

  mathematics-11-04506




mathematics-11-04506







Mathematics 2023, 11(21), 4506; doi:10.3390/math11214506




Article



Exploratory Matching Model Search Algorithm (EMMSA) for Causal Analysis: Application to the Cardboard Industry



Richard Aviles-Lopez 1,*, Juan de Dios Luna del Castillo 2 and Miguel Ángel Montero-Alonso 2,*





1



Department of Computer Science and A.I., University of Granada, 18071 Granada, Spain






2



Department of Statistics and Operational Research, University of Granada, 18071 Granada, Spain









*



Correspondence: richardaviles@correo.ugr.es (R.A.-L.); mmontero@ugr.es (M.Á.M.-A.)







Citation: Aviles-Lopez, R.; Luna del Castillo, J.d.D.; Montero-Alonso, M.Á. Exploratory Matching Model Search Algorithm (EMMSA) for Causal Analysis: Application to the Cardboard Industry. Mathematics 2023, 11, 4506. https://doi.org/10.3390/math11214506



Academic Editor: Bumba Mukherjee



Received: 23 September 2023 / Revised: 16 October 2023 / Accepted: 28 October 2023 / Published: 31 October 2023



Abstract

:

This paper aims to present a methodology for the application of matching methods in industry to measure causal effect size. Matching methods allow us to obtain treatment and control samples with their covariates as similar as possible. The matching techniques used are nearest, optimal, full, coarsened exact matching (CEM), and genetic. These methods have been widely used in medical, psychological, and economic sciences. The proposed methodology provides two algorithms to execute these methods and to conduct an exhaustive search for the best models. It uses three conditions to ensure, as far as possible, the balance of all covariates, the maximum number of units in the treatment and control groups, and the most significant causal effect sizes. These techniques are applied in the carton board industry, where the causal variable is downtime, and the outcome variable is waste generated. A dataset from the carton board industry is used, and the results are contrasted with an expert in this process. Meta-analysis techniques are used to integrate the results of different comparative studies, which could help to determine and prioritize where to reduce waste. Two machines were found to generate more waste in terms of standardized measures whose values are 0.52 and 0.53, representing 48.60 and 36.79 linear meters (LM) on average for each production order with a total downtime of more than 3000 s. In general, for all machines, the maximum average wastage for each production order is 24.98 LM and its confidence interval is [13.40;36.23] LM. The main contribution of this work is the use of causal methodology to estimate the effect of downtime on waste in an industry. Particularly relevant is the contribution of an algorithm that aims to obtain the best matching model for this application. Its advantages and disadvantages are evaluated, and future areas of research are outlined. We believe that this methodology can be applied to other industries and fields of knowledge.
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1. Introduction


The cardboard industry has been growing steadily, attributable to increased corrugated box packaging needs for export and e-commerce from its versatility to protect, store, and transport [1]. The corrugated cardboard is made up of two sheets of paper (internal and external) and, in the middle, the corrugated paper that provides the energy-absorbing capacity [2]. The production volume is expected to reach 700 million metric tons by 2040, with a market size bordering USD 220 billion by 2028 [3]. Consequently, more waste will be generated which must be controlled because of its environmental, energy, and economic burdens [4].



One of the sources of waste in this industry is the printing subsystems, composed of several printing machines forming production lines (printing lines), where each includes several stages or modules [1]. Each machine may have different characteristics depending on the number of colors to be printed, the volume to be produced, and the post-printing stages it includes.



The production process of an order starts with a setup stoppage, and multiple stoppages may occur due to non-programmed or programmed operations. These stoppages are registered in real time by alarm monitoring software. The waste can arise from intrinsic reasons of the product design that can be calculated for each sheet, but we are interested in the waste sheets due to stoppages in the printing line. Thus, some of these stoppages can generate more waste due to effects on unscheduled maintenance, staffing, supply of materials, resource planning, subsystem failures, or fault propagations, among others [5].



Thus, determining the waste volume produced by each stoppage is impractical, complex, and difficult to quantify. The strategy followed has been to address all sources of waste using, for example, total productive maintenance [6], but which machine generates the most waste due to downtime? In which time interval does the most waste occur? Where to start? This generates more uncertainty because it is very complex to determine which stoppages are more important than others in almost half a million stoppage records.



However, if the waste is significant, the machine will likely stop, so somehow there should be a relationship between downtime and waste. For this reason, from a causal perspective, a study is required to determine the magnitude of the effect produced by the downtime of all these causes on waste.



Causal research in the manufacturing industry has been concentrated on the alarm root cause analysis, presenting multiple data-driven methods, such as those oriented to time-series data (Granger causality or entropy transfer), as well as methods oriented towards cross-sectional data, such as machine learning and probabilistic graphical models [7]. However, the former cannot be applied because the actual available data for downtimes only records the date but not the time when it occurs. Machine learning makes excellent predictions, but it does not properly determine the causes or adequately measure the causal effect size [8,9].



Therefore, the objective of this paper is to present a methodology to measure the causal effect size of the total downtime (seconds) of production orders on waste (LM) using production observational data. In addition, we will study its strengths and weaknesses. We believe that this methodology can be extended to other industries.



Addressing this problem is challenging due to the multiple sources of noise that occur in an industry: data distributions are non-normal, relationships are non-linear, and many variables exhibit multicollinearity [10]. Another problem is to find a parametric model that adequately measures the effect size. In addition, one of the challenges is to preprocess the data in such a way as to eliminate as much bias as possible [11].



We will use the matching methods to balance observational data and choose the best matching models that properly measure the effect size [12]. However, traditionally, it has been recommended to use several matching models to choose the best models, this being a manual search process. To our knowledge, no specific methodology exists for this purpose, nor have matching methods been used in the industry. The main contributions of this research are:




	
The presentation of the exploratory matching model search algorithm (EMMSA) for causal analysis.



	
The exploratory matching algorithm (EMA) for building matching models for each machine and treatment.



	
The homologous model selection algorithm (HMSA) to choose the best matching models and select the one that detects the maximum effect.



	
The application of meta-analysis to integrate the findings from the different machines and treatments.








To accomplish this, we will use a real dataset from a cardboard factory that is not fully automated and facing organizational difficulties and limitations, which increases the dataset’s variability. For these data, we pose a single research question: What is the effect size of total downtime on the waste generated on a printing line?



This article is organized into five sections. Section 2 summarizes the main causal methods used in the industry, the potential outcome framework, multivariate matching techniques, and meta-analysis models. Section 3 presents a description of the data, and how they were obtained. Section 4 presents the proposed industry application methodology and describes the exploratory matching algorithms and the homologous model selection algorithm. Section 5 presents and discusses the results. Section 6 concludes the study.




2. Literature Review


2.1. Causality Techniques Applied to the Manufacturing Process


Almizahad et al. synthesized the different methods of root cause analysis for both time series and cross-sectional data [7]. For time series, two approaches are available depending on whether they use multivariate Granger causality (MGC) [12] or transfer entropy (TE) methods.



Granger causality (G-causality) is a concept of direct causality used to establish whether the past values of a time series help to improve the prediction of another time series [13]. This method makes several assumptions, such as that the cause occurs before its effect, the time series values are continuous and Gaussian, the causal effect is linear, the time series is stationary [14], there is a discrete sampling frequency, and unmeasured confounding variables are not present [15]. These assumptions are unlikely to be met in practice [15]. MGC extends bivariate Granger causality to multiple variables and its advantage is that it has a low computational cost, is easier to implement, and works well with little data [16]. Principal component analysis is traditionally used as a feature selection method [7]. The main applications of MGC in root cause analysis are indicated in Table A1.



TE measures the amount of information transferred between two time series [17]. The TE methods were developed by establishing probability density functions (PDF) for each variable using kernel estimators because they offer robustness and accuracy [18]. A casual measure is established comparing the transfer entropy between two variables in one and another direction, and the significance level (threshold) of this measure is defined using Monte Carlo simulations of surrogated data [18]. Surrogated data can be generated by randomly shuffled data, or by the interactive amplitude-adjusted Fourier transform [19]. The main applications of MGC in root cause analysis are indicated in Table A2.



TE methods have the advantage of detecting linear or nonlinear causal relationships but have a high computational cost due to the application of their significance test based on Monte Carlo simulations. In addition, they require a large amount of seasonal data. They also require a method to select model parameters due to the use of PDF methods based on kernel estimators. Other disadvantages of TE and MGC are the inability to detect spurious relationships and to determine the existence of hidden (unmeasured) variables.



In cross-sectional data, Bayesian networks have been widely used. A Bayesian network (BN) is a directed acyclic graph (DAG) in which the nodes represent the random variables of the system under study, and the edges indicate the incidence of one node on another [20]. However, they have the disadvantage that they do not allow cycles, which are very present in industrial control processes. They are also not as accurate because the learning algorithms find equivalent Markov classes with multiple linking possibilities, which makes them difficult to interpret [21].



All these methods are data-driven, only detect directionality, and do not measure the causal effect size. To achieve this, they require the elimination of random noise that could affect the measurement of the effect size. In addition, they must control for bias introduced, and none of these approaches have addressed this yet.



As far as we know, no relevant records of matching methods were obtained in the fields of production and logistics. Therefore, it can be deduced that matching techniques have not been used to measure causal effect size in the industrial sector.




2.2. Potential Outcome Framework


To make inferences about the causal effect of a treatment, the potential outcome model was formalized by Donald Rubin [22]. A causal effect is the value comparison (difference or ratio) of the potential outcome (Y) when it is exposed to two alternative causal states or alternative treatments [22,23]. Alternative treatments can be binary (1: treatment and 0: control) or multi-treatment, and they should be defined into mutually exclusive alternative states [24]. In randomized trials, the way “each individual” is chosen to receive the treatment condition is known as the allocation mechanism [25], but in observational studies, it is impossible to control this aspect.



The individual causal effect is defined by the contrast between alternative states (treatment and control) for the same individual in the population of interest. The aggregate causal effects (average treatment effect—ATE) estimate the mean of the individual effects [26] which are shown in Equations (1) and (2). These causal effects can be defined over any subset of the population. E[.] signifies the expectation operator of probability theory.


ATE = E[Y1] − E[Y0] = E[Y1 − Y0]



(1)






  A T E =   1   N     ∑  i = 1   N    E       Y   i   1   −   Y   i   0   |     X   i         =   1   N     ∑  i = 1   N      ( μ   1       Y   i       −   μ   0       Y   i     ) ,  



(2)




where E[Y1] is the expected value of potential outcome for the treatment group; E[Y0] is the expected value of the potential outcome for the control group; E[Y1 − Y0] is the expected value of the difference of the two expectations equivalent to the mean treatment effect; E      Y   i   1   −   Y   i   0   |     X   i         is the expected value of the difference in the individual potential outcome, given their covariables Xi;     μ   1       Y   i       is the mean individual potential outcome of the treatment group;     μ   0       Y   i       is the mean individual potential outcome of the control group; and N is the size of the control or treatment groups.



In observational studies, the potential outcome of an alternative treatment that is not known is called the counterfactual. Thus, each observed potential outcome variable only reveals half of the information contained because it is impossible to observe both values for the same individual, either for ethical or practical reasons [23], and so one can never calculate the individual causal effect. This challenge is known as the fundamental problem of causal inference [26].



Because of this impossibility, the average treatment effect on the treated (ATT) is used more often (Equation (3)), where n is the size of the groups, m is the number of treatments, and     T   j     is the weighting of each treatment.


  A T T =   1       ∑  j = 1   m      T   j         ∑  i = 1   n      T   j   E       Y   i   1   −   Y   i   0   |     X   i       =   1     ∑  j = 1   m      T   j         ∑  i = 1   n        T   j         μ   1       Y   i     −   μ   0       Y   i             



(3)







When the causal effects are constant in each i, the ATT is equal to the ATE. However, another group-level causal effect is the causal hazard rate (or causal risk ratio), which is often used in epidemiology and health sciences [27].


  C a u s a l   H a z a r d   R a t e =   E     Y   1       E     Y   0       =   P     Y   1   = 1     P       Y   0   = 1      



(4)








2.3. Multivariable Matching Methods Overview


Estimating the causal effect in observational studies is a critical task as the researcher has no control over the treatment allocation mechanism. Therefore, its covariates may differ between treatment and control individuals (unbalanced) [28]. The balance refers to the similarity of the marginal covariate distribution in both groups and thus avoids the model dependence or imprecise inference [29].



The Model dependence is the variation in causal effect estimation at point xi among plausible alternative models that fit the data reasonably well [30]. However, when there is no model dependency, the functional form does not matter because the result will be approximately the same [31].



Thus, observational studies require a design phase to resemble randomized experiments, using background information (covariates), create more balanced treatment and control samples, and support more robust and credible inferences [25,29,32].



Multivariate matching is a set of nonparametric methods applied before parametric analysis to eliminate the difference in the covariates (Xi) affecting the causal variable (Ti) without accessing the outcome variable (Yi) [31]. It improves the balance with a minimum of loose observations in the process, allows for controlling the influence of confounding factors, and obtains more precise estimates of the causal effect with reduced bias and variance [28].



In order not to bias the analysis, the outcomes should not be available, and thus, by comparing several matched designs, the search for a satisfactory design becomes transparent [33].



The fundamental rule to avoid selection bias is that our preprocessed data set should include a subset of records from the observed sample whose treatment and control groups are unrelated and which have the same baseline characteristics [31], such that:


      p  ~      X   i         T = 1 ) =   p  ~      X   i         T = 0 )     



(5)







Matching techniques only require that their distributions (treatment and control) be as close as possible, although the unobserved covariate bias is always possible [29]. In this way, Ti is independent of Xi, and the dependence on the functional form in the parametric analysis will be eliminated [31].



A first matching attempt was to use one-to-one exact matching, a treated unit with a control unit that contains both identical values of Xi, discarding all units that do not match. Exact matching uses one or more control units that match each treated unit, which improves efficiency [28].



According to [30], they suggest removing observations from the control group that are outside the “convex hull” of the treatment group. That is, units in the control group that are outside the range of the treatment variable are discarded. For this reason, to avoid extrapolation bias, it is necessary to check the common support and verify whether the control units are in the convex hull of the treatment group [31].



Thus, if the number of observations of the matched sample N is not reduced so much, matching will frequently reduce the bias and the variance of the estimates of the parametric analysis [31]. If NC >> NT, then more control units can be matched with each treatment unit, which improves the efficiency of estimation, and the bias may be reduced [34]. If NT >> NC, then each unit control may be matched with several treated units, which is known as matching with replacement [35].



The propensity score is a measure that summarizes all Xi variables, and it is defined as the conditional probability of unit i receiving treatment T, given their covariates Xi [36]. The propensity score is formulated as e(Xi) in the following equation:


  e       X   i       = Pr ⁡ ( T = 1   |     X   i   )     



(6)







It is commonly calculated using a logit model (or random forests). Some matching techniques are based on a proximity metric, either distance or similarity. It may also use a threshold to ensure that the difference between the values of the metrics of the matched treatment and control units is less than or equal to it [37]. This threshold is known as a caliper.



Nearest-neighbor matching calculates the closeness metric of each observation based on the values of its covariates and then it matches the closest control and treatment units to each other [38]. Two versions are available for matching without substitution: greedy matching or optimal matching. The first matches a treated unit with the control unit that has the most similar propensity score without minimizing the overall distance, and the second includes minimizing the absolute distance between the matched units [39].



However, propensity scores attempt to balance the covariates but two units with the same value score may be very different. So, another approach is to additionally use the Mahalanobis distance within the calibrators of the propensity score, thus adding a layer of protection, but will not normally generate optimal pair matching [40].



Optimal matching solves an optimal assignment problem to find the closest treatment and control units that meet certain requirements or constraints on the balance of covariates [41]. Optimal matching is often used with the RELAX IV algorithm to solve the minimum cost flow problem in a network [42].



Full matching creates matching subsets containing one treated unit with one or more control units, or one control unit with one or more treated units [43]. Optimal full matching minimizes a weighted average of the estimated distance measure between pairs matched within each subclass, and it is available in the matchit package [41,44].



Genetic matching implements a more general distance measure based on the Mahalanobis distance, which incorporates a matrix of weights to be optimized over several generations. Optimization is carried out by minimizing a loss function over the matched sample at each iteration, identifying the corresponding weights until it converges asymptotically to the optimal solution [45].



Multiple measures of balance provide a more complete image of balance and the biases [46]. One such measure is the standardized mean difference (SMD) between treatment and control groups before and after matching. The SMD of each variable can be visualized with an SMD chart. If the absolute value of SMD is greater than 0.1, it indicates evidence of imbalance between the treatment and control groups. The SMD is not dependent on the unit of measure, and it is expressed for continuous covariates with the following equation [47]:


  S M D =       X   1    ¯  −     X   0    ¯         s   1   2   +   s   0   2     2       



(7)







For binary covariables, it is calculated using the proportions (      p   i    ^   ) of their values, both in the treated group and the control group [48].


  S M D =       p   1    ^  −     p   0    ^           [ p   1     1 −     p   1    ^    +     p   0    ^  ( 1 −     p   0    ^  ) ]  ^    2       



(8)







The variance ratio (VR) compares the variances of the two matched groups. If this indicator is equal to 1, it means that the balance is good, and less than 2 is generally acceptable [31]. The hypothesis test and its corresponding p-value should be used with caution. The significance test can detect spurious statistically significant differences [28].



The prognostic score is defined as the predicted probability of an outcome under control conditions [49]. It has been demonstrated to be an excellent indicator of the degree of bias reduction, and it is more efficient than the covariate mean differences and significance tests [46], even when the prognostic scoring model is misspecified. For this, a regression model is fitted to predict the outcome using the control group covariates. Thus, using the same model, the outcome of both control and treatment group units is predicted. The absolute SMD (ASMD) of both groups is then compared [50].



Even if optimally matched records were found, it is possible that they do not coincide in their unobserved variables, and therefore, there may be a bias in the treatment assignment due to these factors [51,52]. Sensitivity analysis in observational studies is a mathematical calculation of the amount of unobserved covariate bias needed to change the conclusions of the study [33]. This mathematical calculation varies an underlying assumption to a statistical procedure to determine what magnitude of deviation from that assumption would be necessary to alter the conclusion [33]. The Rosenbaum sensitivity test for Hodges—Lehmann point estimate calculates the odds of differential assignment to treatment due to unobserved factors for a range of gamma values. It is an unconfounded estimate that reflects “the uncertainty of the hidden bias due to failure to control for unobserved covariates” [52]. Better observational study design decisions result in better insensitivity to large unmeasured biases [51].



Cohen’s [53] effect size measure (d) is defined as the mean difference between the treatment and control groups divided by the population standard deviation. There are other more precise measures with various corrections of the standard deviation depending on the size of the groups and the (non)similarity of variances. However, the square root of the mean of the variances of both groups is frequently used as the population standard deviation. Thus, the effect size is similar to a Z-score and its formula is the same as the SMD. The Z-score is a standardized measure that allows us to make comparisons between different populations. In addition, Cohen defined three values for the value of d for the corresponding small, medium, and large effect sizes (0.2, 0.5, and 0.8, respectively) [53].



The proximity metrics are described in Table A3. The R libraries used in this paper are shown in Table A4.



In practice, many researchers have recommended building different matching models and choosing the one with the best fit of their covariates [33,54,55]. However, we have reviewed the literature (as of 30 September 2023), and, to our knowledge, only individual approaches exist for each specific problem, but we have not found generic methods to identify these models, which represents a knowledge gap.



In the absence of a general methodology to determine the best matching models, we developed in this paper a novel methodology to find them. For this purpose, we have run the most popular matching methods, providing balancing criteria and priorities to facilitate the identification and selection of the best models. The proposed methodology is presented in Section 4.3.




2.4. Statistical Models for Meta-Analysis


Meta-analysis is a statistical technique for integrating the findings from different comparative studies [56].



Two statistical models are most commonly used: the fixed-effect model and the random-effect model. The first assumes that a common effect size exists for each study and that their differences are due to sampling errors [57]. The second assumes that a distribution of true effects exists with different effect sizes for each study, and it focuses on calculating the parameters of this distribution [57]. The difference among studies can be due to background factors as well as the design or execution of the study. The random effects model nomenclature of DerSimonian–Laird and their formulas are shown in Table A5 and Table A6, respectively [56].





3. Data


The production process we are concerned with has been summarized in the Introduction because it is the stochastic process that generates the available data.



The cardboard industry has two main production areas: corrugating and printing. The printing subsystem is composed of several printing lines. Each printing line is made up of several sequential modules or stages, for example, feeder, printer, die cutter, slotter, folder, gluer, stacker, or binder. These printing lines are also referred to as machines. The characteristics of each machine will depend mainly on the maximum number of colors it can print, the production volume, and the post-printing stages that compose it.



The industry works in three rotating shifts, 24 h a day, 7 days a week. The work teams are roughly similar in productivity and efficiency. During the production process of an order, there may be one or more stoppages, starting with the setup stoppage, and then, there may be zero or n stoppages due to scheduled or unscheduled operations. At the end of the production of an order, the wasted units are counted.



Data on production orders and downtime are stored in the organization’s ERP (enterprise resource planning) and alarm monitoring software, respectively.



The process begins when a production order is created in the sales department at the client’s request. Then, during the week before delivery, the scheduler assigns a date, shift, and machine on which the order will be produced, as well as the raw material and personnel requirements. When the assigned day arrives, the production order enters the queue of the machine, according to the allocated position.



Before the machine starts processing the order, the raw material and personnel are provisioned, and the machine is guaranteed to be operational. The production order starts with the setup stoppage where the cliché of each color is loaded, color shade is adjusted, and print accuracy adjustments are made. Each subsequent stoppage may be related to the modules of the printing line.



We want to determine the effect of the total downtime (seconds) of a production order on its waste (linear meters). Preliminary data that could help answer the causal question were selected by eliminating incomplete orders (due to cancellations), inconsistent or flawed records, and production lines with insufficient records (less than 1000 records).



New variables are calculated from the existing variables. Additionally, aggregate variables are generated by production orders. All available variables that could be associated with the outcome are described in Table 1. The dataset contains 59,676 records of the production orders collected over three years (2019 to 2021).



A more complex data set containing the individual stoppages of the different stages will not be used for the effect size calculations because it increases the number of variables and increases the complexity of the matching. However, we will address this data set in another study, for which we will need the collaboration of an expert in the process.




4. Methodology


To address how to use matching methods to measure the effect of a causal variable on the outcome variable, we propose the following steps outlined in Figure 1, which are described in the subsequent sections.



4.1. Causal Questions and Causal Variable


To conduct a causal analysis of observational data, a causal question must first be established to guide the whole process [27]. For this, it is necessary to distinguish between causal and non-causal questions. Causal questions deal with the mechanisms of data generation or predictions of how a system will behave after an intervention [58].



Therefore, for the selection of the causal variable, the phenomenon is first analyzed in search of variables that allow an intervention, to produce the expected value in the outcome variable [23,59].



Then, to formulate the causal question, both the causal and outcome variables must be explicit in the question with the corresponding units of measurement. For example, “What is the effect size of the causal variable (units) on the outcome variable (units) in the system?”




4.2. Preparation of Dataset for the Matching Algorithms


4.2.1. Exploring Feature Importance


It is advisable to create a regression model (e.g., light gradient boosting [60]) to determine the importance of the predictor variables on the outcome variable. In addition, we could examine the order of importance of variables to check that the chosen causal variable is included. If not, it is advisable to review the causal question again by choosing an important variable on which an intervention is possible [27].



In the industrial environment, production order variables are strongly associated with the output variable (e.g., the higher the number of order units is, the higher the number of waste units is). They are not causal variables, but associative, because they are set by the client, and, therefore, we cannot modify them; i.e., they do not allow interventions.



The causal variable is not always the one with the highest level of association with the outcome variable. Some causal variables may have a low level of association. Likewise, causal variables exist that are key and trigger the increase (or decrease) in the outcome variable, but their level of association could be close to zero, so they might not be considered causal variables. Therefore, the causal variable may or may not be strongly associated with the outcome variable.



Thus, causal analysis is an adjusted analysis, because the covariates, whether causal or associative, are controlled to rule out their effects on the outcome variable so that the size of the causal effect can be measured directly with the minimum possible bias and variance.



Therefore, in observational studies, the causal variable is not always required to be a necessary and sufficient condition to yield the effect on the outcome variable. In most cases, it is not sufficient, or it may be sufficient but not necessary, because other variables may be causing the effect.




4.2.2. Treatment Interval Design


A first approach consists of measuring the effect of a causal variable that groups together many causes affecting an outcome variable. To analyze it, the causal variable is segmented into intervals, depending on the amount of data, to measure the effect produced by each of them. From this result, we could determine the intervals with the greatest impact on the outcome variable to prioritize the search for its causes in the production process. This is because problems are often multi-causal, which is common in the manufacturing environment.



Each treatment (interval) is numbered from 0 to N, in ascending order of the causal variable. A control treatment is considered when the value of the causal variable is zero, and the treatment number assigned will be 0. Each treatment (from 1 to 10) will be contrasted with the control treatment (0). Then, the effect of treatment n will be the mean of the difference in potential outcomes between the two groups, treatment n and treatment 0.



But how many intervals should be defined? One alternative is to use a scatter diagram of the two variables (cause and outcome) and manually define the intervals of interest. Another alternative is to define the different intervals using percentiles and adjust their values, considering, as far as possible, at least 100 records per treatment to be able to detect the effect size with the minimum possible bias.




4.2.3. Selection of Systems (Machines)


Matching algorithms require sufficient records to function properly. For this reason, we scanned for the number of records for each production line and discarded those with insufficient records; for example, for 10 treatments, at least 1000 records are required for the printing line.





4.3. Exploratory Matching Algorithm


To assemble the samples as randomized experiments using the covariates prior to the causal variable, several popular matching algorithms are used, such as nearest, optimal, full, genetic, and coarsened exact matching (Section 2.3).



Algorithm 1 shows the exploratory matching algorithm (EMA). It begins by defining the formulas for matching and random forest (RF) models, as well as defining the lists of treatments, the matching methods, and the distance measures used. Then, it proceeds to set up four nested loops for the different machines, treatments, methods, and distances to be used in the matching methods. This algorithm is very brief as it does not contain the R-specific programming details but illustrates how to proceed. Before the end of each iteration, different tests are performed to collect the balancing information for subsequent analysis.



All model and test summaries are saved in a text file. Another algorithm in Python extracts the interest variables for its posterior analysis which are saved in a CSV file. These variables are machine; treatment; matching algorithm; distance; binning; control units; treatment units; matched control units; matched treatment units; variance of treatment group; and variance of control group. From the predictions of the RF model, the explained variance and the size effect (the mean difference for each group) are obtained, as are the following: the number of non-balanced variables whose standard mean differences are greater than 0.1; the number of non-balanced variables whose variance ratios are greater than 2; gamma and upper bound of the Rosenbaum sensitivity test when the upper bound is greater than 0.05; the F-statistic, p-value, and ratio of variances of the F-test; the t, p-value, confidence interval, and mean in group C and T of the Welch two-sample t-test; and the unconfounded estimate of the Rosenbaum sensitivity test for Hodges–Lehmann.



	Algorithm 1. Exploratory matching algorithm (EMA).



	[image: Mathematics 11 04506 i001]









4.4. Homologous Model Selection Algorithm (HMSA)


The CSV file of the matching results contains the relevant variables that we could use to select the matching models that best balance our data for each machine–treatment. Then, HMSA processes this file, calculates the Z-Score, and proceeds to find the register of matching results with the lowest number of unbalanced variables and with the highest number of matched units. To accomplish this, we define two conditions to validate models. These are responsible for assigning balancing priorities to each matching model. A third condition is set to search for models with higher priority in both condition 1 and condition 2, and then, at the machine–treatment level, the mean Z-score is calculated and those models whose Z-score is greater than 95% of the mean are selected. These models selected are considered homologous due to their similar characteristics. Next, the selection of the better matching method is chosen from homologous models for each machine–treatment. Algorithm 2 summarizes the HMSA algorithm with its conditions and priorities.



	Algorithm 2. Homologous model selection algorithm (HMSA).



	[image: Mathematics 11 04506 i002]








4.4.1. Condition 1—Unbalanced Variables


The first condition has three priorities. Priority 1 is assigned to models that have zero unbalanced variables in both SMD and VR. Otherwise, priority 2 is assigned if zero unbalanced variables exist in SMD and up to 20% unbalanced variables exist in VR, or zero unbalanced variables exist in VR and up to 20% unbalanced variables exist in SMD. If the two previous cases do not occur, priority 3 will be assigned if the models present up to 20% of unbalanced variables both in SMD and VR. If the above three cases do not occur, priority 9 will be assigned to models with an excessive number of unbalanced variables.




4.4.2. Condition 2—Matched Units


The second condition also has three priorities. Priority 1 is assigned to models whose matched units in the treatment and control groups are equal to the maximum number of treatment and control units, respectively, i.e., no treatment units have been lost, and the number of control-matched units is at least the same as the number of treatment units. Otherwise, priority 2 is assigned to models with a maximum number of matched units in the treatment group and with matched units in the control group greater than or equal to 90% of the control units, or vice versa. If the above two cases do not occur, priority 3 is assigned to models with a number of matched units greater than or equal to 90% of units in both the control and treatment groups. If the above three cases do not occur, priority 9 is assigned to indicate the loss of a significant number of treatment or control units.




4.4.3. Condition 3—Homologous and Selected Models


Matching models whose priorities of condition 1 and condition 2 are less than or equal to 3 are found, thus discarding all models that do not present a satisfactory balance. If no records remain after filtering for a machine–treatment, it is assumed that a satisfactory model does not exist. Then, the highest priority models of condition 1 (minimum value) are chosen. From these registers, the highest priority registers of condition 2 (minimum value) are chosen. Then, for each machine–treatment, the models whose Z-score exceeds 95% of the mean Z-score are considered homologous models because they have similar characteristics and represent the best models that capture the largest effects. From the homologous models, the model with the maximum Z-score is selected as the best model for the respective machine–treatment.



In addition, two values are obtained as effect size for each machine–treatment, and the first one will be obtained from the selected model (Z-score), and the second one will be the mean of the effect size of the homologous models with their respective confidence intervals.



The results of homologous models, including the selected model, are exported to Excel for visualization and analysis. The EMA is implemented using the R libraries listed in Table A4. The HMSA is implemented in Python. Both algorithms are available for consultation upon reasonable request by any reader. However, it will not be possible to establish comparisons of this methodology with other existing methodologies because such comparisons do not exist, as already indicated in the Literature Review section.





4.5. Validation of Results with the Expert


The results obtained from the quantitative models will be validated with the qualitative knowledge of the expert in this process. In addition, the results are contrasted with a data analysis of the outcome variable.




4.6. Meta-Analysis


Meta-analysis techniques are used to make comparisons of the effect of the causal variable on the outcome variable in a subsystem. For this purpose, the “meta” library in R was used to develop another algorithm that integrates these results and determines, in a subsystem, the contribution of each treatment to the outcome variable. Similarly, for each treatment, a meta-analysis is performed to determine the contribution of the causal effect in each subsystem to the outcome variable. Since these are standardized measures, it allows these comparisons to be made.





5. Results and Discussion


5.1. Causal Questions and Causal Variable


The causal variable chosen in the Introduction to formulate the causal question is the total downtime (MSUMALL) of a production order. This variable can be intervened in since it can be changed by using different strategies. The main causes of these stoppages can be due to inefficient processes, operator errors, lean inventory of materials, or inefficient machine maintenance. By addressing these causes, downtimes can be reduced, and at the same time, waste can also be reduced as it is likely that the machine will be stopped when it produces defective units. Intuitively, the downtime could be directly proportional to the error severity.



The outcome variable is WASTELM since we are concerned about its behavior and intend to control it through MSUMALL to reduce costs and increase profitability.



For this reason, these two variables are crucial in the analysis of productivity, and it becomes valuable to detect the time intervals in which waste is higher. Thus, with an appropriate intervention according to the error type, it will be possible to change the causal variable to the lowest possible intervals (treatments) where the waste is smaller.




5.2. Exploring the Feature Importance


A regression was performed using the LightGBM library. The most satisfactory model was found using a hyperparameter grid, and its values are shown in Figure 2, which illustrates that among the important features associated with the outcome variable (WASTELM) are (i) OVERPROCLM, which indicates the linear meters of overproduction, either by a small safety percentage to cover possible defective units not observed by the naked eye, or by replacement of non-conforming units; (ii) M2LAM, which is a product specification; (iii) SCHEDLM, which is determined in planning, and its value is slightly higher than the linear meters specified by the client in the production order; (iv) ORDEREDLM, which represents the linear meters of the production order; (v) PRODTIME, which depends on the downtimes of the current order; (vi) ASLEEPTIME, which depends on the order date and its delivery date; (vii) FINALLAM, which represents the linear meters of production (without waste) shipped to the client; (viii) MSUMALL, which depends on the downtime of all stoppages after MSETUP; (ix) MSETUP, which depends on the operator and the order complexity; and (x) QUEUETTIME, which depends on the downtime of previous orders. However, OVERPROCLM and FINALLAM do not directly cause waste but are its effects.



Therefore, the causes of waste could somehow be reflected in the total downtime, which will be confirmed by this study. However, it is previously necessary to segment MSUMALL to generate the treatment variables (TMSUMALL). Thus, with the proposed methodology, we will be able to identify for each machine the time interval where the greatest waste is generated in order to subsequently identify with the expert the possible causes that explain it.



Then, the covariates that we should control for matching algorithms are all those that occur prior to the treatment variable (TMSUMALL), such as MT2LAM, ORDEREDLM, SCHEDLM, QUEUETIME, ASLEEPTIME, TEST, and MSETUP. The covariate TEST is included because it is important to control the carton strength, as it is somehow an indicator of the thickness and would help to obtain more similarly matched units. MSETUP is considered because it occurs before the stoppages to be analyzed.



Equation (9) shows the matching formula that will be used to build the models controlling the TMSUMALL variable with the variables that precede it and which are not causes of WASTEML.


TMSUMALL ~ MT2LAM + ORDEREDLM + SCHEDLM + QUEUETIME + ASLEEPTIME + TEST + MSETUP



(9)







PRODCTIME, OVERPROCLM, PRODLM, and FINALLM are involved a posteriori and will be included in the random forest regression model to measure the effect size of each model. Equation (10) shows the formula for building random forest regression models in which participate all predictors variables. In the end, after selecting the best models, it will be checked whether the effect size is similar between the simple mean of the two groups and the mean of the difference of the predictions of the RF models in both groups.


WASTELM ~ PRICELAM + MT2LAM + ORDEREDLM + SCHEDLM + FINALLM + QUEUETIME+ ASLEEPTIME + PRODCTIME + MSETUP + MSUMALL + OVERPROCLM + TEST



(10)








5.3. System Selection and Treatment Interval Construction


The treatment variable was generated by splitting the MSUMALL variable, considering all machines with more than one thousand records (machines with an insufficient number of records were excluded). The treatments correspond to each decile, considering all the records for their calculation to obtain the same analysis interval for all the machines. Records whose MSUMALL is zero are considered the treatment group (0). Table A7 shows a summary of the number of records and the treatment interval (in seconds) for each machine. Figure A1 shows the MSUMALL density function for each machine. Figure A2 shows the WASTELM density function for each machine.




5.4. EMA and HMSA Algorithms


Algorithm 1 (EMA), which executes the different matching methods with the various distance metrics selected, was run and 7691 matching models were obtained. Then, Algorithm 2 (HMSA), which performs an exhaustive search for the best models to be considered as homologous, was run, and 2644 models (34%) fulfilling conditions 1 and 2 were obtained, this being the first filter.



The results of the application of Algorithm 2 (HMSA) are summarized in Table 2. It shows a summary of all models found that meet condition 1 (rows) and condition 2 (columns) showing their respective priorities.



In addition, for each priority of condition 1, there can be two rows to indicate the fulfillment of condition 3. If it is 1, it indicates the number of models that fulfill condition 3, which we will call homologous models, or 0 indicates the number of models that do not fulfill this condition, and therefore, they are consequently discarded. Condition 3 acts as the second filter.



For example, the HMSA algorithm found 839 models from the genetic method that met condition 1—priority 1 and condition 2—priority 1, of which 400 models were considered homologous because they also met condition 3, and 439 were discarded. In addition, it found 183 genetic models that fulfilled condition1—priority 2 and condition 2—priority 1, of which 4 models were considered homologous because they also met condition 3 and 179 were discarded.



The bottom part of Table 2 shows a summary of models filtered by HMSA. For example, it found 1093 genetic models that met conditions 1 and 2 (II), and they represent 41.3% (III) of the 2644 models that met both conditions (1 and 2) for any priorities. In addition, it found 404 homologous models (IV), and they represent 37% of the total genetic models (V), 56% of the models found (VI) from all homologous models (723), and 15.3% of the total models (VII) fulfilling conditions 1 and 2. Finally, it selects for each machine–treatment 39 genetic models that represent 56% of the 70 models selected from all methods.



Therefore, 723 homologous matching models fulfilling conditions 1, 2, and 3 were obtained (IV), which corresponds to 27% of the models (V) that meet conditions 1 and 2 (2644).



In other words, only 9% of all generated models (7691) fulfill the three expected conditions of having almost all variables balanced (condition 1), the maximum number of treatment and control units (condition 2), and an effect size greater than 95% of the mean (condition 3). The remaining percentage of models is discarded because the models have a priority value greater than 1 in conditions 1 and 2 or because they do not meet condition 3, which acts as a second filter.



The results of the application of Algorithm 2 (HMSA) are plotted by methods (Figure 3) and distances (Figure 4). Thus, Figure 3a and Table 2 (V and VI) show that most of the homologous matching models are selected by the genetic (56%), nearest (22%), and optimal (15%) methods. Figure 3a shows that the most selected distances in the homologous models are scaled Euclidean (33%), GAM (15%), GBM (15%), Mahalanobis (12%), and GLM (10%).



Methods and distances by machine: Figure 3b shows that the genetic, nearest, and optimal methods find homologous models on all machines. Fullmatch does not find homologous models in M3, and CEM only finds them in M1. More models are obtained in M4 because it has a larger number of records, which could facilitate matching.



Figure 4b shows that the genetic method obtains an almost similar number of models for each distance measure, whether it uses a caliper or not. Figure 4c shows that the scaled Euclidean and Mahalanobis distances have most of the homologous models across all machines.



Therefore, the genetic method is the one that generates more homologous models due to its iterative process to automatically evaluate the balance and optimize the search for a better solution. For this, it uses a generalized version of the Mahalanobis distance that incorporates a matrix of weights to be adjusted in each iteration to minimize the loss function. At each iteration, it produces a new generation and converges asymptotically [45]. However, the disadvantage of the genetic method is the mean execution time with any distance, as shown in Figure 4f, and the Euclidean, GBM, and Bart distances are the most time-consuming.



Methods and distances by treatment: Figure 3c shows that genetic, nearest, optimal, and fullmatch methods find homologous models on all treatments. Figure 4d shows that the scaled Euclidean, GAM, GLM, and Mahalanobis distances have the most homologous models across all treatments.



Therefore, the genetic method with Mahalanobis and scaled Euclidean distances ensures finding homologous models for all machines and all treatments, with or without caliper, as shown in Figure 3b,c and Figure 4b–d.



The run time was approximately 140 h on an Intel Core I7 Fourth Generation computer with 12 Gb RAM (1600 Mhz) and an SSD hard disk (560 Mb/s). The matching library used is matchit. For the genetic method, the maximum number of generations is 100, the maximum unchanging generational is 4, and the convergence tolerance is 0.001. More details about this algorithm can be found in [45].




5.5. Effect Size


Finally, HMSA chooses one model the among homologous models for each machine–treatment. The model chosen is the one with the highest Z-score to indicate the largest effect captured from the corresponding homologous models. Then, HMSA calculates the mean effect size of these homologous models and their confidence interval (CI).



The results of the selected models for each machine–treatment are shown in Table A8, and their effects are plotted in Figure 5a,b. Almost all selected models obtained priority 1 in conditions 1 and 2, indicating that all variables were balanced, with no loss of treatment units, and with the maximum number of control units (or at least equal to the number of treatment units). The exceptions appear in machine M1, treatments 8, 9, and 10, in which there was an unbalanced variable. Furthermore, it is observed in Table A8 that the mean of the effects calculated as difference of means (EffMD), and the values of the differences of the means of the predictions using RF models (EfffRF) are approximately similar, which confirms the low dependence of the models.



In addition, the fullmatch method detects the largest effects because it incorporates almost all of the control units, increasing the variability of mean differences and capturing larger Z-scores. However, it does not find balanced models in all treatments, which are covered by the models of the other methods.



Therefore, the genetic, fullmatch, optimal, and nearest methods guarantee to find models with the highest Z-score on each machine and treatment, as also is shown in Table 2 (VIII y IX). In addition, the scaled Euclidean, Mahalanobis, GAM, robust Mahalanobis, and Euclidean distances are used in 80% of the selected models, as shown in Figure 6.



Table 3 summarizes the Z-score greater than 0.30 and the mean effect of homologous models greater than 20 LM. Then, we can determine that, in standardized terms, the three higher Z-scores are in M4-T10, M5-T10, and M6-T10. In linear meters, wastes greater than 20 linear meters are generated in M1-T10, M4-T10, M5-T10, and M6-T10. Therefore, treatment 10 is the one that generates the most waste on machines M1, M4, M5, and M6.




5.6. Overall Effect Size


To find out which machine generates more waste in statistical terms, we integrate the different studies of each machine and treatment using the meta-analysis techniques described in Section 2.4 and Section 4.6. For this purpose, the meta-library has been used and, for the sake of brevity, we only present the M6 machine and treatment 10, which is where more waste is generated in standardized terms, as shown in Figure 7a,b.



The results of the meta-analysis are summarized in Table 4. It shows the random effect (RandEff) among studies, as well as their maximum effects found. Columns I2 and τ2 indicate the among-study heterogeneity, measured as the percentage of the total variance (I2) that is explained by the between-study variance (τ2). The “Max” column indicates, for each machine (treatment), the treatment (machine), method, and distance that produce the maximum mean effect measured in SMD or EffAvg LM, to which their respective confidence intervals are appended (95%-CI and 95%-CI LM).



τ2 is the variance of the random effects and has a very relevant value because it indicates the importance of each machine for the differences in waste. For example, 0.0271 is an important variance concerning the other variances. This indicates great variability exists between machines, and some machines have an inherent effect on waste. Furthermore, we did not eliminate or correct for this variability in the matching process. Therefore, there must be other variables in the M5 machine that have more influence on the waste.



In Table 4, the column “EffAvg LM” is the mean of the maximum effects in linear meters corresponding to the SMD value. The “All Mchs” row is weighted average of the effects of the treatments of each machine in which the maximum total wastage is reached. Thus, the maximum average waste for each production order that has stoppages after MSETUP is 24.98 LM with a confidence interval of [13.40;36.23].



In addition, we observe that the selected models of machines M2 and M3 present similarity since their I2 is 0%. The same occurs with treatments 2 and 4. In these cases, their mean random effects are approximately equal in normalized terms.



In contrast, it is observed that the selected models of machines M4, M5, and M6 present greater differences, which indicates the heterogeneity of the studies, and therefore, their means and CIs are different. The same is true for treatments 6 to 10. In addition, it is observed that the fullmatch method detects the largest effects in 71% of the machines and 90% of the treatments.




5.7. Advantages and Disadvantages of This Methodology


An advantage of this methodology is that it measures the causal effect of downtime on waste. In addition, this methodology could be used to study with the experts the causes that reduce productivity and overall equipment effectiveness (OEE). Therefore, it is important to address the downtimes to increase machine availability, avoid their deterioration and improve the performance, efficiency, and quality of the printing line. This way of studying the impact of downtime on waste is justified because it addresses two crucial issues at the same time: waste as a function of downtime, which will help reduce production costs and improve the profitability of the organization.



The process followed to obtain the models to which the required strong restrictions apply means that, in percentage terms, this number of models is small, although in absolute numbers it is still a very large number of resulting models.



For this reason, the three HMSA conditions are so restrictive that models could be obtained whose causal effect sizes, for the same machine–treatment, have slight variations.



Condition 3 (effect size greater than 95% of the mean) selects models that capture large effects, so it is possible that other more moderate effects are being neglected in this situation.



However, the choice to stay with models that meet all the constraints and are therefore strongly consolidated gives value to these models as it allows us to detect the variability caused by waste due to downtime in very extreme situations.



If, with these restrictions, homologous models are not found in some machine–treatment, it means that no reliable models were found to measure the corresponding effect size.



The main limitation of this study is that it does not measure the effect of the stoppages of each stage of the production line of each machine, which will be addressed in a future study, but it serves the purpose of an exploratory search for the main causes using the matching models.



Another disadvantage is that the effect size is calculated assuming that the standard deviations are different, and the group sizes are similar (Equation (7)). For this reason, in cases where the sample size and the standard deviation of each group are markedly different, it will be necessary to correct the standard deviation of the population. This may occur mainly with fullmatch, which considers more control units.



In any case, the differences detected when the standard deviation correction is performed would produce effects analogous or slightly underestimated to the uncorrected effect measurements. Equation (7) has more power to measure the effect because it has more type 1 errors. Therefore, the measured effects of the fullmatch models, using Equation (7), provide sufficient reliability to be considered.





6. Conclusions


In this work, the EMMSA methodology has been developed to measure, for each machine, the size of the causal effect of downtime on waste. As mentioned in the Introduction, being able to measure this effect could contribute to studying, quantitatively and causally, one of the main problems of the manufacturing industry, since it affects productivity and profitability.



This methodology allows a rigorous comparison between the different models generated by the matching methods used to perform the causal analysis.



For this purpose, the EMMSA is carried out with two developed algorithms: Algorithms 1 (EMA) and 2 (HMSA). Both have the advantage of performing an exploratory search for the best models to ensure, as far as possible, comparative groups with all covariates balanced, the maximum number of treatment and control units, and an effect size greater than 95% of the mean.



In the applied case, the machines and treatments where most waste is generated are shown in Table 3. Using meta-analysis methods, it was determined that M5 and M6 machines and treatment 10 generate the most waste in terms of standardized measurements. As such, the meta-analysis method helps us to prioritize, at the machine and treatment levels, where waste should be primarily addressed.



In future studies, the EMMSA methodology can be extended to more than ten covariates, include binary variables, and use variables with very different probability distributions. These extensions may require more criteria or priors to improve the model selection process.



The EMMSA methodology could be adapted for applications in other industries involving production processes in which waste is a fundamental part of the cost. It could also be extended to other fields of knowledge.
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Appendix A.1. Causality Methods in Time Series




 





Table A1. Multivariable Granger causality methods for time series.






Table A1. Multivariable Granger causality methods for time series.





	Method
	Relations
	Data
	Reference





	Auto Regressive Model
	Linear
	Stationary
	[16]



	Gaussian Process

Regression
	Non-linear
	Non-stationary data
	[16]



	Spectral Granger Causality
	Non-linear
	Oscillating variables: Fourier transformation
	[61]



	Grouping Multivariate Granger Causality
	Non-linear
	Oscillating variables: Multivariate non-linear chirp mode decomposition
	[62]










 





Table A2. Granger causality methods for time series.






Table A2. Granger causality methods for time series.





	Method
	Description
	Reference





	Direct Transfer

Entropy (DTE)
	Detects spurious causalities and direct (indirect) paths between univariate time series. Requires stationary data.
	[19]



	(Direct) Transfer Zero Entropy (T0E)
	Like DTE but does not assume well-defined PDF. Detects direct or indirect causalities for multivariate data. Does not require stationary data or a large sample.
	[63]



	Trend Transfer

Entropy (TTE)
	Causal analysis based on the time-series trends reducing computational burden.
	[64]



	Symbolic dynamic based normalized Transfer Entropy (SDNTE)
	Fast and efficient to root cause diagnostic in real time using xD-Markov machine. Accepts only stationary variables.
	[65]



	Normalized (Direct) Transfer Entropy
	It assumes a random delay in the occurrence of the alarms and mutual independence between them.
	[66]
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Table A3. Proximity metrics.






Table A3. Proximity metrics.










	Distance
	Description
	Reference





	Canberra
	   d   p , q   =    ∑  i = 1   n           p   i   −   q   i           p   i     −     q   i           
	[67]



	Euclidean and Scaled Euclidean
	   d   p , q   =     ∑  i = 1   n           p   i   −   q   i       2        
	



	GAM
	Generalized additive model distance is a form of parametric logistic regression. It belongs to the family of generalized linear models. It assumes that outcome variables depends linearly on unknown smooth functions of its predictor variables.
	[68]



	GLM
	The generalized linear model distance is a generalization of ordinary linear regression using a link function between predictors and outcome and for each variable a variance function of its predictors. It assumes that each predictor is generated by a probability distribution family (normal, binomial, exponential, poisson, etc.).
	[69]



	Mahalanobis and Robust Mahalanobis
	  d   p , q ,   θ   =      p − q     T     S   − 1     p − q     

Where, p and q are vectors of size n, θ is the probability distribution over Rn, and S is the positive definite covariance matrix.
	[70]



	Manhattan (Taxicab)
	  d   p , q   =     p   i   −   q   i      

Hermann Minkowski (1864–1909)
	



	Maximum
	  d   p , q   =   m a x   i       p   i   −   q   i      

Pafnuty Chebyshev (1821–1894)
	



	Minkowski
	  d   p , q   =      ∑  i = 1   n           p   i   −   q   i       s       s    

s = 1, Manhattan distance; s = 2, Euclidean distance;

s =   ∞  , Chebyshev distance. Hermann Minkowski (1864–1909)
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	Package
	Description
	Reference





	matchIt
	It implements a wide variety of matching algorithms such as nearest Mahalanobis, optimal matching, fullmatch, genetic, and coarsened exact matching.
	[44]



	optmatch
	Finds the optimal match and support variable number of controls and full matching. It uses auction algorithm implemented with RELAX IV Fortran code [42] to solve the minimum cost flow problem. It has academic license.
	[41]



	sensitivitymult
	Sensitivity analysis for normal distributions using M-Test.
	[51]



	car
	Sensitivity analysis for no normal distributions using Levene test.
	[71]



	cobalt
	Generates balance tables and plots for covariates of matched groups
	[72]



	rbounds
	Implements sensitivity analysis methods documented in [29] and calculates point estimates from Hodges–Lehmann and Wilcoxon tests.
	[73]



	tableone
	It summarizes the variables (continuous or categorical) of the matching results, thus facilitating their reading. In addition, it performs statistical tests and calculates the standardized mean difference.
	[74]



	lightgbm
	Optimized machine learning algorithm using gradient boosting decision tree (GBDT) implemented with gradient-based one-side sampling (GOSS) and exclusive feature bundling (EFB)
	[60]



	randomForest
	A classification and regression algorithm that combines randomized decision trees and aggregates their predictions by averages.
	[75]



	meta
	Implements methods for meta-analysis of random-effect models and common-effect models.
	[76]
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Table A5. DerSimonian–Laird nomenclature.





	Variable
	Nomenclature of Random Effect Model for DerSimonian-Laird





	k
	Number of comparative studies



	i
	1, …, k



	nTi, nCi
	Number of records in treatment and control groups



	rTi, rCi
	Proportion of records with some event in treatment and control groups



	Ѳi
	True treatment effect in the i-th study



	ei
	Sampling error in the i-th study



	si
	Standard deviation of the i-th study



	Observed

treatment effect
	Yi = True treatment effect + sampling error

Yi = Ѳi + ei



	Variance of ei
	    σ   i   2    

The sampling variance capturing intra-study variance and the sampling size. It is usually unknown, but it is estimated from study data   (   s   i   2   )  .



	Ѳi
	Ѳi = μ + δi



	μ
	Overall treatment effect of study population



	δi
	δi = Ѳi − μ

It is the deviation of the study from overall treatment effect.



	Variance of δi
	τ2

It is the between-study variance and constitutes both the degree of variation in the true treatment effect across studies and the degree of variation in biased assessments of the treatment effect of individual studies. It is estimated from study data (t2).



	τ2 = 0
	Homogeneity among the true treatment effects. Therefore, Ѳi = μ

τ2 > 0 reflects treatment effects heterogeneity.



	yi
	The observed treatment effect for i-th study. It is a random variable.

y1,…, yk are values of random variable from a distribution with overall means μ; true treatment effect Ѳi;

and variances    τ 2  +   σ   1   2      ,   … ,    τ 2  +   σ   k   2      ;    τ 2    >   0 ;   and     σ   1   2     > 0.



	Variance of each observed treatment

effect
	τ2 +     σ   i   2    

Inter-study variance = τ2.

Intra-study variance   =   σ   i   2    ; it is approximately equal to     s   i   2    .
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Formulas for the Estimation of the Overall Population Treatment Effect μ

	
Equation






	
Estimate of the initial weighting     w   i 0    

	
     w   i 0   =   1     s   i   2       

	
(A1)




	
   Estimate   of   initial     y   w   ( 0 )   

	
       y   w     0   =     ∑  i = 1   k      w   i 0     y   i         ∑  i = 1   k      w   i 0         

	
(A2)




	
Estimate Q statistics

	
   Q =      ∑  i = 1   k       w   i 0         y   i     −     y   w   ( 0 )     2         

	
(A3)




	
   Estimate     t   2     

	
     t   2   =   Q   −     k − 1         ∑  i = 1   k      w   i 0         −       ∑  i = 1   k      w   i 0   2         ∑  i = 1   k      w   i 0             

	
(A4)




	
Estimate second step weighting, wi

	
     w   i   =   1     t   2   +   s   i   2       

	
(A5)




	
Estimate     m   w    

	
     m   w   =     ∑  i = 1   k      w   i       y   i       ∑  i = 1   k      w   i         

	
(A6)




	
Estimate τ2, weighted method of moments

	
     τ   2   ≈         ∑  i = 1   k      w   i         y   i     −     m   w       2           −           ∑  i = 1   k      w   i     s   i   2         −         ∑  i = 1   k      w   i   2     s   i   2         ∑  i = 1   k      w   i               ∑  i = 1   k      w   i         −       ∑  i = 1   k      w   i   2         ∑  i = 1   k      w   i             

	
(A7)




	
Estimate final weighting Wi

	
   W i =   1     τ   2   +   s   i   2       

	
(A8)




	
Estimate μ

	
     M   W   =     ∑  i = 1   k      W   i     y   i         ∑  i = 1   k      W   i         

	
(A9)




	
   Estimate   Standard   error     μ   W     

	
   S t a n d a r   e r r o r   o f     μ   W   = S E     M   W     =     1           ∑  i = 1   k      W   i           1   2         

	
(A10)




	
Confidence Interval μ

	
CI =      M   W     ±    1.96 SE      M   W      

	
(A11)
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Treatment Intervals, Density Functions, and Selected Models




 





Table A7. Downtime intervals of machines for each treatment (MSUMALL).






Table A7. Downtime intervals of machines for each treatment (MSUMALL).





	
Trat

	
Min

	
Max

	
M1

	
M2

	
M3

	
M4

	
M5

	
M6

	
M7

	
Total






	
0

	
-

	
-

	
3521

	
978

	
3008

	
7318

	
1831

	
3087

	
4039

	
23,782




	
1

	
59

	
291

	
166

	
62

	
54

	
990

	
50

	
331

	
173

	
1826




	
2

	
292

	
441

	
150

	
68

	
80

	
897

	
138

	
317

	
210

	
1860




	
3

	
442

	
580

	
142

	
76

	
109

	
779

	
129

	
436

	
209

	
1880




	
4

	
581

	
722

	
152

	
77

	
85

	
715

	
127

	
493

	
233

	
1882




	
5

	
723

	
908

	
187

	
91

	
96

	
693

	
133

	
355

	
308

	
1863




	
6

	
909

	
1160

	
219

	
112

	
103

	
673

	
171

	
349

	
243

	
1870




	
7

	
1161

	
1497

	
222

	
106

	
107

	
661

	
165

	
370

	
240

	
1871




	
8

	
1498

	
2010

	
252

	
136

	
119

	
605

	
178

	
389

	
202

	
1881




	
9

	
2011

	
3005

	
274

	
154

	
124

	
531

	
200

	
371

	
214

	
1868




	
10

	
3006

	
18,113

	
334

	
237

	
162

	
406

	
231

	
407

	
195

	
1972




	
Total

	
5619

	
2097

	
4047

	
14,268

	
3353

	
6905

	
6266

	
42,555




	
% Control units

	
62.7%

	
46.6%

	
74.3%

	
51.3%

	
54.6%

	
44.7%

	
64.5%

	
55.9%




	
% Treatment units

	
37.3%

	
53.4%

	
25.7%

	
48.7%

	
45.4%

	
55.3%

	
35.5%

	
44.1%
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Figure A1. MSUMALL density function for each machine. 






Figure A1. MSUMALL density function for each machine.
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Figure A2. WASTELM density function for each machine. 






Figure A2. WASTELM density function for each machine.



[image: Mathematics 11 04506 g0a2]







 





Table A8. Selected models: balance information and causal effect size.






Table A8. Selected models: balance information and causal effect size.


























	MCH
	Treat
	Method
	Distance
	C1
	C2
	CU
	TU
	NSMD
	NRV
	CMU
	TMU
	RV
	Wtpval
	EffMD
	EffRF
	CIhigh
	CIlow
	ZScore





	M1
	1
	Optmatch
	mahalanobis
	1
	1
	3521
	166
	0
	0
	166
	166
	0.84
	0.01
	19.80
	19.42
	21.73
	17.88
	0.27



	M1
	2
	FullMatch
	scaled_euclidean
	1
	1
	3521
	150
	0
	0
	3521
	150
	0.82
	0.02
	16.35
	16.19
	17.09
	15.62
	0.20



	M1
	3
	Genetic
	bart
	1
	1
	3521
	142
	0
	0
	142
	142
	0.64
	0.11
	16.07
	15.60
	17.61
	14.54
	0.19



	M1
	4
	Genetic
	gam
	1
	1
	3521
	152
	0
	0
	152
	152
	0.91
	0.25
	11.53
	11.27
	
	
	0.13



	M1
	5
	Genetic
	gam
	1
	1
	3521
	187
	0
	0
	187
	187
	0.92
	0.35
	8.00
	7.26
	10.00
	5.99
	0.10



	M1
	6
	Genetic
	gam
	1
	1
	3521
	219
	0
	0
	219
	219
	1.02
	0.12
	13.05
	13.78
	14.06
	12.03
	0.15



	M1
	7
	Genetic
	gam
	1
	1
	3521
	222
	0
	0
	222
	222
	1.42
	0.24
	10.28
	9.87
	
	
	0.11



	M1
	8
	Genetic
	gbm
	2
	1
	3521
	252
	1
	0
	252
	252
	0.76
	0.14
	11.97
	12.87
	12.89
	11.05
	0.13



	M1
	9
	FullMatch
	scaled_euclidean
	2
	1
	3521
	274
	1
	0
	3521
	274
	0.61
	0.00
	24.38
	24.52
	26.21
	22.55
	0.30



	M1
	10
	FullMatch
	mahalanobis
	2
	1
	3521
	334
	1
	0
	3521
	334
	0.58
	0.00
	34.25
	34.11
	37.57
	30.94
	0.41



	M2
	1
	Genetic
	robust_mahalanobis
	1
	1
	978
	62
	0
	0
	62
	62
	1.82
	0.37
	7.87
	8.38
	14.34
	1.41
	0.16



	M2
	2
	Optmatch
	mahalanobis
	1
	1
	978
	68
	0
	0
	68
	68
	0.48
	0.14
	15.13
	15.56
	17.67
	12.59
	0.26



	M2
	3
	FullMatch
	robust_mahalanobis
	1
	1
	978
	76
	0
	0
	978
	76
	1.86
	0.08
	9.78
	10.39
	11.40
	8.15
	0.18



	M2
	4
	Genetic
	gbm
	1
	1
	978
	77
	0
	0
	77
	77
	1.84
	0.12
	15.67
	16.55
	19.42
	11.91
	0.25



	M2
	5
	Genetic
	gbm
	1
	1
	978
	91
	0
	0
	91
	91
	1.42
	0.29
	14.45
	14.16
	27.97
	0.93
	0.16



	M2
	6
	Genetic
	gbm
	1
	1
	978
	112
	0
	0
	112
	112
	0.69
	0.38
	11.63
	12.07
	11.63
	11.63
	0.12



	M2
	7
	Nearest
	scaled_euclidean
	1
	1
	978
	106
	0
	0
	106
	106
	0.70
	0.64
	5.34
	5.82
	9.62
	1.06
	0.07



	M2
	8
	Genetic
	scaled_euclidean
	1
	1
	978
	136
	0
	0
	136
	136
	0.54
	0.02
	19.70
	20.57
	21.22
	18.19
	0.29



	M2
	9
	Optmatch
	scaled_euclidean
	1
	1
	978
	154
	0
	0
	154
	154
	1.14
	0.42
	7.54
	6.37
	8.58
	6.49
	0.09



	M2
	10
	Genetic
	scaled_euclidean
	1
	1
	978
	237
	0
	0
	237
	237
	0.77
	0.41
	5.84
	5.68
	11.22
	0.45
	0.08



	M3
	1
	Genetic
	gam
	1
	1
	3007
	54
	0
	0
	54
	54
	1.31
	0.34
	9.39
	9.35
	15.91
	2.87
	0.18



	M3
	2
	Genetic
	mahalanobis
	1
	1
	3007
	80
	0
	0
	80
	80
	0.41
	0.01
	20.99
	22.14
	23.46
	18.52
	0.44



	M3
	3
	Genetic
	scaled_euclidean
	1
	1
	3007
	109
	0
	0
	109
	109
	1.39
	0.53
	5.80
	5.07
	9.67
	1.93
	0.09



	M3
	4
	Genetic
	bart
	1
	1
	3007
	85
	0
	0
	85
	85
	0.45
	0.00
	20.55
	20.69
	23.42
	17.67
	0.45



	M3
	5
	Genetic
	gam
	1
	1
	3007
	95
	0
	0
	95
	95
	0.73
	0.22
	7.47
	7.32
	8.53
	6.40
	0.18



	M3
	6
	Genetic
	gam
	1
	1
	3007
	103
	0
	0
	103
	103
	1.88
	0.23
	7.71
	7.95
	9.14
	6.28
	0.17



	M3
	7
	Genetic
	gam
	1
	1
	3007
	106
	0
	0
	106
	106
	0.57
	0.14
	13.71
	13.10
	15.38
	12.05
	0.21



	M3
	8
	Genetic
	gam
	1
	1
	3007
	119
	0
	0
	119
	119
	0.61
	0.27
	7.05
	6.27
	8.28
	5.82
	0.14



	M3
	9
	Nearest
	scaled_euclidean
	1
	1
	3007
	124
	0
	0
	124
	124
	0.66
	0.14
	12.65
	11.93
	13.46
	11.83
	0.19



	M3
	10
	Genetic
	glm
	1
	1
	3007
	162
	0
	0
	162
	162
	0.71
	0.14
	11.84
	12.34
	13.04
	10.63
	0.16



	M4
	1
	Genetic
	euclidean
	1
	1
	7318
	990
	0
	0
	990
	990
	0.65
	0.10
	4.90
	5.09
	5.29
	4.52
	0.07



	M4
	2
	Nearest
	scaled_euclidean
	1
	1
	7318
	897
	0
	0
	897
	897
	0.66
	0.00
	11.65
	11.75
	12.42
	10.89
	0.16



	M4
	3
	Genetic
	mahalanobis
	1
	1
	7318
	779
	0
	0
	779
	779
	0.78
	0.00
	13.68
	13.78
	13.98
	13.37
	0.17



	M4
	4
	Genetic
	gbm
	1
	1
	7318
	715
	0
	0
	715
	715
	0.85
	0.01
	8.53
	8.67
	9.05
	8.00
	0.15



	M4
	5
	Optmatch
	scaled_euclidean
	1
	1
	7318
	693
	0
	0
	693
	693
	0.62
	0.00
	13.89
	14.03
	14.46
	13.33
	0.19



	M4
	6
	Genetic
	bart
	1
	1
	7318
	673
	0
	0
	673
	673
	0.61
	0.00
	17.83
	18.29
	18.55
	17.11
	0.23



	M4
	7
	Nearest
	robust_mahalanobis
	1
	1
	7318
	661
	0
	0
	661
	661
	0.65
	0.00
	20.19
	20.38
	21.17
	19.20
	0.25



	M4
	8
	Genetic
	scaled_euclidean
	1
	1
	7318
	605
	0
	0
	605
	605
	0.49
	0.00
	22.58
	22.69
	23.28
	21.89
	0.26



	M4
	9
	Genetic
	euclidean
	1
	1
	7318
	531
	0
	0
	531
	531
	0.57
	0.00
	29.28
	29.01
	30.12
	28.44
	0.36



	M4
	10
	Genetic
	euclidean
	1
	1
	7318
	406
	0
	0
	406
	406
	0.49
	0.00
	48.60
	49.27
	50.23
	46.98
	0.52



	M5
	1
	Genetic
	robust_mahalanobis
	1
	1
	1831
	50
	0
	0
	50
	50
	1.64
	0.07
	24.81
	25.65
	28.36
	21.26
	0.37



	M5
	2
	Nearest
	mahalanobis
	1
	1
	1831
	138
	0
	0
	138
	138
	0.70
	0.03
	15.64
	15.60
	17.55
	13.74
	0.27



	M5
	3
	Genetic
	mahalanobis
	1
	1
	1831
	129
	0
	0
	129
	129
	0.76
	0.07
	10.86
	10.44
	12.14
	9.58
	0.23



	M5
	4
	Genetic
	glm
	1
	1
	1831
	127
	0
	0
	127
	127
	0.39
	0.02
	19.82
	20.09
	21.41
	18.23
	0.30



	M5
	5
	Genetic
	robust_mahalanobis
	1
	1
	1831
	133
	0
	0
	133
	133
	0.79
	0.07
	15.62
	15.96
	17.33
	13.91
	0.23



	M5
	6
	Genetic
	mahalanobis
	1
	1
	1831
	171
	0
	0
	171
	171
	0.74
	0.07
	9.99
	9.84
	14.86
	5.12
	0.20



	M5
	7
	Optmatch
	glm
	1
	1
	1831
	165
	0
	0
	165
	165
	0.63
	0.01
	26.17
	26.32
	26.77
	25.56
	0.31



	M5
	8
	Genetic
	gam
	1
	1
	1831
	178
	0
	0
	178
	178
	0.70
	0.01
	15.56
	15.69
	17.61
	13.50
	0.26



	M5
	9
	FullMatch
	euclidean
	1
	1
	1831
	200
	0
	0
	1831
	200
	0.82
	0.00
	25.22
	24.96
	27.38
	23.06
	0.37



	M5
	10
	FullMatch
	scaled_euclidean
	1
	1
	1831
	231
	0
	0
	1831
	231
	0.48
	0.00
	36.79
	37.42
	45.70
	27.88
	0.53



	M6
	1
	FullMatch
	scaled_euclidean
	1
	1
	3087
	331
	0
	0
	3087
	331
	0.84
	0.00
	8.06
	8.11
	9.41
	6.72
	0.24



	M6
	2
	FullMatch
	scaled_euclidean
	1
	1
	3087
	317
	0
	0
	3087
	317
	0.84
	0.05
	4.36
	4.24
	7.23
	1.48
	0.12



	M6
	3
	FullMatch
	scaled_euclidean
	1
	1
	3087
	436
	0
	0
	3087
	436
	0.61
	0.00
	12.56
	12.77
	13.43
	11.69
	0.25



	M6
	4
	FullMatch
	mahalanobis
	1
	1
	3087
	493
	0
	0
	3087
	493
	0.70
	0.00
	7.71
	7.75
	12.80
	2.62
	0.21



	M6
	5
	FullMatch
	scaled_euclidean
	1
	1
	3087
	355
	0
	0
	3087
	355
	0.77
	0.00
	7.21
	7.23
	9.52
	4.91
	0.24



	M6
	6
	FullMatch
	euclidean
	1
	1
	3087
	349
	0
	0
	3087
	349
	0.58
	0.00
	14.87
	14.93
	17.80
	11.94
	0.34



	M6
	7
	FullMatch
	scaled_euclidean
	1
	1
	3087
	370
	0
	0
	3087
	370
	0.70
	0.00
	16.28
	16.48
	23.38
	9.19
	0.42



	M6
	8
	FullMatch
	mahalanobis
	1
	1
	3087
	389
	0
	0
	3087
	389
	0.51
	0.00
	19.75
	19.96
	25.79
	13.72
	0.44



	M6
	9
	Genetic
	bart
	1
	1
	3087
	371
	0
	0
	371
	371
	0.74
	0.01
	14.97
	14.87
	16.07
	13.88
	0.20



	M6
	10
	FullMatch
	euclidean
	1
	1
	3087
	407
	0
	0
	3087
	407
	0.46
	0.00
	34.69
	35.61
	34.69
	34.69
	0.46



	M7
	1
	Genetic
	robust_mahalanobis
	1
	1
	4039
	173
	0
	0
	173
	173
	0.79
	0.27
	6.59
	6.48
	9.09
	4.10
	0.12



	M7
	2
	Nearest
	mahalanobis
	1
	1
	4039
	210
	0
	0
	210
	210
	0.98
	0.36
	6.87
	7.05
	8.15
	5.59
	0.09



	M7
	3
	Nearest
	euclidean
	1
	1
	4039
	209
	0
	0
	209
	209
	0.82
	0.06
	8.51
	8.58
	11.46
	5.57
	0.18



	M7
	4
	Optmatch
	mahalanobis
	1
	1
	4039
	233
	0
	0
	233
	233
	0.72
	0.05
	12.14
	12.74
	14.06
	10.23
	0.18



	M7
	5
	Nearest
	mahalanobis
	1
	1
	4039
	308
	0
	0
	308
	308
	0.65
	0.02
	14.74
	14.47
	15.85
	13.64
	0.19



	M7
	6
	Optmatch
	glm
	1
	1
	4039
	243
	0
	0
	243
	243
	0.68
	0.23
	7.11
	7.71
	7.94
	6.29
	0.11



	M7
	7
	Genetic
	scaled_euclidean
	1
	1
	4039
	240
	0
	0
	240
	240
	1.16
	0.14
	7.72
	7.81
	8.78
	6.66
	0.14



	M7
	8
	Optmatch
	robust_mahalanobis
	1
	1
	4039
	202
	0
	0
	202
	202
	0.59
	0.26
	6.49
	6.56
	9.95
	3.02
	0.11



	M7
	9
	Genetic
	gam
	1
	1
	4039
	214
	0
	0
	214
	214
	1.18
	0.05
	13.04
	13.03
	14.64
	11.43
	0.19



	M7
	10
	Genetic
	bart
	1
	1
	4039
	195
	0
	0
	195
	195
	0.62
	0.04
	14.99
	15.77
	16.68
	13.30
	0.21







C1:Priority of condition 1; C2: Priority of condition 2; CU: Control units; TU: Treatment units; NSMD: Non-balanced variables by SMS; NRV: Non-balanced variables by RV; CMU: Control-matched units; TMU: Treatment-matched units; RV: Variance ratio; Wtpval: p-value of Welch test; EffMD: Mean effect size of treatment of homologous models; EffRF: Effect size of RF model of treatment selected; CIhigh: Confidence interval high value for machine–treatment of homologous models; CIlow: Confidence interval low value for machine–treatment of homologous models; HLUCE: Hodges–Lehmann unconfounded estimate; ZScore: Z-score of selected model.
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Figure 1. Exploratory matching model search algorithm (EMMSA) for causal inference. 
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Figure 2. Feature importance for WASTELM. Note: Parameters for LightGBM Regression. max_depth = 5, num_leaves = 28, num_iterations = 200, early_stopping_rounds = 40, and learning_rate = 0.46. 
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Figure 3. Homologous models by methods, machine, and treatment. 






Figure 3. Homologous models by methods, machine, and treatment.



[image: Mathematics 11 04506 g003]







[image: Mathematics 11 04506 g004] 





Figure 4. Homologous models by distances, methods, machine, and treatment. 
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Figure 5. Mean effect size of homologous models and Z-scores of selected models. 
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Figure 6. Distances used in selected models. 
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Figure 7. Meta-analysis for (a) machine 6 and (b) treatment 10. 






Figure 7. Meta-analysis for (a) machine 6 and (b) treatment 10.



[image: Mathematics 11 04506 g007]







 





Table 1. Dataset variables description.






Table 1. Dataset variables description.





	Variable
	Description
	Datatype/Unit
	Operation





	MCH
	Print subsystems (machine)
	Categoric
	-



	PRICELAM
	Sheet price
	euros
	-



	MT2LAM
	Sheet area
	m2
	-



	TEST
	Box compression test
	N
	-



	ORDEREDLM
	Linear meters of an order
	LM
	-



	SCHEDLM
	Planned linear meters
	LM
	-



	FINALLM
	Final linear meters to send to client
	LM
	-



	OVERPROCLM
	Linear meters of overprocessing
	LM
	-



	ASLEEPTIME
	Time of the production order since it was created until it enters the machine queue
	minutes
	Calculated



	QUEUETIME
	Queue time of a production order
	minutes
	Calculated



	PRODCTIME
	Order production time
	minutes
	Calculated



	MSETUP
	Stoppage time for setting the order on the machine
	seconds
	-



	MSUMALL
	Sum of the time of all stoppages after setup of a production order (causal variable)
	seconds
	Calculated and aggregated



	TMSUMALL
	Treatment variable for causal variable
	1, …, 10
	Calculated



	WASTELM
	Linear meters of waste
	LM
	Calculated










 





Table 2. Model number resulting of the application of HMSA by conditions and priorities.






Table 2. Model number resulting of the application of HMSA by conditions and priorities.





	
Condition 2: Methods and Priorities




	
Condition 1

    Condition 3: Homol.

	
CEM

	
FullMatch

	
Genetic

	
Nearest

	
Optmatch

	

	




	
2

	
1

	
2

	
3

	
1

	
1

	
2

	
1

	
Total Cond1

	
%

Total






	
Priority 1

	
176

	
80

	
57

	
130

	
839

	
318

	
86

	
189

	
1875

	
71%




	
           0

	
175

	
38

	
57

	
130

	
439

	
158

	
86

	
85

	
1168

	
62%




	
           1

	
1

	
42

	

	

	
400

	
160

	

	
104

	
707

	
38%




	
Priority 2

	
24

	
72

	
17

	
41

	
183

	
155

	
32

	
100

	
624

	
24%




	
           0

	
19

	
69

	
17

	
41

	
179

	
153

	
32

	
98

	
608

	
97%




	
           1

	
5

	
3

	

	

	
4

	
2

	

	
2

	
16

	
3%




	
Priority 3

	

	
4

	
2

	
4

	
71

	
36

	
8

	
20

	
145

	
5%




	
           0

	

	
4

	
2

	
4

	
71

	
36

	
8

	
20

	
145

	
100%




	
I. Total by priorities

	
200

	
156

	
76

	
175

	
1093

	
509

	
126

	
309

	
2644

	
100%




	
II. Total by methods

	
200

	
407

	
1093

	
635

	
309

	
2644

	




	
III. % Models by meth.

	
7.6%

	
15.4%

	
41.3%

	
24.0%

	
11.7%

	
100%

	




	
IV. Homol. models

	
6

	
45

	
404

	
162

	
106

	
723

	




	
V. % Homol. models (II)

	
3.0%

	
11.1%

	
37.0%

	
25.5%

	
34.3%

	
27.3%

	




	
VI. % Homol. models

	
0.8%

	
6%

	
55.9%

	
22%

	
15%

	
100.0%

	




	
VII. % Homol. Models of total

	
0.2%

	
1.7%

	
15.3%

	
6.1%

	
4.0%

	
27.3%

	




	
VIII. Selected models

	
0

	
15

	
39

	
8

	
8

	
70

	




	
IX. % Selected models by meth.

	
0.0%

	
21.4%

	
55.7%

	
11.4%

	
11.4%

	
100.0%

	








Note: Condition 1 and 2 can have up to three priorities each one. Condition 3 can be 0 (for discarded models) or 1 (for homologous models). Total values are shown in bold, either by conditions, priority, methods, homologous models or selected models.













 





Table 3. Selected models: Z-scores and EffMeans greater than 0.30 and 20 LM, respectively.
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Selected Models (Z-Score > 0.30)

	
Seleted Models (EffMean > 20 LM)




	
MCH

	
Treat

	
EffMD

	
Z-Score

	
MCH

	
Treat

	
EffMD

	
Z-Score






	
M1

	
T9

	
24.38

	
0.30

	
M1

	
T9

	
24.38

	
0.30




	
M1

	
T10

	
34.25

	
0.41

	
M1

	
T10

	
34.25

	
0.41




	
M3

	
T2

	
20.99

	
0.44

	
M3

	
T2

	
20.99

	
0.44




	
M3

	
T4

	
20.55

	
0.45

	
M3

	
T4

	
20.55

	
0.45




	
-

	
-

	
-

	
-

	
M4

	
T7

	
20.19

	
0.25




	
-

	
-

	
-

	
-

	
M4

	
T8

	
22.58

	
0.26




	
M4

	
T9

	
29.28

	
0.44

	
M4

	
T9

	
29.28

	
0.44




	
M4

	
T10

	
48.60

	
0.52

	
M4

	
T10

	
48.60

	
0.52




	
M5

	
T1

	
24.81

	
0.37

	
M5

	
T1

	
24.81

	
0.37




	
M5

	
T7

	
26.17

	
0.31

	
M5

	
T7

	
26.17

	
0.31




	
M5

	
T9

	
25.22

	
0.37

	
M5

	
T9

	
25.22

	
0.37




	
M5

	
T10

	
36.79

	
0.53

	
M5

	
T10

	
36.79

	
0.53




	
M6

	
T6

	
14.87

	
0.34

	
-

	
-

	
-

	
-




	
M6

	
T7

	
16.28

	
0.42

	
-

	
-

	
-

	
-




	
M6

	
T8

	
19.75

	
0.44

	
-

	
-

	
-

	
-




	
M6

	
T10

	
34.69

	
0.46

	
M6

	
T10

	
34.69

	
0.46











 





Table 4. Meta-analysis for each machine and treatment with its maximum effect.
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Meta-Analysis for Each Machine

	
Maximum Effect for Each Machine




	
MCH

	
RandEff

	
95%-CI

	
I2

	
τ2

	
Max (Treat)

	
SMD

	
95%-CI

	
EffAvg LM

	
95%-CI LM






	
M1

	
0.18

	
[0.09;0.26]

	
37%

	
0.0067

	
T10-Full-Mah

	
0.41

	
[0.25;0.56]

	
34.25

	
[12.53;55.97]




	
M2

	
0.11

	
[0.03;0.19]

	
0%

	
0.0001

	
T8-Near-Mah

	
0.26

	
[0.02;0.50]

	
19.70

	
[18.18;21.22]




	
M3

	
0.07

	
[−0.01;0.16]

	
0%

	
0.0000

	
T3-Full-Calip

	
0.30

	
[−0.02;0.61]

	
5.80

	
[5.99;5.61]




	
M4

	
0.20

	
[0.13;0.28]

	
76%

	
0.0108

	
T10-Full-Glm

	
0.47

	
[0.33;0.61]

	
48.60

	
[14.48;82.72]




	
M5

	
0.23

	
[0.10;0.36]

	
70%

	
0.0271

	
T10-Full-Mah

	
0.53

	
[0.34;0.72]

	
36.79

	
[13.19;60.39]




	
M6

	
0.32

	
[0.24;0.40]

	
65%

	
0.0103

	
T9-Full-Gam

	
0.52

	
[0.37;0.67]

	
14.97

	
[4.32;25.62]




	
M7

	
0.07

	
[−0.01;0.15]

	
44%

	
0.0072

	
T5-Near-Mah

	
0.19

	
[0.04;0.35]

	
14.74

	
[12.41;17.07]




	
All Mchs.

	

	

	

	

	

	
0.38

	

	
24.98

	
[13.40;36.23]




	
Meta-Analysis for Each Treatment

	
Maximum Effect for Each Treatment




	
Treat

	
RandEff

	
95%-CI

	
I2

	
τ2

	
Max

	
SMD

	
95%-CI

	
EffAvg LM

	
95%-CI LM




	
1

	
0.11

	
[0.01;0.21]

	
40%

	
0.0055

	
M1-Opt-Mah

	
0.27

	
[0.05;0.49]

	
19.80

	
[16.13;23.47]




	
2

	
0.13

	
[0.07;0.20]

	
0%

	
0.0000

	
M3-Full-Calip

	
0.30

	
[−0.02;0.61]

	
20.99

	
[21.69;20.29]




	
3

	
0.16

	
[0.09;0.22]

	
5%

	
0.0001

	
M6-Full-Mah

	
0.25

	
[0.11;0.38]

	
12.56

	
[6.53;18.59]




	
4

	
0.14

	
[0.07;0.20]

	
0%

	
0.0001

	
M6-Full-Mah

	
0.21

	
[0.09;0.34]

	
7.71

	
[4.77;10.65]




	
5

	
0.16

	
[0.10;0.22]

	
10%

	
0.0001

	
M6-Full-Calip

	
0.24

	
[0.10;0.39]

	
7.21

	
[4.51;9.91]




	
6

	
0.13

	
[0.01;0.26]

	
67%

	
0.0181

	
M6-Full-Glm

	
0.35

	
[0.20;0.50]

	
14.87

	
[6.37;23.37]




	
7

	
0.18

	
[0.03;0.33]

	
79%

	
0.0313

	
M6-Full-Calip

	
0.42

	
[0.28;0.57]

	
16.28

	
[5.81;26.75]




	
8

	
0.21

	
[0.10;0.31]

	
60%

	
0.0120

	
M6-Full-Mah

	
0.44

	
[0.29;0.58]

	
19.75

	
[6.28;33.22]




	
9

	
0.22

	
[0.02;0.42]

	
87%

	
0.0544

	
M6-Full-Gam

	
0.52

	
[0.37;0.67]

	
14.97

	
[4.32;25.62]




	
10

	
0.34

	
[0.22;0.46]

	
69%

	
0.0186

	
M5-Full-Mah

	
0.53

	
[0.34;0.72]

	
34.69

	
[12.44;56.94]




	
All Treat.

	

	

	

	

	

	

	

	
16.88

	
[7.99;25.77]

















	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.











© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).








Check ACS Ref Order





Check Foot Note Order





Check CrossRef













media/file8.jpg
Causal Question

Exploring Feature Seldtionof
and Causal -

BLcHR mporiance P

|
v
EQOmoy  omologowsModel | Validainof
Nading P don b rsulswihihe > Meanalyss
Algoritm (1MSA) wxpers

(EMA)





media/file13.png
(a) Models by Methods (b) Methods by Machine
200 -
180 1
160 :
140 :
120 :
100 3

m CEM = Genetic = Nearest = Optmatch = Fullmatch

__1%:6

6%,45

15%,106

# models

60 +——

20

22%;162

56%,404

M2

M4

M6

M7

W FullMatch

19

B Optmatch

8

28

20

23

M Nearest

M1

4 | 1
5

6

18

14

42

14

34

M Genetic

23

49

77

103

40

i

mCEM

6

(c) Models by Methods and Treatments

90 -

80 :

70 :
i 60 :
S 50 :
£ 40 :
1* 30 3

20 :

10 :

0 :
M FullMatch
m Optmatch 9 11 1 o | 8 12 11 15 14 " |
M Nearest 16 18 22 10 16 24 16 18 14
M Genetic 49 49 49 42 35 36 34 44 28 38
m CEM 6






media/file12.jpg
(a) Models by Methods (b) Methods by Machine

 CEM = Genetic = Nearest = Optmatch = ullma 200
CEM = Genetic = Nearest = Optmatch » Fullmateh 20
160

56 1@

1

100
50
&
W
»

#models

.,
e U

somaos
i
e
o
wam o 1
(€) Models by Methods and Treatments
s
s

50
w0
2
2

modets
£y 83
Tty
=TT
[ [[[]]
[ [[[]]
[
][]
=
1
[ [[[]]
~|- I
[ [[]]]
1
[ ][]
=
R

e 5 [ 1
wriveeh| 2 s s
=opmach| 9 n | 4
mNearest | 16| EE
mGenetc | 49 = | =
mcem O






media/file18.jpg
Distances used in Selected Models
bart
»

scaled_euclidean
m‘ ‘

robust_mahalanobis '
0%

‘mahalanobis |
18%






media/file9.png
Causal Question

Exploring Feature Treatment interval Selection of
e (;ausal > Importance > design —> systems
Variable
E;F;fé?;)ry Homologous Model Validation of
Al rithr%l —> Selection —» results withthe —P Metanalysis
89 Algorithm (HMSA) experts

(EMA)





media/file14.jpg
(a) Distances from Homologous Registers

(b) Caliper by Methods and Distances.

=0
10

[rm—

sl cocidesn

o we aw

(e) Selected Models by Methods.
2
10

#modets

opimaich|

i

(d) Distances by Treatments
P

350
0
0
150
1w

o

J‘fa“t“j

e

oo oo --s-vn-;-m

() Average Selected Matching Runtime.

Tow
o7 s 5940 17 703 a9 353






media/file20.jpg
Study

10-M1 - Fulatch - maalanobis
10 M2 FulMatch  mahalanobis

103 Optmatch. mahalanobis

10-M4 - Fulbatch  gim

10-M5  Fulbaich  mahalanobis

10-MB - FulMatch- Calper=0.1

10-M7 - mnear mahalanobis - mahalanobis:

Common effect model
Random effects model,
Heterogenety. I = 69%,

0186, p <001

i

Heterogenedy. 1= 65%, <= 00103,

Standardised Mean Weight  Weight
Diference D 95%-C1 (common) (random)
S oatfoxsose % 1%
= omfocoM 123% 140%
T i1 [oitom  Bax 122%
fE- 0w fossion  206% 100%
LEomiomor e mm
043 (028057 198%  158%
S i 1 M
S omposmosy twoo% -
oy 03 l02048 = H00e
-06-0402 0 02 04 08
@
Stndardised Mean Weight Weight
Difierence D 96%-Cl (common) (random)
—=+ 024 [o0o03g 8% 96%
==  on(oosom % esx
—=t 025 (011038 116%  105%
=1 o021 joo3 1% 109%
=} oafomom 9 oew
—F— 035 [0200080]  92%  98%
+e— onjomosn  os  ow
TE— o 02905y 102  101%
—=— o052 [0 06 95%  99%
== 0w fomosn t02% t01%
$ 00% -
= 100

<dor
206-04-02 0 02 04 08

()






media/file5.png
Aisuap





media/file15.png
(a) Distances from Homologous Registers

7%

5%

15%

15%

10%
m bart = euclidean
= gam = gbm
mgim = mahalanobis

(b) Caliper by Methods and Distances

250

False True False True
Genetic Nearest
M bart M euclidean
mgam mgbm
mgim B mahalanobis

m robust_mahalanobis

W scaled_euclidean

m robust_mahalanobis

m scaled_euclidean

(c) Distances by Machines

(d) Distances by Treatments

©
EM3 mM4 @mM5

450
400

350
300
250
200
150
100

50

<
HE]l] E2 m3 ®m4 mE5 EH6 mE7 E8 mES m10

(e) Selected Models by Methods

12

10

# models
(@)]

B Optmatch| 1

M Nearest

2 1

1 1
| Genetic 6 6 9 7 6 1 4
W FullMatch| 3 1 2

(f) Average Selected Matching Runtime

600
500
- 400
3
ot
(@]
O
Q
(%]
bart euclid am bm Im mahal | __
ean g g g anobis
W Optmatch 1095 | 9.39
M Nearest 0.23 0.16
M Genetic 207.98 483.32| 59.60 |255.72| 70.23 /118.89
M FullMatch 11.03 16.73






media/file19.png
Distances used in Selected Models
bart
o

euclidean

scaled_euclidean 10%

26% 5

robust_mahalanobis '
10% —/

mahalanobis _/
18%

gbm

L glm
6%






nav.xhtml


  mathematics-11-04506


  
    		
      mathematics-11-04506
    


  




  





media/file11.png
Feature Importance

OVERPROCLM

MTZLAM

SCHEDLM

ORDEREDLM

PRODCTIME

ASLEEPTIME

FINALLM

MSUMALL

MSETUP

QUEUETIME

I I I I
0.00 0.05 010 0135 0.20 025 0.30

Gain





media/file6.jpg
0 250 500 750 1000
Unearliters





media/file1.png
Data: 6 = ProductionOrders
mf « MatchingFormula;
rff  RFFormula;
7 {1,2,3.4,5,6,7,8,9,10};
« MachineList;
M ¢ {Nearest, Fullmatch, Optimal, Genetic, CEM };
D « {Bart, Euclidean,Gam, Gbm, Glm, Mahalanobis, Nnet,
RobustMahalanobis, Scaled Euclidean};
DC « {Binary, Camberra, Buclidean, Mahalanbis, Mazimun,
Minkowski, RobustMahalanbis, Scaled Euclidean});
B ¢ {scott, sturges, q4, g5}
foreach s € 5 do
reacht erdo
ch m e AI do

~§

if m == CEM then
foreach b € B do
Matching(mf, 8[0, 5[t
end
else

Alﬂtchin_q(m £,5(0], 8[t], method = m, distance =

d);
F Model(r £ £.8[0x]. 8[tar)):

Caleulate Size Ef fect using RF Mode

Per form Rosenbaum Sensitivity rm

Perform F Test to compare variances;

Perform Hodges Lehmann Point Estimate;

I’rmt test summaries;

i@

& o

, method = m, distance = d, bin = b);





media/file2.png
Data: 6 = MatchingRe.
Calculate : ZScore;
NVar = Number of variables;
nbSMD = Number of unbalanced variables by SMD;
nbVR = Numbe of unbalanced variables by Variance Ratio ;
uMT = Matched Treatment Units;
uMC = Matchcd Control Units;
foreach s €
foreach t e T do
foreach m € M do
X 8[s, t,m];
foreach reg € A d
‘onditio; va
conl = 1,if anMD aﬂd ﬂbVR
conl = 2,if nbSMD zor nbVR = 0 zmd the another < 0.2NVar;
,if nbSMD and nbV R are < 0.2NVar;
1 =9,if it do not satisfy the above criteria;
Qandltl n_2:Matched Qn(ts,
2 =1,if uMT and uMC are mazimum;
,if uMT zor uAlC is maz and the another
,if uMT and uMC are 0.9umaz;
e above

-
E

oon
con2 =
con2 = 9,if it do not satisfy th

criteria;
end
end
Condition 3:Homologous and Selected Cases;
p  Alconl < 3,con2 < 3J;
ZScoreMin « 0.95(mean(abs(p[min(cond1), min(cond2))[ZScore])));
foreach reg € p do
if reglcondl] == min(p[cond1]) then
if reg[comﬂ] mm(p[wmﬂ]) then
H«1; logous if ZScore > ZScoreMin ;
Ise

H «0;
end

else
end
v 8[H =1];
foreach MachineTreatment € y do
S« 1; The case with maz(ZScore) of homologous registers.;
EffSize  mean(ef fetSize of MachineTreatment) ;
nd

e
end
end





media/file10.jpg
Feature Importance

OVERPROCLM

SCHEDLM
ORDEREDLM
PRODCTIME
ASLEEPTINE
FINALLM
MSUMALL
MSETUP

QUEUETIME

T T T T T
000 005 010 015 020 025 030

Gain





media/file7.png
750

1000

Linear Meters






media/file16.jpg
(a) Effect Mean of Homologous Models

w000
s000
5o
3 000
E
1000
[T |E} 7 8
—e—M1| 1980 | 1635 | 1607 | 1153 1028 | 11.97
——M2| 787 | 1533 | 978 | 1567 534 | 1970 584 |
w3 s3 | 2099 | 580 | 2055 71| 705 18
—o—wa| aso | 1nes | 1368 | 853 | 1389 | 1783 | 2019 | 258 e
—e—wis| 2481 | 1564 | 1086 | 1982 | 1562 | 999 | 2617 | 1556 379 |
—o—ve| 805 | a3 i2se | 771 | 721 | 147 | 1628 | 1975 s |
—e=\7| 659 | 687 | 851 | 1214 | 1474 | 701 | 772 | 649 1499 |
(b) Z-Score of Selected Models
o600
05000
o400
§ asom
02000
01000
- 1 3 a s 6 7 8 9 10
=emtit 02708 01902 01312 | 00%1 01507 01123 | 01303 | 03033 | 04075
—emti2 01605 01788 | 02526 | 01583 | 01176 | 00652 | 02879 | 00924 | 00757
=3 01828 00856 04523 01776 | 01667 02057 01436 01585 | 0160
—emntt 007 01707 01455 | 01948 | 0230 02474 02636 03624 05184
—amtts 03072 02287 | 02985 | 02254 | 01976 | 03108 | 0261 | 03662 | 03308
—emtts 02027 02472 | 02146 | 02355 | 03448 | 04213 | 04362 | 02018 | 0461
—amti7 02197 01840 0.1804 | 0.1940 | 0.10%2 | 01353 | 01113 | 01880 | 02105






media/file3.png





media/file0.png





media/file17.png
(a) Effect Mean of Homologous Models

60.00
50.00

— 40.00

>

=

o 30.00

@

(g0}

= 20.00
10.00

) 1 2 3 4 5 6 7 8 9 10
—0=—M1| 19.80 | 16.35 | 16.07 | 1153 | 8.00 | 13.05 | 1028 | 11.97 | 2438 | 34.25
—0—M2| 787 | 1513 | 978 | 1567 | 1445 | 1163 | 534 | 1970 | 754 | 5.84
—0—=M3| 939 | 2099 | 5.80 | 2055 | 747 | 771 | 13.71 | 7.05 | 12.65 | 11.84
—@®=M4| 490 | 11.65 | 13.68 | 853 | 13.89 | 17.83 | 20.19 | 22.58 | 29.28 | 48.60
—0—M5| 2481 | 15.64 | 10.86 | 19.82 | 1562 | 9.99 | 26.17 | 1556 | 25.22 | 36.79
—0—M6| 806 | 436 | 1256 | 7.71 | 7.21 | 1487 | 16.28 | 19.75 | 14.97 | 34.69
—®=M7| 659 | 687 | 851 | 1214 | 1474 | 711 | 7.72 | 649 | 13.04 | 14.99

(b) Z-Score of Selected Models
0.6000
Q
0.5000 A
o . g
e
0.4000 = /‘ —re
g Q, e (&)
& 0:3000 = o O o Pl A
b o - e ° s °
S “ Vx il Q A o
0.2000 : 5 e - S=="_
=) \ 4 Y ©
e Y — _o<. - e
0.1000 < ) . (1 —

) 1 2 3 4 5 6 7 8 9o | 10
e=o==M1| 0.2708  0.1998 | 0.1902 ' 0.1312 | 0.0961 | 0.1507 | 0.1123 | 0.1309 | 0.3039 A 0.4075
e=o==2| 0.1606 | 0.2558 | 0.1788 | 0.2526 | 0.1583 | 0.1176 | 0.0652 | 0.2879 | 0.0924 | 0.0757
=o==\I3 0.1828 0.4418 | 0.0858 | 0.4523  0.1774 | 0.1667 | 0.2057 | 0.1436  0.1886 | 0.1640
e=e==M4 | 0.0747 | 0.1601 | 0.1707 | 0.1455 | 0.1948  0.2340 | 0.2474 | 0.2636 | 0.3624 | 0.5184
—=o==NM5 0.3672 | 0.2678 | 0.2287 | 0.2985 | 0.2254 | 0.1976 | 0.3108 | 0.2619 | 0.3662 | 0.5304
—o=M6 0.2427 | 0.1216 | 0.2472 | 0.2146 | 0.2355 | 0.3448 | 0.4213 | 0.4362 | 0.2018 | 0.4618
=e=M7 0.1197 | 0.0892 0.1840 | 0.1804 | 0.1940 | 0.1092 | 0.1353 | 0.1113 | 0.1880 | 0.2105






media/file4.jpg
MCH

w

O
[ w
w
[ ue
ws
[ ue
Cw

g
g

Seconds.






media/file21.png
Standardised Mean Weight Weight
Study Difference SMD 95%-Cl (common) (random)
10 - M1 - FullMatch - mahalanobis —f‘*"— 0.41 [0.25; 0.56] 17.1% 15.3%
10 - M2 - FullMatch - mahalanobis = E 0.16 [-0.02; 0.34] 12.3% 14.0%
10 - M3 - Optmatch - mahalanobis + ! 0.11 [-0.11; 0.33] 8.4% 12.2%

i

10 - M4 - FullMatch - gim o 0.47 [0.33;0.61] 20.6% 16.0%
10 - M5 - FullMatch - mahalanobis —=— 0.53 [0.34;0.72] 11.6% 13.7%
10 - M6 - FullMatch - Caliper=0.1 i 043 [0.28;0.57] 19.8% 15.8%
10 - M7 - m,near,mahalanobis - mahalanobis = E 0.19 [-0.01; 0.39] 10.1% 13.1%
Common effect model <'> 0.36 [0.30;0.42] 100.0% --
Random effects model *ﬁr | 0.34 [0.22; 0.46] - 100.0%

N E— |
-06-04-02 0 02 04 06

Heterogeneity: /> = 69%, t° = 0.0186, p < 0.01

(a)

Standa