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Abstract: Accurate organ segmentation is a fundamental step in disease-assisting diagnostic systems,
and the precise segmentation of lung is crucial for subsequent lesion detection. Prior to this, lung
segmentation algorithms had typically segmented the entire lung tissue. However, the trachea is also
essential for diagnosing lung diseases. Challenges in lung parenchyma segmentation include the
limited robustness of U-Net in acquiring contextual information and the small size of the trachea
being mixed up with lung, making it difficult to identify and reconstruct the lungs. To overcome
these difficulties, this paper proposes three improvements to U-Net: multiple concatenation modules
to enhance the network’s ability to capture context, multi-scale residual learning modules to improve
the model’s multi-scale learning capabilities, and an enhanced gated attention mechanism to enhance
the fusion of various hierarchical features. The experimental results demonstrate that our model has
achieved a significant improvement in trachea segmentation compared to existing models.

Keywords: lung parenchyma segmentation; multiple concatenation module; multi-scale residual
learning module; gated attention mechanism; U-Net

MSC: 92C50; 94A08

1. Introduction

In recent years, lung disease has become a significant global health concern due to
factors such as declining air quality, smoking, and the COVID-19 pandemic. Computed
tomography (CT) is widely used in clinical medicine for the diagnosis of lung diseases.
However, subjective interpretations by radiologists can lead to misdiagnosis or missed
diagnoses. Therefore, the development of a computer-aided diagnostic system is crucial.
Automatic segmentation of the lung region is the first step in the diagnosis of lung disease,
and its accuracy directly impacts further diagnostic analysis. Lung region segmentation,
also known as lung parenchyma segmentation, involves extracting the lung parenchyma
from CT images to provide a reliable basis for clinical treatment and pathological studies.
This segmentation is a prerequisite for automatic quantitative diagnosis and has impor-
tant research value, including the establishment of a database of geometric and statistical
information on lung structure and the determination of lesion size and extent, which
aid doctors in formulating accurate and timely treatment plans. Achieving high accu-
racy in lung parenchyma segmentation is essential for the success of a computer-aided
diagnostic system.

However, lung parenchyma segmentation is a challenging task due to several factors
such as differences in lung CT acquisition equipment, the complex structure of the lung
tissue, and potential human interference. These factors contribute to uncertainties in the
segmentation process, mainly in the following aspects: (1) Thermal/electrical noise, diverse
biological tissues, and partial volume effects can cause lung CT images to be blurry. (2) The
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lung textures of different diseases can make fine segmentation of lungs difficult. (3) Deep
learning-based medical image segmentation algorithms require a large number of images
for network training, validation, and testing. (4) Experienced radiologists are required
to manually annotate the lung regions after collecting the data, and the quality of the
annotated data can greatly impact the segmentation results. As a result, the collection of
medical image data at low quantities can affect the accuracy of lung segmentation.

There are two main types of segmentation algorithms: traditional segmentation-
based methods and deep learning-based segmentation methods. Traditional segmentation
methods include edge-based, region-based, model-based, watershed-based, and clustering-
based methods. Generally, the drawbacks of traditional segmentation algorithms are as
follows: Edge-based segmentation methods are fast but lack the ability to extract local
edge information effectively, leading to the loss of local edge information [1]. Region-based
segmentation methods are sensitive to noise and are constrained by seed selection [2,3].
Model-based segmentation methods require segmented regions to satisfy specific condi-
tions [4]. Watershed-based segmentation methods are sensitive to noise and can lead to
over-segmentation [5]. The GrabCut algorithm is an interactive segmentation technique that
requires users to draw a rectangular bounding box on the image to indicate approximate
regions of foreground and background [6]. The algorithm iteratively refines the segmenta-
tion results based on these markings. Cluster-based segmentation methods are influenced
by the initial clusters [7]. Traditional segmentation methods often involve multiple iterative
steps, making it easy to get stuck in local optimal solutions during this process, resulting in
incomplete pulmonary parenchyma segmentation and affecting subsequent detection.

Compared with traditional segmentation methods, deep learning-based segmentation
methods offer the advantage of not requiring manual outlining of boundaries, which
can reduce edge loss and enable end-to-end learning of original features. Convolutional
neural networks (CNNs) are the core of deep learning-based machine vision and can
effectively characterize images by directly applying visual laws. In the early days of
semantic segmentation of medical images based on deep learning, deep convolutional
neural networks (DCNN) [8,9] and full convolutional neural networks (FCN) [10–12]
were widely used and achieved better results than traditional segmentation algorithms.
However, DCNN and FCN algorithms have their own limitations. For example, DCNN’s
extracted pixel blocks must be classified, leading to large redundancy and slow network
training. Although FCN can accept input images of any size, the up-sampled results can
be blurry and lack smoothness, can be insensitive to image details, and can lack spatial
consistency. Additionally, methods based on deep learning exhibit the following issues:
(1) deep learning typically demands a substantial amount of data for support, with the
absence of effective extensive training often leading to overfitting; (2) deep learning has the
capacity to replicate content within data without understanding it and does not challenge
any data or unveil concealed biases, potentially resulting in subjectivity in the generated
outcomes; and (3) deep networks exhibit excessive sensitivity to alterations in images.

With the continuous development of research in the field of medical image segmen-
tation, in 2015, the U-Net architecture [13] was proposed. U-Net improves on the FCN
network architecture with a symmetric encoder–decoder structure and incorporates a
skip connection structure. The encoder extracts the feature map after down-sampling
to reduce data size, the decoder gradually restores the resolution by up-sampling, and
the skip connection adds a concatenation operation between the encoder and decoder
to fuse the shallow and deep information so that the network learns richer information.
Shaziya et al. [14] used a network based on U-Net for automatic segmentation of lung
parenchyma in chest X-ray images, while the U-Net was extended to a 3D network struc-
ture. Almost all subsequent network structures have been based on improvements to
U-Net in medical image segmentation. The H-Dense-U-Net model designed by Li et al. [15]
solved the problem of a lack of volume information due to 2D convolution and the in-
creased cost of 3D convolution. Damseh et al. [16] proposed a new network structure
called Res-U-Net, by introducing a residual structure into U-Net to solve the problem of an
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inadequate feature extraction capability. Qamar et al. [17] proposed to use Dense-Net and
Inception-ResNet networks in the 3D-U-Net network to form multi-scale features while
keeping the spatial resolution unchanged, facilitating the fusion of shallow features with
deep features. Yu et al. [18] chose deep convolution and point-by-point convolution to
replace the original convolution kernel in the convolution layer of the U-Net, forming a
new network structure called DB-U-Net, which greatly enhanced the network’s timeliness.
Gu et al. [19] designed a multi-scale network structure for lung parenchyma segmentation.
These are all improvements to the U-Net backbone structure.

In recent years, more and more attention mechanisms have been proposed and applied
to various network structures. For example, Hu et al. [20] proposed to generate channel
attention through global pooling and squeeze-and-excitation operations to enhance im-
portant features and to suppress non-important features. Oktay et al. [21] proposed the
Attention Gate module to enhance the important regions of features and to suppress the
non-important regions using a region attention mechanism. Woo S et al. [22] fused the
modules of the former two and proposed the CBAM module, which can enhance both
spatial features and channel features. The essence of the channel attention mechanism is
to learn soft attention between channels through features, and the essence of the spatial
attention mechanism is to capture different types of spatial information using non-local
mechanisms [23–28] either through fusion of high-level and low-level features [29,30] or by
extracting multi-scale information through convolutional kernels with different receptive
field sizes to enhance the feature representation of the model [18,31–34]. Although the
existing methods can improve accuracy, they generally suffer from the following problems:
(1) They ignore the complementary fusion of semantic information of the feature map
between different levels and fail to distinguish the importance of different spaces and
channels in the feature map; furthermore, there might be issues of gradient vanishing and
gradient explosion [35,36]. (2) The attention mechanism is computationally intensive and
has redundant parameters [32]. (3) They lack the extraction of information at different
scales from the same feature map [37].

This paper proposes an improved MCRAU-Net (Multiple Concatenated, Residual, and
Attention U-Net) architecture and conducts experimental validation on a lung CT dataset,
segmenting the left and right lung parenchyma independently. The proposed MCRAU-
Net enhances U-Net in the following ways: Firstly, a multiple concatenation module is
introduced in the encoding structure to increase the network’s attention to target location
information. Secondly, a multiscale residual module is added to the encoder to enhance the
representation of multiscale features. Finally, the gated attention mechanism is improved
by positioning it after the skip connection to better aggregate high-level and low-level
feature information. Through experimental comparison, MCRAU-Net not only surpasses
the U-Net benchmark in terms of segmentation performance but also outperforms other
mainstream networks, particularly the TransUNet model with a transformer model and the
UneXt model with an MLP.

2. Related Work
2.1. U-Shaped Structure

The original U-Net model uses a symmetric encoding and decoding structure, as
shown in Figure 1. If the same size convolution is used, features of the same size can be
obtained for each level. Assuming N times down-sampling and up-sampling are used in
the U-Net, then a total of N + 1 layers of feature maps are generated in the U-Net structure,

labelling these feature maps as FC×H×W
Encoder1 , F2C× H

2 ×
W
2

Encoder2 , . . ., F
2NC× H

2N ×
W
2N

EncoderN+1 , F
2N−1C× H

2N−1×
W

2N−1
DecoderN ,

F
2N−2C× H

2N−2×
W

2N−2
DecoderN−1 , . . .,FC×H×W

Decoder1 ; the input image as Finput; and the output segmented image
as FClasses×H×W

output . Then, U-Net can be represented by Equations (1)–(5):

FEncoder1 = DC(Finput) (1)
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FEncoderi = DC(DS(FEncoderi−1))1 < i ≤ N + 1 (2)

FDecoderN = DC([FEncoderN , US(FEncoderN+1)]) (3)

FDecoderi = DC([FEncoderi, US(FDecoderi−1)])1 ≤ i < N (4)

FClasses×H×W
output = conv1×1(FDecoder1) (5)

where DC(.) represents a double convolution layer, the two connected layers of convolution
operation, with each convolution operation including the convolution operation with a
kernel size of 3× 3, the BatchNormalization operation, and the activation operation; DS(.)
represents the down-sampling operation; [, ] represents the concatenation operation; US(.)
represents the up-sampling operation; conv1×1(.) represents the convolution operation with
a kernel size of 1× 1; and classes represents the number of categories.
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2.2. Residual Connections

As research on deep learning models has intensified, researchers have discovered
that the depth of the model plays a critical role in its performance, with deeper networks
allowing for the extraction of more complex features. However, optimizing deep networks
is plagued by the problem of vanishing gradient, which can lead to the saturation of or
even a reduction in network accuracy, as well as a difficulty in training due to vanishing or
exploding gradients. To address this issue, DenseNet [35] and ResNet [36] were proposed,
which optimize network degradation from two different perspectives. ResNet, in particular,
is widely used and was introduced by Kaiming He to resolve the model degradation
problem through residual learning, as depicted in Figure 2. This approach helps alleviate
the difficulty in training deep CNN models. When the model needs to learn a feature of
H(x), it can first learn its residuals F(x) = H(x)− x, so that the original learned feature is
actually F(x) + x. When the residual is 0, the stacking module is equivalent to the constant
mapping operation, which does not reduce network performance. However, in practice,
the residual will not be 0, allowing the stacking layer to learn new features on top of the
input features, thus achieving better performance.
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2.3. Gated Attention Mechanisms

The gated attention mechanism is a soft attention mechanism introduced in Attention
U-Net [21], as illustrated in Figure 3. This mechanism effectively suppresses non-target
regions in features and emphasizes salient features in specific local regions. Furthermore, it
is simple to integrate into the standard U-Net network structure with low computational
overhead. The attention mechanism in Attention U-Net is mathematically expressed in
Equations (6)–(9):

AWEncoderi = convC/2
3×3(FEncoderi) (6)

AWDecoderi = convC/2
3×3(US(FDecoderi−1)) (7)

attcoe fi = σ(conv1
3×3(ReLU(AWEncoderi + AWDecoderi))) (8)

FDecoderi = DC([US(FDecoderi−1), FEncoderi ∗ attcoe fi]) (9)

where convn
m×m represents the convolution operation; m is the size of the convolution kernel;

n represents the number of channels in the output and uses different convolution kernels to
calculate two different attention weight matrices AWencoder and AWdecoder; US(.) represents
the up-sampling operation, where DC(.) represents the double convolution layer and rep-
resents the two connected layers of convolution operation, with each convolution operation
including the convolution operation with a kernel size of 3× 3, the BatchNormalization
operation, and the activation operation; [, ] represents the concatenation operation; ReLU(.)
is the ReLU activation function; and σ(.) represents the Sigmoid activation function.
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3. Proposed Method

In this paper, we propose a novel algorithm called MCRAU-Net, which offers three
main advantages. Firstly, MCRAU-Net incorporates more location information in the
encoding layer, which increases the width of the network and enhances its sensitivity to
location information. Secondly, a multi-scale residual learning module is used in the feature
extraction process, which enriches the perceptual field of the network and adds multi-scale
features to further enhance the feature extraction capability of the encoding layer. Finally,
we introduce an improved gated attention mechanism to the skip concatenation process,
which enhances the regional features of the fusion information. The attention mechanism
strengthens the attention to the lung boundaries and suppresses irrelevant regions while
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enhancing the sensitivity to location information and facilitating the fusion of shallow
features with deep features.

3.1. Structure of Multiple Concatenation Module

Following the proposal of the U-shaped network structure, many researchers have made
improvements to its coding layer, decoding layer, and splicing method. For instance, CB-
Net introduced a structure that incorporates three convolutional branches fused together to
expedite the fusion of deep and shallow features [38]. TransUNet uses CNN as a feature
extractor for shallow features and transformer as a feature extractor for deep features, making
the deep semantic features of the model more focused on global information [39]. UneXt is a
lightweight semantic segmentation model that simplifies the structure of U-Net by replacing
the double convolutional structure with a single convolutional structure in the encoder,
reducing the number of channels in each layer, and using the Tokenized MLP module to
fuse the global semantic information in the deep semantic features [40]. The MedT network
structure uses a global branching and local branching transformer feature extractor [41]. The
UCtransNet uses the transformer to fuse shallow features and deep features [37].

It has been shown that shallow features tend to represent the contour information
of an image, and deep features tend to represent the semantic information of a larger
perceptual range. In the task of detecting lesions in a single organ, the current dominant
task framework is to first segment the organ. To this end, we have redesigned the coding
layer structure of the U-Net to improve the accuracy of the detector by incorporating
more positional information of the shallow features into the deeper features. This allows
the network to better distinguish the positions of the left and right lungs. The improved
encoder is shown in Equations (10) and (11):

FEncoder1 = DC(Finput) (10)

FEncoderi = RC([DC(R(Finput)), . . . , DS(FEncoderi−1)]) (11)

where RC(.) represents the multi-scale residual learning module; R(.) represents the Image
Resize operation, usually using quadratic interpolation; DC(.) represents the two connected
layers of the convolution operation with a kernel size of 3 × 3, the BatchNormalization
operation, and the activation operation; DS(.) indicates the down-sampling operation; and
[, ] represents the concatenation operation.

3.2. Multi-Scale Residual Learning Module

When using residual units proposed in ResNet for image segmentation tasks, we found
that the design of the residual units suffers from a lack of multi-scale learning performance.
In the structure of residual unit one, two convolutions of the 3× 3 kernel are used, and
typically, the perceptual field of two 3× 3 sized convolutions is equivalent to that of a 5× 5
sized convolution kernel, which only reduces the number of parameters used for convolution.
Similarly, one 3× 3 convolution and two 1× 1 convolutions are used in the structure of
residual unit 2, which has a perceptual field of 3× 3. In order to add more multi-scale features
to the residual learning to suit the medical image segmentation task, we propose a new multi-
scale residual module, which adds multi-scale features to the convolution and down-sampling
process, respectively, incorporating features of different sizes under the perceptual fields of
3× 3 and 5× 5, allowing the model to learn a wider range of residuals.

In the research on GhostNet, it is found that there is a large amount of information
redundancy between each convolved feature map channel [42]. Therefore, GhostNet uses
the method of compressing channel features to accelerate the network training, and the
compression ratio is usually 0.5. In our proposed multiscale residual learning module, as
shown in Figure 4, the number of channels is compressed to half of the original number of
channels for each convolution of 3× 3, and the channels are restored by a convolution of
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1× 1 after fusing the multiscale features. Assuming that the input feature is f ∈ RC×H×W ,
the details of the multiscale residual learning module are as shown in Equations (12)–(16):

f3×3 = ReLU(BN(convC//2
3×3 ( f ))) (12)

f5×5 = BN(convC//2
3×3 ( f3×3)) (13)

f f usion = ReLU(BN(convC//2
1×1 ( f3×3)) + f5×5) (14)

fresidual = BN(convC
1×1( f f usion)) (15)

fout = ReLU( f + fresidual) (16)

where f3×3 and f5×5 are the features under the receptive fields 3× 3 and 5× 5, respectively;
f f usion is a mix of features with different receptive fields; fresidual is the residuals learned
by the module; fout is the features output by the module; convn

m×m is the convolution
operation; m is the size of the convolution kernel; n is the number of channels output;
c is the number of channels output by the convolution; BN(.) is the BatchNormalization
operation; and ReLU(.) is the ReLU activation function.
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3.3. Improved Gated Attention Mechanism

In the original gated attention mechanism, only the regional features of the encoding
layer are enhanced and the regional features of the decoding layer are ignored. Therefore,
in order to make similar regions of the encoding and decoding features in the concatenation
operation enhanced at the same time, the improved gated attention mechanism described
in Equations (17)–(20) is used:

AWencoderi = convC/2
3×3(Fencoderi) (17)

AWdecoderi = convC/2
3×3(US(Fencoderi−1)) (18)

attcoe fi = σ(conv1
3×3(ReLU(AWencoderi + AWdecoderi))) (19)

FDecoderi = DC([US(FDecoderi−1), Fencoderi] ∗ attcoe fi) (20)

where convn
m∗m represents the convolution operation, where m is the size of the convolution

kernel, n represents the number of channels in the output, and different convolution kernels
are used to compute AWencoder and AWdecoder; US(.) represents the up-sampling operation;



Mathematics 2023, 11, 4483 8 of 18

DC(.) represents the double convolution operation; [.] represents the concatenation oper-
ation; ReLU(.) is the ReLU activation function; and σ(.) represents the sigmoid function.
This attention mechanism enhances any similar contour features between the encoder and
decoder, and its structure is shown in Figure 5.
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3.4. Loss Function

Mixed loss is used in this paper, where CELoss (Cross Entropy Loss) is used to solve
the classification of pixels and Dice Loss is used to make the network more focused on the
depiction of foreground details. The loss of the network is defined in Equation (21):

LTotal = LCE + LDice (21)

where LTotal represents total loss of the network, LCE represents CEloss, and LDice represents
Diceloss.

LCE is defined in Equation (22):

LCE
(

Pi, P̂i
)
= − 1

N ∑N
i

(
P̂i ln(Pi)

)
(22)

where Pi and P̂i represent the probabilities of a foreground and background, respectively.
LDice is defined as Equation (23):

LDice = 1− 2∑N
i Pi P̂i + ε

∑N
i
(

P2
i + P̂2

i
)
+ ε

(23)

where Pi and P̂i represent the probabilities of a foreground and background, respectively; ε
is usually a hyperparameter set to prevent the denominator from being 0 and is usually set
as 10−5.

4. Experimental Results and Discussions

To evaluate the effectiveness of the proposed method, a subset of the LUNA 2016
dataset [43] was used to segment the lung in this paper. The LUNA16 dataset is indeed
derived from the LIDC-IDRI dataset, comprising a total of 888 CT scans. The dataset provides
annotations for lung parenchyma and trachea. However, it is important to note that the
creators of the LUNA16 dataset have indicated that the annotations for lung parenchyma
should not be considered as reference standards for segmentation studies. Therefore, there is
a risk of annotation errors in both lung parenchyma and trachea, as these annotations may be
inaccurate or incomplete, potentially affecting the accuracy and completeness of research.

In light of this, to assess the potential risks of errors in the annotations of lung
parenchyma and trachea, in the context of this paper’s theme of small-sample seman-
tic segmentation, we selected 20 cases. The CT scans of these 20 cases were independently
reviewed by two radiologists from a tertiary hospital, and all the review processes were
conducted using the 3D Slicer platform.

To avoid data contamination, we selected 20 cases from the dataset, out of which
12 cases were used as the training set, 4 cases were used as the validation set, and 4 cases
were used as the test set, and then processed them into 2D images. In this context, “data
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contamination” refers to the occurrence of different slices of the same case appearing in the
training, validation, and test sets. The five-fold cross-validation method has been applied in
the experiments. The evaluation metric is the average and standard deviation of a five-fold
cross-validation. In the process of lung CT image processing, as the HU value of lung
is around −500, we truncated the HU values of CT images to the range of [−1200, 600].
Subsequently, we normalized the truncated HU values, converting them into uint8 format
data within the range [0, 255], and finally saved them as jpg images. The segmentation
task is set to four categories: background, left lung, right lung, and trachea. The proposed
MCRAU-Net is illustrated in Figure 6, and further details are provided.

The software composition of the experimental platform is as follows: Windows 11
operating system, Python 3.7 programming language, and pytorch11.2 software. The
hardware platform is as follows: Intel i5-12600K CPU, 16G DDR4 4000 MHz memory,
and single Nvidia 2080Ti 11G GPU. In the training process of the neural network, the
parameters were optimized by an Adam optimizer, the learning rate was set from 10−4

to 10−6 by the cosine annealing rate, and the batch-size was set to 8. Twenty epochs were
trained, and the weights with the smallest losses on the validation set were selected as the
optimal weights. In addition, random rotation, translation, and local deformation were
used to process the training set to enhance the input diversity of the data. The loss metrics
during the training process are shown in Figure 7.
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4.1. Evaluation Metrics

In this paper, we use Precision, Recall, Intersection over Union, Mean Intersection over
Union, Mean Pixel Accuracy, and Accuracy, which are widely used in image segmentation
tasks, to verify the effectiveness of the proposed algorithm. TP, TN, FP, and FN denote true



Mathematics 2023, 11, 4483 10 of 18

positive, true negative, false positive, and false negative, respectively. P1
p represents the

predicted segmentation result; P1
g represents the segmentation result of the ground truth; k

denotes the number of categories; pii is the total number of pixels from the actual category
i predicted to category i; and pij is the total number of pixels from the actual category
predicted to the category j. The evaluation metrics can be formulated as follows:

P =
TP

TP + FP
(24)

where P represents the probability that the outcomes predicted to be positive samples are
actually positive samples.

R =
TP

TP + FN
(25)

where R denotes the probability that the outcome with a true positive sample is actually a
positive sample.

IoU =
P1

p ∩ P1
g

P1
p ∪ P1

g
(26)

where IoU represents the ratio of the intersection of the predicted outcome for a category
and the true value to the merged set, which for image segmentation, is the calculation of
the intersection and merging ratio between the prediction mask and the true mask.

MIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

=
1

k + 1

k

∑
i=0

Pp ∩ Pg

Pp ∪ Pg
(27)

where MIoU is the average ratio of the intersection in each category to the merged set.

MPA =
1

k + 1
∑k

i=0 pii

∑k
i=0 ∑k

j=0 Pij
(28)

where MPA represents the average accuracy of the predicted results.

Accuracy =
TP + TN

TP + TN + FP + FN
(29)

Accuracy represents the proportion of the total sample that was correctly classified.
In order to evaluate the effect of reconstruction from 2D images to 3D images, the

proposed algorithm is evaluated by using 3D metrics commonly used for medical seg-
mentation tasks. Pp

2 represents the predicted sample volume, Pg
2 represents the sample

volume of ground truth, S(A) represents the surface voxels in the A set, and d(v, S(A))
represents the shortest distance from any voxel to S(A). The evaluation indexes can be
formulated as follows:

DICE =
2
∣∣∣P2

p ∩ P2
p

∣∣∣∣∣∣P2
p

∣∣∣+ ∣∣∣P2
p

∣∣∣ (30)

where DICE represents the Dice similarity coefficient: the closer it is to 1, the better the
segmentation performance is proven to be.

VOE =
2
∣∣∣P2

p − P2
p

∣∣∣∣∣∣P2
p

∣∣∣+ ∣∣∣P2
p

∣∣∣ (31)
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where VOE represents the Volumetric Overlap Error: the lower the VOE, the better the
segmentation effect.

RVD =


∣∣∣P2

p

∣∣∣∣∣∣P2
g

∣∣∣ − 1

× 100% (32)

where RVD represents the Relative Volume Difference:

ASD(A, B) =

{
∑

sA∈S(A)
d(sA ∈ S(B)) + ∑

sB∈S(B)
d(sB ∈ S(A))

}
|S(A)|+ |S(B)| (33)

where ASD(A, B) represents the Average Symmetric Surface Distance:

MSD(A, B) = max( max
sA∈S(A)

(d(sA ∈ S(B))),

max
sB∈S(B)

(d(sB ∈ S(A))))
(34)

where MSD represents the maximum symmetric surface distance, with a lower value of
MSD indicating a better match between the two samples.

4.2. Ablation Study

This paper proposes a model, called MCRAU-Net, which includes multiple concate-
nation and multi-scale residual learning modules in the encoding structure to enhance
network feature extraction and to obtain rich shallow semantic information. Furthermore,
an improved gate attention module is added to the skip connection to enhance the char-
acterization of features after the fusion of deep and shallow features. To evaluate the
effectiveness of the proposed modules in MCRAU-Net, we conducted ablation experiments
on our built dataset. We deleted the multiple concatenation, multi-scale residual learning,
and gate attention modules in MCRAU-Net and performed the experiments. Firstly, we
used the U-Net as the baseline network and compared its performance with the MCRU-Net,
which included the multiple concatenation and multi-scale residual learning modules,
to verify their effectiveness. Secondly, we added the multi-scale residual learning and
improved the gate attention modules to the baseline network, forming the RAU-Net, to
verify their effectiveness. Thirdly, we added the multiple concatenation and improved
the attention modules to the baseline network, forming the MCAU-Net, and evaluated its
validity. Finally, we verified the validity of our proposed method, MCRAU-Net, through
experiments. Table 1 presents the results of our experiments.

As can be seen from Table 1, the metrics obtained for each module used in the MCRAU-
Net network compared to the benchmark U-Net prove the effectiveness of the proposed
method. Compared to U-Net, MCAU-Net, MCRU-Net, and MRAU-Net, all three network
structures showed an increase in segmentation metrics. When the MRAU-Net, MCRU-Net,
and MCAU-Net segmentation metrics were compared, the MCAU-Net metrics were better
than the MCRU-Net and MRAU-Net metrics in IOUTrachea and PrecisionTrachea. Compared
to Unet, MCRAU-Net has shown an improvement of 3.8% in IOU and 3.9% in accuracy
specifically within the tracheal region. After removing the attention model, the IOU and
accuracy of the tracheal region decreased by 1.8% and 1.9%, respectively. After eliminating
the multiple concatenation structure, the IOU and accuracy of the tracheal region decreased
by 2.2% and 1.7%, respectively. After removing the residual connections, the IOU and
accuracy of the tracheal region decreased by 3.2% and 2.8%, respectively. Therefore, the
most effective module for network performance improvement is the gate attention module,
followed by the multiple concatenation module and, finally, the proposed multi-scale
residual learning module. Compared with the three network structures of MCRU-Net,
MCAU-Net, and MRAU-Net, the segmentation metrics of MCRAU-Net are better than
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those of MCAU-Net, MCRU-Net, and MRAU-Net. The effectiveness of the algorithm
proposed in this paper is proven.

Table 1. Results of ablation experiments (%, average ± standard deviation).

U-Net MCRU-Net MRAU-Net MCAU-Net MCRAU-Net

IOULeft-Lung 98.43 ± 0.22 98.1 ± 0.18 98.32 ± 0.18 98.23 ± 0.19 98.49 ± 0.16
IOURight-Lung 98.49 ± 0.13 98.59 ± 0.17 98.51 ± 0.17 98.47 ± 0.16 98.52 ± 0.18

IOUTrachea 80.74 ± 1.61 81.37 ± 1.71 82.37 ± 1.68 82.64 ± 1.82 84.53 ± 1.77
mIOU 94.6 ± 0.45 94.41 ± 0.46 94.71 ± 0.43 94.78 ± 0.45 95.29 ± 0.42

RecallLeft-Lung 99.18 ± 0.18 98.98 ± 0.23 99.02 ± 0.19 98.98 ± 0.22 99.26 ± 0.21
RecallRight-Lung 99.29 ± 0.18 99.2 ± 0.18 99.1 ± 0.18 99.23 ± 0.19 99.31 ± 0.18

RecallTrachea 95.32 ± 0.82 95.0 ± 1.01 94.58 ± 0.98 94.83 ± 1.01 95.54 ± 1.14
PrecisionLeft-Lung 99.23 ± 0.18 99.1 ± 0.25 99.29 ± 0.30 99.24 ± 0.22 99.28 ± 0.34

PrecisionRight-Lung 99.19 ± 0.12 99.38 ± 0.13 99.4 ± 0.18 99.23 ± 0.15 99.22 ± 0.13
PrecisionTrachea 84.13 ± 1.53 85.16 ± 1.52 86.34 ± 1.48 86.55 ± 1.44 88 ± 1.4

MPA 98.42 ± 0.26 98.47 ± 0.28 98.15 ± 0.32 98.23 ± 0.33 98.48 ± 0.36
ACC 99.65 ± 0.14 99.76 ± 0.1 99.77 ± 0.11 99.76 ± 0.09 99.78 ± 0.04

4.3. Comparison Experiments

MCRAU-Net was compared with U-Net, Vgg16-UNet, Resnet50-UNet, U-Next, and
TransUNet. It is important to note that all networks were trained from scratch, and no
transfer learning information was utilized. Table 2 shows the segmentation metrics cor-
responding to the different network structures, and compared with the six mainstream
networks U-Net, Vgg16-UNet, Resnet50-UNet, UneXt and TransUNet, the proposed net-
work showed a significant improvement, especially in Precision and IOU for the Trachea,
the range of which is from 1.9% to 9%. The improvement in segmentation metrics represents
an enhancement in network performance, compared with other networks, stemming from
the MCRAU-Net’s new encoding and decoding structure, which enhances not only the
network’s feature extraction capability but also the network’s recovery capability. Therefore,
the performance of MCRAU-Net is better than other mainstream structures and the new
network can be well used for semantic segmentation of lung parenchymal CT images.

Table 2. Cross-sectional comparison of MCRAU-Net with mainstream segmentation algorithms (%,
average ± standard deviation).

U-Net Vgg16-UNet Resnet50-UNet UneXt TransUNet UCTransNet MCRAU-Net

IOULeft-Lung 98.43 ± 0.22 98.14 ± 0.34 98.38 ± 0.32 98.1 ± 0.21 98.47 ± 0.17 98.52 ± 0.17 98.49 ± 0.16
IOURight-Lung 98.49 ± 0.13 98.29 ± 0.14 98.47 ± 0.33 98.19 ± 0.25 98.4 ± 0.19 98.6 ± 0.22 98.52 ± 0.18

IOUTrachea 80.74 ± 1.61 79.1 ± 3.56 80.04 ± 2.93 75.26 ± 5.42 82.04 ± 2.08 82.91 ± 2.28 84.53 ± 1.77
mIOU 94.6 ± 0.45 93.75 ± 0.99 94.14 ± 0.77 92.73 ± 1.41 94.59 ± 0.51 94.88 ± 0.61 95.29 ± 0.42

RecallLeft-Lung 99.18 ± 0.18 99.07 ± 0.14 99.23 ± 0.34 98.92 ± 0.22 99.15 ± 0.19 99.22 ± 0.19 99.26 ± 0.21
RecallRight-Lung 99.29 ± 0.18 99.13 ± 0.17 99.19 ± 0.11 99 ± 0.35 99.32 ± 0.17 99.3 ± 0.18 99.31 ± 0.18

RecallTrachea 95.32 ± 0.82 95.75 ± 1.04 96.42 ± 1.68 94.74 ± 1.17 95.67 ± 1.08 95.71 ± 0.92 95.54 ± 1.14
PrecisionLeft-Lung 99.23 ± 0.18 99.05 ± 0.31 99.23 ± 0.12 99.16 ± 0.28 99.3 ± 0.13 99.26 ± 0.11 99.28 ± 0.34

PrecisionRight-
Lung 99.19 ± 0.12 99.15 ± 0.19 99.03 ± 0.43 99.17 ± 0.31 99.07 ± 0.23 99.21 ± 0.13 99.22 ± 0.13

PrecisionTrachea 84.13 ± 1.53 79.87 ± 6.56 82.87 ± 3.39 78.62 ± 6 85.16 ± 2.45 85.91 ± 2.27 88 ± 1.4
MPA 98.42 ± 0.26 98.44 ± 0.28 98.04 ± 0.92 98.1 ± 0.26 98.48 ± 0.32 98.51 ± 0.31 98.48 ± 0.36
ACC 99.65 ± 0.14 99.66 ± 0.02 99.69 ± 0.02 99.63 ± 0.05 99.69 ± 0.03 99.72 ± 0.02 99.78 ± 0.04

Parameters 34.52 M 24.89 M 43.93 M 1.47 M 105.32 M 65.6 M 48.5 M

When the CT dataset was reconstructed in 3D, the 2D data corresponded to the
area of the lung and the 3D data corresponded to the volume of the lung. To further
demonstrate the superiority of the MCRAU-Net network, validation was performed with
3D segmentation metrics. The 2D data obtained from U-Net, Vgg16-UNet, Resnet50-UNet,
UneXt, TransUNet, UCTransNet, and MCRAU-Net were converted into 3D data, and
the specific 3D segmentation metrics were compared as shown in Table 3. In the 3D
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segmentation metrics, the metrics corresponding to the MCRAU-Net network were higher
than the other networks in terms of the DICE, IOU, VOE, and ASSD metrics, and the
good performance of the MCRAU-Net network was also reflected in the segmentation
metric RVD. Therefore, the superior performance of the 3D segmentation metrics also
demonstrates that the proposed algorithm can be well used for semantic segmentation of
lung parenchymal CT images.

Table 3. Comparison of various indicators after 3D reconstruction of segmented lung images (%,
average ± standard deviation).

U-Net UneXt TransUNet UCTransNet MCRAU-Net

DICE 97.67 ± 0.25 97.86 ± 0.23 96.69 ± 0.25 97.9 ± 0.20 98.01 ± 0.18
IOU 95.54 ± 0.26 95.61 ± 0.32 94.14 ± 0.29 95.78 ± 0.24 96.17 ± 0.22
VOE 0.0435 ± 0.045 0.0389 ± 0.057 0.057 ± 0.049 0.0432 ± 0.043 0.0372 ± 0.031
RVD 0.0079 ± 0.0038 0.0068 ± 0.002 0.0265 ± 0.0031 0.0151 ± 0.0029 0.0053 ± 0.0026
ASSD 0.439 ± 0.18 0.288 ± 0.15 1.06 ± 0.32 0.2946 ± 0.19 0.2278 ± 0.12
MSD 83.64 ± 8.86 68.96 ± 10.32 86.28 ± 15.32 78.58 ± 9.68 63.07 ± 7.82

4.4. Visual Comparison of Experimental Results

In Figure 8, subfigures (a) and (b) represent the original image and the gold standard of
the lung, and from subfigure (c) to (i) are the results of Vgg16-UNet, U-Net, Resnet50-UNet,
UneXt, TransUNet, and MCRAU-Net segmentation, respectively. Several networks have
some drawbacks, with under-segmentation and over-segmentation problems.
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In the first row of images, U-Net, TransUNet, and UCTransNet all have the issue of 
misclassifying parts of the background as lung tissue, with U-Net exhibiting the most 
prominent segmentation errors. In the second row of images, ResNet50-UNet, Vgg16-
UNet, and TransUNet all exhibit under-segmentation, with insufficient segmentation of 
the lung tissue in the left lung. In the third row of images, ResNet50-UNet, Vgg16-UNet, 
UneXt, and UCTransNet misclassify the holes in the left lung as trachea. In the fourth row 
of images, U-Net, UneXt, and TransUNet all have the issue of over-segmentation, misclas-
sifying parts of the background as left lung. Based on these observations, we can conclude 

Figure 8. Visual comparison of segmentation results of different algorithms. (a) Original CT Image.
(b) Gold Standard. (c) Resnet50-UNet. (d) Vgg16-Unet. (e) U-Net. (f) UneXt. (g) TransUNet.
(h) UCTransNet. (i) MRACU-Net.

In the first row of images, U-Net, TransUNet, and UCTransNet all have the issue of
misclassifying parts of the background as lung tissue, with U-Net exhibiting the most
prominent segmentation errors. In the second row of images, ResNet50-UNet, Vgg16-
UNet, and TransUNet all exhibit under-segmentation, with insufficient segmentation of
the lung tissue in the left lung. In the third row of images, ResNet50-UNet, Vgg16-UNet,
UneXt, and UCTransNet misclassify the holes in the left lung as trachea. In the fourth
row of images, U-Net, UneXt, and TransUNet all have the issue of over-segmentation,
misclassifying parts of the background as left lung. Based on these observations, we
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can conclude that the feature extraction capabilities of Vgg16-UNet, U-Net, ResNet50-
UNet, UneXt, and TransUNet are limited, with incomplete fusion of shallow and deep
information. In contrast, our proposed MCRAU-Net effectively addresses the above-
mentioned limitations and accurately segments the edge regions of the lung, outperforming
other mainstream networks.

The encoding structure of our network model utilizes the multiple concatenation
module and multi-scale residual module to enhance multi-scale features and to improve
the feature acquisition capability. This strengthens the ability of the network to extract
both boundary and location information. In the decoding phase, we employ an improved
attention mechanism module and skip connections to enhance the attention to both bound-
ary and semantic information. This promotes the fusion of the two types of features and
strengthens the reduction capability of the decoding part of the network. As a result,
our network is capable of reducing under-segmentation and over-segmentation in the
segmentation process.

4.5. Heatmap Analysis

The feature map of each layer of MCRAU-Net is generated as a heatmap, which is able
to represent the importance of each position for that class. As can be seen from Figure 9,
we can intuitively understand the operation of each convolutional layer in MCRAU-Net.
In the encoding part, each convolutional layer contains the boundary information of the
lung parenchyma; in the decoding part, each convolutional layer contains the location
information of the lung, especially the last layer of MCRAU-Net (Decoder1), which contains
rich edge information. And, the feature heat maps of the last layer of Vgg16-UNet, U-
Net, Resnet50-UNet, UneXt, TransUNet, UCTransNet, and MCRAU-Net were extracted,
as shown in Figure 10. As can be seen, the focus on the lung region of MCRAU-Net is
significantly better than that of the other mainstream networks, while the lung region
has the darkest color. MCRAU-Net captures the semantic information of the lung well
and effectively avoids over-segmentation and under-segmentation, demonstrating that
MCRAU-Net can be better used for semantic segmentation of the lung parenchyma.
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Figure 9. Heat map analysis of MCRAU-Net characteristics at each level. (a) Gold Standard.
(b) Feature visualization results of Encoder layer 1. (c) Feature visualization results of Encoder
layer 2. (d) Feature visualization results of Encoder layer 3. (e) Feature visualization results of
Encoder layer 4. (f) Feature visualization results of Encoder layer 5. (g) Feature visualization results
of Decoder layer 4. (h) Feature visualization results of Decoder layer 3. (i) Feature visualization
results of Decoder layer 2. (j) Feature visualization results of Decoder layer 1.
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5. Conclusions

Given the challenges posed by the complex lung structure, uneven gray scale, par-
tial volume effect of CT images, and limited robustness of U-Net in obtaining context
information, this paper proposes a new method called MCRAU-Net for lung parenchyma
segmentation in CT images; one of the results is shown in Figure 11. MCRAU-Net intro-
duces a multiple concatenation module in the encoding phase to enhance the network’s
ability to acquire location information. It also incorporates multi-scale residual learning
modules to improve the feature extraction capability and an improved attention module to
fuse high-level and low-level features. To optimize the training process, we use a hybrid
loss function consisting of CELoss and DiceLoss, with CELoss addressing the classifica-
tion task and DiceLoss emphasizing foreground details. The results demonstrate that our
proposed model can effectively avoid redundant and irrelevant information transmission.

Accurate lung parenchyma segmentation is a critical component in developing an aux-
iliary diagnosis system for lung diseases. It also impacts further diagnosis and treatment
of lung diseases. By analyzing lung segmentation results, clinicians can obtain essential
information, including the volume, shape, and position of a patient’s lungs, laying a solid
foundation for further treatment and surgical planning. The existing deep learning-based
lung segmentation algorithms, such as those in references [44,45], are lung segmentation
algorithms designed for X-ray images. They treat the left lung and right lung as a single
entity for segmentation, without a finer-grained distinction of the lung regions. Refer-
ence [46] focused on the segmentation of lung CT images. They utilized the Densenet
network architecture; however, they also did not perform a finer-grained segmentation of
the lung airways. In reference [47], the U-Net model was employed to differentiate between
the left lung, right lung, and heart. The target regions in this case were quite large, and no
modifications to the U-Net architecture were necessary. In the future, we plan to integrate
and deploy our segmentation model on relevant medical image delineation platforms to
improve the accuracy and efficiency of computer-aided diagnosis and treatment.
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Figure 11. The results of the CT image segmentation and reconstruction. In the picture, the blue mask
is the left lung, the purple mask is the right lung, and the yellow mark is the trachea.

Accurate segmentation of lung parenchyma and the trachea holds significant clinical
importance. Firstly, the segmentation of lung parenchyma and the trachea can provide more
precise medical imaging information, allowing for a more accurate assessment of bronchial
narrowing and lesion extent, thereby aiding in treatment planning and surgical proce-
dures. Secondly, in pulmonary surgeries, the precise segmentation of lung parenchyma
and trachea helps surgeons better preserve lung tissue, reducing surgical trauma and
complications. Additionally, scientific research on the interactions involving connectivity,
filling, stabilization, and nutrition between lung parenchyma and trachea enhances our
understanding of lung structure and function, offering insights into the prevention and
treatment of lung diseases.

In terms of future research directions, several aspects can be considered: (1) improve
algorithm performance by developing more efficient and accurate segmentation algorithms
for different types and qualities of medical images to enhance the precision and speed
of lung parenchyma and trachea segmentation; (2) consider physiological motion charac-
teristics by thoroughly considering the physiological motion characteristics of the lungs,
such as respiratory motion and cardiac pulsation, in the algorithm design to mitigate the
impact of motion artifacts on segmentation results; (3) expand the application areas by ex-
ploring applications beyond segmentation, including quantitative analysis and functional
assessments of lung parenchyma and trachea, providing valuable clinical information; and
(4) establish public datasets by fostering academic progress and algorithm optimization to
create public datasets for lung parenchyma and trachea segmentation.
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