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Abstract: This paper investigates the dynamics of rent-seeking games that include political compe-
tition and policymaker cost model. The local asymptotic stability of multiple equilibrium points
and Nash equilibrium points are studied. In the rent-seeking model, the existence and stability of
Flip bifurcation and Neimark-Sacker bifurcation are examined, and the corresponding theorems and
conditions are derived. The theoretical conclusions of the paper are verified by numerical simulations
with different parameters. The simulation graphics show that the rent-seeking game model exhibits
rich dynamic behaviors, such as multi-periodic orbits, Flip bifurcation, Neimark-Sacker bifurcation,
and chaotic sets.
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1. Introduction

Rent-seeking theory has a vast influence in the field of economics. It not only has
a significant impact on the development of industrial organization theory but also has a
profound impact on public policy formulation and antitrust practice. As an essential branch
of industrial organization theory, rent-seeking theory mainly focuses on the economic
analysis of rent-seeking behavior. The rent-seeking theory was proposed initially by
Gordon Tarlock [1]. According to Tarlock, rent-seeking is an unnecessary waste of resources
in order to obtain or maintain a monopoly position. The purpose of this behavior is not
to create new value but to transfer value: that is, to transfer certain resources from other
people or economic systems to their own hands. Krueger put forward the concept of a

‘rent-seeking society’, which refers to the various forms of rent generated by the restrictive

measures of government intervention in market economic activities, which people usually
compete for [2]. Posner proposed that rent-seeking behavior may lead to monopoly and
unfair competition. Public regulation may be the primary source of social costs rather
than private monopoly [3]. Buchanan put forward the concepts of rent-seeking and profit
pursuit. Buchanan [4] defined rent-seeking as the behavior of individuals or groups aiming
to obtain government privileges or other non-market interests through political activities,
lobbying, etc., and profit-seeking as the behavior of enterprises to obtain profits through
market competition. Tullock’s rent-seeking theory makes an important contribution to the
problem of government failure. On the basis of the theory of market economy;, it adds the
factors of government activities, believing that government activities will have an impact
on the allocation of resources. This effect may be unintentional, or it may be forced or
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intentional. Rent-seeking behavior has an improper impact on the government’s resource
allocation activities, resulting in the loss of total social welfare.

In modern society, economists generally believe that the market is the most effective
mechanism for resource allocation. However, in the real market, there are often some
factors that hinder the effective operation of the market, such as information asymmetry,
external effects, and public goods. These factors lead to market failure, so some individuals
or organizations can obtain profits by pursuing non-productive profits rather than by
improving production efficiency. The rent-seeking game model is proposed in this context.
It reveals that in the case of market failure, in order to obtain more profits, individuals or
organizations may take some improper means, such as lobbying, bribery, manipulation, etc.,
to influence the formulation and implementation of policies so as to obtain non-productive
profits. The proposal of this model is of great significance for us to understand the market
operation mechanism and policy formulation.

The rent-seeking game model is an important concept in economics. It is used to
explain the phenomenon that individuals or organizations obtain profits by pursuing
non-productive profits (i.e., rent-seeking) rather than by improving production efficiency
under the condition of scarce resources. The model reflects a common phenomenon in real
economic life, which is of significance for understanding market operation mechanisms
and policy formulation. Tullock’s rent-seeking game model [5] has aroused widespread
interest among many scholars. Rogerson proposed a game theory model to study the social
costs of monopoly and regulation [6]. Corcoran believes that competitive rent-seeking
behavior is a waste of resources because it aims to transfer wealth rather than create
wealth [7]. Corcoran and Karels extend the analysis of Corcoran by allowing different types
of long-run competitive responses [8]. Higgins et al. pointed out that free access to the
market can improve efficiency because it can reduce the waste of rent-seeking behavior [9].
Hillman and Katz show that when there is a monopoly, due to the presence of risk-averse
rent-seekers, a monopoly leads to an increase in social costs [10]. Hillman and Riley show
that rents or transfers are politically contestable when potential beneficiaries and losers
influence policy decisions [11].

In the rent-seeking game model, political competition and the cost of policymakers
are two crucial factors. Godwin et al. aimed to explore the significance of incorporating
these elements into the rent-seeking game [12]. Their importance in the model is that they
can affect the strategic choices and benefits of individual or organizational rent-seeking,
which in turn affects the development of the market and society. Political competition and
the cost of policymakers are of great significance in the rent-seeking game model. They
can affect the strategic choices and benefits of individual or organizational rent-seeking
and then affect the development of the market and society. Therefore, in the process of
policy formulation and implementation, we should pay attention to strengthening political
competition and reducing the cost of policymakers so as to limit rent-seeking and increase
market and social efficiency.

The dynamic analysis of the rent-seeking game model can help to understand the
dynamic evolution mechanism of the rent-seeking game and further reveal the influence
of various factors within the model on rent-seeking behavior and the long-term economic
effect of rent-seeking behavior. Through model dynamics analysis, we can analyze the
strategic interaction between rent-seeking and regulators and the benefits obtained by
both parties under different strategy combinations. This analysis helps us to understand
the dynamic changes in rent-seeking behavior, such as how rent-seekers adjust their be-
havior according to the strategy of regulators and how regulators adjust their strategies
according to the behavior of rent-seekers. Through dynamic analysis, we can further
study the long-term economic effects of rent-seeking behavior, for example, the impact of
rent-seeking behavior on resource allocation, market efficiency, and social welfare, as well
as the impact of rent-seeking behavior on political stability and institutional quality. These
studies can help us better understand the economic significance of rent-seeking behavior
and provide theoretical support for formulating more effective anti-rent-seeking policies.
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Perez-Castrillo and Verdier reconsidered the ‘effective rent-seeking” model and gave a
complete characterization of pure strategy equilibrium [13]. Based on the rent-seeking
model of Tullock et al., Linster gave the general form of a rent-seeking game and analyzed
the rent-seeking behavior [14]. Szidarovszky and Okuguchi showed that in a general
rent-seeking game, if the degree of risk aversion of each participant does not decrease
with the increase of wealth, then there is a unique pure strategy Nash equilibrium [15].
Xu and Szidarovszky studied the asymptotic stability of the equilibrium in the dynamic
rent-seeking game model, considered the discrete and continuous time scales, derived
sufficient, necessary and sufficient stability conditions, and then discussed the economic
explanation [16]. Leininger and Yang analyzed the rent-seeking game in which competitors
act and react finite or infinite times for rent [17]. Chiarella and Szidarovszky examined
the asymptotic behavior of the model. They believe that the infinite step model is the
most appropriate specification of the rent-seeking model [18]. Okuguchi and Yamazaki
investigated the global stability of the Cournot oligopoly game and the rent-seeking game
without product difference [19]. Yamazaki studied the existence and uniqueness of pure
strategy Nash equilibrium in asymmetric leasing competition [20].

Through the above review, most of the previous literature is based on the improvement
or modification of the constraints of the Tullock model. Then, the model is analyzed from
the perspective of economics, and studies the dynamics of the rent-seeking model from
the perspective of nonlinear dynamics. A small amount of the literature [14-20] is also
discussed from the perspective of Nash equilibrium or model stability. In recent years, the
analysis of economic systems from the perspective of nonlinear dynamics has attracted
considerable interest from scholars [21-34]. It is these observations that inspired us to
study the nonlinear dynamics of the rent-seeking game model. In the study of the stability,
bifurcation, and chaos of the equilibrium point of the system, the evolution mechanism of
the rent-seeking game system is clarified.

We study the nonlinear dynamics of a rent-seeking game system considering the
political competition and the cost of policymakers: that is, to study the local stability of
Nash equilibrium, different types of bifurcation, and chaotic dynamics of the system.

The structure of this article is as follows: A dynamic rent-seeking game model is
presented in Section 2, which includes the costs and competitive intensity of policymakers.
The local stability of different equilibrium points is discussed, and the Nash point’s local
stability is analyzed. The bifurcation analysis of a rent-seeking game model is carried
out. Through the center manifold theorem, the existence conditions of flip bifurcation and
internal mark bifurcation of the model are studied, respectively, and the corresponding
theorems are obtained in Section 3. Section 4 gives some simulation results. We obtain
some conclusions through theoretical analysis and numerical simulation.

2. The Model

Based on Tullock’s standard rent-seeking model, an efficient rent-seeking model was
proposed by Godwin et al. [12]. To assess the cost of a policy maker providing a rent value
V (V > N), they added policymaker cost N; a (¢ € (0, 1]) is the competition intensity of the
Tullock model.

Assume there are two players, Firm 1 and Firm 2, and they spend R; and Ry, respec-
tively, campaigning to obtain rents of value V (V > N). The probability of success for Firm i
is expressed as

R:

Pp=—-—"
! Ri+lXR]'+N

(i,j=1,2,i #}), 1)

where the probability of successful rent-seeking of Firm i is P;, and the probability of failure
is 1 — Pj; the level of competitiveness among rent-seekers is stated as & (0 <o < 1).
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In order to maximize predicted profit, Firm i seeks to optimize the disparity between
anticipated returns and the expenses associated with lobbying efforts.

RV

max7t; (R, R;) = RiTaR +N R;, (i,j =1,2,i #j). 2)
Derivation of Equation (2) can be obtained.
; aR;+ N)V
om; (R T N) —1=0,(i,j =1,2,i £ j). 3)

ORi " (Ri+aR;+ N)>?

It is assumed that the success probability function and rent value information of
rent-seekers are incomplete, and the players do not have completely rational expectation
ability. According to Dixit’s bounded rational behavior hypothesis [35], they follow the
adjustment process of local estimation based on marginal profit g—g. In this paper, the
time-dependent adjustment mechanism proposed by Bischi and Naimzada is used [24]:

om;
Ri(t+1) = Ri(t) + wiRi() 5201 = 1,2.
1

where R;(t + 1) is the next-time rent-seeking expenditure of player i.
Therefore, by using Equation (3) and the above formula, we can get the following equations:

Ri(t+1) = Rat) + imRi(t) | iy — 1)

Ro(t+1) = Ra(t) + p2Ra(t) % s

)

where 1, ptp > 0 is the rent-seeker’s adjustment parameter of expenditure.
Replacing Ry, Rp in (4) by x, y respectively, a dynamic system of the rent-seeking game,
which the following map can give:

(ay+N)V 1

H1x 7 +x
ax
w2y (y+rxx+N)2 -1ty

3. Existence and Stability of Map (5)

The stability of the map (5) at the fixed point will be discussed in this section.
Godwin et al. [12] gave detailed static results on the basis of Nash equilibrium (Re, Re), and
the main lemmas are as follows:

Lemma 1 [12]. Rent-seeking games with complete information have a Nash equilibrium. This
means that the Nash equilibrium (x*,y*) is satisfied by x*,y* € [0, (V — N)/a].

Lemma 2 [12]. The Nash equilibrium (x*, y*) of the model (5) must satisfy x* = y* = R,, where

(xV =2N(1+ ) + /a@V2 + 41+ 2)NV )

R, =
‘ 2(1+a)?

The dynamic analysis of the rent-seeking game model can help us better understand
the dynamic behavior of the rent-seeking model. We can solve the equilibrium point,
analyze the eigenvalue of the game model, and judge its stability, so as to understand the
rent-seeking problem better.
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From the analysis of the fixed points of the map, we have equations as follows:
(ay+N)V —
x| ——————-1]=0,
M (x+ay+N)? ©)
(ax+N)V _
2y (y+ax+N)? 1 0.

The following points can be obtained by solving Equation (6):
eo = (0,0),e; = (0,B),e2 = (B,0), e« = (x7,y").

where the condition V > N has been given in the previous section, so it can be concluded
that B = v/NV — N > 0; ¢, is a Nash equilibrium while eg,e1,e; are the border equilibrium;
x* =y* =R,, R, is given in Lemma 2.

There are several methods for analyzing the stability of fixed points. We can analyze
the stability of fixed points by the following lemmas:

Lemma 3 [36]. Let F(A) = A% + PA + Q be the characteristic equation of eigenvalues associated
with the Jacobian matrix evaluated at the Nash equilibrium (x*,y*), then (x*,y*)

(i). is called a sink if |A1| < 1and |Ay| < 1 so the sink is locally asymptotically stable;
(ii). is called a source if |A1| > 1and |Ay| > 1, so the source is locally unstable;

(iii). is called a saddle if |A1| > 1and |A;| <1 (or [A1]| < 1land |Ay| > 1);

(iv). is non-hyperbolic if either |A1| = 1 or [Ay]| = 1.

Lemma 4 [36]. Let F(A) = A? + PA + Q. Suppose that F(1) > 0, Ay and A are two roots of
F(s) = 0. Then

(i). |AM| < 1and |Ay| < lifand only if F(—1) <0, Q < 1;

(ii). [A1] < Land |Ay| > 1 (or |A1| > 1and |Az| < 1) if and only if F(—1) < 0;

(iii). [A1| > 1and |Ay| > 1ifand only if F(1) >0, Q > 1;

(iv). Ay = —1and |Ay| # 1ifand only if F(—1) = 0and P #0,2;

(v). A1, Ay are complex and |A1| = 1and |Ay| = 1ifand only if P> —4Q < 0and Q = 1.

The Jacobian matrix of map (5) at a point (x, y) is in the following form:

14+ ki —piken }
pr— 7 7
J —pokor 1+ pokn @

where

(x+ocy+N)3

PR21 —

(x+ay+N)* (y+ax+N)* (y+ax+N)*

(ay+ N)(ay —x + N)V ax(ay —x+ N)V ay(ax —y+ N)V (ax+ N)(ax —y+ N)V
k11= -1 ,k12: ko1 = rk22: -1/

A characteristic equation for map (5) is as follows:
A2 — (24 prkyy + pok)A + (14 pakny + pokay + papia(kkas — kiok1)) = 0. (8)

Assuming that the characteristic Equation (7) can be written in the form of F(A) = A% + PA + Q,
we can obtain the coefficient expression of the two roots A1 and A, of the equation. Then, the
stability of the fixed point is judged by analyzing the distribution of the roots. According
to Lemma 4, for Equation (8), we have the following Propositions:

Proposition 1. The eigenvalues of ](0,0) are
M :1+M1(V/N—1) >1,A = 1+‘Z/12(V/N—1) > 1,

then the fixed point ¢y is a source, which is locally unstable.
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Proposition 2. One of eigenvalues of (0, B) is
M=1+u((V-N-a(v'NV—-N))/(aVNV +(1—a)N)) > 1,
then the fixed point e; is a source or saddle; in either case, the e; is unstable.
Proposition 3. One of eigenvalues of J(B,0) is
Ay =1+u((V—-N-a(VNV—-N))/(aVNV + (1 —-a)N)) > 1,
then the fixed point e; is a source or saddle,;in either case, the e; is unstable.
The Jacobian matrix of the map (5) at the Nash equilibrium e is given as
Lo )
where
Iy = (ucR,;JrN)(azRefRerrN)V “1), = acRe(aRe—ReH\g)V, 5= ucRe(thefRe+Na)V,
(Re+aRe+N) (Re+aRe+N) (Re+aRe+N)
by — [ @RAN)@R—RAN)V 4

(Re+aR,+N)?

The characteristic equation of (9) can be written as
A2 = (24 prhy + p2lo2)A + (14 paliy + ol + papa (koo — loly)) = 0. (10)

Here, we assume that rent-seeking is symmetrical case, i.e., the same type of firms for

M1 = M2 =l
Then the Equation (10) can be rewritten as follows:

A2 — (24 GuA+ (14 Gu+Hu?) =0, (11)

where

Let F(A) = A2 — (2+ Gu)A + (1 + Gu + Hu?).

Then F(1) = Hu?, F(—1) = Hu? +-2Gu + 4.

In order to analyze the root distributions of Equation (11) by using Lemma 3, the local
dynamics at the Nash equilibrium point e, can be expressed by the following proposition:

Proposition 4. Suppose that e. is a fixed point of map (5):
(). If any of the following conditions are met, then e, is a sink:
(@ O0<wu<-G/HandH >0, -2VH<G<O;
b O0<pu< —(M+G)/HandH >0,G < —2VH.

Therefore, it is local asymptotic stable for e..
(ii). The condition(s) listed below indicate that e, is a source:

(@ wu>-G/HandH >0, -2VH<G<O0;
® > (—G + \/m)/H and H > 0,G < —2V/H;
(0) G>0.
(iii). The condition listed below indicates that e is a saddle: — (G ++V/G?2—4H ) /H<u<
(~G+ VG2 —4H)/Hand H > 0,G < ~2VH.

(iv). The condition(s) listed below indicate that e, is non-hyperbolic:

@@ pu= —(Gi M)/H, u+-2/G,—4/Gand H > 0,G < —2V/H;
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) wu=-G/Hand H >0, —2VH < G <0.

4. Bifurcation Analysis
4.1. Flip Bifurcation Analysis

This section examines the flip bifurcation occurring in the map (5) at Nash equilibrium
e«. To investigate the flip bifurcation of the Nash equilibrium e, the parameter y is selected
as the bifurcation parameter, and bifurcation theory and the center manifold theorem are
used [37-39].

Let Fgy = {(V, N,a, )= (—G +VG2 —4H)/H,G < —2VH,V,N,a, 1 > 0}, or

Foo = {(V,N,a,p) i = (=G = VG?=4H)/H,G < —2VH,V,N,a,p > 0}.

Flip bifurcation of map (5) at Nash equilibrium e, will be explored as parameters
change near Fgp1. Another case of Fpy can be discussed similarly.

Arbitrarily selecting parameters (V, N, «, jt1) from the set Fg1, the map (5) with param-
eters (V, N, a, y1) are defined as follows:

(ay+N)V
x4 x| ANV g
()~ ey | )
ax+
y+my (y+ax+N)2 -1

At the Nash equilibrium e, (x*, y*), map (12) has the eigenvalues A; = ;G + 3 al and
Ay = —1. They can be derived from Proposition 4.
Selecting j1* as a bifurcation parameter, the following perturbation map (12) is considered:

% (ay+N)V
<x>'_> X+ (P +p*)x Gerayt N7 1

Y y+ (g + 1)y ((“”71”—1

, (13)

y+ax+N)?

where a disturbance parameter |p*|< 1.

For the convenience of analysis, assuming ¥ = x — x* and v = y — y*, the Nash
equilibrium of map (13) can be transformed to the origin.

By introducing a new variable X = (1,0)”, map (13) is converted into the following form:

X — M(X), (14)
where M = (My, Mp)".
For map (14), we obtain
1 1 .
X»—>]X+§B(X,X)+8C(X,X,X)+O(|X| ) (15)

Let F(X) = 1B(X, X) + 1C(X, X, X) +o(|X|4),where] = J(e.) and B(X, X) and
C(X, X, X) are multilinear functions with

Z 9°F b b
B(x,y) = ag.é? Xiyj = < bl >x1y1 + < b3 >(x1}/2+x2]/1)/ (16)
ij=1 9%i%j |._g 2 4
and
C(x w)—iw xyiw; = () xygen + (2 (x1y1w2 + X1Yow1 + X2y w1)
'Y —ijlil Bé‘iaéjaé'z iyjwr = e 1Y1w1 c 1Y1w2 1Y2w1 2Y1W1),
Jl= =0




Mathematics 2023, 11, 4524 8 of 18
According to the above, we have
M = ajqu + a120 + agau? + agauv + a150% + ey + eou?v + e3v?u + g3 + biup* + byop* + b3u2y* + bguop* + b5z12;4*
4
+O( (Jul+lol+1#*)*),
My = ayiu + axnv + axu? + a0 + ay50? + dqud + dopu?v + dzv?u + dyv® + cup™® + coop* + C3u2y* + cquvp* + 0502;1*
4
+O( (Jul+fol+1n*)*),
where
an =1+ (ay*+N)(ay* —x*+N)V 1),a1, = —pu1aVx*(ay* —x*+N) _ =2mV(ay"+N)(=x"+2ay"+2N)
(x*+ay*+N)® ’ (*+ay +N)®> 7 (x*4ay*+N)* !
4y = eV (2ay* —x*4+2N) (x* +ay*+N) =32V (ay*+N) (ay* —x*+N) a5 = 202y Va* (N—2x* +ay*)
(x*+ay*+N)* ! (N+x*+ay*)* !
by — (ay*+N)(ay* —x*+N)V 1 by — _aVx*(ay*—x*+N) _ _ 2V(ay*+N)(=x"+2ay*+2N)
1 (x*+ocy*+N)3 ’ 2 (x*-&-zxy*-&-N)3 ’ (x*+1xy*+N)4 ’
by = Va(2ay* —x*+2N) (x*+ay*+N)=3(ay*+N) (ay* —x*+N) be — 202V x* (N—2x*+ay*)
(x*+ocy*+N)4 4 . (N+x*+ay*)4 ’
e = 6111V (N—+ay*)(BN—x*+3ay™) ey = 2ap1 VI4(N+ay*) 2N —x*+2ay* ) — (4N —x"+4ay* ) (N+x*+ay*)]
(N+X*+ﬂy*)5 ’ (N+x*+ay*)5 ’
03 = 20% i V[(N—4x* +ay*) (N+x* +ay*) —4x* (N —-2x* +ay*)] ey = —6a3 11 Vx* (N=3x* +ay*)
(N+x*+ay*)5 4 (N+x*+uy*)5 !
_ =yt (ax*—y*+N)V _ (ax*+N)(ax*—y*+N)V _ 2 VyF (N—2y* +ax®)
ar = , a»n =1+ -1, ax»3= ,
21 (y*+zxx*+N)3 22 H (y*+txx*+N)3 23 (N+y*+ax*)4
g = Vapy (2y* —N—ax*) (N+y* +ax*)+3Vapuy* (N—y* +ax*) s = =241 V(N+ax*) 2N—y* +2ax*)
(N4y*+ax+)* ’ (N4y*+ax+)* ’
_ —aVy*(ax*—y*+N) (ax*+N)(ax*—y*+N)V _ 2a2Vy* (N—2y* +ax*)
1 = 3/ - 3 1 , 3= 1 ’
(y*+ax*+N) (y*+ax*+N) (N+y*4ax*)
= aV(2y* —N—ax*) (N+y* +ax*)+3aVy* (N—y* +ax*) _ Z2V(N+ax®)(2N—y*+2ax*)
(N+y*+ax*)* ! (N+y* +ax*)* ’
4y = —6p1 63 Vy* (N—3y* +-ax*) dy = 2102V (N —4y* +ax*) (N+y* +ax*) —8u a2 Vy* (N —2y* +-ax*)
(N+y*+ax*)® ! (N+y*+ax*)? ’
dy = 8Vayy (N+ax*)(2N—y*+2ax*)—2Vauy (AN—y* +4ax*) (N+y* +ax*) dy = 6111 V(N+ax) (BN —y* +3ax*)
(N+y*+ax*) ! (N+y*4ax+)’ )
An invertible matrix can be constructed as follows:
T — a2 a12
—l—an Ay—an)’
The translation can be used:
u X
v Y
then map (14) can be transformed into the form
X -1 X u,o,u*
A ) o (flwer)y 17)
v M) \y)  \g(u, o)

op

where

fu,0,1%)

_ a3(Aa—an)—anays 2 | a1a(A2—a11)—a12az a15(Aa—an)—andys, 2 | bi(Aa—an)—anc x| ba(Aa—an)—anc o«
(A u12(7‘>z+1) wt X (Aﬂlz(ﬂz)ﬂ) 0+ ) (’312(/\2+)1) v u1(2/£A2+1)) L;‘u + g/{z()\ﬁ)l) P
3(A2—0a11)—a12C3 , 2 % 4(A2—0a11)—A12C4 * 5(A2—a11)—A12C5 2 % e1{A2—a11)—ad1 3 e2(A2—a11)—a1dsr 2

1212(/\2+1) u ]/l + ﬂ12(/\2+1) MU‘M + 1112()\2+1> y + 1112(/\2+1) u’+ {112(/\2+1)

+
+

es(Ao—anr)—apds 2 ey(Apg—an1)—anpds 3 4
ety 4 alzgeebiod 1o ((Jul+ol+u D)),

u-o
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(tan) (1+an) A b tan) ba(1tan)
_ amz(d+an)+anaxs 2 aig(1+an)+aiaxn ai5(1+a11)+aas 2 1(14an)+ana * 2 (14a11)+tancy o x
_b3(1+‘;1121()&2;2123 2u* ' 54(1225?)2‘;111)264 uv*+ bs(ql‘i(ﬂ)ﬁ )++1t21265 02 —L— Eﬁl(zl('/"\‘ztﬁlﬂul;y 3+ 62(1113*‘(0:\1214)-‘*1'21129120}[2
a12(A+1) up + a12(A2+1) uop” + a12(A2+1) L a12(A2+1) w4+ a12(A+1) uw
o ot 4 S et 4 O (ful+ol ) *),

and

u=ap(E+y),v=—1+an)¥+ A —an)j, uo=ap[—(1+a11)¥+ Ay —2a1 — DIj+ap(Ar —an)j?,  u? = (X +7)%,

v = [—(1+ap)x¥+ (A — ﬂll)ﬂz, uv? = ap(¥+§) [~ (1+a11)x + (A2 — ﬂll)ﬂzl u?v = ”%z(ery'N)z[*(l +an)¥ + (A2 —an)y),
W =ah(7 ), o= [+ )T+ (A —an)il.

According to the center manifold theorem, in a tiny neighborhood of u*, there is a
center manifold of (17) at point (0, 0)

We(0,0,0) = {(%7,1) € R = " (%,1") = ka#® + kope” + ka2 + O (1K1 +w7)°) |, (18)
In the case that #* and X are sufficiently small. Thus, the center manifold has to meet
N (% 7)) = W (=X + f(H (3 "), 17) 1) = Ah™ (3, 07) = 8(X, 1 (%, %), p7) = 0. (19)

When Equations (17) and (18) are substituted in Equation (19) and the coefficients
of Equation (19) are compared, we get O ( (1x]+]p*]) 3) which is at least of a third-order

function in (¥, u*), and

k= — (1+1111)[ﬂ14(1+211)+ll12‘124] + ﬂlz[(1+1111)11123+1112'123] + [‘115(1+a11)+ﬂ12ﬂ%5](1+ﬂ11)2
17/\2 17/\2 1112(17)\2) ’
k> — (1+a11)[ba(1+a11)+aaca] _ by(14agr)+apa ka =0
2 = 2 - 7 ’ 3 — VU
a1 (1+A2) (1+A2)

Thus, the map (5) is constrained by the center manifold, and it can be described as
F:X = =X+ ¥ 4 hoXu* + 3 u* 4 hyXu*? + hsx> + 0 ( (|3?|+|;4*|)4), (20)

where

m {a%,[a13 (A2 — a11) — a12a23] — a12 (1 + an1)[a14(A2 — 411) — @12a04] + [a15(A2 — a11) — A12a05]) (1 + 1111)2},
2

hy = a12(]1+/\2) [[a12b1 (A2 — an) — afpe1] — (14 an1) [b2 (A2 — an) — anaca]],
hy = m {2a%,[a13(A2 — a11) — a12823] + a12(A2 — 1 — 2a11) [a14 (A2 — a11) — a12a24) —2(1 4 a11) (A2 — a11) (w15 (A2 — a11) — a1p25]}
+ m{[ﬂubl (Ag —a11) — a2yc1] +(Ag — a11) [b2(Ag — a11) — anaca) } + m {a%,[b3(As — a11) — ac3)
—ayp (14 aq1)[ba(Az — ay1) — arpcy] + [b5(A2 — ay) — appes] (1 + 1111)2}/
hy = m{[ﬂuh(/\z —a11) — a3c1] + (A2 — a11) [b2 (A2 — a11) — anaca) },
hs = m {20201 [a15(A2 — a11) — a1pa23] + mpann(Aa — 1 —2a11)[a1a(Az — a11) — arnaos] — 2a1 (1 + ag1)(Az — a11) [a15 (Ao — a11) — A12405)

— a3, (1+a11)[e2 (A2 — anr) — arada] + adyler (A2 — a11) — anods] — ea(A2 — a11) — ands) (1 + an1) + [e3(A2 — ar1) — appds] (1 + ﬁ11)2}~

If a flip bifurcation occurs in map (20), it is necessary for two distinct quantities, 1
and By, to be non-zero;
where

10°F  (18°F\° ) PF 1 6F &°F
Pr= (ea;cs * <m2> )(Om =l fr = <am* " ZMMEZ)(O,O) =l

Based on the above analysis and the theorem of [38], the following conclusion can
be drawn:

Theorem 1. If B1 # 0, a flip bifurcation occurs in the map (5) at fixed point (x*,y*) as bifurcation
parameter y changes in a small neighborhood of yy; furthermore, if B1 > 0 (respectively, 1 < 0),
it follows that the bifurcated period-2 orbit is obtained at (x*,y*) are stable (respectively, unstable).
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The flip bifurcation will be demonstrated in Section 4 using simulations under given
parameter conditions.

4.2. Neimark—Sacker Bifurcation Analysis

This section examines the Neimark—Sacker bifurcation occurring in map (5) at Nash
equilibrium e, as parameters change near the neighborhood of Hp.

Let Hp = {(V,N,rx,y) u=-G/H, —2VH<G<0,V,N,a,u> o}.

Then, we will study the existence of Neimark—Sacker bifurcation in map (5) at the
Nash equilibrium point when the parameters (V, N, «, j12) change in a small neighborhood
of the set Hp. Suppose that the parameters (V, N, a, yi3) can be taken arbitrarily from the
set Hp, map (5) can be expressed as

(ay+N)V
X+ pox| —F—— —1
()~ PR @
ax
Y+ py (y+acx+N)2 -1

There is a unique Nash equilibrium e, (x*, y*) for map (21).
Parameter u* is selected as the bifurcation parameter, then a perturbation of map (21)
is considered:

* (ay+N)V
x+ (po + p*)x |
* ox o
y+ 2+ W (rany !

where a disturbance parameter |p*|< 1.
For ease of analysis, assuming u = x — x* and v = y — y*, the Nash equilibrium of
map (22) can be transformed to the origin. Then the following equation is obtained:

< u ) a11u+a12v+a13u2+a14uv+a1502+elu3+ezuzv+e3vzu+e4v3—0—0((\14\—0—\0\)4) 23)
— ,
v ax1tt + a0 + anu? + axuv + ayv? + diu® + dyu?v + dzv?u + dyo’ + O< (Ju]+]o]) 4)

where parameters of map (23) can be obtained from (14) by replacing y for p + p*.
The linearized characteristic equation of map (23) can be expressed as

224 P(EA+ Q) =0,
where
P(*) = =2~ G(uo + "), Qi) = 1+ Gy + 71*) + H(pa + 7*)*.

Given that parameters satisfy (V, N, a, i) € Hp, the eigenvalues of the characteristic
equation at the point (0,0) are a pair of conjugate complex numbers A and A with modulo 1,
as indicated by Proposition 4,

where
AR = (=P) £ 140G ~ P2) ) /2= 14 (Gloa 1) i+ 5°)VH — GF) 2,
and - m G B )
= T2 £0, Al o = \/Q(0) = 1.

In addition, this calls for when #* = 0,u™, 7" # 1(m =1,2,3,4), it equates to
P(0) # —2,0,1,2.
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It is also worth noting that (V, N, a, u2) € Hp. Hence, P(0) # —2,2. We just need to
meet the conditions P(0) # 0, 1, which induce

G? # 2H,3H. (24)
Thus, when (24) holds, the eigenvalues A, A are not at the junction of the coordinate
axis and the unit circle.

Then the normal form of map (23) at z* = 0 will be investigated.
Letw = upvV4H — G?/2,u* = 0,0 = 1+ Guyp/2,

_ ain 0
T= (6 —an —(U)’

% y

then map (23) can be transformed into the form
X 0 —w\ /(% f(7, g))
~| = ~F %L , 25
G- 6D &

~ a a a e e e e i~
FED = 2w+ Pup+ o ¢ LBy 220 22y 2o’y O((|x|+\y|)4),
a2 a2 a2 a2 a2 a2 a2

where

SN 0—ay;)— 0—ayy)— 0—ay;)— 0—ay;)—appd O—ay;)—apd
3(E7Y) = a13( ZE?U a12023,2 4 41 2120 12024 ) 4 W15 ( 2120 a1pazs 2 | el t;11122u a3 o lelzzu aipdy 2,
e3(0—a11)—aipds 2 ea(0—a11)—a1pds 3 =5 4
+ ajpw v u+ ajpw v +O (|x|+|y|) 4

— 2 — — ~
u? = 02,32,  uv=ap(0—a11)¥* —apwxy, %= (0—a11)%% —2(0 —an)wxy + WP,  uPv=aky (0 —a1)x — a2,wx%y

vu = ap (0 — u11)23?3 —2a1p(0 — a11) w2y + apw? X2, wd =%, ¥ =(0— 1111)3553 —3w( — un)zicayjt 3w?(0 — ay1)Xy* — 3P
Thus,
z 2 2z 2,6 3 7
= 210013 +2m4(0 — an) + T2 (0 —a11)”,  farw = 60107, + 6e2a12(8 — an1) +6e3(6 —a11)” + 52 (0 —ann)”,  fyy = — i@,
x 4 Y 5 ~
57 = agwra(0—an),  fray = —4wes(8 —an) —2wenny — ;2 (aw (9 —an)Y),  fiy = —ouw - TE(O —an)w,  fi = E50?,

. 2
§w =, {ﬂlz [213(0 — a11) — a12a23] + (8 — a11) [a14(0 — a11) — a1pa4] + [a15(0 — a11) — a1pa25](0 — 411)2},

~ 1 ~ 2w
Sy = E{au[ﬂuﬂm — a14(0 — a11)]—2(60 — a11) [a15(6 — a11) — a12a25]}, &gy = T [a15(0 — a11) — a1pa25),

Sorr = S{ad,le1(0 — an) — arndy] + a12(0 — an)[e3(0 — any) — arads] + [e3(0 — a11) — arads](6 — any)” + [ea(0 — a11) — aroda] (6 — “11)3}/
ST = % [m12dy —es(6 —an)], gy = 5w (0 —an)lea(6 — ann) — arpda],

~ 6
Sy = 4(0 — aq1)[a12d3 — e3(0 — aq1)] + 2a12[a12d2 — e2(0 — a11)] + E[a12d4 —eq(0 —a11)](0 —an)*.
at point (0, 0).
The occurrence condition of the Neimark—Sacker bifurcation of map (25) at point (0, 0)
is contingent upon the non-zero value of the discriminant as follows:

7
*

=0

-2
B= {—Re<(11_2/\)3)\§20§11> - %|§11\2 — &0zl +Re()“§21)}
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%

where

+1i

fex — fig +28%7) + (8w — 8w — 2f57) | Cn:%[(ﬁf+%g)+i(§ff+§gg)],
fex — fog — 28w

e — Gy +2fw) | é‘zl:%[(fm+ﬁw+§m+§m>+i(§m+§igg*f~mfﬁw>]-

We summarize the above research, and the following theorem can be obtained:

Theorem 2. If (24) and p # 0 holds, when the bifurcation parameter u changes in a small
neighborhood iy, there will be a Neimark—Sacker bifurcation at fixed point (x*,y*) of the map
(5). Moreover, if B < 0 (resp., B > 0), a closed curve bifurcates from a fixed point (x*,y*) if it is
attractive (repulsive) for u > yp (resp., u < p2).

5. Numerical Simulations

In this section, the theoretical analysis conclusions of the previous sections are verified
via simulation. At the same time, the existence of bifurcation, chaos, and other dynamic
behaviors in the map (5) are investigated. Some kinetic figures of the mapping (5) are
explained.

From map (5), we can get

(ay+N)V

prx| o — 1) +x
S W N s
oax
PY\ (e L)ty

Firstly, in order to verify the stability of the equilibrium point in Section 2, we take the
parameters as follows: V =10, N =5,a& = 0.5, and p1 =4.1, yp =4.1.

When the system parameters are taken as the above values, it can be seen from this
Figure 1 that ¢y is an unstable source point, e, e, are unstable saddle points, and only Nash
point e« is a stable sink. This verifies the correctness of the Propositions in Section 2.

-2

Figure 1. Nullcline of the equilibrium point with V =10, N =5,a =0.5, 1 =4.1, yup = 4.1.

Through the two-parameter bifurcation diagram of the map (26), we can preliminarily
understand the parameter distribution interval of the dynamics of the map (26). As shown
in Figure 2, the red part is a stable parameter region, the blue part is the multi-periodic
orbital parameter region of the map (26), and the white part is the instability parameter
region of the map (26).
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1

Figure 2. 2-parameter bifurcation diagram of map (26).

In order to study the dynamics of the map (26), we take the following sets of parameters:

(i) FixingV =10,N =5,a = 0.5, parameter y varies in range 3.2 < y < 4.84;

(if) Fixing V =10,N =5,y = 4.1, yp = 4.8, parameter a varies inrange 0 <« < 1.7;
(iii) Fixing N =5,a = 0.5, 1 = 4.1, yp = 4.8, parameter V varies in range 8.24 < V < 10.3;
(iv) Fixing V =10,a = 0.5, 41 = 4.1, yp = 4.8, parameter N varies in range 4.9 < N < 5.3.

For case (i): The initial value of the map is set as (xp,yp) = (2,0.1), and under the
parameter conditions of the set (i), the bifurcation diagram (plane (u, x) and (y, y)) of the
map (26) can be simulated for 3.2 < p < 4.84. It can be seen from Figure 3a that there are
period-doubling bifurcation and chaos, and the detailed dynamic change process. The
maximum Lyapunov exponent is shown in Figure 3b, which corresponds to the bifurcation
diagram shown in Figure 3a.

Figure 3 illustrates the existence of a stable fixed point (1.784,1.784) for 0 < u < 3.662
and a flip bifurcation that takes place at = 3.662. It is observed that there exist period-2
orbits in regions u € (3.662,4.354). There is a flip bifurcation at y = 4.354. It is evident that
there are period-4 orbits.

Figure 4 shows phase portraits corresponding to those in Figure 3 for i € (0, 4.82).
We note the existence of the period-1, 2, 4, 6. .. orbits (in Figure 4a—i). In Figure 4a, a stable
fixed point is shown. In Figure 4f-h, the emergence of Neimark-Sacker bifurcations is
observed with parameters p= 3.57, u= 4.38. When the parameters are adjusted as such
u=4.45,4.75,4.822, the various chaotic sets may be seen in Figure 4j-1. The Lyapunov
exponents associated with parameters y= 4.45,4.75,4.822 are shown to be greater than
zero, providing evidence for the presence of chaotic sets in Figure 3b.

For case (ii): The initial value of the map is set as (xp,yp) = (2,0.1), and under the
parameter conditions of the set (ii), the bifurcation diagram (plane («,x) and («,y)) of
map (26) can be simulated for 0 < a < 1.7. It can be seen that there are period-doubling
bifurcation and chaos, and the detailed dynamic change process in Figure 5a. Figure 5b
depicts the maximum Lyapunov exponent diagram, which corresponds to the bifurcation
diagram shown in Figure 5a.

Figure 5 illustrates the occurrence of a flip bifurcation at « = 1.172, as indicated by
Proposition 4. It has been observed that there are period-2 orbits inside larger regions
a € (0.844,1.172). We can draw a phase diagram similar to Figure 4, which is no longer
given here.

For case (iii): The initial value of the map is set as (xp, o) = (2,0.1), and under the
parameter conditions of the set (iii), the bifurcation diagram (plane (V, x) and (V,y)) of the
map (26) can be simulated for 8.24 < V < 10.3. It can be seen that there are period-doubling
bifurcation and chaos, and the detailed dynamic change process in Figure 6a. Figure 6b
depicts the maximum Lyapunov exponent diagram, which corresponds to the bifurcation
diagram shown in Figure 6a.
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Figure 6 illustrates the occurrence of a flip bifurcation at V = 8.517, as indicated by
Proposition 4. It has been observed that there are period-2 orbits inside larger regions
V € (8.517,9.359). We can draw a phase diagram similar to Figure 4, which is no longer
given here. The studies of other cases exhibit similarities to case (i).

For case (iv): The initial value of the map is set as (xp, y9) = (2,0.1), and under the
parameter conditions of the set (iv), the bifurcation diagram (plane (N, x) and (N, y)) of the
map (26) can be simulated for 4.84 < N < 6.5. It can be seen that there are period-doubling
bifurcation and chaos, and the detailed dynamic change process in Figure 7a. Figure 7b
depicts the maximum Lyapunov exponent diagram, which corresponds to the bifurcation
diagram shown in Figure 7a.

Figure 7 illustrates the occurrence of a flip bifurcation at N = 5.176,5.339, 5.868, as
indicated by Proposition 4. It has been observed that there are period-2 orbits inside
larger regions N € (5.339,5.868). There are period-4 orbits with N € (5.176,5.339). When
parameters N = 4.937, 5, the various chaotic sets may be seen in Figure 7a. We can draw a
phase diagram similar to Figure 4, which is no longer given here. The studies of other cases
exhibit similarities to case (i).

Maximum Lyapunov exponents

0 L g : 05 e :
2 34 36 3 2 44 46 48 5 2 34 36 3 .
3234036 38 4,42 44 46 48 3234 36 38 4,

@ (b)

Figure 3. (a) Bifurcation diagram of the map (26) with p ¢ (3.2,4.84), V =10,N = 5,4 = 0.5;
(b) Maximum Lyapunov exponents corresponding to (a).

.

(byu=4 (c) y=4.355

o s

] . :
(d) Local enlargement of (c) (e) ,u)= 4.685 fyu ; 3.57

=S
- ’ Q V '
- " 0 -
' = Ll

(g) Local enlérgement of (f) (h) u=4.38 (i) u=4.4546

0s 1 15 25

() =445 (k) u=475 (1) u=4.822

Figure 4. Phase portrait for map (26) with V = 10, N = 5,a« = 0.5 and different y.
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Figure 5. (a) Bifurcation diagram of the map (26) witha« € (0,1.7),V =10,N =5,u1 = 4.1, up =4.§;
(b) Maximum Lyapunov exponents corresponding to (a).
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Figure 6. (a) Bifurcation diagram of map (26) with V € (8.24,10.3), N = 5,0 = 0.5, ;11 = 4.1, yp = 4.8;
(b) Maximum Lyapunov exponents corresponding to (a).
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Figure 7. (a) Bifurcation diagram of map (26) with N € (4.84,6.5),V = 10,0 = 0.5, ;11 = 4.1, yp = 4.8;
(b) Maximum Lyapunov exponents corresponding to (a).

Through Figures 1-7, we can know that in the parameters (V, N, «, u) of the rent-seeking
game model (26), when one of the parameters changes in a specific interval, the model (26)
may produce multiple equilibrium points, flip bifurcation, Neimark-Sacker bifurcation,
chaos, and other dynamic phenomena. We can have some economic discussions regarding
these behaviors.

(1). In Figure 4b,c,e,i, we can observe the phenomenon of ‘multiple equilibria’. In
economics, in the rent-seeking game model, Nash equilibrium means that in a game, each
participant adopts the optimal strategy, and no participant can obtain more benefits by
changing his strategy. In some cases, there may be multiple Nash equilibriums in the
rent-seeking game model, which means that there are multiple optimal strategy combi-
nations so that each participant cannot obtain more benefits by changing their strategies.
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Multiple equilibrium points may lead to the instability of the economic system because
participants may change their strategies at any time, resulting in the system shifting from
one equilibrium point to another. For example, in terms of market competition, if multi-
ple rent price levels can achieve maximum profit, the market may have a rent price war,
resulting in changing returns, which may lead to market oscillation.

(2). In Figures 3 and 5-7, we can observe the flip bifurcation phenomenon. In the
rent-seeking game model, flip bifurcation means that with the change of a specific pa-
rameter, the system suddenly changes from a stable state to another stable state. This
phenomenon is widely used in economics, such as in the study of market competition,
government regulation, and so on. In the rent-seeking game model, the appearance of flip
bifurcation means that the system suddenly changes from one stable state to another stable
state, which may lead to the instability of the economic system.

(3). In Figure 4f-h, we can observe the Neimark-Sacker bifurcation phenomenon. In
the rent-seeking game model, Neimark-Sacker bifurcation refers to the sudden change of
the system from a stable state to a periodic state with the change of a specific parameter.
This phenomenon is widely used in economics, such as in the study of market competition,
government regulation, and so on. In the rent-seeking game model, the emergence of
Neimark-Sacker bifurcation means that the system suddenly changes from a stable state to
a cyclical state, which may lead to periodic oscillations in the economic system.

(4). In Figure 4j-1, we can observe the chaos phenomenon. In the rent-seeking game
model, chaos refers to the sudden change of the system from a stable state to an irregular
state with the change of a specific parameter. This phenomenon is widely used in eco-
nomics, such as in the study of market competition, government regulation, and so on.
In the rent-seeking game model, the emergence of chaos means that the system suddenly
changes from a stable state to an irregular state, which may lead to the instability of the
economic system.

In summary, in economics, for enterprises, each participant in the rent-seeking game
will adopt a local optimal strategy under the current limited information conditions. When
the external conditions (system state) change, the enterprise will change its strategy to
obtain more benefits. In terms of government regulation, the government may restrict the
rent-seeking behavior of enterprises through regulatory measures. When the supervision is
small, enterprises may choose to continue rent-seeking behavior; however, when the super-
vision intensity exceeds a certain threshold, enterprises may choose to give up rent-seeking
behavior. If the above dynamic phenomena occur, the sudden change of different states
may lead to the oscillation and instability of the economic system. These phenomena reveal
the complexity and uncertainty in the relationship between government resource allocation
and enterprise market competition.

6. Discussion

The complex dynamics of the rent-seeking game model (5) have been studied. It has
been proved that the bifurcation behavior of the rent-seeking game model (5) at the Nash
equilibrium point is within a specific parameter range. The study reveals that the model
has been shown to undergo a sequence of bifurcations, including the flip bifurcation and
Neimark-Sacker bifurcation, by respectively selecting appropriate bifurcation parameters
u,&,V,N. A comprehensive qualitative analysis has been conducted on model (5) by
considering many factors. Furthermore, the rent-seeking game model (5) exhibits a wide
range of intriguing dynamical phenomena, such as periodic orbits with periods, flip
bifurcation, Neimark-Sacker bifurcation, cascades of period-doubling, and chaotic sets.
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