in the kinematic boundary condition vanishes on averaging, as the
period average of sin 2τ.

Let us rewrite the problem (23) and (24) using dimensionless variables. For the average
velocity ~u, time t and pressure p, the following units are chosen: ν/R, R2/ν, ρ0a2ω2. Thus,
the averaged dynamics of the system is governed by

∂~u
∂t

+ ~u · ∇~u + CaQ~w · ∇~w = −CaQ
(
∇p
ρ0
− q∇q

)
+ ∆~u,

div~u = 0,
(25)

z = 0 : ~u = 0,

F0 = 0 :
∂F0

∂t
+ ~u · ∇F0 = 0,

Qp + Q q̄|F0+ f −
1

Ca
σnn = div~n,

σnτ = 0.

(26)

In the equation of motion (25), the fluctuating density of the liquid is excluded using
the equation of state (14). Problems (25) and (26) contain two dimensionless parameters:
Q = ρ0a2ω2R

/
α is the vibration parameter, Ca = αR

/
ρ0ν2 is the capillary number.

The expressions under the averaging sign in (25) can be transformed as follows:

~w · ∇~w = ∇ϕ · ∇∇ϕ =
1
2
∇(∇ϕ)2,

q · ∇q =
1
2
∇q2.

(27)
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Substituting the expressions for the velocity potential and fluctuating pressure introduced
in (19) and averaging over the fast time τ, we obtain:

~w · ∇~w =
1
2
∇(∇ϕ̃)2(sin τ)2 =

1
4
∇(∇ϕ̃)2,

q · ∇q =
1
2
∇q̃2(cos τ)2 =

1
4
∇q̃2.

(28)

Let us discuss the averaging of the term q|F0+ f in the dynamic boundary condition.
Due to the smallness of the oscillation amplitude q|F0+ f can be represented as an expansion
in terms of the pulsation deviation of the surface from the mean position δ~r. Up to the first
order in δ~r, the pulsating pressure has the form:

q|F0+ f = q|F0
+ δ~r · ∇q = q|F0

+ δrn∇nq, (29)

where ∇n is the gradient component normalized to the droplet surface (the tangent com-
ponent δ~r does not cause the fluid element to leave the free surface and can be set equal
to zero).

The function defining the interface can also be represented as an expansion in δ~r

F0(~r + δ~r) = F0(~r) + δ~r · ∇F0(~r) = F0(~r) + δrn · ∇nF0(~r). (30)

Comparing (30) with Formula (9), we write the normal component of the deviation of the
droplet surface from the mean position in the form:

δrn = − f
∇nF0

. (31)

Then, expansion (29) is rewritten as follows:

q|F0+ f = q|F0
−∇nq

f
∇nF0

. (32)

Substituting the expressions and using the boundary condition for the pulsating deviation
of the surface and the equation for the pulsating pressure (20), we obtain:

q|F0+ f = q|F0
+ (∇n ϕ̃− γn)∇n ϕ̃( sinτ)2, (33)

where γn is the projection of the vector ~γ onto the normal~n to the mean interface. Therefore,
the desired average term is equal to

q|F0+ f =
1
2
(∇n ϕ̃− γn)∇n ϕ̃. (34)

As a result, we obtain equations describing the averaged dynamics of the system:

∂~u
∂t

+ ~u · ∇~u = −QCa∇
(

p +
1
4
(∇ϕ̃)2 − k2

4
q̃2
)
+ ∆~u,

div~u = 0.
(35)

The boundary conditions are

z = 0 : ~u = 0,

F0 = 0 : Q
(

p +
1
2
(∇n ϕ̃− γn)∇n ϕ̃

)
− 1

Ca
σnn + p0 = div~n,

σnτ = 0,

(36)
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where p0 is a constant characterizing the average overpressure in a drop. Equations (35)
and (36) contain the pulsation velocity potential and the pulsation pressure; on the other
hand, the pulsation fields are determined by the average shape of the drop. Thus, the
fluctuating and averaged problems must be solved jointly.

Due to the presence of free surface and vibrations, there is no solution to the problem
corresponding to the state of complete equilibrium (the absence of both averaged and
pulsating motion). Therefore, it is reasonable to consider stationary solutions to the average
motion problem, i.e., state of the system, called in [4] quasi-equilibrium. Quasi-equilibrium
is a state in which the average flow velocity is equal to zero, while other average character-
istics are stationary. If in (35) and (36), we set the velocity of the averaged motion equal to
zero, we obtain a problem describing the state of quasi-equilibrium:

p = −1
4
(∇ϕ̃)2 +

k2

4
q̃2, (37)

F0 = 0 : Q
(

1
4
(∇n ϕ̃)2 − 1

4
(∇τ ϕ̃)2 +

1
4

k2q̃2 − 1
2

γn∇n ϕ̃

)
+ p0 = div~n, (38)

where ∇τ is the gradient component tangential to the droplet surface. Obviously, (∇ϕ)2 =
(∇n ϕ)2 + (∇τ ϕ)2. The resulting equations do not contain a capillary number, because this
parameter characterizes the effect of fluid viscosity, i.e., the importance for the average
dynamics. The capillary number determines the rate at which the system reaches the
quasi-equilibrium state, and not this state itself.

It is worth noting that the vibrational field can generate averaged flows in viscous
boundary layers near solid bodies or free surfaces. In this case, the described state of
quasi-equilibrium is not realized. However, taking into account the accepted assumption
about the thickness of the skin layer (1), it is necessary in this case to consider such flows as
weak, and thus incapable of affecting the behavior of the drop.

3. Variational Principle for Compressible Drop

The quasi-equilibrium state could be studied from the point of view of the total
energy of the system. In [27], a variational principle was obtained for the case of both
homogeneous and arbitrary vibrations of an incompressible fluid. It is shown that the
stable state of quasi-equilibrium corresponds to the minimum of the functional equal to the
total energy of the system. Examples of the effective application of the variational principle
to various problems of determining the equilibrium shape of a free surface are given. The
advantage of this method is that the study of the nature of the energy extremum allows
one to automatically reject unstable solutions. In this section, we consider the possibility
of using this approach to describe hydrodynamic systems in which fluid compressibility
is important.

Multiplying the equations for the averaged motion (35) by the averaged flow velocity
~u and integrating them over the drop volume, we obtain〈

∂uj

∂t
uj

〉
+
〈
ujui∇iuj

〉
= −QCa

〈
uj∇jΠ

〉
+
〈
uj∆uj

〉
, (39)

where

Π = p +
1
4
(∇ϕ)2 − k2

4
q2. (40)

Summation over doubly repeating indices is assumed. The angle brackets show the
operation of integration over the droplet volume

〈. . .〉 =
∫

dV. (41)
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Here, and below, the tildes above the amplitudes of the pulsating pressure and the velocity
potential are omitted.

The first term of Equation (39) can be written∫
∂~u
∂t
~udV =

1
2

∫
∂

∂t
~u2dV. (42)

Let us take out the operation of differentiation with respect to time from the integral, taking
into account the dependence of the volume element dV near the surface of the drop on time:

dV = undtdS, (43)

where un is the velocity component normal to the droplet surface. Thus, we obtain∫
∂~u
∂t
~udV =

1
2

∂

∂t

∫
~u2dV−1

2

∮
u2undS. (44)

The first term of expression (44) can be rewritten by introducing the kinetic energy of the
mean motion:

K =
1
2

∫
u2dV. (45)

In the second term of Equation (39), the integrand is represented as a divergence from
~u u2. When transferring the differentiation operator, no additional terms appear, since
the divergence of the mean flow velocity is zero. According to the Ostrogradsky–Gauss
formula, the integral over the drop volume is reduced to the integral over the surface:

〈
ujui∇iuj

〉
=

1
2
〈
ui∇iujuj

〉
=

1
2

〈
div(~u u2)

〉
=

1
2

∮
u2undS. (46)

When adding the obtained expressions (44), (46), the surface integrals cancel out. As a
result, the left side of the equation of motion (39) is equal to the derivative of the kinetic
energy of the mean motion: 〈

∂uj

∂t
uj

〉
+
〈
ujui∇iuj

〉
=

dK
dt

. (47)

Let us proceed to the integration of the right side of Equation (39). Consider first the
last term of this equation. In this case, a term equal to the divergence from some function
can also be separated from the integrand. Then, according to the Ostrogradsky–Gauss
formula, the corresponding volume integral is transformed into surface integral. Thus,
we obtain: 〈

uj∆uj
〉
=

〈
uj

∂2

∂x2
i

uj

〉
=
∮

uj
∂uj

∂xi
dSi −

〈(
∂uj

∂xi

)2
〉

. (48)

The volume integral in the resulting relation can be written as:〈(
∂uj

∂xi

)2
〉

=
1
2

〈
σij

2
〉
−
∮

uj
∂ui
∂xj

dSi, (49)

where σij = ∂ui/∂xj + ∂uj/∂xi is the dimensionless viscous stress tensor. Indeed, by
extracting the surface integral from

〈
σij

2〉 , we obtain Formula (49):

〈
σij

2
〉
= 2

〈(
∂uj

∂xi

)2
〉
+ 2

〈
∂uj

∂xi

∂ui
∂xj

〉
= 2

〈(
∂uj

∂xi

)2
〉
+ 2

〈
∂

∂xi

(
uj

∂ui
∂xj

)〉

= 2

〈(
∂uj

∂xi

)2
〉
+ 2

∮
uj

∂ui
∂xj

dSi

(50)
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By substituting expression (49) into (48) and combining the surface integrals, we obtain the
term under consideration: 〈

uj∆uj
〉
= −1

2

〈
σij

2
〉
+
∮

ujσjidSi. (51)

On the substrate, the condition of equality to zero of the average velocity component is
satisfied; therefore, the integral over the base of the drop is equal to zero, i.e., the surface
integral reduces to the integral over the free surface of the drop. By taking the condition of
zero shear stresses (36) on the free surface into account, we obtain:

〈
uj∆uj

〉
= −1

2

〈
σij

2
〉
+
∫

S f ree

unσnndS (52)

Let us calculate the remaining term of Equation (39). Due to the non-compressibility
of the liquid and the no-slip condition on the substrate, the volume integral also reduces to
the free surface integral:

〈
uj∇jΠ

〉
= 〈divΠ~u〉 =

∫
S f ree

un

(
p +

1
4
(∇ϕ)2 − k2

4
q2
)

dS. (53)

The average pressure p on the drop surface can be expressed from the boundary condition (36).
Eliminating pressure in this way from expression (53), we obtain:

〈
uj∇jΠ

〉
=

∫
S f ree

un

(
1
Q

div~n +
1

CaQ
σnn

−1
2

[
(∇n ϕ)2 − γn∇n ϕ

]
+

1
4

[
(∇ϕ)2 + k2q

])
dS.

(54)

The product drndiv~n dS is the area increment of the surface element dS, therefore:∫
S f ree

undiv~n dS =
∫

S f ree

drn

dt
div~n dS =

dS
dt

, (55)

where S is the free surface area. The second term of expression (54) cancels out with the
surface integral obtained in (52) when they are substituted into the original Equation (39).
Thus, the right side of this equation can be written as:

− CaQ
〈
uj∇jΠ

〉
+
〈
uj∆uj

〉
= −1

2

〈
σij

2
〉
− Ca

dS
dt
− CaQ

4

∫
S f ree

un

(
(∇τ ϕ)2 + 2γn∇n ϕ− (∇n ϕ)2 + k2q

)
dS. (56)

Let us introduce the kinetic energy of the pulsating motion, Kp, and the potential
energy of the pulsating motion, Up, as follows:

Kp =
1
4

∫
(∇ϕ)2dV, (57)

Up =
1
4

∫
k2q2dV. (58)

Consider the time derivative of the potential energy of pulsations. As noted above,
when differentiating the volume integral, it is necessary to take into account the deformation
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of the droplet surface. As a result, the derivative of the potential energy is equal to the sum
of the integral over the volume and the surface integral:

dUp

dt
=

1
4

d
dt

∫
k2q2dV =

1
2

k2
∫

q
∂q
∂t

dV +
1
4

∫
S f ree

k2q2undS. (59)

The resulting integral over the free surface of the drop is equal to the last term in
expression (56). Similarly, the derivative of the kinetic energy of the pulsating motion
is transformed:

dKp

dt
=

1
4

d
dt

∫
(∇ϕ)2dV =

1
2

∫
∇ϕ

∂∇ϕ

∂t
dV +

1
4

∫
S f ree

un(∇ϕ)2dS. (60)

In the expression obtained from the volume integral, using the Ostrogradsky–Gauss
formula, one can also extract the surface integral. Taking out the differentiation operation,
we obtain: ∫

∇ϕ
∂∇ϕ

∂t
dV =

∫
div
(
∇ϕ

∂ϕ

∂t

)
dV −

∫
∆ϕ

∂ϕ

∂t
dV. (61)

The normal velocity component on the substrate is zero (21); therefore, the first integral
of relation (61) is reduced to the integral over the free surface of the drop. The second
term on the right side of expression (61) using Formulae (20) is transformed to the integral
obtained in (59). Thus, the expression in question will be written in the form:∫

∇ϕ
∂∇ϕ

∂t
dV =

∫
S f ree

∇n ϕ
∂ϕ

∂t
dS +

∫
k2q

∂q
∂t

dV. (62)

Transforming the convective (substantial) derivative, we obtain:

dϕ

dt
=

∂ϕ

∂t
+ un∇n ϕ. (63)

On the other hand, from the condition on the free surface of the drop for the velocity
potential of pulsating motion (20), it follows that

dϕ

dt
=

dz
dt

=
d(~γ ·~r)

dt
= ~γ · d~r

dt
= γnun. (64)

Thus, the derivative of the velocity potential will be written as:

∂ϕ

∂t
= γnun − un∇n ϕ. (65)

Substituting relations (65), (62) into (60), we write the derivative of the kinetic energy of
pulsation motion as follows:

dKp

dt
=

1
4

∫
S f ree

un

(
(∇n ϕ)2 − 2γn∇n ϕ− (∇τ ϕ)2

)
dS +

1
2

∫
k2q

∂ϕ

∂t
dV. (66)

Comparing the obtained expressions for potential (60) and kinetic (66) energies with
Formula (56), we determine that the surface integral in (56) is equal to the derivative of the
energy difference. Therefore, expression (56) will be rewritten in the form:

−CaQ
〈
uj∇jΠ

〉
+
〈
uj∆uj

〉
= −1

2

〈
σij

2
〉
− Ca

dS
dt
−QCa

d
dt
(
Kp −Up

)
. (67)



Mathematics 2023, 11, 4527 13 of 24

Substituting the expressions (47) and (67) into the original Equation (39), we obtain

d
dt
[
K + Ca

(
S + Q(Kp −Up)

)]
= −1

2

〈
σ2

ij

〉
. (68)

At non-zero average motion velocities, the right side of Equation (68) is negative; therefore,
the value K + Ca(S + Q(Kp −Up)) (as can be shown, limited from below) decreases when
the system passes to a quasi-equilibrium state. In quasi-equilibrium, the kinetic energy
of the mean motion is equal to zero; therefore, in a stable state of quasi-equilibrium,
the functional

F = S + Q(Kp −Up) (69)

should be minimal. If the vibration frequency is significantly lower than the acoustic
frequency, then compressibility of the liquid should be neglected. In this case, the potential
energy of the pulsating motion is equal to zero. As a result, we obtain the variational
principle formulated in [27]. By choosing such a shape of the average surface, so that this
functional is equal to the minimum value, it is possible to determine the averaged shape of
a drop in a state of quasi-equilibrium. In this case, to calculate the kinetic and potential
energies of “fast” motion, it is necessary to solve a pulsating problem with a given average
shape of the droplet surface.

4. Pulsating Motion of a Hemispherical Drop in an Acoustic Field
4.1. Natural Oscillations

Let us analyze the natural oscillations of compressible hemispherical drop, i.e., oscilla-
tions occurring in the absence of variable external forces and due to the compressibility of
the liquid and surface tension. Discarding the terms in problem (20), (21) that describe the
effect of vibrations in the substrate and excluding f , we obtain

∆ϕ + k2 ϕ = 0, (70)

ϑ =
π

2
:

∂ϕ

∂ϑ
= 0, (71)

r = 1 : k2 ϕ + β(∆ϑ + 2)
∂ϕ

∂r
= 0, (72)

where k is the natural frequency.
An axisymmetric solution of Equation (70) bounded at the origin and satisfying the

boundary conditions on a solid surface has the form

ϕ =
∞

∑
n=0

Cn j2n(kr)P2n(cos ϑ), (73)

where j2n(kr) are spherical Bessel functions of the first kind, P2n(cos ϑ) are Legendre poly-
nomials of even order. Note that each term in (73) satisfies condition (71), so an arbitrary
term of the series is an eigenfunction of the problem and can be considered separately.

The condition (72) on the free boundary gives the dispersion relation

kj2n(k)− (2n− 1)(2n + 2)βj′2n(k) = 0. (74)

Here, the dash denotes the derivative with respect to the argument. Let us analyze this
condition for small values of β. For finite values of the meridional number n, the second
term can be discarded. As a result, we obtain an equation that determines the sequence of
natural wavenumbers knl , and thus the natural frequencies of the acoustic mode,

j2n(knl) = 0. (75)
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For a solution independent of the angle ϑ (n = 0), the Bessel function has the form
j0(x) = sin x/x. The eigenfrequencies corresponding to this mode are equal to the roots
of the equation sin x = 0. Solutions to Equation (75) for higher n are given in Table 1.
Accounting for surface tension gives corrections of the order of β to natural frequencies
determined by (75).

Table 1. The complex wavenumber eigenvalues of sound oscillations, corresponding to the main modes.

n = 0 n = 1 n = 2 n = 3 n = 4

kn1 3.1416 5.7635 8.1826 10.513 12.791
kn2 6.2832 9.0950 11.705 14.2074 16.641
kn3 9.4248 12.323 15.040 17.6480 20.183

The spectrum could also be obtained in another limiting case, corresponding to higher
harmonics of the shape oscillations. For βn3 ∼ 1, the second term in (74) cannot be
neglected. For large values of n and finite k, the spherical Bessel function satisfies the
power asymptotics:

j2n(k) =
k2n

(4n + 1)!!

(
1 + O

(
k2n−1

))
,

j′2n(k) ≈ 2nk−1 j2n(k).
(76)

Then, Equation (74) gives the natural oscillation frequencies of the shape of a spherical
drop of an incompressible liquid (even modes).

k2 = 2n(2n− 1)(2n + 2)β ≈ (2n)3β. (77)

As shown, for high values of the meridional number, the compressibility of the liquid does
not play a significant role. Indeed, in this case, the characteristic length at which the flow
changes significantly is R/n, which is much smaller than the sound wavelength (to the
order of R for finite values of k).

4.2. The Solution of the Pulsation Motion Problem

Due to the symmetry of the problem, the shape of the oscillating drop can be con-
sidered axisymmetric. In this case, the solution of the equation system (20) and (21) has
the form:

ϕ(r, ϑ) =
∞

∑
n=0

αn

k
P2n(cos ϑ)[Cn j2n(kr) + wn(kr)], (78)

where wn(s) is the solution of the inhomogeneous equation

d2wn

ds2 +
2
s

dwn

ds
+

[
1− 2n(2n + 1)

s2

]
wn = s. (79)

In Formula (78) αn, the expansion coefficients of s in even Legendre polynomials for
0 ≤ s ≤ 1:

s =
∞

∑
n=0

αnP2n(s), αn = − (4n + 1)P2n(0)
(2n− 1)(2n + 2)

. (80)

The solution of Equation (79) limited at the origin can be written as follows:

wn = s +
qnh2n(s)
(4n− 1)!!

+
n

∑
m=0

qm

s2m+1 , (81)
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where h2n(kr) are spherical Bessel functions of the second kind. The coefficients qk are
calculated using the formulae

q0 = (2n− 1)(2n + 2), qk = qk−1[2n(2n + 1)− (2k− 2)(2k− 1)]. (82)

It is easy to see that, up to the factor −(4n−1)!!/qn, the series in (81) gives the main part of
the expansion h2n. Based on the condition on the free surface, we have

Cn = − kwn(k)− β(2n− 1)(2n + 2)w′n(k)− k2

kj2n(k)− β(2n− 1)(2n + 2)j′2n(k)
. (83)

According to the well-known solution for the velocity potential, using the boundary condition
(21), it is easy to find the fluctuating deviation of the surface based on its average position.

4.3. Weakly Compressible Liquid Approximation

The summation of series (78) was carried out using the mathematical package Maple.
In this case, series (78) were replaced by series with a finite but sufficiently large upper limit
N. Comparison of the results obtained for different values of N shows that it is necessary
to calculate at least 30–40 terms to ensure an accuracy of about 1%. The calculations were
carried out at N = 50. Test calculations showed that series (78) near the top of the drop
(ϑ = 0) is sign-changing, and, despite the fact that it converges, the absolute values of the
terms decrease quite slowly. In view of the need to calculate the spherical Bessel functions of
a sufficiently high order, the calculations were carried out with up to sixty significant digits.

To test the series summation algorithm (78), the calculation results were compared
with the solution obtained in the limit of small k. For low substrate vibration frequencies,
the solution to problem (20), (21) can be sought in the form of power expansions in the
small parameter k2:

ϕ = ϕ0 + k2 ϕ1 + . . . (84)

In order zero, we obtain the problem of oscillations of an incompressible liquid drop:

∆ϕ0 = 0, (85)

ϑ =
π

2
:

∂ϕ0

∂ϑ
= 0, (86)

r = 1 : f0 =
∂ϕ0

∂r
, ϕ0 + β̃(∆ϑ + 2)

∂ϕ0

∂r
= cos ϑ. (87)

Here, a new dimensionless parameter is introduced, which is equal to the square of the
ratio of the natural frequency of the shape oscillations to substrate vibration frequency,
β̃ = β/k2 = α

/(
ρ0R3ω2). Obviously, in the case of a weakly compressible fluid, β̃ must be

finite. The solution of Laplace Equation (85), which satisfies boundary conditions (86) and
(87), has form:

ϕ0 =
∞

∑
n=0

Anr2nP2n(cos ϑ). (88)

The expansion coefficients An are determined based on the dynamic boundary condition.
The solution to the zero order problem has the form

ϕ0 =
∞

∑
n=0

αn
P2n(cos ϑ)

(1−Ω2
n β̃)

r2n, (89)

where Ω2
n = 2n(2n− 1)(2n + 2). A similar result was obtained in [27] for the case of a fixed

contact angle.
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In the first order, we obtain an inhomogeneous problem:

∆ϕ1 = −ϕ0 − r cos ϑ, (90)

ϑ =
π

2
:

∂ϕ1

∂ϑ
= 0, (91)

r = 1 : f1 =
∂ϕ1

∂r
, ϕ1 + β̃(∆ϑ + 2)

∂ϕ1

∂r
= cos ϑ. (92)

We write the solution of the first-order problem in the form

ϕ0 =
∞

∑
n=0

anr2nP2n(cos ϑ) +
∞

∑
n=0

bnr2n+2P2n(cos ϑ) + r3
∞

∑
n=0

cnP2n(cos ϑ). (93)

Here, the first term is the solution of the homogeneous equation, the second and third
are the solutions of the inhomogeneous equations ∆ϕ1 = −ϕ0 and ∆ϕ1 = −r cos ϑ. The
expansion coefficients, as in the zero-order problem, are determined based on the boundary
conditions. Thus, the surface perturbation for a weakly compressible fluid can be calculated
using the formula:

f = −
∞

∑
n=0

ζnP2n(cos ϑ), (94)

where

ζn =
αn

(1−Ω2
n β̃)

[
2n + k2

(
1

2n + 4
− 1

(4n + 3)(1−Ω2
n β̃)

)]
.

An increase in the amplitude of oscillations of a weakly compressible drop with an increase
in the frequency of vibrations occurs according to quadratic law.

Figure 2 shows the dependence of the drop volume oscillation amplitude on the
substrate vibration frequency. It can be seen that Formula (94) describes the surface
deviation at k < 0.6. Thus, the calculations carried out for a small value of the parameter k
are in good agreement with the results obtained in the limit of a weakly compressible fluid.

 0

 0.01

 0.02

 0.03

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

ζ0

k

Figure 2. The dependence of the drop volume oscillation amplitude on the frequency at β̃ = 0.001.
The line shows the results obtained in the limit of a weakly compressible fluid (94). The points
indicate the solution to finite k (78).
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4.4. Drop Oscillations without Capillary Forces

We begin the study of the pulsating motion of a drop by analyzing the situation
when the frequency of the substrate vibrations is high compared to the natural oscillation
frequencies of the drop shape: ω2 � α

/(
ρR3) (β � 1). In this case, the effect of surface

tension can be neglected. The condition for the balance of normal stresses (21) on the free
surface can be written simply:

r = 1 : ϕ = cos ϑ. (95)

The solution of the equation system (20), (21), (95) has the form

ϕ(r, ϑ) =
∞

∑
n=0

αn

k
P2n(cos ϑ)

[
wn(k)− k

j2n(k)
j2n(kr) + wn(kr)

]
. (96)

The obtained isolines of the velocity potential are shown in Figure 3. As k approaches the
first eigenvalue k01, the radial component of the velocity increases and the drop volume
oscillation amplitude increases. The resonance of the acoustic mode is observed: if the
substrate vibration frequency coincides with the acoustic oscillation frequencies of the drop,
the amplitude of the surface deflection increases indefinitely.

Figure 3. Isolines of the velocity potential at k = 1 (left), k = 2.5 (right). The isolines in the left figure
are drawn through 0.05. On the right, the step of the isolines is 0.1.

With a further increase of k, resonance occurs with higher acoustic modes. Figure 4
shows resonances at frequencies k01, k11, k21 (see Table 1). The unlimited growth of the
amplitude is explained by the absence of dissipation in the system. It is shown that there
are no resonances corresponding to wavenumbers of natural frequencies k0s, where s is an
even number.

−1

−0.5

 0

 0.5

 1

 0  1  2  3  4  5  6  7  8  9

f

k

Figure 4. The dependence of the amplitude of oscillations of the top point of the droplet surface
(see (19)) on the wavenumber, ε = 0.02.



Mathematics 2023, 11, 4527 18 of 24

Figure 5 shows the maximum deviations of the surface in terms of the vibration
period at a vibration amplitude equal to 0.1 of the drop radius. The dashed–dotted line
corresponds to the moment when the substrate is in the uppermost position; the solid line
shows the shape of the droplet half vibration period after that.

Figure 5. Drop oscillations at k = 1 (left) and k = 2.5 (right). The dashed line shows the average
(hemispherical) shape of the drop; the solid and dash–dotted lines show the maximum surface
deviations. The results are given for dimensionless vibrational amplitude ε = 0.1.

Near the contact line, the deviation of the surface and, accordingly, the normal com-
ponent of the velocity of the pulsating flow tend to infinity, i.e., series (78) diverges. This
result is explained by the contradiction of the boundary conditions: on the free surface,
the velocity potential increases linearly with an increase in the coordinate normal to the
substrate, and on the basis of the drop, the normal derivative of the potential is equal
to zero, i.e., on the contact line ∂ϕ

/
∂ϑ breaks. It can be shown that, in the limit r → 1,

ϑ→ π/2, the fluctuation deviation of the surface is

f =
2
π

ln
(π

2
− ϑ

)
. (97)

Thus, near the contact line, the singularity for the deviation of the surface f is logarithmic,
i.e., integrable. It should also be noted that the velocity potential always remains finite.

4.5. Forced Oscillations with Surface Tension Effect

In the presence of surface forces, series (78) converges for any ϑ. Figure 6 shows
the drop shapes obtained as a result of calculations. Surface deviations correspond to
the moments in time when the substrate is in the uppermost and lowermost positions.
Accounting for surface tension, as noted above, leads to the appearance of an additional
set of eigenfrequencies of oscillations of the drop shape. However, since the parameter β
is small, the frequency of vibrations of the substrate is high compared to the first (lowest)
frequencies of shape oscillations, i.e., only high oscillation modes of the drop shape can be
excited in a resonant way.

Figure 6. Drop oscillations with surface tension forces for k = 1, β = 0.001 (left) and k = 3, β = 0.009
(right). The results are given for dimensionless vibrational amplitude ε = 0.02. The dashed line
shows the average (semispherical) shape of the drop; the solid and dash–dotted lines show the
maximum deviations of the surface.
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In this case, at β = 0.001, the strongest response is observed in the fifth even mode of
capillary oscillations, corresponding to P10 (see (77)). As a result, the shape of the resulting
droplet surface looks much more complicated than the previously considered solution to
the problem without taking surface effects into account. The solutions obtained for the
velocity potential are shown in Figure 7. As can be seen, the potential fields calculated
without taking into account and with taking into account surface tension are qualitatively
similar. However, in the latter case, small-scale flows arise near the surface, corresponding
to resonant excitation of shape oscillations. As the wavenumber k approaches k01, the radial
velocity component also increases.

Figure 7. Isolines of the velocity potential for a hemispherical drop for k = 1, β = 0.001 (left) and
k = 3, β = 0.009 (right). Step of isolines on the left 0.05, on the right 0.2.

The dependence of the drop oscillation amplitude on the parameter k is determined.
Similar to the solution found without taking into account surface tension, when the sub-
strate vibration frequency coincides with the acoustic oscillation frequencies of the drop,
resonance is observed. In addition, new resonances appear, corresponding to shape oscilla-
tion. In Figure 8 in addition to two resonances of the acoustic mode (at k = 3.14; 5.76), five
shape resonances are visible. In the given example, the fourth resonance, corresponding to
shape oscillation, and the first acoustic resonance occur at fairly close frequencies.

−1

−0.5

 0

 0.5

 1

 0  1  2  3  4  5  6

f

k

Figure 8. The dependence of the amplitude of oscillations of the top point of the drop (see (19)) on
frequency at β = 0.02, ε = 0.02.

As was mentioned above (see discussion of (17)), β can be considered small. Let us
analyze solution (78) in the limit of small β. For finite values of n, the term containing β
can be neglected (see Section 4.4).

For sufficiently large values of the meridional number n
(

βn3 ∼ 1
)
, surface tension

can play a decisive role, and compressibility effects can be neglected. Then, by expanding
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the spherical Bessel functions and neglecting the particular solution of the inhomogeneous
equation wn, we obtain

cn =
Cnk2n−1

(4n + 1)!!
=

k2

βΩ2
n − k2 ≈ −

N3

(N + µ− n)(N2 + n2 + Nn)
. (98)

Here, the notation k2/β = 8(N + µ)3, 2N is the number of the resonant Rayleigh mode for
the given substrate vibration frequency, µ (|µ| ≤ 1/2) characterizes the difference between
frequency and resonance. The parameter µ can be neglected compared to N; large n
Ω2

n ≈ 8n3 is also considered approximately.
However, series (96) will also be cut off by viscosity effects, which are the most pro-

nounced for higher harmonics. Let us estimate what should be the ratio of small parameters
β and δ2 = ν/cR so that resonant excitation of shape oscillations become suppressed by
viscosity. It is quite obvious that for a small-scale flow, the main contribution will be made
by volume attenuation, and not by the presence of a boundary layer near a solid or free
surface. The damping of the N-th harmonic over a period will be substantional if

ω � ν

R2 N2. (99)

By substituting the value of N into (99), we obtain

β2 � kδ6, (100)

or, in dimensional form,

ω � σ2

ρ2ν3 . (101)

In this case, the effect of surface tension can be neglected.

5. Average Shape of the Drop

In this case of rather weak vibrations, then vibrational parameter Q is small, the drop
shape can be given by the following equation:

F0 = r− 1−Qζ(ϑ), (102)

where ζ(ϑ) is the deviation of the averaged surface. Then, the divergence of the normal
vector to this surface is written as:

div~n = 2−Q(∆ϑζ + 2ζ). (103)

Here, ∆ϑ = 1
sin ϑ

∂
∂ϑ

(
sin ϑ ∂

∂ϑ

)
is the spherical part of the Laplace operator. As a result, the

boundary condition (38) for the quasi-equilibrium state will be rewritten as follows:

r = 1 :
1
4

[
(∇n ϕ)2 − (∇τ ϕ)2 + k2q2 − 2γn∇n ϕ

]
= ∆ϑζ + 2ζ. (104)

The pulsation velocity potential on the free surface of the drop is known (95); therefore,
the tangential component of the potential gradient can be written as:

∇τ ϕ = ~τ · ∇z = ~τ · ~γ = γτ , (105)

where ~τ is a unit vector directed tangentially to the droplet surface. It is obvious that

γ2
τ = 1− γ2

n. (106)

Using Formulae (105) and (106), we rewrite the first three terms of Equation (104) as follows:
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(∇n ϕ)2 − (∇τ ϕ)2 − 2γn∇n ϕ = (∇n ϕ− γn)
2 − 1. (107)

For a hemispherical drop, the normal to the surface component of the vector ~γ is equal to
cos ϑ. The pulsating part of the pressure is equal to:

q = cos ϑ− ϕ. (108)

Thus, Equation (104) will be rewritten as follows:

r = 1 :
1
4
(∇n ϕ− cos ϑ)2 +

1
4

k2(ϕ− cos ϑ)2 = ∆ϑζ + 2ζ. (109)

Since the surface of the drop is close to spherical, deviations in the average surface can
be written as:

ζ(ϑ) =
∞

∑
i=0

ζiP2i(cos ϑ). (110)

It is known that the Legendre polynomials are eigenfunctions for ∆ϑ, i.e.,

∆ϑP2i(Θ) =
[(

1−Θ2
)

P2i
′(Θ)

]′
= −2i(2i + 1)P2i(Θ), (111)

where Θ = cos ϑ, the prime denotes the derivative with respect to Θ. Thus, by substituting
expansion (110) into (109), we transform the left side of this equation as follows:

∆ϑζ + 2ζ = −
∞

∑
i=0

(2i− 1)(2i + 2)ζiP2i(Θ). (112)

We write the right side of Equation (109) in the form:

1
4
(∇n ϕ− cos ϑ)2 +

1
4

k2(ϕ− cos ϑ)2 =
1
4

∞

∑
i=0

∞

∑
l=0

Dil P2i(Θ)P2l(Θ), (113)

where
Dil =

[(
ϕi
′ − αi

)(
ϕl
′ − αl

)
+ k2(ϕi − αi)(ϕl − αl)

]∣∣∣
r=1

. (114)

By substituting expressions (112), (113) into Equation (109), we multiply both parts of
the resulting relation by P2m(Θ) and integrate over Θ:

1
4

∞

∑
i=0

∞

∑
l=0

Dil

1∫
0

P2i(Θ)P2l(Θ)P2m(Θ)dΘ

= −
∞

∑
i=0

(2i− 1)(2i + 2)ζi

1∫
0

P2i(Θ)P2m(Θ)dΘ.

(115)

In accordance with the condition of orthogonality of Legendre polynomials:

1∫
0

P2i(Θ)P2l(Θ)dΘ =
1

4l + 1
δil , (116)

where δil is the Kronecker symbol (δil = 1 if i = l; δil = 0 if i 6= l). As a result, from (115), it
follows that

ζi =
(4i + 1)

4(2i− 1)(2i + 2) ∑
l,m

Dlm

1∫
0

P2i(Θ)P2l(Θ)P2m(Θ)dΘ. (117)
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It is known that the integral of the product of three Legendre polynomials in (117) is
equal to the square of the Wigner 3j-symbol [28,29]:

1∫
0

P2i(Θ)P2l(Θ)P2m(Θ)dΘ =

(
2i
0

2l
0

2m
0

)2

(118)

This 3j-symbol can be calculated using the following formula [28,29]:

(
j1
0

j2
0

j3
0

)
=(−1)p

[
(j1 + j2 − j3)!(j1 − j2 + j3)!(−j1 + j2 + j3)!

(2p + 1)!

] 1
2

× p!
(p− j1)!(p− j2)!(p− j3)!

,

(119)

where 2p = j1 + j2 + j3 is an even number (if 2p is odd, then the 3j-symbol is equal to zero).
Thus, by calculating the coefficients ζi using Formula (117) and summing up series (110),
we find the deviation of the quasi-equilibrium surface for a nearly hemispherical drop.

Our calculations demonstrated that under vibrations, drop height decreases, and
the base area increases (see Figure 9). This result was predictable, since the tendency to
maximize the cross-sectional area perpendicular to the vibration axis is typical for many
fluid systems [4,13,27]. However, the dependence of the amplitude of the top point of the
drop on frequency, shown in Figure 10, is not monotonic near resonance of drop volume
oscillations. As a result, near the resonance, the opposite behavior takes place; the drop
height grows and the liquid–solid contact area decreases (see Figure 11).

Figure 9. Averaged shape of the drop near resonance for Q = 1, k = 0.01 (left) and k = 1 (right). The
dashed line shows the semispherical drop shape without vibrations.
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Figure 10. The dependence of the amplitude of the top point of the drop (see (102)) on dimensionless
frequency.
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Figure 11. Averaged shape of the drop for Q = 1, k = 3.17. The dashed line shows the semispherical
drop shape without vibrations.

In the case of finite values of vibrational parameter Q, the shape of the drop can be
calculated using the variational principle (69).

6. Conclusions

The influence of high-frequency vibrations on the shape of a drop placed on a vi-
brating solid substrate is studied in this work. The solution to the problem is analytically
determined as a series in Legendre polynomials. Natural frequencies of sound oscillations
of a hemispherical axisymmetric drop are obtained. Resonances of the acoustic mode of
drop oscillations are found.

We obtained the solution to the pulsation problem by taking into account the surface
tension of the liquid. It is shown that in the presence of surface forces, surface deviations
are limited. In this case, high oscillation modes of the drop shape are excited in a resonant
manner, and small-scale flows appear near the drop surface.

The problem of forced oscillations of a drop in the limit of a weakly compressible
liquid is considered. It is shown that the increase in the amplitude of oscillations with an
increase in the frequency of vibrations occurs according to quadratic law.

The influence of vibrations on the quasi-equilibrium shape of a drop is studied at
a small value of the vibrational parameter. Our calculations showed that in response to
vibrations, the drop height decreases, and the area of its base increases for all vibrational
frequencies, except the resonant ones, for which the opposite behavior is possible. The
deformation of the surface changes in proportion to the vibration parameter.
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