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Abstract: Tuberculosis (TB) has a long history as a serious disease induced by its causative agent My-
cobacterium tuberculosis. This pathogen manipulates the host’s immune response, thereby stimulating
inflammatory processes, which leads to an even greater imbalance of specific enzymes/inhibitors that
contribute to tissue destruction. This work addresses a model consisting of two ordinary differential
equations obtained by reducing a previously developed large-scale model describing lung damage,
taking into account key metabolic pathways controlled by bacteria. The resulting system is explored
as a dynamical system simulating the interaction between bio-markers (matrix metalloproteinases)
of tissue destruction and the pathogen. In addition to the analysis of the mathematical model’s
features, we qualitatively compared the model dynamics with real clinical data and discussed their
mutual correspondence.

Keywords: host–pathogen model; M. tuberculosis; nonlinear ODE; mathematical biophysics
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1. Introduction

A decade ago, the problem of exploring the host–pathogen interactions accompanying
the development of tuberculosis was claimed as one of the crucial goals for exploration and
modelling in this field [1]. Despite certain advances achieved during these years (see for
review, e.g., [2–5]), the problem is far from a complete resolution.

Among the issues which induce the most active current interest, one can list the
following. A variety of formation paths and outcomes of the tuberculosis granuloma is
understood as governed by a complex proteomic network of interactions, among which
the collagenase matrix metalloproteinase-1 (M1) plays a valuable role, being included in
multiple interactions [6]. The biochemical interactions of the components of the M. tuber-
culosis cell wall with the host’s cell modulating inflammatory and immune responses [7]
includes interactions that can play the role of potential drug targets [8]. The need for taking
into account the complex of biochemical, biophysical and microbial drivers of the disease’s
development in the case of cavitary tuberculosis is highlighted in the review [9]. The search
for biomarkers, which can be determined non-invasively, e.g., from blood samples, and can
efficiently characterize the disease’s development, monitor the effectiveness of anti-TB
drugs, etc., is among the hot topics of research in this field [10,11].

Among such biomarkers, matrix metalloproteinases (MMPs) play a special role [12–14].
The primary role of these proteolytic enzymes consists of their participation in the degrada-
tion of the tissue’s extracellular matrix induced by the action of M. tuberculosis. Among the

Mathematics 2023, 11, 4522. https://doi.org/10.3390/math11214522 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11214522
https://doi.org/10.3390/math11214522
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8969-535X
https://orcid.org/0000-0002-9841-0061
https://orcid.org/0000-0001-7904-1881
https://doi.org/10.3390/math11214522
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11214522?type=check_update&version=2


Mathematics 2023, 11, 4522 2 of 15

most valuable representatives of this family one can note collagenases (M1 and M8),
stromelysin (M3), and gelatinase (M9). During the inflammatory process, the action of
MMPs is also balanced by the tissue inhibitor of metalloproteinases (TIMP). What is im-
portant is that the respective processes lead to the change in the concentration of these
substances not only locally in tissues but also in a partient’s blood, which makes it possible
to develop fast non-invasive diagnostic methods [15,16], predict treatment outcomes [17]
and classify strains of M. tuberculosis respectively to their status of drug resistance [18,19].

A number of approaches to the computational models of pulmonary tuberculosis-
related fibrosis processes are considered in the work [20]. They include discrete (metabolic
network-based and agent-based) and continual (operating with systems of differential
equations) models as well as hybrid ones. The multiscale models allow for connecting the
dynamics of the concentration of characteristic metabolites with the macroscopic dynamics
of the tissue components’ structuring. Several existing models are especially devoted to the
dynamics of matrix metalloproteinases in connection with bacterial burden and biophysical
properties and transformations of the lung tissue’s collagen. In particular, the authors of the
work [21] operated with a system of ordinary differential equations consisting of the mass-
balance-based equations for the MMPs and collagen’s concentration supplied additionally
with an equation stating the bacterial leakage. This system was focused on granuloma-
related dynamical structuring. A more detailed ODE-based picture of the lesion formation
as the generation and evolution of spherical “bubbles” is addressed in the work [22] but
without taking into account the possible temporal evolution of MMP’s and mycobacterial
population explicitly. On the contrary, a population dynamics mathematical model for the
bacterial burden inside of a lesion was developed in the work [23] respectively to different
kinds of disease courses (granuloma, fibrocalcific form, etc.). The model, comprised of
three ordinary differential equations built by the authors of the work [24], is devoted
to the the activation of the inflammatory process, where MMPs are considered within
a generalized variable, which takes into account complex pro-inflammatory mediators.
The game-theoretical approach to the dynamics of a medium-size network of the host–
pathogen interactions determined from the gene expressions (including those, which
code MMPs) in samples taken from a cohort of patients was considered in the work [25].
Additionally, a differential-equation-based model for the macrophage proinflammatory
response against M. tuberculosis, including granuloma’s dynamics, among the factors of
which MMP-9 was considered, was constructed and analysed in work [26].

Earlier [27], we proposed a multi-variable model characterising the principal scheme
of interactions between the mycobacterial load and concentrations of the matrix metallo-
proteinases M1, M3, M8 and M9, the expression of their precursors (pMP), cytokines and
the product and substrate of the lung-cavity-related tissues. Although this detailed model
captures the principal features of the cavity formation and closing after treatment supplied
with the auxiliary biochemical dynamics, its general dynamics cannot be analysed in detail
due to the high multidimensionality of the model. Thus, the principal goal of the present
work is in the formulation and analysis of a much more simplified system of ordinary
differential equations able, notwithstanding, to capture the principal biochemical dynamics
of the disease progress as the response to the dynamics of the intra-lung mycobacterial load.

2. Model
2.1. Model Statement

In constructing the simplified model, we relied on the full model developed by us
earlier [27] but with slight modifications. While the previous study is focused more on
the conditions of cavern formation or other forms of inflammation, in this study we are
more interested in the dynamics of the pathogen and matrix metalloproteinases, whose
over-activity leads to the destruction of lung tissue.

To construct a kinetic scheme for the activation of matrix metalloproteinase (see
Figure 1), we considered the processes of pathogen activation of pro-enzymes, which leads
to the over-expression of matrix metalloproteinases (MMPs). As in the previous study,
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the set of reactions leading to M1 overexpression was denoted by a single variable A. Since
such processes ensure the survival and proliferation of Mtb, it is reasonable to assume the
presence of positive feedback between A and Mtb. The pool of reactions responsible for
suppressing M1 synthesis was also summed up (variable I). As for the signalling pathway
of cytokine activation by the pathogen, processes involving the activation or inhibition of
MMPs, in particular M1, have been considered (see Figure 1).

Figure 1. The kinetic scheme of processes resulting in the lung tissue destruction during TB, where
αi (i = 1, 2, 3, 4) are in- and out-fluxes of the metabolites; α, β determine pathogen reproduction
and depletion due to treatment; Mtb—pathogen population; Mi (i = 1, 3, 8, 9)—matrix metallo-
proteinases/enzymes, involved in the destruction of lung tissue during the tuberculosis process;
pMi (i = 1, 3, 8, 9)—pro-matrix metalloproteinases/enzymes, activating Mi synthesis; TIMP—matrix
metalloproteinase inhibitor; Cyt,TNF − α denote key metabolites of immune reactions; A and I
define a pool of reactions that activate and inhibit the overexpression (oversynthesis) of matrix
metalloproteinase-1 (pM1).

The system of equations describing the dynamics of the pathogen, as well as the
metabolic pathways it governs within the framework of formal kinetics, will be as follows:

d[Mtb]
dt

= α− kr[A][Mtb]− β[Mtb], (1)

d[A]

dt
= kA[Mtb]− [A](µ + mkr[Mtb] + kAI [Cyt]), (2)

d[I]
dt

= α2 − [I](kmtbI [Mtb] + koutI), (3)

d[Cyt]
dt

= kcyt[Mtb]− α4[Cyt], (4)

d[TNF]
dt

= α3 − [TNF](kTNF[Cyt] + kout), (5)

The synthesis of metalloproteinases (M1, M3, M8, M9) is conditioned by the expression
of pro-MMPs (pM1, pM3, pM8, pM9). An inhibitor of MMPs, TIMP, can be also inhibited
by Mtb components, but it has not yet been investigated in detail [12]. All reactions
in the kinetic scheme were considered irreversible, and the outflow of enzymes from
the environment was assumed to be very slow and therefore was not included in the
system description.
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Thus, we obtain the following set of kinetic reactions:

d[pM1]

dt
=

µ[A]

[I] + [I0]
− kpm1 [pM1], (6)

d[pM3]

dt
= kmtb3 [Mtb]− kpm3 [pM3], (7)

d[pM8]

dt
= kmtb8 [Mtb]− kpm8 [pM8], (8)

d[pM9]

dt
= kmtb9 [Mtb]− kpm9 [pM9], (9)

d[M1]

dt
= kpm1 [pM1]− kTIMP[M1][TIMP], (10)

d[M3]

dt
= kpm3 [pM3]− kTIMP[M3][TIMP], (11)

d[M8]

dt
= kpm8 [pM8]− kTIMP[M8][TIMP], (12)

d[M9]

dt
= kpm9 [pM9]− kTIMP[M9][TIMP], (13)

d[TIMP]
dt

= α1 − [TIMP](kmtbT [Mtb] + kTIMP ∑ [Mi] + koutT), (14)

where ∑
i=1,3,8,9

[Mi] = [M1] + [M3] + [M8] + [M9] and the respective units conventionally

used in biochemical and clinical practice are listed in Table 1.

Table 1. Units of dimensional variables and parameters in Equations (1)–(14).

Variables Units

Metabolite concentrations * ng mL−1

[Mtb] cfu mL−1

t d **

α mL−1d−1cfu koutT d−1

kr ng−1d−1mL kpm1 d−1

β d−1 kpm3 kpm8 d−1

kA cfu−1d−1ng kpm9 d−1

µ ng mL−1d−1 kmtb3 cfu−1d−1ng
m-factor cfu−1ng kmtb8 cfu−1d−1ng

kAI ng−1d−1mL kmtb9 cfu−1d−1ng
α2 mL−1d−1ng kmtbt cfu−1d−1ng

kmtbI cfu−1d−1mL kI ng−1d−1mL
kcyt cfu−1d−1ng kTIMP ng−1d−1mL
α6 d−1 α1 mL−1d−1ng
α3 mL−1d−1ng

kTNF ng−1d−1mL
kout d−1

koutI d−1

* [A], [I], [Cyt], [TNF], [pM1], [pM3], [pM8], [pM9], [M1], pM3], [M8], [M9], [TIMP]; ** days.

It should be noted that the dependence of pro matrix metalloproteinase-1 (pM1) on
the pools of activating (A) and inhibiting reactions (I) (see Equation (6)) was taken into
account due to the fact that pathogen activation of the pool leads to over-synthesis of pM1.
In the absence of a pathogen, pool A is not active, and the pool of inhibiting reactions is
activated, resulting in a normal level of pM1. The variable I0 represents the main level of
inhibitory reactions in the host cell.
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2.2. Model Reduction

According to clinical data, the concentration of the immune system metabolites TNF
and Cyt remains high (increasing by 104 times) and practically constant during both
the inflammatory process and the first phase of treatment, and the concentration of the
inhibitor TIMP remains constant too. In the experiment, the total concentration pMi + Mi
was measured; therefore, the system of Equations (6)–(13) can be reduced, assuming for
simplicity that the concentration of pro-enzymes varies in proportion to the concentration
of the enzyme; i.e., pMi = ξMi, and therefore pMi + Mi = (1 + ξ)Mi. Thus, we obtain
the expressions for the concentrations of MMPs, TIMP, TNF and Cyt, while the kinetic
constants will be normalized to the coefficient 1 + ξ:

d[M1]

dt
=

µ̃[A]

[I] + [I0]
− k̃TIMP[M1][TIMP], (15)

d[M3]

dt
= k̃mtb3 [Mtb]− k̃TIMP[M3][TIMP], (16)

d[M8]

dt
= k̃mtb8 [Mtb]− k̃TIMP[M8][TIMP], (17)

d[M9]

dt
= k̃mtb9 [Mtb]− k̃TIMP[M9][TIMP]. (18)

Here, k̃I = kIξ/(1 + ξ), and the rest of the terms supplied with tildes are equal to the
respective quantities without tildes simply divided by 1 + ξ.

[Cyt] =
kcyt

α4
[Mtb] = γ2[Mtb], (19)

[TNF] =
α3

kTNF[Cyt] + kout
=

γ1

γ3[Mtb] + 1
, (20)

[TIMP] =
α1

kmtbT [Mtb] + kTIMP ∑ [Mi] + koutT
, (21)

where γ1 = α3
kout

and γ3 = γ2
kTNF
kout

.
It should be noted that the dynamics of the pathogen and metalloproteinases, as well

as their influence on each other, are of interest to us, and therefore we will not consider
the obtained functions of the immune metabolites (19) and (20). After dimensionality
reduction of the system and substitution of the expression (21) into the Equations (15)–(18),
the following system for dimensionless variables and parameters was obtained:

dMtb
dτ

= αd + Mtb(A− βd), (22)

dA
dτ

= Mtb− A(ν + Mtbγd), (23)

dI
dτ

= α2d − I(Mtb− koutId), (24)

dM1

dτ
=

ν1 A
I + 1

−M1 F̃, (25)

dM3

dτ
= k3Mtb−M3 F̃, (26)

dM8

dτ
= k8Mtb−M8 F̃, (27)

dM9

dτ
= k9Mtb−M9 F̃. (28)

where
F̃ =

α1d

β1[Mtb] + β2 ∑ [Mi] + 1
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and all new dimensionless parameters are combinations of dimensional parameters and con-
centrations of metabolites: αd = αt0

Mtb0
, βd = β0t0, ν = µt0, γd = mkr Mtb0t0 + kAIγ2Mtb0t0,

α2d = α2t0
I0

, ν1 = µ̃t0 A0
∑ [Mi0]I0

, k3 =
k̃mtb3

Mtb0t0

∑ Mi0
, k8 =

k̃mtb8
Mtb0t0

∑ Mi0
, k9 =

k̃mtb9
Mtb0t0

∑ Mi0
, α1d = α1 k̃TIMPt0

koutT
,

β1 = kT Mtb0
koutT

, β2 =
k̃TIMP(1+ξ)∑ Mi0

koutT
.

Since by “activator” and “inhibitor”, we mean a pool of reactions, and assuming (for
simplicity) that this pool is in equilibrium, it is reasonable to equalize d[A]

dτ and d[I]
dτ to zero.

Assuming IkoutId is very slow (≈0), and substituting the obtained expressions for [A] and
[I] into the rest of the equations, we obtain:

dMtb
dτ

= αd + Mtb
(

Mtb
ν + Mtbγd

− βd

)
, (29)

dM1

dτ
=

ν1Mtb2

(ν + Mtbγd)(α2d + MTb)
− [M1][F̃], (30)

dM3

dτ
= k3Mtb−M3 F̃, (31)

dM8

dτ
= k8Mtb−M8 F̃, (32)

dM9

dτ
= k9Mtb−M9 F̃. (33)

As the last step, we sum up Equations (30)–(33) by substituting the expression for F̃
and re-designating the constants. The final system will be as follows:

dMtb
dτ

=
γ−1Mtb2

Mtb + ν/γ
− βMtb + α (34)

dM
dτ

= − γ1M
βm M + (Mtb + β0)

+

(
γ−1Mtb

Mtb
+ ν/γ

)(
ν1Mtb

Mtb + α2

)
+ Mtbνsum (35)

where M = ∑ Mi, α2d = α2, γ2d = γ2, γ1 = α1d/β1, αd = α, βd = β, βm = β1/β2,
β0 = 1/β1, νsum = k3 + k8 + k9.

Although it eliminated the possibility of tracing the dynamics of multiple interme-
diate biochemical reagents, such as pro-enzymes, metabolites of immune reactions, etc.,
Equations (34) and (35) provide an advantage in both mathematical and biophysical senses.
Two nonlinear equations allow for building simple low-dimensional algebraic equations,
the solution of which defines stationary states and asymptotic regimes. Moreover, they can
be easily illustrated and analysed graphically, which is virtually impossible for the original
system of 14 variables and dozens of constants. This also provides an opportunity to choose
and adjust the remaining constants or their combinations in such a way that the simulated
time series reproduce experimental ones. Note that the concentration of metalloproteinases
governed by Equation (35) can be experimentally measured.

For further simulations, which require numerical solving of the system (34) and (35),
we used the MATLAB 2014b, applying its standard ODE solver ode45, which realises an
explicit Runge–Kutta (4,5) formula with the Dormand–Prince pair.

3. Results

It should be pointed out that the system (34) and (35) represents the unidirectional
coupling. This means that Equation (34) can be considered as an isolated equation describ-
ing the population dynamics of M. tuberculosis in lungs. Its solution stated as a function of
time plays the role of perturbation acting on the biochemical dynamics of the metallopro-
teinase concentration defined by Equation (35). At the same time, this governing action
is not a trivial influx since there is not only a nonlinear influx (the second and the third
terms in Equation (35) but also a parameter modification of the first term containing the
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dependence on the metalloproteinase concentration. Certainly, due to the high nonlinearity
of Equation (35), this nonhomogeneity of the equation gives a non-trivial response.

Note that Equation (34), which determines the population growth of M. tuberculosis,
has the formal form coinciding with the so-called Bazykin model with external influx in
population dynamics. The dynamical properties of this this model are well studied, see
e.g., [28], whence we will not focus on them in detail but provide the basic characteristic
parameters useful for the further consideration of the full dynamics.

Note that it is more demonstrable to consider the reduced mycobacterial population
and the reduced time defined as Mtb′ = βMtb and τ′ = βτ, respectively. This allows a
more simple representation of Equation (34) in the form

dMtb′

dτ′
=

(
Mtb′

)2

γ′Mtb′ + ν′
−Mtb′ + α′, (36)

where the reduced parameters α′ = α/β, γ′ = βγ, ν′ = β2ν are introduced.
There are two possible cases related to the influx of mycobacteria. Medically, the first

one relates to the the patient suffering from tuberculosis but isolated from the external
bacterial load, i.e., α′ = 0. In this case, the Equation (34) has two simple stationary points
corresponding to dMtb′/dτ′ = 0. The first one is the trivial unstable equilibrium of the
population’s absence,

(
Mtb′

)
s = 0. The second one is defined by the simple relation

(
Mtb′

)
s =

ν′

1− γ′
. (37)

It is important that the population density always can be only non-negative. Thus,
Equation (37) directly implies the strict restriction γ′ ≤ 1, or, in the original notation,
βγ ≤ 1. Figure 2A illustrates the distribution of non-negative

(
M′tb

)′
ss when they exist.

Note that the original notation of parameters and the population density are used there as
explicit combinations.

When α′ 6= 0, the conditions for the stationary state read as

(
Mtb′

)
s =

(ν′ − α′γ′)±
√
(ν′ − α′γ′)2 − 4(1− γ′)α′ν′

2(1− γ′)
. (38)

The biological sense requires that the realistic steady state should be non-negative,(
Mtb′

)
s > 0 and real-valued, i.e., (ν′ − α′γ′)2 − 4(1− γ′)α′ν′ > 0. Since the third pa-

rameter, α′, is added, the 2D colour map plot cannot be drawn. For this reason, Figure 2B
illustrates non-negative real values of the stationary states calculated via Equation (38)
as a superposition of two sets of countour plots differing by colour. The first one is for
α′ ≡ α/β = 0.1, and the second one is plotted for α′ ≡ α/β = 1. One can see that the
introduction of the bacterial influx changes the behaviour of the boundary existence of the
equilibria, especially for small values of the small decay rates β′.

Thus, the principal features of the built reduced model (34) and (35) are contained in
Equation (35). Its form indicates that it belongs to the class of kinetic equations of nonlinear
response theory [29]. It is worth noting that in contrast to the case of linear inhomogeneous
differential equations, the explicit separation of solution in free and induced responses is
impossible in this case as is an analytical solution for such a complex influx term.
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Figure 2. Parametric plots of non-trivial stationary states for Equation (36) representing logarithms
of their values, where they exist. (A) The case α = 0, dark blue region in the upper part (βγ > 1),
depicts non-existence of such states. (B) Example contour plots for two cases of Equation (38): α = 0.1
(black contours) and α = 1 (blue contours). Solid and dashed lines correspond to two branches of the
solution (when they exist).

However, several qualitative and quantitative conclusions are available. First of all, it
should be stressed that the only term that contains M in the right-hand side of Equation (35)
is always non-positive since M ≥ 0, Mtb ≥ 0 and all constant parameters are positive.
This means that the homogeneous part of the differential equation describes a nonlinear
decay whereby, for Mtb → 0 and M → 0, there is no maintaining the constant level of
metalloproteinases in the considered model. In general, M 6= 0 is in the healthy state, but
here we consider not a general case but the situation of a patient’s diseased state only as
controlled by the bacterial load. This load is supported by the second and the third terms
in the right-hand side of Equation (35). They contain the value of Mtb considered above as
solutions of an independent Equation (34).

Regarding this, when its parameters do not allow existence of a non-trivial equilib-
rium, Mtb → ∞ for τ → ∞, the divergent sum of the last two terms of the considered
inhomogeneous equation(

γ−1Mtb
Mtb + ν/γ

)(
ν1Mtb

Mtb + α2

)
+ Mtbνsum

∣∣∣∣
Mtb→∞

→ γ−1ν1 + Mtbνsum → ∞

induce the divergence of M too. The first term

− γ1M
βm M + (Mtb + β0)

cannot compensate this growth since it is limited by a constant from above: the denominator,
which contains the weighted sum of the infinitely growing M and Mtb will be at least not
smaller than the numerator, which contains M.
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On the other hand, when the parameters of Equation (34) allow the existence of a non-
trivial stationary solution ((Mtb)s), it can be substituted in Equation (35) for sufficiently
large time due to the independence of Equation (34) from Equation (35). In this case,
the stationary non-zero solution Ms for Equation (35) defined by dM/dτ = 0 (Mtb =
(Mtb)s = const) can exist and is given (if it exists) by

Ms =
((Mtb)s + β0)

[(
γ−1(Mtb)s
(tb)s+ν/γ

)(
ν1(Mtb)s
(Mtb)s+α2

)
+ (Mtb)sνsum

]
γ1 − βm

[(
γ−1(Mtb)s
(Mtb)s+ν/γ

)(
ν1(Mtb)s
(Mtb)s+α2

)
+ (Mtb)sνsum

] . (39)

The nominator of Equation (39) is always positive, which implies that there is no
equilibrium state Ms = 0 when (Mtb)s is finite. On the contrary, the denominator contains
a difference of two positive quantities and diminishes with growing (Mtb)s. Therefore,
the situation of the denominator equal to less than zero can emerge in the case of a suf-
ficiently large amount of active mycobacteria. It is the situation of an absence of the
non-trivial equilibrium asymptotic stationary state for the concentration of metallopro-
teinases. The divergence of their concentration means that the bacterial load is too high and
a patient’s organism cannot defeat the disease. For the case of a finite positive denominator
of Equation (39), a solution for the differential Equation (35) tends asymptotically to the
finite stationary concentration given by Equation (39).

Dynamics of Matrix Metalloproteinases

To test whether the considered model represents the qualitative/semi-qualitative
dynamics of the temporal evolution of the concentration of metalloproteinases, we use the
real clinical data obtained during the longitudinal study in the Saint-Petersburg State Re-
search Institute of Phthisiopulmonology. Thirteen patients with bacteriologically confirmed
diagnosis of tuberculosis were examined, with an average age of 40.09 ± 3.05 years, who
were undergoing treatment in a hospital between 2010 and 2020. Among the tuberculosis
patients, infiltrative process was detected in 80% of cases, while 20% were associated with
fibro-cavitary lesions. Serum biochemical analysis (from which matrix metalloproteinases
are isolated) was performed four times: before and after 2, 4, and 6 months of intensive
phase therapy. The small sample size can be explained by the fact that blood for matrix
metalloproteinase measurement is usually taken before therapy, and it is difficult to orga-
nize regular testing every two months during treatment in a clinic. All raw data are given
in the Supplementary Materials.

Figure 3 illustrates the median values (markers) for two sets of patients. The first one
consists of those who suffer from fibro-cavernous (FCT) tuberculosis, and the second one
corresponds to the case of infiltrative lung tuberculosis. Since the total sample contains data
without gaps for 13 patients only, the plots provide rather limited statistics. The error bars
are chosen in such a way that the values of quantiles correspond to the standard deviation
of data satisfying the normal distribution. However, the amount of data is too small to
consider parametric statistics, and the non-asymmetric quantal deviations are preferable in
this case.

It can be seen (Figure 3) that for the major metalloproteinases, such as M1, M8 and M9,
the dynamics show a peak at 2 months (M8) or 4 months (M1, M9), with only M3 remaining
near normal levels, which is generally consistent with clinical data [15]. It can also be
observed that enzyme concentrations do not return to normal values after the intensive
phase of therapy, especially in cases of fibro-cavernous tuberculosis. When studying
the model dynamics of total metalloproteinase concentration (see Figure 4), a peak was
also observed at high initial concentrations of Mtb (Figure 4A,B); however, the rate of
decline towards steady state is regulated by the parameter gamma1 (see Equation (35)),
with higher values leading to a faster decline in total concentration. It should be noted
that the maximum increase in metalloproteinases occurs with a delay relative to the peak
population of mycobacteria. This fact can be explained by the fact that the initiation
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of processes leading to abnormal synthesis of matrix metalloproteinases occurs with a
delay, when the pathogen has accumulated sufficiently in the tissue and restarts metabolic
processes necessary for its reproduction.

Figure 3. Dynamics of four types of matrix metalloproteinases measured with two-month time
intervals (sub-panel names, M1, M3, M8, M9, correspond to their abbreviations). Circles and asterisks
denote the medians of concentrations normed on healthy people’s median levels for the cases of
fibro-cavernous (FCT) and infiltrative lung tuberculosis, respectively (the connective dotted lines are
added for visual guidance); error bars show 0.32 and 0.68 quantiles. The horizontal green dotted lines
mark 0.32 and 0.68 quantiles for the case of healthy people (the data from the work [15], published
under a Creative Commons licence, are used).

In principle, the parameter γ1, which is primarily responsible for the rate of efflux
of M (as well as the first negative term in the equation), may correspond to an increase
in immunological and metabolic control [30] during intensive therapy, which may lead
to blockade of over-synthesis of MMPs and an increase in tissue inhibitor TIMP of the
metalloproteinases with an unchanged population of mycobacteria. However, in severe
cases of FCT tuberculosis, this control mechanism does not work, resulting in constantly
high concentrations of metalloproteinases, as shown in Figures 3 for M1 and M9 and 4C.

In the case of infiltrative tuberculosis (see Figure 3), the overall concentration of all
metalloproteinases mainly fluctuates around the normal level, except for M9. In the model,
small values are achieved by reducing the initial population value of Mtb by approximately
20 times, as shown in Figure 4D.
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Figure 4. Model dynamics of MMP total concentration (M) and Mtb population in dependence on the
initial population of pathogen and parameter γ1. (A) Concentration dynamics of metalloprotinases
with slow decay to steady state: γ1 = 4, Mtb0 = 0.2. (B) Concentration dynamics of metalloprotinases
at possible immonological or metabolical control: γ1 = 8, Mtb0 = 0.2. (C) Monotonically increas-
ing dynamics of metalloproteinase concentrations followed by saturation: γ1 = 0.9, Mtb0 = 0.2.
(D) Dependence of matrix metalloproteinase dynamics on initial small pathogen population: γ1 = 4,
Mtb0 = 0.01. The rest of the model parameters: α = 0.041, β = 3, γ = 0.009, ν = 0.07, ν1 = 5,
νsum = 5, α2 = 0.02, βm = 0.8, β0 = 0.8

4. Discussion

Equation (34) under conditions of the absence of the external influx α) exactly coincides
with the Bazykin equation [28]:

ẋ =
bx2

x + N
− dx, (40)

which was derived from the population growth law ẋ = b(x)x − dx, where
b(x) = bx/(x + N) is the functional response and d is the mortality coefficient. Origi-
nally, Equation (40) related to the growth of the total population x for the case of biparental
reproduction with different temporal breeding behaviour: either permanent (males) or
with periods for which they are excluded from breeding opportunities (females).

In our case of asexual bacterial reproduction, Equation (34) has another interpretation.
When Equation (34) is rewritten in the form

dMtb
dτ

= γ−1 γMtb
γMtb + ν

Mtb− βMtb + α (41)

and γMtb = S is denoted and taken as a substrate, the resulting form

dMtb
dτ

= γ−1 S
S + ν

Mtb− βMtb + α, (42)

then Equation (42) coincides with the classic population growth equation with the substrate
utilised for the Holling II functional response.

From this point of view, mycobacteria themselves prepare the substrate S required for
their efficient reproduction acting on the lung tissue as

dS
dτ

= γMtb− S. (43)
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The second term in the right-hand side of Equation (43) indicates the substrate required
for the multiplication of mycobacteria is “self-healing” with the unit rate. The first term
corresponds to the activation of this substrate by mycobacteria. If these coexisting precesses
are fast, i.e., dS/dτ ∼= 0, then the algebraic equation γMtb− S = 0 gives the equilibrium
condition S = γMtb.

It is worth noting that such effects of substrates modified by a product are known for a
range of population dynamics processes leading to growth faster than the exponential one.
First of all, it is the seminal Kremer’s demographic model [31]. It operates with the human
population n growing accordingly to the Verhulst equation ṅ = r1n(1− n/K) where the
stationary state n = K is determined by the level of technological development. At the
same time, the change of this technological level is a slow process, which also depends
on the current population size as K̇ = r2nK. As a result, hyperbolic growth, satisfying
the equation ṅ = r2n2, is observed. The second example is the Markov–Korotayev model
of the hyperbolic growth of phanerozoic marine biodiversity [32], which mathematically
resembles Kremer’s model but has a bioecological interpretation: species can change
biogeocoenosis that leads to the emergence of new ecological niches and, as a result, to the
hyperbolic growth of biodiversity.

The Holling II type of the functional response included in Equation (35) also has a
direct interpretation in terms of Holling’s original arguments [33], which address the time
required for searching a nutrient substrate. In the considered situation, the density of such
mycobacterial inhabited foci is given by γMtb. The spreading mycobacteria reach these
substrate-rich foci, their density Mtb grows with the characteristic time ν−1 and acts as
the source for the further spread. However, a delay defined by the growth rate ν emerges
before the subsequent spread.

In the case of low mycobacterial density (γMtb << ν), the first term in Equation (35)
gives the quadratic growth speed:

γMtb
γMtb + ν

Mtb ≈ γMtb2

ν

since mycobacteria need some time for the substrate modification and hyperbolic growth
conditions discussed above to occur. Foe the high bacterial contamination (γMtb >> ν),
the extensive area of the lung tissue plays the role of such a substrate:

γMtb
γMtb + ν

Mtb ≈ Mtb,

and this terms reduces to the Malthusian one for an averagely uniform constant substrate.
Now, let us discuss Equation (35), which also contains fractional–rational functions

that allow an interpretation from the point of view of generalized chemical kinetics. Such
an interpretation refers to the Langmuir–Hinshelwood mechanism, which gives the mathe-
matical expression close to the Holling II population functional response and the Michalis–
Menten enzyme–substrate kinetics, see [34]. This mechanism describes the reaction between
reagents in a solution when they are captured by a surface covered by a catalyst.

Within this interpretation, it follows from the first term in Equation (35) that the
amount of metalloproteinases decreases when they are cached by a binding surface and the
binding rate depends on the presence of mycobacteria. The second term, which is stated
as a product, gives the rate of synthesis of metalloproteinases on the catalysing surface
absorbing mycobacteria. The mentioned product is a typical feature of the Langmuir–
Hinshelwood process, when there are two binding centres with different activity (this
difference is quantified by the different terms ν/γand α2), see [35]. Finally, the last term in
Equation (35) is a simple non-catalysed reaction.
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5. Conclusions

To summarise, this work presents a model describing the interaction of the pathogen
(M. tuberculosis) and the main bio-markers (matrix metalloproteinases) of lung tissue de-
struction during tuberculosis inflammation. The main focus of its reduced version is on
the variables that are easily measured in real clinical studies: the amount of mycobacteria
and the concentration of biochemical biomarkers called metalloproteinases. The remaining
auxiliary processes are combined into dimensionless constants, making it easier to adjust
them based on mathematical analysis of potential dynamic patterns and comparison with
biomarkers obtained from healthy individuals serving as the reference group. Thus, to qual-
itatively compare the model dynamics with real data, we used clinical data obtained from
the Institute of Phtisiopulmonology. We examined the dynamics of marker concentrations
in various forms of tuberculosis, including monotonous growth with progression and
bell-shaped dynamics. We showed that the multiplication of mycobacteria in the lungs
can be explained by the dynamic behaviour described, in particular, by the Holling model,
where population growth is determined by the search for a “convenient” substrate (lung
tissue) with a time delay for the reproduction in a chosen focus.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math11214522/s1, Table S1: diagnosis (initial), diagnosis (final),
observation month, biomarker concentration for all patients.
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