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1. Introduction

The goal of this paper is to establish the positive recurrence of the model Mn/G/1/∞
under certain assumptions. Intensity of service is assumed only partially at zero (as a lower
left derivative value at zero of the “integrated intensity”); in addition, an integral type
condition on the “integrated intensity” over intervals of some length is assumed.

By positive recurrence we mean the property of finite expectation of the time τ0 to
hit the regeneration state starting from any initial state with an estimate of such expected
value (see (2) in what follows for the definition of τ0), and not just a finite expectation
of a regeneration period. For this aim, a new approach is suggested. For other more
standard ways to establish positive recurrence for regenerative models, see [1,2], and also
the references therein. While it may require conditions that may look too restrictive, the
hidden main goal is to develop this new method. It looks likely that it may help establish
better rates of convergence toward stationarity in the model under investigation. We also
hope that it may help to make some progress in more involved queueing models such as
Erlang–Sevastyanov, with an infinite number of servers. To the best of our knowledge,
moment conditions on the service time under which positive recurrence is established in
([1], Chapter 2) and ([2], Chapter 5) are not applicable to infinite server Erlang–Sevastyanov-
like systems; at least, the author is not aware of any progress in this direction so far. There
is some well-known advice from Leonard Euler: if you see several possible paths toward
the goal, then, in mathematics, you have to try all of them, not just one; some of them, or
even all of them may turn out to be useful in some other adjacent areas or problems. Even
though our conditions for positive recurrence are stronger than necessary for applications
of other approaches, they may be more useful in some other particular situations. This was
the main motivation for this work.

For the recent history of the topic see [3–11]. One of the reasons—although not the
only one—why various versions of this system are so popular is because of their intrinsic
links to important topics of mathematical insurance theory, see [5].

In this paper, we return to the less involved single-server system, Mn/GI/1/∞, where
the intensity of arrivals may only depend on the number of customers in the system, with
the goal of reviewing conditions of its positive recurrence. An importance of this property
may be highlighted, for example, by the publications [3,12] where the investigation of the
model assumes that it is in the “steady state”, which is a synonym for stationarity. As is
well-known, positive recurrence along with some mild mixing or coupling properties
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guarantees the existence of a stationary regime of the system. One particular aspect of this
issue is how to achieve bounds without assuming the existence of intensity of service in
the M/GI/1 model and, more generally, in Erlang–Sevastyanov-type systems. Certain
results in this direction were recently established in [13] for a slightly different model. Still,
in [13] it is essential that the absolute continuous part of the distribution function F (in our
notation) is non-degenerate; in the present paper, this is not required and the approach
is different.

Please note that in such a model certain close results may be obtained by the methods of
regenerative processes if it is assumed that the same distribution function F (see below) has
enough moments. However, our conditions and methods are different. The main (moderate)
hope of the author is that this approach may also be useful in studying ergodic properties
of Erlang–Sevastyanov-type models, as happened with the earlier results and approaches
based on the intensity of service as in [11], successfully applied in [14]. The present paper is
an initial attempt in the program of developing tools that could help approach the problem
outlined recently in [15].

The paper consists of the introduction in Section 1, the setting and the main result
in Section 2, two simple auxiliary lemmata in Section 3, the proof of the main result in
Section 4, and two simple examples in Section 5 for the comparison of sufficient conditions
of Theorem 1 with conditions in terms of the intensity of service in the case when the latter
does exist.

2. The Setting and Main Results
2.1. Definition of the Process

The model is as follows. There is one server with an incoming flow of customers or
jobs; this flow is Poissonian with intensity λn where n is the number of customers in the
system. If the server is idle, it immediately starts the service of the customer who arrives,
unless the queue of waiting customers is not empty; in the latter case, it starts the service of
one of them. If the server is busy, then the newly arrived customer goes to the queue where
it waits until the server completes the earlier job(s). The buffer for the queue is unlimited
(denumerable). The discipline of how the server chooses the next customer from the
queue for serving is FIFO (“first in–first out”). All services are independent with the same
distribution function F, and they are independent of the arrivals. A serve is a synonym of a

completed job. It is assumed that the mean value
∫ ∞

0
xdF(x) =

∫ ∞

0
(1− F(x)dx) =: µ−1 is

finite. It is assumed that
Λ := sup

n
λn < ∞. (1)

Also, it is assumed that
λn > 0, ∀ n ≥ 0.

This will not be used except in one not-so-important remark. Therefore, we do not
number this equation.

The following state space is convenient for the description of the stochastic process
which describes the model. It will be convenient to identify the zero state {0} with a zero
couple {0, 0}. Then the state space of the process is a union,

X = {(0, 0)} ∪
∞⋃

n=1

{(n, x) : x ≥ 0},

and the process itself is described at all times by a two-dimensional vector Xt = (nt, xt),
with t ≥ 0, where nt = 0, 1, . . . stands for the number of the customers in the system
including both in the server and in the queue; after the identification of {0} with {0, 0}
mentioned above, xt = 0 in the case of nt = 0 by definition; the second component xt
stands for the elapsed time of the current service. It is assumed that the initial value X0 is
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any pair of non-negative values, X0 = (n, x), and the process evolves in time according to
the provided description. By the construction, it is a Markov process in the state space X .

We are interested in estimating the expectation of the stopping time

τ0 := inf(t ≥ 0 : Xt = (0, 0)), (2)

where the process Xt starts from any initial state X0 = (n0, x0).
On some occasions, it will be convenient to write nt = n(Xt) for the first component of

Xt and xt = x(Xt) for the second one. For any X = (n, x) where F(x) < 1, the “integrated
intensity” of service

dH(x) = (1− F(x))−1dF(x)

is defined by a Stiltjes integral

H(x) =
∫ x

0
(1− F(s))−1dF(s).

The integral
∫ x

0
(1− F(s))−1dF(s) is assumed to be finite for any x ≥ 0, and for the

additional small part of the assumption see the next subsection. The intuitive meaning
of the differential dH(xt) is the infinitesimal conditional probability of a job completion
on the interval (t, t + dt] under the condition that this job was not fulfilled by time t. If
dH(xt) = µ(xt)dt, then µ(xt) is called intensity of service at xt; however, we do not assume
that dH(·) has to be absolutely continuous with respect to the Lebesgue measure. For
simplicity of setting and proofs, in order to avoid possible singularities it is assumed that

F(0+) = 0, & F(x) < 1, ∀ x ≥ 0,

and (3)

F̃(1) := inf
x≤1

(F(x + 1)− F(x)) > 0.

2.2. Some Notation

1. The notation PX = Pn,x for the probability and EX = En,x for the expectation will
be used. Both correspond to the initial value X = (n, x) of the Markov process
under consideration. We highlight that this is a standard notation from the theory of
homogeneous Markov processes.

2. For a possibly discontinuous distribution function F, or for its integrated intensity H,

integrals written like
∫ t′

t . . . dF(s) will be understood as integrals

∫ t′

t
. . . dF(s) :=

∫
(t,t′ ]

. . . dF(s),

and likewise with dH(s).
3. The following convention will be used, dH(x) = 0 if (n, x) = (0, 0).

2.3. Main Result for Mn/GI/1/∞

Recall that it is assumed that

H(t) < ∞, ∀ t ≥ 0. (4)

Let us also assume that there exists a constant r such that

r > 2(1 + Λ) (5)

(so that 1/2 > (1 + Λ)/r) where Λ was defined in (1), and such that
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∀ 0 ≤ t ≤ 1,
∫ t

0
(1 + s)dH(s) ≥ rt, (6)

and, moreover,

inf
x≥1

∫ x+∆

x
(1 + s)dH(s) ≥ r∆, ∀ 1

2
≤ ∆ ≤ 1. (7)

Let us highlight that the latter inequality is not supposed to hold for small values of ∆

approaching zero, but only for ∆ ∈ [1/2, 1]. The increase of the integral
∫ x+∆

x
(1 + s)dH(s)

for a fixed x as ∆ ↑ 1 may be achieved due to a positive intensity H′ > 0 if this derivative
exists, and due to jumps of H, and also due to the increase of this function on sets of the
Lebesgue measure zero like for the Cantor function.

Note that the process Xt may have no explosion on any bounded interval of time with
probability one since the arrival intensities are bounded. In what follows
‖µ1 − µ2‖TV = 2 supA(µ1(A) − µ2(A)) is the distance in total variation between two
probability measures; here the supremum is taken over all Borel measurable sets A ∈ X .

Theorem 1. Let assumptions (1)–(7) be satisfied. Then there exists C > 0 such that

En,xτ0 ≤ C(n + x + 1). (8)

Also, there exists a unique stationary measure µ, and, moreover, there exists C > 0 such that for
any t ≥ 0,

‖µn,x
t − µ‖TV ≤ C

(1 + n + x)
(1 + t)

, (9)

where µn,x
t is a marginal distribution of the process (Xt, t ≥ 0) with the initial data X = (n, x),

and constant C is the same as in (8).

Remark 1. We highlight that the initial value of the second component here is arbitrary. Also,
please note that this theorem is not a pure existence-type result because the constant C may be
evaluated, as can be seen from the proof.

3. Lemmata

Lemma 1. Under assumption (3), for any T > 0 and for any m ≤ n,

Pn,0(no less than m jobs completed on [0, T]) ≤ F(T)m,

& (10)

Pn,x(no less than m jobs completed on [0, T]) ≤ F(T)m−1.

Proof. The probability of no less than m completed jobs over time T for m ≤ n is given by
the repeated integral

Pn,x(no less than m jobs completed over time T)

=
∫ T

0
dF(x + t1)

∫ T−t1

0
dF(t2) . . .

∫ T−t1−...−tm−2

0
dF(tm−1)

∫ T−t1−...−tm−1

0
dF(tm)

≤ (F(x + T)− F(x))F(T)m−1.

Hence, we obtain both inequalities in (10), as required. Please note that assumption (3)
implies that supx≥0(F(x + T)− F(x)) < 1 for any T > 0, otherwise the distribution dF
would be concentrated on a finite interval, which would contradict the assumption.
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Recall the notation Λ = supn λn and assumption (1).

Lemma 2. Under assumption (3), for any n

inf
x≤1

Pn,x(τ0 ≤ n) ≥ pn exp(−nΛ) > 0, with p = F̃(1). (11)

Proof. First, for any n = 0, 1, . . ., and any x,

Pn,x(there are no arrivals on [0, n]) ≥ exp(−nΛ).

Second, with probability no less than p = infx≤1(F(x + 1) − F(x) there is at least one
completed job on [0, 1]. The value p is positive according to assumption (3). After each
jump down on [0, 1] — which is a stopping time — this argument may be repeated by
induction n times. Note that since (n, x) is the initial value of the process, the server may
not become idle until n jobs are completed. So, this gives the lower bound

inf
x≤1

Pn,x(at least n jobs completed on [0, n]) ≥ pn.

By the multiplication of the two values exp(−nΛ) and pn, due to the independence of the
services and arrivals, the proof is completed.

4. Proof of Theorem 1

0. The proof will be split into several steps. We shall consider the embedded Markov
chain, namely, the process Xt at times t = 0, 1, . . ., and it will be shown that this process hits
some suitable compact around “zero state” (0, 0) in time which admits a finite expectation.
From this property, the main result will follow. The reader is warned that after this first hit
the definition of the embedded Markov chain will change, as further times may become
random and possibly non-integer, see step 4 of this proof.

The main goal is to establish the bound (8), from which the estimate (9) follows as a
corollary.
1. Let us choose ε > 0 so that

ε <
1
2
− (1 + Λ)

r
(12)

(see condition (5)). NB: We highlight that this value ε will be fixed for what follows and
will not tend to zero.

Once ε is chosen, let

M = Mε :=
⌈
| ln ε|
| ln F̃(1)|

⌉
, (13)

(see (3) for the definition of F̃(1)) and let us choose x(ε) ≥ 2 such that

sup
x≥x(ε)

(F(x + 1)− F(x)) ≤ ε. (14)

Since F(x) ↑ 1 as x ↑ ∞, this is possible for any ε > 0. Let us introduce an auxiliary
stopping time

τ = τε := inf(t = 0, 1, . . . : nt ≤ Mε & xt ≤ x(ε)) (inf ∅ = ∞). (15)

Denote

Kε = ((n, x) : n ≤ Mε & x ≤ x(ε)) & L(n, x) = n + x + 1.

Function L will serve as a Lyapunov function outside the compact set Kε.
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First of all, we are going to estimate the first moment of τ, namely, to prove that there
exists C > 0 such that

En,xτ ≤ CL(X), X = (n, x). (16)

Recall that
τ0 := inf(t ≥ 0 : Xt = (0, 0)),

and highlight that the definition of τ = τε is quite different from that of τ0.
Let X0 = X. Applying the rules of stochastic calculus, we have for Xt = (nt, xt) 6= (0, 0),

dL(Xt) = λnt ((nt + 2 + xt) − (nt + 1 + xt)) dt

+ 1(nt > 0)((nt + 1 + xt + dt) − (nt + 1 + xt))

+ 1(nt > 0)(nt − (nt + 1 + xt))dH(xt) + dMt, (17)

where Mt is a martingale (see, e.g., [16]). Indeed, let us comment on (17). Denote

dJ1(t) := λnt dt ((nt + 2 + xt) − (nt + 1 + xt)) = λnt dt,

dJ2(t) := 1(nt > 0)((nt + 1 + xt + dt) − (nt + 1 + xt)) = 1(nt > 0)dt,

dJ3(t) := 1(nt > 0)((nt + 1 + xt) − nt) dH(xt) = 1(nt > 0)(1 + xt)dH(xt),

and let Ji(0) = 0, 1 ≤ i ≤ 3. At any non-random time t ≥ 0, on the infinitesimal interval
(t, t+ dt] there might occur the following events with corresponding probabilities, assuming
that nt > 0:

p1(t, dt) := P(one arrival and no completed jobs on (t, t + dt]|Ft)

=
1− F(xt + dt)

1− F(xt)︸ ︷︷ ︸
=1−dH(xt)

λnt dt;

p2(t, dt) := P(one completed job and no arrivals on (t, t + dt]|Ft)

=
F(xt + dt)− F(xt)

1− F(xt)︸ ︷︷ ︸
=dH(xt)

(1− λnt dt) = dH(xt);

p3(t, dt) := P(no arrivals and no completed jobs on (t, t + dt]|Ft) = 1− λnt dt− dH(xt);

p4(t, dt) := P(more than one arrival on (t, t + dt]|Ft) = o(dt) = 0;

p5(t, dt) := P(more than one completed job on (t, t + dt]|Ft) = (dH(xt))(dH(0)) = 0;

p6(t, dt) := P(at least one arrival and at least one completed job on (t, t + dt]|Ft)

= dH(xt)λnt dt = 0.
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Notice that we write dH(xt)λnt dt = 0 because when we integrate over a finite interval
of time, the integral

∫
. . . dH(xt) is finite anyway, while the multiplier dt is, in any case,

o(1). By a similar reason we claim (dH(xt))(dH(0)) = 0 since the assumption F(0+) = 0
means that, in any case, dH(0) = o(1).

So, by the full expectation formula we have for nt > 0,

E(L(Xt+dt)|Ft)

= L(nt + 1, xt + dt)p1(t, dt) + L(nt − 1, 0)p2(t, dt) + L(nt, xt + dt)p3(t, dt)

= L(Xt) + (L(nt + 1, xt)− L(nt, xt))λnt dt

+ 1(nt > 0)(L(nt − 1, 0)− L(nt, xt))dH(xt) + 1(nt > 0)dt

= L(Xt) + λnt dt− 1(nt > 0)(1 + xt)dH(xt) + 1(nt > 0)dt.

Integrating from t1 to t with t > t1, we obtain,

E(L(Xt)−
∫ t

t1

(λns + 1(ns > 0))ds +
∫ t

t1

(1 + xs)dH(xs)|Ft1) = L(Xt1). (18)

Denote

Mt := L(Xt)−
∫ t

t1

(λns + 1(ns > 0))ds +
∫ t

t1

(1 + xs)dH(xs),

and

It1,t :=
∫ t

t1

(λns + 1(ns > 0))ds−
∫ t

t1

(1 + xs)dH(xs), t1 < t.

Notice that the assumption (1) straightforwardly implies that EMt < ∞ for any t ≥ 0.
Hence, we have for any t1 < t,

E(Mt|Ft1) = E
(

L(Xt)− It1,t − I0,t1 |Ft1

)
= L(Xt1)− I0,t1 = Mt1 , a.s.

So, as promised, Mt is a martingale. This justifies (17), as required.
The following bound will be established:

En,x(J1(1) + J2(1)− J3(1)) ≤ −C, (19)

with some C > 0, if (n, x) 6∈ Kε.
First, we have,

J1(1) + J2(1) ≤
∫ 1

0
(1 + λnt)dt ≤ 1 + Λ. (20)

To evaluate J3 let us introduce a sequence of stopping times. Let

γ = γn,x := inf(0 ≤ t ≤ 1 : xt = 0) (inf(∅) = 1).

To evaluate J3, using the identity 1(t < γ)1(nt > 0) = 1(t < γ) which holds provided
that n > 0, let us estimate,

En,x J3
n,x(1) = En,x

∫ 1

0
1(nt > 0)(1 + xt)dH(xt)
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= En,x

∫ γ

0

=1︷ ︸︸ ︷
1(nt > 0)(1 + xt)dH(xt) + En,x

∫ 1

γ
1(nt > 0)(1 + xt)dH(xt)

= En,x

∫ γ

0
(1 + x + t)dH(x + t) + En,x1( inf

0≤t≤1
nt > 0)

∫ 1

γ
(1 + xt)dH(xt)

+ En,x1( inf
0≤t≤1

nt = 0)
∫ 1

γ
1(nt > 0)(1 + xt)dH(xt)︸ ︷︷ ︸
≥0

≥ En,x

∫ γ

0
(1 + x + t)dH(x + t)

+ En,x1( inf
0≤t≤1

nt > 0)
∫ 1

γ
(1 + xt)dH(xt) =: F1 + F2. (21)

Let us estimate the term F1. We have (recall that γ ≤ 1 by definition),

F1 = En,x

∫ γ

0
(1 + x + t)dH(x + t)

(22)

≥ En,x1(γ ≥ 1/2)
∫ γ

0
(1 + x + t)dH(x + t)︸ ︷︷ ︸

≥rγ

≥ rEn,x1(γ ≥ 1/2)γ.

Here the complementary part of the integral En,x1(γ < 1/2)
∫ γ

0 (1+ x+ t)dH(x+ t) ≥ 0
was just dropped.

Further, it will be shown that (see (21))

F2 ≥ rEn,x(1− γ)1( inf
0≤t≤1

nt > 0). (23)

For this aim, let us introduce by induction the sequence of stopping times,

γ1 = γ, γn+1 := inf(γn < t ≤ 1 : xγn = 0), n ≥ 1 (inf(∅) = 1).

Please note that the component xt might only have a finite number of jumps down on
any finite interval. The times of jumps on the interval [0, 1] are exactly the times γn < 1,
and possibly the last jump down on this interval may or may not occur at t = 1. In any
case, clearly,

lim
n→∞

γn = 1.

So, we have,

∫ 1

γ
(1 + xt)dH(xt) =

∞

∑
n=1

∫ γn+1

γn
(1 + xt)dH(xt),

where for each outcome this series is almost surely a finite sum. On each interval [γn, γn+1]
we may write down

∫ γn+1

γn
(1 + xt)dH(xt) =

∫ γn+1−γn

0
(1 + xγn + s)dH(xγn + s)
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=
∫ γn+1−γn

0
1(nxγn+s > 0)(1 + xγn + s)dH(xγn + s)

=
∫ γn+1−γn

0
1(ns > 0)(1 + s)dH(s) ≥ r(γn+1 − γn)1( inf

0≤t≤1
nt > 0).

This is by virtue of assumption (6) and because at each stopping time γn which is
less than 1 we have xγn = 0. If γn ≥ 1, then both sides in the latter inequality equal zero,
so that the inequality still holds true. Therefore, taking a sum over n, we obtain (23), just
without 1(inf0≤t≤1 nt > 0) on the left-hand side. This multiplier 1(inf0≤t≤1 nt > 0) in the
right-hand side guarantees that its presence in the left-hand side of (23) still leads to a valid
inequality, which means that the bound (23) is justified.

It follows from (22) and (23) that

J3 = F1 + F2 ≥ rEn,x1(γ ≥ 1/2)γ + rEn,x(1− γ)1( inf
0≤t≤1

nt > 0)

= rEn,x1(γ ≥ 1/2)γ + rEn,x(1− γ)− rEn,x(1− γ)1( inf
0≤t≤1

nt = 0)

≥ r− rEn,x1(γ < 1/2)γ− rEn,x1( inf
0≤t≤1

nt = 0) ≥ r
2
− rPn,x( inf

0≤t≤1
nt = 0).

Due to Lemma 1, if n > M then (see (13))

En,x1( inf
0≤t≤1

nt =0)=Pn,x(at least n−1 jobs completed on [0, 1])≤F(1)n−1≤ ε.

(NB: In fact, at least n jobs should be completed, the first one on [x, x + 1]; however, we
prefer to have a bound independent of x. In any case, this does not change the scheme of
the proof.) Likewise, if x > x(ε), then

En,x1( inf
0≤t≤1

nt = 0) ≤ Pn,x(at least 1 completed job on [0, 1])

≤ F(x + 1)− F(x) ≤ ε,

due to the choice of x(ε), see (14).
Recall that ε was chosen so that rε < (r/2)− (1 + Λ), see (12). Hence,

J3 ≥ r
2
− rε.

Denote
(0 <) ∆ :=

r
2
− ε− 1−Λ.

Thus, for any (n, x) 6∈ Kε we obtain,

En,x(J3
n,x(1)− J1(1)− J2(1)) ≥ ∆. (24)

The bound (19) follows with a constant C which may be evaluated via r, Λ, ε.
2. So, with the choice of M = Mε and x(ε) according to (13) and (14), respectively, we
may write,

1((n, x) 6∈ Kε)En,xL(X1) ≤ 1((n, x) 6∈ Kε)(L(X0)− ∆).
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The event ((n, x) 6∈ Kε) may be equivalently expressed as (τ > 0). Hence, the latter
inequality may also be rewritten in the form suitable for the induction:

1(0 < τ)En,xL(X1) ≤ 1(0 < τ)(L(X0)− ∆).

Similarly, ((n1, x1) 6∈ Kε) may be equivalently expressed as (τ > 1). Therefore, we
obtain

1(1 < τ)En1,x1 L(X2) ≤ 1(1 < τ)(L(X1)− ∆).

Hence, by taking the expectations we obtain

En,x1(1 < τ)En1,x1 L(X2) ≤ En,x1(1 < τ)(L(X1)− ∆).

Similarly, by induction (in what follows the notation nk = nt|t=k is used),

En,x1(k− 1 < τ)Enk−1,xk−1 L(Xk) ≤ En,x1(k− 1 < τ)(L(Xk−1)− ∆), k ≥ 1.

Due to the elementary bound 1(k− 1 < τ) ≥ 1(k < τ), this implies,

∆ En,x1(k− 1 < τ) ≤ En,x1(k− 1 < τ)L(Xk−1)− En,x1(k < τ)L(Xk).

Summing up and dropping the negative term on the right-hand side, we obtain

∆
N

∑
k=1

En,x1(k− 1 < τ) ≤ 1((n, x) 6∈ Kε)L(X0),

for any N > 0. So, by the monotone convergence theorem,

∆ 1((n, x) 6∈ Kε)
∞

∑
k=1

En,x1(k− 1 < τ) ≤ 1((n, x) 6∈ Kε)L(X0). (25)

By virtue of the well-known relation

∞

∑
k=1

En,x1(k− 1 < τ) = En,x

∞

∑
k=1

1(k ≤ τ) = En,x

τ

∑
k=1

1 = En,xτ,

for the expectation of τ the bound (25) implies the following inequality with X0 = (n, x),

1((n, x) 6∈ Kε)En,xτ ≤ ∆−11((n, x) 6∈ Kε)L(X0). (26)

In particular, this bound signifies that

Pn,x(τ < ∞) = 1.

3. Now, once the bound for the expected value of τ is established, we are ready to explain
the details of how to obtain a bound for En,xτ0. The rest of the proof is devoted to this
implication, with the last sentences related to the corollary about the invariant measure
and convergence to it.

At τ, the process Xk attains the set (X : X ∈ Kε), while X0 6∈ Kε; hence, both

nτ ≤ M & xτ ≤ x(ε).

By definition, the random variable τ is the first integer k where simultaneously

nk ≤ M & xk ≤ x(ε).
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Therefore, at k − 1 we have either nk > M, or xk > x(ε), or both. If there are no
completed jobs on (k − 1, k], then nt may only increase, or, at least, stay equal on this
interval, while xt certainly increases. Therefore, τ = k may only be achieved by at least one
completed job; it would mean a jump down by one of the n-component and simultaneously
a jump down to zero of the x-component. Then at k we obtain xk ≤ 1, which certainly
makes it less than x(ε), regardless of whether or not there were other arrivals or completed
jobs on (k− 1, k] (recall that in addition to inequality (14) we assumed that x(ε) ≥ 2).

Now, given n ≤ M and x ≤ x(ε), by virtue of lemma 2, for any T > 0 we have with
any x ≤ 1,

Pn,x(no arrivals on [0, T], n(XT) = 0) ≥ p(T) > 0, (27)

where
p(T) := pT exp(−TΛ) = F̃(1)T exp(−TΛ).

Here T is any positive integer and recall that

F̃(1) = inf
x≤1

(F(x + 1)− F(x)).

Note that, of course, for non-integer values of T > 0 there is a likewise bound, but
it looks a bit more involved, and using integer T values suffices for the proof. Recall that
it was assumed in (3) that F̃(1) > 0, and it follows from the first line of (3) that F̃(1) < 1.
Inequality (27) implies that

inf
x≤1

Pnτ ,xτ (no arrivals on [0, T], n(XT) = 0) ≥ p(T) > 0. (28)

NB:Here the standard notations for homogeneous Markov processes are used, which means that XT
after stopping time τ is, actually, the value Xτ+T .

Please note that for any T > 0 the event (n(Xτ+T) = 0) implies that

τ0 ≤ τ + T.

Hence, we conclude,

Pnτ ,xτ (no arrivals on [0, T], τ0 ≤ T) ≥ p(T) > 0. (29)

and, therefore, for any x,

Pn,x(no arrivals on [τ, τ + T], τ0 ≤ τ + T) ≥ p(T) > 0. (30)

4. Consider now the process X started at time τ from state (nτ , xτ) with xτ ≤ 1 and
nτ ≤ M.

Let T := dx(ε)e and let us stop the process either at τ + T, or at

χ := inf(t ≥ τ : nt ≥ M + 1, or xt ≥ x(ε) + 1),

whichever happens earlier. In other words, consider the stopping time

χ1 := χ ∧ (τ + T).

The event (χ1 = τ + T) implies that the process L(Xt) does not exceed the level
M + 2 + T on the interval [τ, τ + T]. On the other hand, according to the arguments of step
3 – namely, due to (29) and (30) – we have,

Pnτ ,xτ (τ0 ≤ χ1) ≥ p(T) > 0. (31)

Let
χ0 := 0, τ1 := τ,
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and further, let us define two sequences of stopping times by induction,

χk+1 := inf(t ≥ τk+1 : nt ≥ M + 1, or xt ≥ x(ε) + 1) ∧ (τk+1 + T),

τk+1 := inf(χk + i, i ≥ 0 : nχk+i ≤ M, & xχk+i ≤ x(ε)), k ≥ 0.

Both sequences of stopping times are monotonically increasing. Note that all integers
like χk and τk here in the expressions stand for upper indices, not for power functions.
Let us highlight that the stopping time τk+1 equals χk plus some integer, but χk may or
may be not an integer itself. All these stopping times are finite with probability one, and,
moreover, due to (31) and because of the strong Markov property we have almost surely,

1(τ0 > τk)PX
τk (τ0 ≤ χk+1) ≥ 1(τ0 > τk)p(T).

Also, almost surely
lim
k→∞

τk ≥ τ0, (32)

on the event where τ0 < ∞. Indeed, suppose the opposite, that is,

lim
k→∞

τk < τ0 < ∞. (33)

Then on a finite interval of time [0, τ0] the process nt either crosses the interval
[M, M + 1] and back an infinite number of times, or the process xt an infinite number
of times crosses the interval [x(ε), x(ε) + 1] and back; in any case, it would mean an infinite
number of arrivals to [0, τ0]. Since Λ < ∞, the first option is clearly not possible. If the
second option occurred, it would mean that there were an infinite number of completed
jobs on [0, τ0]; this is not possible for various reasons, for example, because this would also
require an infinite number of arrivals on the same interval, and this possibility we have
already excluded. Thus, the assumption (33) may only happen with probability zero, and
so, (32) with τ0 < ∞ holds true with probability one.

Using the strong Markov property at time χi (see [17], Section 4), we obtain by induction,

PX0(τ0 > χk) ≤ (1− p(T))k, k ≥ 1. (34)

5. Denote
dk := χk − τk, δk := τk+1 − χk.

Also by induction, it follows from (26) and from the elementary bound by definition

dk ≤ T,

that there exists a constant C such that

EX0((χ
k+1 − χk)︸ ︷︷ ︸
=:δk+dk

|Xχk ) ≤ C, ∀ k ≥ 1. (35)

Using the representation

χk+1 =

=χ1︷ ︸︸ ︷
τ1 + d1 +

k+1

∑
i=2

(δi−1 + di),

and due to (32), we estimate,

EX0 τ0 =
∞

∑
k=0

EX0 τ01(χk < τ0 ≤ χk+1) ≤
∞

∑
k=0

EX0 χk+11(χk < τ0)1(χk+1 ≥ τ0)
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(36)

=
∞

∑
k=0

EX0

(
τ1 + d1 +

k+1

∑
i=2

(δi−1 + di)

)
1(χk < τ0)1(χk+1 ≥ τ0).

Now we are going to estimate this sum by some geometric type series in combination
with bounds (34) and (35). A small issue is that we are not able to use Hölder’s, or Cauchy–
Buniakowskii–Schwarz inequality here because we only possess a first moment bound for
τk, while higher moments are not available. This minor obstacle is resolved in the next
step of the proof by the following arguments using conditional expectation with respect to
suitable sigma-algebras.
6. We have,

EX0

τ1 + d1 +
k+1

∑
i=2

(δi−1 + di︸︷︷︸
≤T

)

1(χk < τ0)1(χk+1 ≥ τ0)

= EX0

τ1 + d1 +
k

∑
i=1

(δi−1 + di︸︷︷︸
≤T

)

 k

∏
j=1

1(χj < τ0)

+ EX0(δ
k + dk+1︸︷︷︸

≤T

)
k

∏
j=1

1(χj < τ0).

Let us investigate the last term. Since each random variable 1(χj ≤ τ0) is Fχk -
measurable for any j ≤ k, and because, due to the strong Markov property and the
bound (34),

EX0

k

∏
j=1

1(χj < τ0) = EX01(χk < τ0) ≤ (1− p(T))k.

(It was used that χk < τ0 implies χj < τ0 for all j < k as well.) Moreover, by virtue of the
inequality (16) and since by definition all dk ≤ T, we have for k ≥ 1,

EX0(δ
k + dk+1)

k

∏
j=1

1(χj < τ0) = EX0EX0

(
(δk + dk+1)

k

∏
j=1

1(χj < τ0)|Fχk

)

= EX0

k

∏
j=1

1(χj < τ0)

≤C︷ ︸︸ ︷
E
(
(δk + dk+1)|Fχk

)
≤ C(1− p(T))k

with some finite constant C.
Let us inspect the previous term. Using that δk−1 and all random variables 1(χj < τ0)

are Fτk -measurable for any j ≤ k− 1, we obtain by induction,

EX0

(δk−1 + dk︸︷︷︸
≤T

)

 k

∏
j=1

1(χj < τ0) ≤ TEX0

k

∏
j=1

1(χj < τ0) + EX0 δk−1
k

∏
j=1

1(χj < τ0)

≤ T(1− p(T))k + EX0EX0

(
δk−1

k

∏
j=1

1(χj < τ0)|Fτk

)
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= T(1− p(T))k + EX0 δk−1
k−1

∏
j=1

1(χj < τ0)EX0

(
1(χk < τ0)|Fτk

)
︸ ︷︷ ︸

≤1−p(T)

≤ T(1− p(T))k + (1− p(M))EX0EX0

(
δk−1

k−1

∏
j=1

1(χj < τ0)|Fχk−1

)

= T(1− p(T))k + (1− p(M))EX0

k−1

∏
j=1

1(χj < τ0)EX0

(
δk−1|Fχk−1

)
︸ ︷︷ ︸

≤C

≤ T(1− p(T))k + C(1− p(T))k = C(1− p(T))k. (37)

Also by induction, we find that a similar upper bound with the multiplier (1− p(T))k

holds for each term in the sum in the right-hand side of (36), for 2 ≤ i < k, and k ≥ 3.

Indeed, using the identity 1(χk < τ0) =
k

∏
j=1

1(χj < τ0) we have for 2 ≤ i < k,

EX0

(δi−1 + di︸︷︷︸
≤T

)

(k−1

∏
j=1

1(χj < τ0)

)
1(χk < τ0)

= EX0EX0

1(χk < τ0)(δ
i−1 + di︸︷︷︸

≤T

)
k−1

∏
j=1

1(χj < τ0)|Fτk



≤ EX0(δ
i−1 + T)

k−1

∏
j=1

1(χj < τ0) EX0

(
1(χk < τ0)|Fτk

)
︸ ︷︷ ︸

≤1−p(T)

≤ (1− p(T))EX0(δ
i−1 + T)

k−1

∏
j=1

1(χj < τ0).

Here we used that the random variable (δi−1 + di)∏k−1
j=1 1(χj < τ0) is Fτk -measurable.

Further, by virtue of the bound (34)

(1− p(T))EX0(δ
i−1 + T)

k−1

∏
j=1

1(χj < τ0)

= (1− p(T))EX0EX0

(
(δi−1 + T)

k−1

∏
j=1

1(χj < τ0)|Fτi

)
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= (1− p(T))EX0(δ
i−1 + T)

i−1

∏
j=1

1(χj < τ0)EX0

(
k−1

∏
j=i

1(χj < τ0)|Fτi

)
︸ ︷︷ ︸

≤(1−p(T))k−i

≤ (1− p(T))k−i+1EX0(δ
i−1 + T)

i−1

∏
j=1

1(χj < τ0)

≤ (1− p(T))k−i+1C(1− p(T))i−1 = C(1− p(T))k. (38)

We used the bound (37) with dk replaced by its upper bound T (as in the calculus
leading to (37)) and with k replaced by i.

The first term is estimated similarly with the only change that instead of the constant
C we obtain a multiplier C(x + n + 1) which is a function of the initial data X0 = (n, x) and
which makes the resulting bound non-uniform with respect to the initial data:

(1− p(T))En,x(τ
1 + d1)

k−1

∏
j=1

1(χj < τ0) ≤ C(n + x + 1)(1− p(T))k. (39)

Overall, collecting the bounds (37)–(39), we obtain,

EX0

τ1 + d1 +
k+1

∑
i=2

(δi−1 + di︸︷︷︸
≤T

)

1(χk < τ0)1(χk+1 ≥ τ0) ≤ kCL(X0)(1− p(T))k.

Therefore, it follows that

EX0 τ0 ≤ CL(X0) +
∞

∑
k=1

kC(1− p(T))k = CL(X0) +
C(1− p(T))

p(T)2 ≤ CL(X0),

with some new constant C, as required.
Existence of the invariant measure for the model and the inequality (9) follows straight-

forwardly from the established positive recurrence (8) and in a usual way from the coupling
technique, or by means of other well-known tools. Theorem 1 is proved. �

5. Two Examples

Let us provide two examples for a comparison to “local” conditions in terms of the
intensity of service if the latter exists.

Example 1. Assume that there exists the derivative function F′(s) and that the hazard function
h = H′ is no less than a constant,

h(s) = H′(s) =
F′(s)

1− F(s)
≥ µ, s ≥ 0. (40)

The upper bound for J1
n,x + J2

n,x is the same as in the proof of the theorem:

J1
n,x + J2

n,x ≤ 1 + Λ.

To estimate J3
n,x, in the case of either initial value n, or initial second component x, or both are large

enough, by Lemma 1 we have similarly to (21) and (22) with µ in place of r,

J3
n,x(1) := En,x

∫ 1

0
1(nt > 0)(1 + xt)dH(xt)
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= En,x

∫ 1∧γ

0

=1︷ ︸︸ ︷
1(nt > 0)(1 + xt)µdt + En,x

∫ 1

1∧γ
1(nt > 0)(1 + xt)µdt

= En,x

∫ 1∧γ

0
(1 + x + t)µdt + En,x1( inf

0≤t≤1
nt > 0)

∫ 1

1∧γ
(1 + xt)µdt︸ ︷︷ ︸
≥µ(1−1∧γ)

+ En,x1( inf
0≤t≤1

nt = 0)
∫ 1

1∧γ
1(nt > 0)(1 + xt)µdt︸ ︷︷ ︸

≥0

≥ En,x

∫ 1∧γ

0
(1 + x + t)︸ ︷︷ ︸

≥1

µdt + En,x1( inf
0≤t≤1

nt > 0)µ(1− 1∧ γ).

Therefore, we obtain

J3
n,x(1) ≥ µEn,x(1∧ γ) + µEn,x1( inf

0≤t≤1
nt > 0)(1− 1∧ γ)

= µEn,x(1∧ γ) + µEn,x(1− 1∧ γ)− µEn,x1( inf
0≤t≤1

nt = 0)(1− 1∧ γ)

≥ µ− µEn,x1( inf
0≤t≤1

nt = 0) ≥ µ− µε,

where the latter inequality is due to the Lemma 1 and to the choice of the values of M and x(ε),
see (13) and (14).

Therefore, the condition µ > 1+ Λ suffices for the claims of the theorem (assuming all its other
conditions are met). This should be compared with the assumption (5). The multiplier 2 in (5) may
be regarded as a price for non-local, integral-type conditions, see (6) and (7). Please note, however,
that assumption (40) looks clearly stronger than necessary for the bound obtained.

Example 2. Assume that there exists the derivative function F′(s) and that the hazard function
h = H′ satisfies the condition (compare to [14])

(1 + s)h(s) ≥ µ, s ≥ 0, (41)

with a constant µ.
Here the upper bound for J1

n,x + J2
n,x is the same as in the proof of the theorem and as in the

previous example:
J1
n,x + J2

n,x ≤ 1 + Λ.

To estimate J3
n,x, in the case if either the initial value n, or the initial second component x (or

both) is large enough, we have by Lemma 1, similarly to (21) and to the previous example,

J3
n,x(1) := En,x

∫ 1

0
1(nt > 0)(1 + xt)dH(xt)

= En,x

∫ 1∧γ

0

=1︷ ︸︸ ︷
1(nt > 0) µdt + En,x

∫ 1

1∧γ
1(nt > 0)µdt
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= En,x

∫ 1∧γ

0
µdt + En,x1( inf

0≤t≤1
nt > 0)

∫ 1

1∧γ
µdt︸ ︷︷ ︸

=µ(1−1∧γ)

+ En,x1( inf
0≤t≤1

nt = 0)
∫ 1

1∧γ
1(nt > 0)µdt︸ ︷︷ ︸

≥0

≥ µEn,x(1∧ γ) + µEn,x1( inf
0≤t≤1

nt > 0)(1− 1∧ γ)

= µEn,x(1∧ γ) + µEn,x(1− 1∧ γ)− µEn,x1( inf
0≤t≤1

nt = 0)(1− 1∧ γ)

≥ µ− µEn,x1( inf
0≤t≤1

nt = 0) ≥ µ− µε,

again due to the definition of M and x(ε), see (13) and (14). Hence, here the same condition
µ > 1 + Λ as in the previous example suffices for the claims of the theorem (assuming all other
conditions of the theorem are met). Condition (41) is clearly more relaxed than (40), but both assume
the existence of the intensity of service, which is not required in Theorem 1.

6. Discussion

The result may serve as a sufficient condition for the “steady-state” property of the
model Mn/GI/1 used as a background in [3,12]. It is plausible that the method used in
this paper admits extensions to more general models. As it was said in the introduction,
there is some moderate hope that it may also be applied to Erlang–Sevastyanov’s type
systems, which could potentially allow finding sufficient conditions for convergence rates
in such systems without assuming the existence of intensity of service, thus, generalizing
the results from [14].
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