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Abstract: In light of reducing train operation energy consumption while maintaining the passenger
service level for creating sustainable urban rail transit systems, we address a non-parallel train
timetabling problem considering regenerative braking energy utilization and the non-parallel op-
eration of multiple trains on a metro line via a newly proposed multi-objective timetable (MOT)
optimization model and an evolutionary algorithm based on NSGA-II. The optimization objectives of
the MOT model are to find satisfactory energy-saving timetables on the Pareto frontier by minimizing
the total travel time of passengers and minimizing the net energy consumption of trains. An improved
multi-objective evolutionary algorithm based on NSGA-II is constructed to generate the optimal
arrival and departure times at each station for each train running in a non-parallel operation mode.
This study tests the feasibility of the proposed optimization method via an empirical case using the
data collected from the Yizhuang Line of the Beijing metro systems in China. The simulation results
show that the proposed optimization method satisfies both the energy utilization and passenger ser-
vice levels along a Pareto front. The MOT improves the overall effectiveness of regenerative braking
energy utilization by 29.88% in comparison with the original timetable; it reduces the net operation
energy consumption by 44.86% relative to the travel-oriented timetable (TOT); and it reduces the
total passenger travel time by 27.18% compared with the energy-oriented timetable (EOT).

Keywords: metro; non-parallel operation of multiple trains; energy-saving timetable; NSGA-II
algorithm; regenerative braking energy

MSC: 90B06

1. Introduction

Cities identify urban rail transit as a service complementary to other sustainable forms
of urban public transit systems. More generally, designing low-carbon urban rail transit
systems is a critical component of reducing emissions and addressing climate change at
the urban scale [1]. Daily operations account for more than 90% of total greenhouse gas
(GHG) emissions throughout the entire life cycle of a metro [2]. Major energy-saving en-
hancements for urban rail transit thus aim to improve the operational energy performance.
Theoretical investigations primarily focus on operational energy-saving approaches, such
as trajectory control strategies (e.g., optimizing the operation time between stations [3],
departure/arrival times [4], dwell and running times of a train [5,6], and speed profiles [7])
and energy storage systems (e.g., the utilization of regenerative braking technology [8]).
The efficiency of trajectory control strategies is mostly restricted by the safety distance
between trains and the stability of the power grid. Regenerative braking technology can
save an appropriate percentage of energy consumption (around 33% in the traction energy
flow [9]). The energy transfer [10,11] and utilization efficiency [12] of regenerative braking
are widely considered to minimize energy loss during braking. Meanwhile, some studies
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have explored the voltage-stabilizing effects and aim to enhance the efficiency of energy
storage systems directly [13]. The increasing number of urban rail transit systems under
development have made it even more essential to design measures for systematically
reducing operational energy consumption levels.

In urban rail transit systems, energy usage is typically classified as traction or non-
traction consumption activities. The energy required to operate rolling stock (i.e., trains)
within the system is referred to as traction energy consumption [9], and accounts for
more than 50% of the energy consumption of metro operations [11]. Previous studies
primarily focused on different energy-saving strategies targeted at traction consumption by
optimizing train speed profiles or timetables, both with and without regenerative braking
functions. With regenerative braking, the energy produced during the braking process can
be recovered and reused, resulting in a reduction in the overall energy consumption [14].
In addition, different types of trains have adopted distinct control conditions in different
environments (e.g., the optimal utilization of the gravitational potential energy generated
by a train when moving downhill [15]) to further reduce energy consumption levels.

The optimization of train timetables, meanwhile, mainly considers the overlap between
the traction and braking phases and the duration of the running time [16,17]. The existing
research also focuses on energy-saving operational strategies and timetable optimization
methods based on parallel operation diagrams. The rapid development of urban rail transit
systems makes train operations more complex and the utilization of non-parallel operation
diagrams more frequent. Previous studies have focused on energy-saving operational
strategies and timetable optimization based on parallel train operation diagrams but have
overlooked the further utilization of non-parallel operation diagrams in the development
of urban rail transit systems. Under non-parallel operation diagrams, the complexity of
passenger flows and non-parallel train running features create significant challenges for
train scheduling. To further explore non-parallel train operations, this study proposes an
energy-saving-based non-parallel operation timetable optimization method with a multi-
objective timetable (MOT) optimization model with considerations of both the passenger
service level and train operation energy consumption and an improved multi-objective
evolutionary algorithm based on NSGA-II. This study then tests the feasibility of the
proposed energy-saving timetable optimization method via an empirical case.

In summary, this study proposes an energy-saving timetable optimization method
under non-parallel operation diagrams with more complex passenger demands. Secondly,
the proposed MOT optimization model aims to minimize both the net operational energy
consumption and total passenger travel time. Thirdly, the proposed optimization approach
provides a theoretical basis for designing an energy-saving urban rail transit system.

2. Literature Review

Energy-saving operational strategies have been investigated in two major ways: the
utilization of the potential gravitational energy of a train [15] and the flexibility of control
conditions [18]. These investigations were conducted both with and without considering
the implementation of regenerative braking technology. Prior to the implementation of
regenerative braking technology, previous conventional studies focused on optimizing op-
erations and reducing energy consumption levels based on the characteristics of individual
track sections. He et al. (2015) optimized the train speed profiles of each inter-station line
segment through a section separation analysis by incorporating both running line-related
features [19]. Deng et al. (2021) considered the predetermined running times for each
inter-station track segment and optimized the control condition sequences and durations
along each section by regulating the multi-speed parameters [18]. Meanwhile, some studies
explore the design of timetables that optimize the overlap times of control conditions
between adjacent trains, thereby enhancing the utilization efficiency of regenerative brak-
ing energy. Sun et al. (2017) optimized the sequence of control conditions for adjacent
trains [20]; Bai et al. (2020) investigated the application of the secondary traction of the
train when optimizing the control conditions of a single train in the section [21,22].
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An alternate approach to energy saving is schedule optimization, particularly prior
to the implementation of regenerative braking technology. He et al. (2021) proposed a
two-stage energy-saving calculation method to globally optimize the allocation of total train
running times between different sections [23]. Gao et al. (2020) optimized the allocation
of inter-station running times by calculating the optimal control strategy for inter-station
train operations along a Pareto frontier [24]. When regenerative braking technology was
implemented, many previous studies focused on optimizing the temporal and spatial
elements of parallel operation diagrams to minimize energy consumption levels and design
optimal timetables. Peng et al. (2017) used the controllability of train headway and dwell
times to minimize the total energy consumption [10]. Ran et al. (2020) assumed that train
headway and turnaround times were fixed, and then moderately optimized the dwell
time, inter-station running time, and turnaround time so as to minimize the net energy
consumption [25]. Wei et al. (2020) considered the overlapping time distribution and
distance between the front and rear trains, and then optimized the arrival, departure, and
dwell times of trains traveling in the same direction [12].

While reducing operational energy consumption levels, it is also critical to consider
other factors, especially passenger demands. He et al. (2020) developed an integrated
optimization method to minimize both the energy consumption and transfer waiting time
cost for transfer passengers [3]. Wu et al. (2020) designed a multi-objective timetabling
optimization and incorporated the consideration of the crowdedness of passengers [26]. Xie
et al. (2021) proposed an energy-saving timetable for a high-speed railway line, meanwhile
avoiding time delays for passengers [5].

The existing research mainly focuses on the energy-saving operations and timetable
optimizations under train parallel operation diagrams. In light of the more and more com-
plex train speed profiles and increasing passenger demands, non-parallel train operation
diagrams are crucial for address rapid urban rail system developments. Non-parallel opera-
tion diagrams introduce increased complexity in terms of the running features of trains and
the characteristics of passenger flows. To further explore the use of non-parallel operation
diagrams, this study aimed to establish an energy-saving timetable optimization method.

3. Optimization Model

A metro line is depicted as the domain of L = {S, K, Q} where S, K, and Q represent
the set of stations, scheduled trains during the optimization period, and power supply
zones, respectively. As shown in Figure 1, for a two-way metro line with S stations
(si ∈ S, 1 ≤ si ≤ s + 1), during the optimization period, K trains (ki ∈ K, 1 ≤ ki ≤ K) are
scheduled to run according to passenger demand [origin-destinations (ODs)], and the trains
run back and forth to serve the passengers in a stop-and-go manner. The train traction
power is provided by Q power supply zones (qi ∈ Q, 1 ≤ qi ≤ q), and the train adopts
energy-saving strategies while in operation. The dissipative regenerative braking energy
can be used by up-and-down trains operating within the same power supply zone, and its
utilization efficiency is affected by the synergy of multiple trains’ control conditions. To
ensure an adequate service and promote energy conservation, the trains were operated
in a non-parallel mode. Given the constraints of meeting passenger demands and train
operation requirements, the optimization objectives were set to achieve the minimum cost
of passenger travel and the minimum net energy consumption of train operations. The
optimized energy-saving timetable was created by determining the dwell and headway
times of each train at each station, as well as the running time and control conditions of
each section, finally leading to an optimized energy-saving timetable.
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Figure 1. Schematic diagram of energy saving by multi-train non-parallel operation cooperation.

3.1. Symbols and Variables
3.1.1. Symbol Definition

Define the station set ST = {1, 2, 3, · · · , 2S} and station index s ∈ ST, and stipulate
that the index of the first up-direction station is 1 and the index of the first down-direction
station is S + 1. The section set is SE = {1, 2, 3, · · · , S− 1, S + 1, · · · , 2S− 1}; the section
index is m ∈ SE; and the length of the section m is Xm km. The power supply zone
set is PO = {1, 2, 3, · · · , Q} and the power supply zone index is q ∈ PO. The train
set TR = {1, 2, 3, · · · , K}; the train index is k ∈ TR. The optimization period [ts, te] is
divided into N subdivision periods with time step ∆t. The subdivision period set is
TN = {1, 2, 3, · · · , N}, the subdivision period index is n ∈ TN, and the subdivision period
timestamp set is T = {ts, ts + ∆t, · · · , ts + N∆t}.

3.1.2. Decision Variable

Because the trains were allowed to run in a non-parallel mode, three sets of decision
variables were set: the running time RTk

m of train k along interval m, the dwell time DTk
s of

train k at station s, and the headway time hk
s between trains k and k− 1 when each one left

station s. These three decision variables could later be converted to calculate the optimal
arrival and departure times of each train at each station.

3.2. Objective Function

To maintain adequate service levels while also conserving as much energy as pos-
sible, this paper considered both the temporal and spatial distribution characteristics of
dynamic passenger flows, the optimal speed profiles for train operations between two
stations, and the effective utilization of regenerative braking energy through multi-train
cooperation. Hence, this study set the minimum passenger travel cost and minimum net
energy consumption of train operations as the optimization objectives, as described in
Equations (1)–(7).

3.2.1. Passenger Travel Cost

The most effective way to reduce the cost of passenger travel time while also improving
the quality of the train’s service was to minimize the total travel time of the passengers. The
total passenger travel time Ttra consisted of two parts: the waiting time Tw at the station
and the traveling time To in the car. The specific calculation is performed as follows:

min Ttra = Tw + To (1)

Tw =
K

∑
k=1

S

∑
s=1

((Parr
s,k ·

hk
s

2
+ Pstr

s,k−1·h
k
s)·hk

s) (2)
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To =
K

∑
k=1

S

∑
s=1

(
Pin

s,k·RTk
m + (P in

s,k − Pali
s+1,k)·DTk

s+1) (3)

where Parr
s,k represents the number of passengers who access the platform and wait for train

k at the time when train k− 1 leaves station s; Pstr
s,k gives the number of passengers stranded

on the platform when train k leaves station s. Meanwhile, Pin
s,k indicates the number of

passengers aboard train k when it leaves station s; Pali
s,k is the number of passengers who

alight from train k when it stops at station s.

3.2.2. Net Energy Consumption

With the utilization of regenerative braking energy, each train consumes both traction
power supply energy and regenerative braking energy during its operation. In the research
subdivision period n, the traction energy consumption EA

q (t) and regenerative braking
energy EB

q (t) for the power supply zone q can each be calculated using Equations (4) and
(5):

EA
q (t) =

TR

∑
k=1

SE

∑
m=1

Fm,k(t) · vm,k(t) · ϕm,q (4)

EB
q (t) =


TR
∑

k=1

SE
∑

m=1
Bm,k(t) · vm,k(t) · ϕm,q · λ vm,k(t) > ve

0 vm,k(t) ≤ ve

(5)

where Fm,k(t) and Bm,k(t) represent the traction and braking forces, respectively; vm,k(t)
is the speed of train k running along section m at time t; and ϕm,q is a binary variable. If
section m belongs to the power supply zone q, ϕm,q = 1; otherwise, ϕm,q = 0. In addition,
λ is the conversion efficiency of the regenerative braking energy; ve is the critical speed of
regenerative braking and air braking, and the regenerative braking energy can be generated
only when vm,k(t) > ve.

If the regenerative braking energy is not used in time, its surplus energy is dissipated
by the resistor in the form of heat energy. In this paper, the principle of “minimum
utilization” was adopted to calculate the quantity of regenerative braking energy utilized
during the research subdivision period:

EBU
q (t) = min

{
EA

q (t), EB
q (t)

}
(6)

The net energy consumption for the train’s operation is the differential value between
the total traction energy consumption and the quantity of regenerative braking energy
utilized. Thus, the net energy consumption for the train’s operation can be expressed as
shown in Equation (7):

minE =
Q

∑
q=1

N

∑
n=1

∑
t∈n

[
EA

q (t)− EB
q (t)

]
(7)

3.3. Constraints
3.3.1. Constraints of Train Force and Motion

The calculation of the net energy consumption level in the objective function highlights
the impact of multi-train cooperations on energy efficiency. Consequently, it is important to
facilitate the effective cooperation among trains along the section, while adhering to the
prescribed energy-saving strategies and timetables. In this study, we used the three-stage
optimal control strategy [9] of “traction–coasting–braking”, as shown in Figure 2, and then
set the train force and motion equation constraints.
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Figure 2. Schematic diagram of three-stage optimal speed curve.

Train Force Constraints: train operation is primarily affected by the traction force,
braking force, and basic resistance. Basic resistance can be calculated according to the
following empirical equation [13]:

Rm,k(t) = Mm,k

(
a + bvm,k(t) + cv2

m,k(t)
)

(8)

where Rm,k(t) is the basic resistance, while a, b, and c are the basic resistance coefficients
and Mm,k is the train mass. For train k running along section m, if the average passenger
mass is mp and the empty train mass is Mt, the train mass Mm,k can be expressed as:

Mm,k = Mt + Pin
s,k ·mp (9)

According to Newton’s second law of motion, the combined force on the train speed
curve at each stage is:

Cm,k(t) = (1 + ρ)Mm,k
dvm,k(t)

dt
=


Fm,k(t)− Rm,k(t) t ∈

[
tk
d,s, t1

m.k

)
−Rm,k(t) t ∈

[
t1
m.k, t2

m.k
)

−Bm,k(t)− Rm,k(t) t ∈
[
t2
m.k, tk

a,s+1

) (10)

where Cm,k(t) is the combined force on the train, and Fm,k(t) and Bm,k(t) represent the
traction and braking forces, respectively. In addition, ρ is the coefficient of the gyration
quality; tk

a,s and tk
d,s are the times at which train k arrives at and departs from station s,

respectively. Finally, t1
m.k and t2

m.k indicate the moments during the operation of train k along
section m at which traction turns to coasting and coasting turns to braking, respectively.

To ensure the comfort of the passengers, the train control strategy prioritizes the maxi-
mum traction and braking force. When the limit of maximum acceleration and deceleration
is exceeded, the train runs at the maximum allowable acceleration and deceleration, and
the constraints of the traction and braking forces of the train are expressed as follows:

Fm,k(t) =

{
min

[
Fmax

m,k , (1 + ρ)Mm,kα + Rm,k(t)
]

t ∈
[
tk
d,s, t1

m.k

)
0 otherwise

(11)

Bm,k(t) =

{
min

[
Bmax

m,k ,−(1 + ρ)Mm,kβ− Rm,k(t)
]

t ∈
[
t2
m.k, tk

a,s+1

)
0 otherwise

(12)

where Fmax
m,k and Bmax

m,k indicate the maximum traction and braking forces, respectively; α
and β represent the maximum acceleration and deceleration values, respectively.

Train Motion Equation Constraints: given the train stress analysis mentioned above,
we regarded the train as a single-point model. From this, it followed that the train ran at a
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constant acceleration during time step ∆t. The speed, displacement, and acceleration of the
train can then be calculated according to the following train dynamics equation:

vm,k(t + ∆t) = vm,k(t) + am,k(t)∆t

xm,k(t + ∆t) = xm,k(t) +
v2

m,k(t+∆t)−v2
m,k(t)

2am,k(t)

am,k(t) =
dvm,k(t)

dt =
Cm,k(t)

(1+ρ)Mm,k

(13)

where xm,k(t) denotes the running distance of the train at time t, and am,k(t) provides the
acceleration value of the train at time t.

The motion equation constraints that the train needs to meet can then be summarized
as follows: 

v
(

tk
d,s

)
= v

(
tk
a,s+1

)
= 0

x
(

tk
a,s+1

)
− x
(

tk
d,s

)
= Xm

tk
d,s < t1

m.k < t2
m.k < tk

a,s+1

vm,k(t) ≤ vlim

(14)

3.3.2. Constraints of Train Capacity and Passenger Boarding and Alighting

With the constraints on the motion of the train already calculated, we then turned to
defining the constraints on train capacity and passenger flow.

Parr
s,k =

(
tk
d,s − tk−1

d,s

)
· ηs,k, tk

d,s ∈ n (15)

Pw
s,k = Parr

s,k + Pstr
s,k−1 (16)

Pin
s,k = Pin

s−1,k+Pboa
s,k − Pali

s,k (17)

Pali
s,k = Pin

s−1,k · µs,k (18)

Pboa
s,k = min

{(
Pcap − Pin

s−1,k + Pali
s,k

)
, Pw

s,k

}
(19)

Pstr
s,k = Pw

s,k − Pboa
s,k (20)

where ηs,k represents the rate of arrival of passengers at station s during the study period;
Pw

s,k is the number of passengers waiting to board at the platform when train k arrives at
station s; Pboa

s,k is the number of boarding passengers when train k passes through station s;
and Pali

s,k denotes the number of passengers that alight when train k passes through station
s. Finally, µs,k presents the ratio of passengers who alight to passengers remaining aboard
when train k arrives at station s.

More specifically, in this set of calculations, Equation (16) determines the actual pas-
senger flow demand, while Equation (19) indicates that the number of boarding passengers
depends on both the available capacity of train k and the boarding demand at station s.
Equation (20), meanwhile, calculates the train capacity constraint.

3.3.3. Constraints of the Train Operation Interval

The final set of constraints we had to determine were the restrictions on the intervals
at which trains could operate along section m.

hmin ≤ hk
s ≤ hmax (21)

RTm
min ≤ RTk

m ≤ RTm
max (22)
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DTs
min ≤ DTk

s ≤ DTs
max (23)

where Equation (21) represents the headway time constraint, which ensures a safe distance
between the front and rear trains. In this expression, hmin and hmax denote the lower and
upper limits of the headway time necessary for the safe operation of the trains. Equation (22)
limits the section running time, where RTm

min and RTm
max are the minimum and maximum

running times allowed for the section; Equation (23) specifies the upper and lower (DTs
min

and DTs
max, respectively) limits of the train dwell time. All notations of the mentioned

symbols, variables, and parameters are shown in Table A1 in the Appendix A.

4. Heuristic Algorithm
4.1. Algorithm Framework

The model constructed in this paper had multiple optimization objectives and decision
variables, with the numerous and interrelated constraints typical of an NP-hard problem.
Most current research aims to solve a multi-objective train timetable problem, which is
usually converted into a single-objective problem and solved using commercial solver
CPLEX [27] or another intelligent algorithm [26]. In order to preserve the diversity of
solutions, this paper designed a multi-objective evolutionary algorithm based on the
NSGA-II algorithm through Python [28]. This caused the optimization results to converge
along a Pareto frontier. The algorithm framework is shown in Figure 3 and the specific
steps of the algorithm’s design are described below in the following sections.
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4.2. Reduce and Reconstruct Decision Variables

Because of the non-parallel running of trains, the abovementioned model needed to
optimize the trajectories of all trains within the optimization period. At present, there are
too many decision variables, making a solution difficult. We designed the mechanism
of “Train Grouping and Non-parallel Operation” and “Train Location-Time Tracking” to
reduce the number of decision variables.

Definition 1. “Train Grouping and Non-parallel Operation” refers to the formation of a Train
Group comprising several adjacent trains. Trains in the same Train Group run in parallel, while
trains in different groups do not run in parallel.

With the introduction of the Train Group, the headway time can be reduced to two
arrays, namely, array H between Train Groups and array Ĥ within Train Groups. If NK is
defined as the number of Train Groups, then H and Ĥ can be expressed as:

H = (h1, h2, · · · , hNK−1)1×(NK−1)

Ĥ =
(

ĥ1, ĥ2, · · · , ĥNK

)
1×NK

Definition 2. “Train Location-Time Tracking” refers to the discrete value combination sequence of
the dwell and inter-station running times of the first train of a Train Group in a station segment. This
allows us to reduce the dwell and inter-station running times of all trains to the Train Location-Time
Tracking array LT, which is expressed as:

LT =


lt1

1 lt1
2 · · · lt1

2NS
lt2

1 lt2
2 · · · lt2

2NS
...

...
...

...
ltNK

1 ltNK
2 · · · ltNK

2NS


NK×2NS

where lti
j indicates the Location-Time Tracking of the first train in Train Group i to arrive at station

location j, with NS representing the number of one-way station segments.

Following the dimensionality reduction and reconstruction, the decision variables
comprise array LT, headway time array Ĥ, and headway time array H, and are expressed
as follows:(

lt1
1, lt1

2, · · · , lt1
2NS, lt2

1, · · · , ltNK
1 , · · · , ltNK

2NS, ĥ1, ĥ2, · · · , ĥNK, h1, h2, · · · , hNK−1

)
(24)

4.3. Generate Parents via the Population Initialization

Sub-algorithm I was designed to generate an initial solution to the combination of
decision variables described in Equation (24). The specific steps are as follows:

Sub-Algorithm I: Initial Solution Generation
Step 1: Assign the initial departure time of the first train in the first Train Group, and

set i = 1;
Step 2: Randomly select lti

1, lti
2, , · · · , lti

2NS, and ĥi;
Step 3: i = i + 1; if i ≤ NK, go to Step 4; otherwise, go to Step 6;
Step 4: Randomly select ĥi and hi;
Step 5: Let j = 1;

Step 5.1: Randomly select lti
j; check and adjust the headway times between the

first train in Train Group i and the last train in Train Group i− 1;
Step 5.2: j = j + 1; if j ≤ 2NS, return to Step 5.1; otherwise, go to Step 3;

Step 6: The algorithm ends and the initial solution is output.
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4.4. Generate Offspring via the Three-Period Crossover Mutation

Sub-algorithm II realized
(

LT → H → Ĥ
)

using a three-period crossover mutation
to generate offspring. Specifically, it used LT crossover→LT mutation→H crossover→H
mutation→Ĥ crossover→Ĥ mutation to generate offspring. The steps are given below:

Sub-Algorithm II: Generating Offspring via the Three-Period Crossover Mutation
Step 1: Select individuals from parent population P according to the LT crossover ratio

Rltc; perform crossover operations on the selected individuals according to the number of
LT crossover station segments Nltc;

Step 2: Select individuals from parent population P according to the LT mutation ratio
Rltm; perform mutation operations on the selected individuals according to the number of
LT mutation train groups Nltm,1 and the number of LT mutation station segments Nltm,2;

Step 3: Select individuals from parent population P according to the H crossover ratio
Rhoc; perform crossover operations on the selected individuals according to the number of
H crossover train groups Nhoc;

Step 4: Select individuals from parent population P according to the H mutation ratio
Rhom; perform mutation operations on the selected individuals according to the number of
H mutation train groups Nhom;

Step 5: Select individuals from parent population P according to the Ĥ crossover ratio
Rhic; perform crossover operations on the selected individuals according to the number of
Ĥ crossover train groups Nhic;

Step 6: Select individuals from parent population P according to the Ĥ mutation ratio
Rhim; perform mutation operations on the selected individuals according to the number of
Ĥ mutation train groups Nhim.

After each crossover or mutation, the departure time of the relevant train groups from
the first station must be adjusted to ensure that the calculated headway time meets the
model constraints.

4.5. Solve for Energy-Saving Train Operation Strategies

On the basis of the feasible solutions generated above, sub-algorithm III calculates
the optimal energy-saving operation strategy for trains over different track sections. The
specific steps are as follows:

Sub-Algorithm III: Determining Energy-Saving Train Operation Strategies
Step 1: Forward deduce the maximum traction curve, that is, the curve of a vehicle

accelerating from 0 to vlim; the time when v = vlim is tlim;
Step 2: Deduce in reverse the maximum braking curve, that is, the curve of a vehicle

decelerating from vlim to 0;
Step 3: Find the minimum coasting time δmin;

Step 3.1: Let δ = 2 s and draw the traction–coasting curve. The velocity at time te
is ve, and if ve ≥ 0, δmin = 2 s, then go to Step 4; if ve < 0, go to Step 3.2;

Step 3.2: Let δ = tlim
2 , draw the traction–coasting curve, and record ve;

Step 3.3: If ve = 0 and δmin = δ, proceed to Step 4; otherwise, go to Step 3.4;
Step 3.4: If ve > 0, let δ = δ+0

2 ; if ve < 0, let δ = δ+tlim
2 . Draw the traction–coasting

curve under the new δ, calculate ve, and return to Step 3.3;
Step 4: The distance between the stations is Xm. Calculate the distance Xm

′ traveled
by the train when δ = δmin+tlim

2 ;
Step 4.1: If Xm

′ = Xm, δ is the coasting start time; proceed to Step 5. Otherwise,
go to Step 4.2;

Step 4.2: If Xm
′ > Xm, let δ = δ+δmin

2 ; if Xm
′ < Xm, let δ = δ+tlim

2 . Calculate Xm
′

under the new δ and return to Step 4.1;
Step 5: At this time, the δ value obtained is the coasting start time. Draw the traction–

coasting curve;
Step 6: Find the intersection ω of Steps 5 and 2, i.e., the transition point between

coasting and braking. Then, find the complete three-stage energy-saving speed curve.
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5. Numerical Experiment
5.1. Case Description

In this section, we applied the proposed optimization method to the data collected
from the Yizhuang Line of the Beijing metro and explored the effectiveness of three different
schemes through Python. The collected data included the set of stations, scheduled trains
during the optimization period, power supply zones, and relevant parameters (e.g., energy
consumption and passenger flow). The Yizhuang Line is a two-way subway line with a
total length of 23.3 km, comprising 13 stations and 12 running sections. The trains travel
upward from Ciqu Station (CQ) to Songjiazhuang Station (SJZ). The whole line is divided
into six power supply zones, and trains operating in both directions in the same power
supply zone share a substation. Table 1 summarizes the specific line data. The line uses
DKZ32 trains, and the relevant train operation parameters are shown in Table 2. The dwell
time and passenger flow data at the stations between 7:30 and 9:30 (the morning peak
period of a typical working day) are recorded in Table 3.

Table 1. Description of the Yizhuang Line of the Beijing metro system in China.

Section Power Supply
Zone Length (m) Speed Limit

(km/h)
Running Time

Range (s)

SJZ-XC 1 2641 80 [150, 210]
XC-XHM 2 1337 80 [90, 150]
XHM-JG 2 2377 80 [140, 180]
JG-YZQ 3 1993 80 [120, 180]

YZQ-YZWHY 3 998 80 [70, 120]
YZWHY-WYJ 3 1543 80 [100, 150]

WYJ-RJDJ 4 1285 80 [90, 150]
RJDJ-RCDJ 4 1360 80 [90, 150]
RCDJ-TJNL 5 2348 80 [140, 180]
TJNL-JHL 5 2274 80 [130, 180]
JHL-CQN 6 2096 80 [120, 180]
CQN-CQ 6 1290 80 [90, 150]

Turnaround — — — 90
Note: The task of turnaround is the process in which trains reverse their direction at the end of the line, which has
no specific power supply zone, line length and speed limit. However, it is expected that the train completes this
task within 90 s.

Table 2. Notation of parameters.

Parameters Description Unit Value Equation

Mt Empty train mass kg 1.99 × 105 Equation (9)

mp Average passenger mass kg 60 Equation (9)

ve

Critical speed of
regenerative braking
and air braking

km/h 5 Equation (5)

α Maximum acceleration m/s2 1 Equation (11)

β Maximum deceleration m/s2 1 Equation (12)

Fmax
m,k Maximum traction force kN 310 Equation (11)

Bmax
m,k Maximum braking force kN 260 Equation (12)

hmax
Upper limit of headway
time s 540 Equation (21)
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Table 2. Cont.

Parameters Description Unit Value Equation

hmin
Lower limit of headway
time s 70 s Equation (21)

∆t Time step s 1 All Equations

Pcap Passenger capacity persons 1440 Equation (9)

λ
Conversion efficiency of
regenerative braking
energy

N.A. 0.8 Equation (5)

a, b, c Basic resistance
coefficients N.A.

[1.244, 1.45 ×
10−2, 1.36 ×
10−4]

Equation (8)

ρ
Coefficient of gyration
quality N.A. 0.06 Equation (10)

Table 3. Ranges of dwell times and passenger flow data from the Yizhuang Line (upward and
downward).

Station
Range of
Dwell Time (s)

Upward Downward

Arrival Rate Alighting
Rate Arrival Rate Alighting

Rate

SJZ [30, 90] 0 1 0.99 0
XC [30, 90] 0.01 0.47 0.89 0.01
XHM [30, 90] 0.13 0.26 0.57 0.07
JG [30, 90] 0.68 0.42 1.11 0.31
YZQ [30, 90] 0.36 0.20 0.54 0.13
YZWHY [30, 90] 0.34 0.11 0.33 0.12
WYJ [30, 90] 0.60 0.16 0.39 0.23
RJDJ [30, 90] 0.49 0.11 0.25 0.18
RCDJ [30, 90] 0.68 0.10 0.18 0.29
TJNL [30, 90] 0.55 0.07 0.11 0.30
JHL [30, 90] 0.58 0.06 0.06 0.40
CQN [30, 90] 0.36 0.02 0.01 0.37
CQ [30, 90] 0.60 0 0 1

5.2. Experimental Schemes

We used the data from the Yizhuang Line to verify the validity of the model and
algorithms by designing three experimental timetables. We could then compare and
analyze the optimization effects of these three timetables when the trains ran in parallel
and non-parallel modes.

Scheme 1: The Multi-Objective (MOT) Timetable was constructed to minimize both
the passenger travel time and net energy consumption by trains operating in non-parallel
fashion. The station segments were divided according to the power supply zone, and three
trains formed a Train Group. The crossover mutation parameters of the multi-objective
evolutionary algorithm are set as shown in Table 4.

Scheme 2: The Travel-Oriented (TOT) Timetable assumed a parallel operation and
used the minimum passenger travel time as the optimization goal. This scheme used the
lower limits of the parameter values recorded in Tables 1 and 3 for the inter-station running
and dwell times of all the trains. This timetable prioritized the travel needs of passengers
without considering the net energy consumption levels. The departure interval of the TOT
timetable was then obtained by an optimization.
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Table 4. Notation of crossover mutation parameters.

Parameters Description Value

Ne Generation 20
Np Population size 50
Rltc LT crossover ratio 50%
Nltc Number of LT crossover station segments 1
Rltm LT mutation ratio 20%

Nltm,1 Number of LT mutation Train Groups 1
Nltm,2 Number of LT mutation station sections 1
Rhoc H crossover ratio 40%
Nhoc Number of H crossover Train Groups 1
Rhom H mutation ratio 10%
Nhom Number of H mutation Train Groups 1
Rhic Ĥ crossover ratio 20%
Nhic Number of Ĥ crossover Train Groups 1
Rhim Ĥ mutation ratio 10%
Nhim Number of Ĥ mutation Train Groups 1

Scheme 3: The Energy-Oriented (EOT) Timetable also assumed a parallel operation
and focused on energy savings. This scheme used the upper limits of the parameter values
recorded in Tables 1 and 3 for the inter-station running and dwell times of all the trains. This
reduced the traction time, increased the time spent coasting, reduced energy consumption,
and allowed the calculation of the departure interval for the EOT timetable.

5.3. Results and Discussion

The analysis of the three experimental timetables, which were proposed to verify
the optimization method, demonstrated the convergence and selectivity of the optimal
solutions to the multi-objective evolutionary algorithm.

5.3.1. Algorithm Convergence

In Figure 4, the gray scatter plot shows the target values of the last generation of the
MOT optimization solution obtained after five iterations of the experiment. The distribution
of the optimization solutions allows us to derive the Pareto frontier with the shortest
passenger travel time and the lowest net energy consumption level, as shown by the dotted
line in Figure 4. The blue and green scatter dots correspond to the net energy consumption
levels and travel times associated with the optimal TOT and EOT solutions, respectively.
These ten departure intervals, located at the extremes of the Pareto frontier, indicate the
scientific and excellent performances of the model and the multi-objective evolutionary
algorithm developed in this study, in terms of both the convergence and optimization.

5.3.2. Solution Comparison

In Figure 4, it can be observed that the MOT solutions are not densely clustered
along the Pareto front. To analyze the differences between the optimization solutions,
four parameters were selected for comparison: the number of departure trains at the first
station, the converted number of departure trains, the number of passengers served, and
the utilization ratio of the regenerative braking energy. Here, the converted train number
represents the ratio of the number of stations that the train passes through during the
optimization period to the number of total stations.
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Figure 5 shows the distribution characteristics of the reduced number of departure
trains and the utilization ratio of the regenerative braking energy when the travel time
ranges between 8000 and 12,000. The figure is divided into four quadrants, using the
converted number of departure trains (14) and the travel time (10,000 h) as reference points.
In Quadrant I, the converted number of departure trains is greater, and the passenger travel
time is longer, leading to a lower distribution of optimal solutions. Due to two objectives
in the proposed model, the diversified optimization solutions are distributed throughout
Quadrants II, III, and IV. This allows operation managers to choose from these solutions
based on their preferences and requirements.
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In Quadrant III, the utilization ratio of regenerative braking is lower than that in
Quadrant II when the converted number of departure trains is lower, and the passenger
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travel time is shorter. However, in a constant optimization period, the rise in the converted
number of departure trains represents an increase in the traction energy consumption level.
As a result, the net energy consumption of the optimization solutions in Quadrant III is
basically the same as that in Quadrant II. Additionally, Figure 6 presents additional data on
the number of passengers served by different converted numbers of departure trains in
Quadrant III. It is important to note that the MOT satisfactory solution serves the largest
number of passengers among all solutions.
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In Figure 6, the number of passengers served by the MOT satisfactory solution is 56,955,
and the total travel time of passengers is 9275.74 h. The converted number of departure
trains in this scenario is 13.37 and the number of departure trains at the first station is 20.
As for the energy consumption level, the utilization ratio of regenerative braking energy is
29.88% and the net energy consumption level of train operations is 1.02 × 107 KJ. These
calculations yield the timetable as shown in Figure 7. The optimization results of the
abovementioned MOT satisfactory solution, as well as the optimal TOT and EOT departure
intervals, are recorded in Table 5.

Table 5. Performance comparison of MOT, TOT, and EOT.

MOT TOT EOT

Utilization ratio of regenerative
braking energy 29.88% 7.28% 11.77%

Net energy consumption (×107 KJ) 1.02 1.85 0.46
Number of passengers served 56,955 61,667 52,615

Total travel time of passengers (h) 9275.74 8157.90 12,738.48
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Table 5 highlights that the TOT yields the shortest total travel time for passengers,
while the EOT minimizes net energy consumption levels, which aligns with the initial
definitions of these two timetables. The MOT satisfactory solution presented in this study
effectively enhanced the utilization ratio of regenerative braking energy through the non-
parallel train operations. Compared to the TOT, the MOT satisfactory solution reduced the
net energy consumption by 44.86%, considerably reducing the power consumption of the
train system. Furthermore, compared to the EOT, the MOT satisfactory solution lowered
the total travel time of passengers by 27.18%, providing improved transportation options
for more passengers during the same period. The original timetable of the Yizhuang Line
had a regenerative braking energy utilization rate of 7.51% and a net energy consumption
rate of 1.1 × 107 KJ. In contrast, the MOT satisfactory solution increased the regenerative
braking energy utilization rate to 29.88% and reduced the net energy consumption rate
by 20.88%.

6. Conclusions

When designing a low-carbon urban rail system, two major factors are usually con-
sidered: energy consumption and operational strategies. To ensure a good service quality
while reducing the energy consumption rate, this study developed a method for optimizing
an energy-saving, non-parallel operation timetable for the multi-train non-parallel oper-
ation coordination. This approach contained a multi-objective optimization model that
considered both the effective utilization of regenerative braking energy under multi-train
control conditions and the temporal and spatial distribution characteristics of dynamic
passenger flows. This approach also developed an improved multi-objective evolutionary
algorithm based on NSGA-II. An empirical case based on the Yizhuang Line of the Beijing
metro allowed us to explore the feasibility of the proposed method. The simulation results
show that the optimization method improves energy utilization and passenger service
levels along a Pareto front. By using the MOT, the utilization of regenerative braking energy
increased by 29.88% in comparison with the original timetable, while the net operational
energy consumption was reduced by 44.86% compared with the TOT. In comparison to
the EOT, the optimization model also reduced the total passenger travel time by 27.18%.
These results confirm that the proposed optimization method effectively reduces the net
energy consumption by train operations while guaranteeing a certain level of service qual-
ity. Furthermore, the improved multi-objective evolutionary algorithm provided optimal
solutions that satisfied diverse preferences and objectives.
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We should note that this study simplified train speed profiles between stations into
only three stages (traction, coasting, and braking). The speed characteristics of each line
section in the real world would be heterogenous; however, they would be influenced by
measures, like cruise control, to maintain train spacing or changes in weather conditions. A
bi-level optimization model would allow for a further investigation of the heterogeneity of
train speed profiles. A further objective should be added (e.g., reducing the operational
cost of rolling stock).
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Appendix A

Table A1. Notations of symbols, variables, and parameters.

Symbols/Variables Description

s Station index

m Section index

Xm Length of the section m

q Power supply zone index

k Train index

n Subdivision period index

RTk
m Running time of train k along the section m

RTm
min Minimum running time allowed for the section m

RTm
max Maximum running time allowed for the section m

DTk
s Dwell time of train k at station s

DTs
min Upper limit of the train dwell time

DTs
max Lower limit of the train dwell time

hk
s Headway time between trains k and k− 1 when each of them leaves station s

hmin Lower limit of headway time necessary for the safe operation of the trains

hmax Upper limit of headway time necessary for the safe operation of the trains

Ttra Total passenger travel time

Tw Waiting time at the station

To Traveling time in the car

Parr
s,k

Number of passengers who enter the platform and wait for train k at the time when train k− 1 leaves
station s



Mathematics 2023, 11, 4491 18 of 19

Table A1. Cont.

Symbols/Variables Description

Pstr
s,k Number of passengers stranded on the platform when train k leaves station s

Pin
s,k Number of passengers aboard train k when it leaves station s

Pali
s,k Number of passengers who alight from train k when it stops at station s

ηs,k Rate of arrival of passengers at station s during the study period

Pw
s,k Number of passengers waiting to board at the platform when train k arrives at station s

Pboa
s,k Number of boarding passengers when train k passes through station s

Pali
s,k Number of passengers that alight when train k passes through station s

µs,k Ratio of passengers who alight to passengers remaining aboard when train k arrives at the station s

EA
q (t ) Traction energy consumption for power supply zone q at time t

EB
q (t ) Regenerative braking energy for power supply zone q at time t

Fm,k(t) Traction force of train k running along section m at time t

Bm,k(t) Braking force of train k running along section m at time t

vm,k(t) Speed of train k running along section m at time t

Rm,k(t) Basic resistance of train k running along section m at time t

Cm,k(t) Combined force of train k running along section m at time t

xm,k(t) Running distance of train k running along section m at time t

am,k(t) Acceleration of train k running along section m at time t

Mm,k Train mass of train k running along section m

ϕm,q A binary variable. If sec tion m belongs to the power supply zone q, ϕm,q = 1; otherwise, ϕm,q = 0.

a, b, and c Basic resistance coefficients

λ Conversion efficiency of regenerative braking energy

ve Critical speed of regenerative braking and air braking

mp Average passenger mass

Mt Empty train mass

ρ Coefficient of gyration quality

tk
a,s Times at which train k arrives at station s

tk
d,s Times at which train k departs from station s

Fmax
m,k Maximum traction force

Bmax
m,k Maximum braking force

α Maximum acceleration

β Maximum deceleration
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