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Abstract: The Safe Return to Port issue regarding cruise ships has been extensively researched, cover-
ing aspects such as performance, operations, and electrical systems. However, an often overlooked
aspect is the potential eruption of negative emotions among passengers during SRtP. This study aims
to investigate the prediction of collective emotions to facilitate timely safety planning and enhance the
safety of the Safe Return to Port process. To achieve this objective, an improved susceptible-infectious-
recovered model with bidirectional infection is proposed to describe the emotional contagion process
during the Safe Return to Port process. This model classifies the population into five emotional
(extremely anxious–anxious–normal–calm–very calm) states and introduces two sources of infection.
Moreover, it allows for emotions to transition both positively and negatively, making it a more realistic
representation of scenarios resembling long-term refuge scenarios. In this study, questionnaire data,
collected and statistically analyzed, serve as the primary dataset. A machine learning technique (the
weighted random forest algorithm) is integrated with the model to make predictions. The accuracy,
precision, recall, and the F-measure of prediction results demonstrate good performance. Addition-
ally, through simulation, this study illustrates the fluctuating nature of emotional changes during
the Safe Return to Port process of the cruise ship and analyzes the effects of varying parameters.
The findings suggest that the improved susceptible-infectious-recovered model proposed in this
paper can provide valuable insights for cruise ship emergency planning and positively contribute to
maintaining passenger emotional stability during the Safe Return to Port process.

Keywords: emotional contagion; improved susceptible-infectious-recovered model; two sources of
infection; machine learning; long-term refuge scenarios

MSC: 91D25

1. Introduction
1.1. Background

The introduction of Safe Return to Port (SRtP) into the International Convention for
Safety of Life at Sea (SOLAS) convention is based on the principle that “the ship itself
is its best lifeboat” [1]. SRtP refers to the fact that a passenger ship can rely on its own
power to return to the nearest port within the accident limit of an event, such as a fire or
water ingress, and that onboard safety meets the basic needs of its passengers and crew.
Increasing the number of people that passenger ships can hold has brought enormous
challenges to emergency evacuation and rescue work after marine accidents.

The existing regulations lack a specific timeframe for determining the duration of the
SRtP. This duration typically depends on factors such as the ship’s condition and the specific
route. In the case of ocean-going cruise ships, the average SRtP duration is approximately
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10 days. The SRtP designs usually adopt appropriate means (such as separation, double
sets, redundancy, protection, or a combination of these) to achieve the objectives of the
given specification. Therefore, due to various cost and construction considerations, a part
of the passenger ship’s main vertical areas is usually selected as its safety areas, while
targeted redundancy and separation protection designs are also carried out. Safety areas
need to safely accommodate all personnel on board, protect them from life threats, and
provide them with basic services. The specification requires that the per capita area be no
less than 2 m2 [1]. Therefore, for cruise ships, there might be scenarios during the SRtP
process where crowds are gathered in limited spaces for an extended period.

1.2. Related Work

In order to ensure SRtP and prevent passenger ship accidents, human factors in emer-
gencies are important factors that should be considered. The key problem is how to under-
stand the role of group emotions in decision-making processes. In general, group emotions
directly affect group behavior in decision-making processes. Currently, research into crowd
emotions is divided into two main directions. The first involves monitoring, analyzing,
and predicting abnormal emotions in groups based on image recognition. These studies
focus on detecting abnormal behaviors and emotions by integrating relevant theories on
emotions, 2D [2], 3D convolutional neural networks [3], and deep learning methods [4].
Predictive models are constructed using classifiers, and multiple deep learning frameworks
can be integrated with psychological fuzzy computing [5] for crowd behavior detection and
prediction. The other direction involves semantic recognition, which starts with specific
events and combines emotional analysis theory and semantic analysis to process, discover,
and infer the spatiotemporal emotions involved in the semantic expressions of the event [6].
This approach provides situational awareness of the event. However, these studies often
ignore the impact of emotional contagion, and their prediction accuracy depends on the
size of their sample datasets and computational power. When the sample dataset is small,
the prediction accuracy may be decreased.

In emergency situations, it is crucial for decision makers to comprehend the impact
of crowd emotions. One method for researching the spread of emotions within a group
involves constructing an infection model that tracks the evolution of emotional states over
time. This model simulates how emotions are transmitted within a specific population.
As machine learning technologies have advanced, many scholars are increasingly turning
to machine learning to mathematically model these temporal state transitions in various
practical scientific and engineering problems. Researchers employ a variety of methods
and techniques in diverse fields, including physical systems [7], climate and environmental
data analysis [8], and structural health monitoring [9,10], to address complex real-world
challenges. These approaches provide powerful tools for modeling and predicting changes
in state over time. They enable the extraction of essential hidden variables and the repre-
sentation of state transition rules in a comprehensible manner, ultimately contributing to
applications and research in the realms of science and engineering.

The infectious characteristics and influencing factors of emotions can vary across dif-
ferent scenarios. This highlights the importance of conducting research tailored to specific
scenarios, including those that involve adversarial situations [11], queuing scenarios [12],
and emergency evacuations [13]. Additionally, different boundary conditions can have an
impact on the transmission process [14]. The research purpose of the emotional transmis-
sion process is to explore the impact of various influencing factors on the transmission pro-
cess. The other aim is to develop reasonable interventions within an appropriate timeframe
to prevent the spread of negative emotions that could lead to serious consequences [15].

The emotional transmission in crowds is often difficult to predict and varies depending
on the context, making it important to establish valid anxiety and emotional transmission
models. Computational models of emotional contagion typically include three aspects:
understanding, prediction, and control. Over the past decade, researchers have developed
several models based on the hypothesis that emotional contagion is similar to infectious
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diseases, with many relying on the susceptible-infectious-recovered (SIR) model. The SIR
model divides the human population into three categories: the susceptible population (S),
those who are infected and can transmit the disease (I), and the removed population (R),
which is typically assumed to have recovered [16–20]. However, for some diseases, individ-
uals who have recovered can still transmit the disease to others, leading to the development
of the extended SIR model, the (susceptible—infected—removed—susceptible) SIRS model.
For diseases with latent periods, the (suspected–exposed–affected–removed) SEIR model
has been proposed.

With the advancement of research in the field, the limitations of the traditional SIR
model and the SEIR model have become apparent. To increase their adaptability to com-
plex scenarios, many scholars have proposed improvements to the traditional SIR model
from various perspectives. For instance, certain researchers have added an alert state [21]
or two healing states [22] to the model, while others have classified the original state
in greater detail [23]. Furthermore, additional factors have been considered, such as
nodes [24], positive emotions [25], and other psychological effects [26]. Additionally, longi-
tudinal expansions have been pursued by integrating the SIR model into other theoretical
frameworks [27].

While certain scholars have researched the infection parameters and transmission
routes of the model to improve its single infection rate, in actual emotional transmis-
sion, other factors can also influence the rate. These include trust differences between
groups [28], deviations in emotional information transmission [29], and the external
environment [30]. Additionally, the incidence of infection sources [31] and the recurrence
of infection terminals [32] are also crucial factors affecting emotional transmission. Thus, it
is essential to consider all of these factors when studying emotional transmission.

Based on the summary of relevant literature, it can be observed that there are two main
limitations in the current research on the SIR model. Firstly, there are comparatively fewer
studies on the impact of positive and negative emotions. As related psychology research
advances, an increasing number of studies report the significant influence of positive
emotions on emotional contagion. In various situations, including appropriate positive
emotional guidance can prevent the swift dissemination of negative emotions. Secondly,
there are insufficient studies on long-term emotional transmission. The existing body of
research on emotional contagion has primarily concentrated on short-term, sudden events
occurring within a timeframe of a few hours. However, there has been a notable dearth
of studies examining prolonged situations, such as long-term refuge behavior lasting for
several days.

With the implementation of SRtP regulations, researchers have gradually carried out
various studies on issues related to the SRtP. Currently, research on the safe return of
ships mainly focuses on the impact of ship design, system reliability, electromechanical
equipment, engine design, fire alarm devices, and other aspects. Further, some studies have
introduced various systems concepts. Due to the need to concentrate the entire passengers
in a safe area during the SRtP, the possibility of passengers experiencing depression and
anxiety gradually increases as the time they spend in the area increases, which increases
the possibility of serious incidents and threatens the overall safety of the ship.

In the SRtP of cruise ships, the severity of the accident is not always immediately
apparent, resulting in different emotional responses among all persons. Some may not
initially feel anxious, but as time passes, they may gradually become more anxious or
adapt to the situation. Both negative emotions and positive emotions, such as calmness
and optimism, can spread, leading individuals to transition to a positive emotional state.
Traditional models, like the SIR, susceptible-infectious-susceptible (SIS), and susceptible-
exposed-infectious-recovered (SEIR) models, may no longer be applicable in these cases.
Moreover, the SRtP may last for several days, and passengers may have negative emotions
during these days.

To address these challenges, this study first constructs an improved SIR model. This
model defines two sources of infection, allowing for bidirectional emotional transitions.
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For instance, in situations where accidents are not exceptionally severe, most individuals’
emotions tend to fluctuate, and extremely anxious or very calm states can influence the
emotions of those around them. Subsequently, this model is integrated with the random
forest algorithm, utilizing questionnaire survey data as the primary dataset, to predict the
emotional states of the population. Finally, this study employs simulation techniques to
visualize the dynamics of the model and analyze the effects of relevant parameters.

The contributions of this paper can be summarized as follows:

(1) This paper introduces a novel model to investigate changes in collective emotions,
especially in long-term refuge scenarios.

(2) By combining the model with machine learning, the problem of predicting emo-
tional states is transformed into a classification task, facilitating the prediction of the
emotional states of the population.

(3) The proposed model is validated through simulation software, enabling the visualiza-
tion of emotional transitions.

The rest of this paper is structured as follows. Section 2 constructs an emotional conta-
gion model that conforms to the SRtP scenario based on the SIR model theory. Section 3
analyzes the questionnaire data. Section 4 constructs a prediction algorithm and analyzes
the results. The last section presents the conclusions and future work.

2. Problem Description

According to the relevant regulations on SRtP in reference [1], it can be seen that
accidents are not serious when cruise ships execute the SRtP program. Moreover, for ocean-
going cruise ships, the duration of SRtP scenarios is typically longer. Consequently, in the
context of SRtP, it is highly probable that passenger emotions will undergo reciprocating
changes. This stands in stark contrast to the scenario where nearly everyone experiences
panic during the execution of an abandon ship procedure.

Uncertainty in emotion state scoring is a common challenge in emotion research due
to the inherent complexity of this psychological phenomenon. Several factors contribute to
this uncertainty and should be carefully considered:

1. Subjectivity: Emotions are highly subjective experiences, meaning that individuals
can have varying emotional responses to the same situation. Consequently, when
assigning emotion state scores, researchers may be influenced by their own subjective
biases, resulting in inconsistent ratings.

2. Variability: Emotions are dynamic and can change over time. Different stimuli can
lead to diverse changes in emotional states, further complicating the scoring process.

3. Difficulty in Quantification: Quantifying emotions poses a significant challenge,
especially when categorizing them into discrete levels. Generally, employing a finer-
grained classification system with more levels can help reduce uncertainty.

4. External Factors: Emotional states are susceptible to external influences, including
cultural, individual, and societal factors. These external factors can lead to variations
in emotional responses among individuals facing the same situation, thus augmenting
scoring uncertainty.

Taking into account the above issues, this section introduces a novel emotional con-
tagion model. This model aims to provide a more realistic simulation of the emotional
contagion process within a population. It accomplishes this by incorporating dual con-
tagion sources and taking into account bidirectional emotional transitions. An approach
involving self-scoring through questionnaires is adopted to minimize the impact of sub-
jective biases across participants. Additionally, the traditional SIR model, which typically
encompasses three levels, is expanded to include five levels, providing a more nuanced
and comprehensive understanding of emotional states. This expansion aims to enhance the
overall clarity and accuracy of emotion state assessment in the research.
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2.1. Model Building

When a cruise ship executes the SRtP, passengers begin to realize the emergency
condition of the ship and move to the safety area. Owing to variations in individuals’
psychological thresholds, emotional states typically fall into three broad categories: positive
emotional state, neutral emotional state, and negative emotional state [33]. Nonetheless, the
contagiousness of these emotional states at different levels also varies, with a proportional
increase in infectious potential corresponding to the extremity of the emotional state. To
refine the analysis, all positive and negative emotional states have been further subdivided,
resulting in the identification of five distinct emotional states, namely extreme anxiety (E),
general anxiety (A), normal (N), calm (C), and very calm (V). To facilitate statistical and
computational analysis, assign a score of 1 to 5 to these five emotional states, ranging from
negative to positive, as shown in Table 1. These five emotional states can transform into
each other, as shown in Figure 1. The transformation process can be described as follows:

• During the initial stage of the SRtP in response to an accident on a cruise ship, passen-
gers may experience five different emotional states with varying probabilities after
they have gathered in a safety area. These states represent the initial distribution of
emotions among the crowd.

• Over time, the emotional states of passengers undergo changes, influenced by varying
probabilities of transitioning between different emotional states. The transition proba-
bility between two states is denoted by αij, where i and j represent the scores of each
state, respectively. Thus, the state transition matrix is given by Equation (1), where Pij
is the transition probability from state i to j.

Table 1. Emotional states score.

Emotional State Score

Extremely anxious 1
Anxious 2
Normal 3

Calm 4
Very calm 5
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Figure 1. Relationship between emotional state transitions (αij is the probability of transition from
state i to state j).
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To provide a clearer description of the passenger emotion contagion process, the
following definitions are established:

Pij =


1− α12 α12 0 0 0

α21 1− α21 − α23 α23 0 0
α31 α32 1− α31 − α32 − α34 α34 0
0 0 α43 1− α43 − α45 α45
0 0 0 α54 1− α54

, (1)

Definition 1. Definition of the crowd’s emotional state. The emotional states of passengers can
be divided into five categories at time t: extremely anxious, anxious, normal, calm and very calm,
where t represents the time point at which a specific phase concludes. The calculation of total number
of people is shown in Equation (2), where T is a constant total number of people. E(t), A(t), N(t),
C(t) and V(t) represent the number of people in extremely anxious, anxious, normal, calm and
very calm states at time t.

T = E(t) + A(t) + N(t) + C(t) + V(t), (2)

Definition 2. State transition events. A state transition involves a passenger transitioning from
one state to another state. Let T(i)(t) and T(j)(t) represent the number of people in state i and j at
time t; T(i,j)(∆t) represents the number of people whose status has changed from the state i to j in a
time interval ∆t. Thus, the number of people at time t + ∆t is given by Equations (3) and (4), where
T(i)(t + ∆t) and T(j)(t + ∆t) are the number of people in state i and j at time t + ∆t. Moreover,
each person in a state can only transition to the nearest positive or negative state. For example,
people in an anxious state can only transition to an extremely anxious state or a normal state, and
cannot directly transition to a calm state or a very calm state. Only people in a normal state can
directly transition to an extremely anxious state.

T(i)(t + ∆t) = T(i)(t)− T(i,j)(∆t), (3)

T(j)(t + ∆t) = T(j)(t) + T(i,j)(∆t), (4)

Definition 3. The source of infection is set as extremely anxious people and very calm people. The
other states are not contagious.

Definition 4. Due to the impact of environment and time, people in any given state have the
potential to transition to an adjacent state. For instance, even if people in a state of calm are not
directly affected by someone experiencing extreme anxiety or people who are extremely calm, there
exists a certain probability that they may transition to a very calm state or return to normal during
the SRtP.

Definition 5. R(E) denotes the coefficient of the rate of change, indicating how passengers in
states other than the negative state are influenced by passengers experiencing extreme anxiety.
For example, if R(E) = 2, it implies that, under this influence, the probability of passengers
transitioning to a negative state will become twice as high as the original probability. The function
R(E) can be characterized as a temporal and spatial function, represented by Equation (5), in which
the variable d signifies the linear distance between the passenger in a state of extreme anxiety and
the target passenger.

R(E) = R1(d, t) , (5)
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R(V) is the coefficient that represents the influence of individuals in a very calm state on the
probability of transitioning the other person from a different state to a positive state. R(V) can be
characterized as a temporal and spatial function, which can be expressed as Equation (6).

R(V) = R2(d, t) , (6)

While the proposed model is not a traditional SIR model, it incorporates some similar
concepts to describe the spread and evolution of emotions.

1. Emotional State Classification: Unlike the infected state in the SIR model, this model
categorizes emotional states into five distinct categories, ranging from extreme anxiety
to very calm, and assigns scores from 1 to 5 to represent negative to positive emotional
states. These different states can be thought of as different “infection” states within
the crowd.

2. State Transitions: Similar to the infection rate in the SIR model, the state transition
probabilities αij in this model represent the likelihood of transitioning from one emo-
tional state to another. These transition probabilities constitute a state transition matrix
used to describe the spread and change of emotions between different emotional states,
resembling the transmission process in the SIR model.

3. Temporal Evolution: Like the SIR model, this model also considers the evolution over
time. At the initial moment, passengers are in different emotional states, representing
the initial distribution of emotions. Over time, passengers’ emotional states change
influenced by the transition probabilities between different emotional states, akin to
the infection spread process in the SIR model.

While this model is used to describe the spread and evolution of emotions, rather
than the transmission of infectious diseases, it employs similar concepts of probabilistic
transitions and state changes to describe how emotions propagate within a crowd in
response to an emergency situation. The following advanced models also use the SIR model
concept: the cyber-physical society-oriented recurrent emotional contagion (CPS–REC)
model, stochastic event-based emotional contagion (SEEC) model, and emotional contagion-
aware deep reinforcement learning model for antagonistic crowd simulation (ACSED)
model (Appendix C).

The CPS–REC model takes into consideration the influence of emotional recurrence on
the emotional contagion process, aiming to provide a more comprehensive understanding
of crowd behavior. The formula of degree-based Mean-Field Equations is presented. These
equations describe the dynamic evolution of the number of individuals within crowds
while accounting for their heterogeneity.

The SEEC model introduces the occurrence intensity of infection/recovery events
and constructs a state transition matrix to calculate the crowd state evolution. There are
two categories within the crowd: susceptible individuals (i.e., individuals without negative
emotions) and infected individuals (i.e., individuals with negative emotions) in this model.

The ACSED is a method designed to investigate the intricate interactions between
emotions and decision-making within adversarial environments. Its emotional contagion
module is constructed using the enhanced SIS model. What sets it apart from previous
studies on emotional contagion is its integration of deep q network (DQN). ACSED lever-
ages DQN to estimate individuals’ inclinations towards engaging in adversarial behavior,
and then analyze the rationality underlying behavioral predictions.

2.2. Calculation of Crowd States

According to the relevant theories of the SIR Model [34], the system dynamics dif-
ferential equations of the emotion model studied in this paper can be constructed. After
time interval ∆t, the population in each state can be calculated by the number of existing
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passengers, passengers transferred into the state, and passengers transferred out of the
state. The following is the specific calculation formula:

dE
dt

=
E(t + ∆t)− E(t)

∆t
= N(t)·α31 + A(t)·α21 − E(t)·α12, (7)

dA
dt

=
A(t + ∆t)− A(t)

∆t
= E(t)·α12 + N(t)·α32 − A(t)·(α21 + α23), (8)

dN
dt

=
N(t + ∆t)− N(t)

∆t
= A(t)·α23 + C(t)·α43 − N(t)·(α31 + α32 + α34), (9)

dC
dt

=
C(t + ∆t)− C(t)

∆t
= N(t)·α34 + V(t)·α54 − C(t)·(α43 + α45), (10)

dV
dt

=
V(t + ∆t)−V(t)

∆t
= C(t)·α45 −V(t)·α54, (11)

dE
dt

+
dA
dt

+
dN
dt

+
dC
dt

+
dV
dt

= 0, (12)

dE
dt , dA

dt , dN
dt , dC

dt and dV
dt represent the change rate of the number of people in each emotional

state, respectively.
Equation (7) describes the rate of change of the number of people in state E over time.

It considers the change in the number of people in this state as a result of passengers transi-
tioning into this state from state N and state A (with probabilities α31 and α21, respectively)
and those transitioning out of this state to the normal state A (with a probability of α12).

Equation (8) represents the rate of change in the number of people in state A over time.
It accounts for people moving into this state from state E and state N (with probabilities
α12 and α32, respectively) and those transitioning out to either state E or state N (with
probabilities α21 and α23).

Equation (9) represents the rate of change in the number of people in state N over
time. It considers individuals transitioning into this state from state A and state C (with
probabilities α23 and α43, respectively) and those transitioning out to state E, state A, and
state C (with probabilities α31, α32, and α34).

Equation (10) describes the rate of change for the number of people in state C over
time. It accounts for individuals transitioning into this state from state N and state V (with
probabilities α34 and α54, respectively) and transitioning out to state N and state V (with
probabilities α43 and α45, respectively).

Equation (11) represents the rate of change in the number of people in state V over time.
It considers individuals transitioning into this state from state C (with probabilities α45,
respectively) and those transitioning out to the state C (with probabilities α54, respectively).

Equation (12) reflects the conservation of the total population within the emotional
states. In other words, the sum of the rate of change of people in all emotional states equals
zero, indicating that the total number of passengers remains constant over time.

These equations collectively model how the population in each emotional state changes
over time based on transition probabilities between different emotional states.

As inferred from the preceding context, αij denotes the probability of transitioning
from state i to state j. In cases where a direct transition between two states is not feasible,
αij is assigned a value of 0. When multiple passengers are in extreme emotional states,
their influence on passengers in other states becomes cumulative. Let αij(t) represent the
transition probability from state i to state j at time t, and let α′ij(t + ∆t) signify the transition
probability at time t + ∆t. The relationship between αij(t) and α′ij(t + ∆t) can be described
by Equation (13).

α′ij(t + ∆t) = αij(t)·
[
∑TE

0 R(E), i > j + ∑TV
0 R(V), i < j + δij

]
, (13)
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When i > j, this indicates the impact of passengers experiencing heightened anxiety
levels, and the probability of transitioning towards negative emotional states is increased.
At time t + ∆t, the probability of state transition can be calculated as the sum of the rate
of change coefficients for passengers in a state of extreme anxiety, multiplied by αij(t).
Similarly, when i < j, the probability of state transition can be computed as the sum of
rate of change coefficients for passengers in a notably calm state, again multiplied by αij(t).
If i = j, it indicates the maintenance of the existing state. TE represents the number of
passengers with extreme anxiety in the enclosed space, and TV represents the number
of passengers who are very calm in the enclosed space. δij represents 1 when i = j, and
otherwise 0.

Normalization can be achieved by using Equation (14).

αij(t + ∆t) =
α′ij(t + ∆t)

∑5
j=1 α′ij(t + ∆t)

, (14)

where i ∈ [1, 5], and ∑5
j=1 α′ij(t + ∆t) represents the sum of the probabilities of the transition

from the i state to the other states. αij(t + ∆t) is the result after normalization.

3. Data and Analysis
3.1. Questionnaire Experimental Data

A significant portion of the existing research in this field has primarily concentrated
on examining emotional contagion within relatively few hours, rendering it inadequate for
application to the SRtP of cruise ships, which can span tens of days. This study is based on
the emotional contagion model established in Section 2.1, and a questionnaire is developed
using the control variable method (Appendix A). In the SRtP of a cruise ship, there is a
scenario that all passengers are concentrated in safe areas, and the specification requires
that the per capita area be no less than 2 m2 [1]. In large cruise ships, the large public
areas are about 1000 m2, which can accommodate more than 500 passengers. In the event
of a mass incident involving 500 passengers, the safety of the ship and passengers could
be seriously compromised. By separating these areas into smaller zones, the number of
passengers and crowd density can be effectively regulated. In order to study the influence
of the total population and population density on emotional contagion in a small area, the
control variates are used to establish different scenario control groups. In each scenario,
the moment when all passengers complete the assembly in the safety area is recorded as
moment t = 0. The emotional state collected at 0:00 on the second day of the assembly is
noted as the emotional state for Day 1. Similarly, the emotional states for Day 3, Day 5,
Day 7, and Day 10 correspond to the emotional states collected at 0:00 on the day after these
days. Scenario 1 to Scenario 3 set the density to 2 m2/person and form a comparison group
by gradually increasing the number of passengers. In scenarios 1, 4, and 5, maintain the
total number of passengers unchanged, and create another comparison group by altering
the crowd density. The scores are set for various emotional states from extreme anxiety
to very calm states, ranging from 1 to 5 points, as shown in Table 1. In addition, to
filter out questionnaires that have not been filled out diligently, an attention mechanism
screening question will be included in the questionnaire. In total, 527 valid questionnaires
were collected through the China Questionnaires Star Corporation. The results of the
questionnaire are shown in Figures 2–7.

Based on the data presented in Figure 2, it can be observed that, when guest rooms on
a cruise ship are unavailable, most passengers (59.7%) prefer to seek refuge in restaurants,
even if these restaurants are unable to offer regular catering services. Meanwhile, 18.6% of
passengers tend to choose commercial areas as a place of refuge. Additionally, 21.7% of
passengers tend to opt for gangway and stairway landings as a refuge.
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Figures 3–5 illustrate the emotional state distributions of three scenarios with equal
density but varying total number of passengers. Figure 3 illustrates a notable surge in
the population experiencing the extremely anxious state from Day 7 to Day 10, while the
number of passengers in the very calm state decreases significantly from Day 1 to Day 3.
Upon comparing Figures 3–5, a discernible correlation emerges: changes in the number



Mathematics 2023, 11, 4461 12 of 54

of passengers exert a significant influence upon their emotional states. It is observed that,
with a constant density, an increase in the total number of passengers results in an upward
trend and a higher peak value for the number of passengers in an extremely anxious state.
However, the proportion of passengers in the very calm state exhibits a downward trend.
The proportion of passengers in the anxious state fluctuates, with the peak time gradually
advancing. Moreover, the fluctuation of the normal and calm states becomes gradually
smooth over time.

Upon a comparison of Figures 3, 6 and 7, evident correlations surface between fluctua-
tions in passenger density and resultant changes in their emotional states. Based on the
data presented in these three figures, an obvious trend emerges wherein the proportion
of individuals in an extremely anxious state experiences a pronounced surge from Day 7
through to Day 10. In contrast, during the initial Day 1 to Day 3 period, there is a discernible
reduction in the proportion of individuals manifesting a very calm state. Despite the total
number of passengers remaining constant, the peak number of those in the extremely
anxious state decreases as the per capita area increases. Conversely, the peak number
of the very calm state shows an upward trend. According to the data depicted in these
three figures, two distinct trends become evident: as the per capita area increases, there is
a recognizable postponement in the onset of the proportion of passengers in an anxious
state; simultaneously, there is a corresponding decrease in the magnitude of the peak. The
normal state exhibits relatively smooth fluctuation patterns. The state of calm also demon-
strates relatively smooth fluctuations but with an increasing peak. Available data indicate a
multifaceted correlation between population density and emotional states, with different
emotional states exhibiting varying degrees of response to changes in population density.

3.2. Reliability and Validity Analysis of the Questionnaire

To ensure the quality of questionnaires, researchers often use reliability and validity
measures [35]. When a questionnaire demonstrates good reliability and validity, it suggests
that the data obtained from the questionnaire are internally consistent and accurate, making
it suitable for further analysis. It is necessary to conduct a comprehensive evaluation of the
reliability and validity of the questionnaire, as it consists of multiple scale questions.

Table A3 presents the reliability calculation table, which shows that the reliability
coefficient value of the Cronbach α is 0.916. This value is greater than 0.9, indicating
that the reliability quality of the research data is high [36]. Additionally, the value of
the Corrected Item–Total Correlation (CITC) is also analyzed to indicate the degree of
association between the items. It is found that the CITC values corresponding to questions
1, 3, and 4 are all less than 0.2. This suggests that the relationships between these three
questions and the rest of the analysis items are weak. This is mainly due to the fact that these
questions involve pre-test analysis. Overall, the reliability of the research data enhances the
credibility of the study’s findings.

Validity research is used to analyze whether a research item is reasonable and mean-
ingful. The validity level of data can be analyzed through indicators such as the Kaiser–
Meyer–Olkin (KMO), commonality, variance interpretation rate, and factor load coefficient
values. The KMO value is used to determine the suitability of information extraction, the
commonality value is used to exclude unreasonable research items, the variance interpreta-
tion rate value is used to explain the level of information extraction, and the factor load
coefficient is used to measure the corresponding relationship between factors (dimensions)
and items [37]. The results of the validity analysis are presented in Table A4. It can be
seen from the table that most research items have commonality values over 0.4, except for
question 4. This indicates effective extraction of research item information. Question 4
is less than 0.4, indicating that the research item information is not able to be effectively
expressed, mainly because it involves the collection of intentions. The variance interpre-
tation rates of the five factors are 21.3%, 20.1%, 19.4%, 8.9%, and 3.8%, respectively. The
cumulative variance interpretation rates after rotation are 73.346% > 50%. This means
that the amount of information in the research item can be effectively extracted. If the
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p-value of Bartlett’s Test of Sphericity is less than 0.05, it indicates that it has passed the
Bartlett sphericity test and has validity [37]. The p-value in this study is less than 0.001,
indicating that the questionnaire has successfully undergone validity analysis, confirming
its adequate validity.

3.3. Correlation Analysis

Correlation analysis refers to the analysis of two or more correlated variable elements,
which is used to measure the degree of correlation between two variable factors. Based
on a designated control group, the study examines the correlations between population
density and emotional states at different times, as well as the correlations between total
population and emotional states at different times.

Table 2 shows the results of a Non-parametric test comparing emotional states across
different population densities. Q1 and Q3 denote the lower quartile and upper quartile,
respectively. The differences in density can be seen for five emotional states at five different
time points. It is evident that the density values can be divided into two groups, with
values of 2.0 and 3.0, respectively. The second and third columns present the lower quartile,
median, and upper quartile values for daily emotional states under two different densities:
2 m2/person and 3 m2/person. To illustrate, see the data in the first row of the second
column, where, under a density of 2 m2/person, the median for emotional score in Day 1
registers as 2, the lower quartile as 3, and the upper quartile as 5. Notably, within the
second and third columns, instances arise where the median is equal to either the lower
or upper quartile. This occurrence signifies that, for a specific emotional state, the count
of individuals with that emotional score encompasses at least 25% of the total population.
For example, in the first row of the third column, both the median and lower quartile
are reported as 4. This observation implies that, under the density of 3 m2/person, when
individuals are arranged in ascending order based on their emotional scores, those scoring
4 represent a range spanning at least 25% to 50% of the total population.

Table 2. Non-parametric test analysis for different densities.

Items
ρMedian(Q1, Q3)

Mann–Whitney U Mann–Whitney z p
2.0 3.0

Day 1 Emotional States 4.000 (3.0, 5.0) 4.000 (4.0, 5.0) 666,584.500 −9.116 < 0.01
Day 3 Emotional States 3.000 (2.0, 4.0) 4.000 (3.0, 4.0) 601,989.000 −12.634 < 0.01
Day 5 Emotional States 2.000 (2.0, 3.0) 3.000 (3.0, 4.0) 564,124.000 −14.654 < 0.01
Day 7 Emotional States 2.000 (1.0, 2.0) 2.000 (2.0, 3.0) 549,802.500 −15.549 < 0.01

Day 10 Emotional States 1.000 (1.0, 2.0) 2.000 (1.0, 3.0) 586,807.000 −12.559 < 0.01

To analyze these groups, a Mann–Whitney test is needed. However, if there are
more than two groups, a Kruskal–Wallis test is necessary [38]. The results indicate that
the emotional states at all five time points vary significantly across different population
densities (p < 0.05). This suggests that samples with different densities display significant
differences in emotional states at all five time points. Further analysis reveals the following:

(1) Based on the study results, it appears that population density has a significant effect
on emotional state on Day 1, with a p-value less than 0.01 indicating a significant
difference. Additionally, the comparison of median differences suggests that the
source of the differences is due to different data distributions. Figure 8 shows a
block diagram of emotional state data at different densities, revealing that the mean
emotional state on the first day is around 4.1 when the density is 2 m2/person, while
it is around 4 when the density is 3 m2/person. These findings suggest that higher
population densities may lead to a decrease in emotional state on Day 1.
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(2) The population density shows a significance level for the emotional states on Day 5, and
the mean value of 2 m2/person is significantly lower than that of 3 m2/person.

(3) The analysis shows that population density has a significant impact on emotional
states on Day 7. Based on Figure 8, it can be observed that, when the population
density is 2 m2/person, the mean emotional state score on Day 7 is approximately
2.1. However, the mean emotional state score on Day 7 is around 2.5 when the
density is 3 m2/person. From these two mean values, it can be inferred that, when
the population density is 2 m2/person, the emotional state for Day 7 is more likely to
be distributed with a score of 2.

(4) Passenger density exhibits a notable correlation with emotional states on Day 10. The
median differences further demonstrate that the average density of 2 m2/person is
significantly lower than that of 3 m2/person. Specifically, in the scenario where the
density is 3 m2/person, there appears to be a higher count of individuals exhibiting
comparatively lower emotional scores. This observation is particularly evident when
contrasting it with the crowd characterized by a density of 2 m2/person.

Through the Mann–Whitney test, it can be found that the samples with different
densities showed significant differences in emotional states at different days.

Table 3 presents the results of a non-parametric test for the emotional states of dif-
ferent population samples, indicating the differences in the total number of passengers
in five emotional states at different days. The Kruskal–Wallis test is used to analyze the
data since the total number of samples exceeds two groups. The results show that there
are no significant differences in emotional states among different population samples on
Day 1, Day 3, Day 5, and Day 7 (p > 0.05), indicating consistent emotional patterns across
these time periods. Further analysis is required from the box plots. Figure 9 shows the box
plots of emotional states for different population samples. However, significant differences
(p < 0.01) are observed in one emotional state on Day10, suggesting that the emotional state
differs among different total sample sizes on this day. Based on Figure 9, the following
results can be obtained.
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Table 3. Non-parametric test analysis for different total population samples.

Items
nMedian (Q1, Q3)

Kruskal-Wallis H p
30.0 50.0 100.0 (n = 527)

Day 1 Emotional States 4.000 (4.0, 5.0) 4.000 (3.0, 5.0) 3.000 (2.0, 4.0) −501.523 1.000
Day 3 Emotional States 4.000 (3.0, 4.0) 3.500 (3.0, 4.0) 3.000 (2.0, 3.0) −587.672 1.000
Day 5 Emotional States 3.000 (2.0, 4.0) 3.000 (2.0, 4.0) 2.000 (1.0, 3.0) −747.935 1.000
Day 7 Emotional States 2.000 (2.0, 3.0) 2.000 (1.0, 3.0) 1.000 (1.0, 2.0) −305.579 1.000
Day 10 Emotional States 2.000 (1.0, 2.0) 2.000 (1.0, 2.0) 1.000 (1.0, 2.0) 41.962 < 0.01
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(1) Regarding the emotional state scores on Day 1 shown in Figure 9, as the total number
of passengers changes from 30 to 50, the lowest score decreases from 3 to 2. Simulta-
neously, the interquartile range, representing the concentration interval, narrows from
(4, 5) to (3, 4), and the mean score also decreases. When the number of passengers
changes from 50 to 100, the concentration interval expands from (3, 4) to (2, 4), and the
mean score decreases further. A decrease in the mean implies a rise in the proportion
of passengers with lower scores. Therefore, overall, an increase in the total number of
passengers has a negative impact on the emotional state on Day 1.

(2) For the emotional state scores on Day 3, as the total number of passengers changes
from 30 to 50, the concentration interval expands from (3, 4) to (2, 4), and the mean
score decreases significantly. When the number of passengers changes from 50 to
100, the lowest score decreases from 2 to 1, the concentration interval narrows from
(2, 4) to (2, 3), and the mean score also decreases. Thus, an increase in the number of
passengers has a negative effect on the emotional state on Day 3.

(3) Regarding the emotional state scores on Day 5, as the number of passengers changes
from 30 to 50, the extreme value and concentration interval remain the same, but the
mean score decreases, indicating that the group is shifting towards lower emotional
state scores. When the number of passengers changes from 50 to 100, the concentration
interval expands from (2, 3) to (1, 3), and the mean score decreases further. This
suggests that an increase in the total number of passengers has a negative impact on
the emotional state on Day 5.

(4) For the emotional state scores on Day 7, as the number of passengers change from
30 to 50, the concentration interval decreases from (2, 3) to (1, 2), and the mean score
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decreases. When the number of passengers changes from 50 to 100, the extreme value
and concentration interval remain the same, but the mean score decreases, indicating
that the group is shifting towards lower emotional state scores. Therefore, an increase
in the number of people has a negative effect on the emotional state on Day 7.

(5) Regarding the emotional state scores on Day 10, as the number of passengers change
from 30 to 50, the extreme value and concentration interval remain the same, but the
mean score slightly decreases. When the number of passengers change from 50 to 100,
the highest score decreases from 3 to 2, the concentration interval remains the same,
and the mean score decreases. Thus, an increase in the number of passengers has a
negative impact on the emotional state on Day 10.

In summary, an increase in the number of passengers will lead to a decrease in the
emotional score, reflecting a negative impact on emotions. Moreover, different numbers of
passengers may result in different ranges of emotional fluctuations.

Tables 4 and 5 are summary tables of model regression coefficients, where SE rep-
resents standard error, z(CR) represents critical ratio, and p represents significance. As
can be seen in Table 4, a significant and positive impact relationship is revealed between
emotional states at adjacent time points. The standardized path coefficients, approximately
0.7, emphasize this relationship.

Table 4. Summary table of model regression coefficients for adjacent time.

Items 1 Items 2
Unstandardized

Path
Coefficient

SE z (CR) p
Standardized

Path
Coefficient

Day 7 Emotional
States

Day 10 Emotional
States 0.741 0.012 63.026 < 0.001 0.775

Day 5 Emotional
States

Day 7 Emotional
States 0.748 0.012 61.752 < 0.001 0.769

Day 3 Emotional
States

Day 5 Emotional
States 0.758 0.012 61.104 < 0.001 0.766

Day 1 Emotional
States

Day 3 Emotional
States 0.784 0.012 64.018 < 0.001 0.780

Table 5. Summary table of model regression coefficients for non-adjacent time.

Items 1 Items 2
Unstandardized

Path
Coefficient

SE z (CR) p
Standardized

Path
Coefficient

Day 1 Emotional
States

Day 10 Emotional
States 0.200 0.018 11.381 < 0.001 0.216

Day 1 Emotional
States

Day 7 Emotional
States 0.433 0.017 25.671 < 0.001 0.447

Day 1 Emotional
States

Day 5 Emotional
States 0.630 0.015 42.016 < 0.001 0.633

Day 1 Emotional
States

Day 3 Emotional
States 0.784 0.012 64.019 < 0.001 0.780

Furthermore, an assessment of emotional states on Day 1 and subsequent days was
executed using standardized path analysis, as depicted in Table 5. The outcomes of this
analysis show a gradual reduction in the strength of the relationship between emotional
states on the initial day and those on all subsequent days.

In conclusion, these results suggest two key points. Firstly, the emotional states from
the prior time period can serve as valuable indicators for predicting emotional states in
immediate successive time periods. Notably, the substantial standardized path coefficients
of around 0.7 reinforce this predictive relationship. Secondly, while the emotional states
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on Day 1 provide predictive utility for subsequent days, this predictability diminishes as
the temporal lag increases. Hence, direct inference of emotional states on Days 5, 7, and 10
from the emotional state of Day 1 is not feasible.

To address this limitation, an iterative forecasting approach emerges as a viable
strategy. Although direct prediction of emotional states on later days from the emotional
state of Day 1 is constrained, a step-by-step iterative approach can be employed. This
iterative forecasting method would involve predicting emotional states on Day 2 based on
Day 1, then using the predicted Day 2 emotional state to predict Day 3, and so forth. This
approach accommodates the temporal dynamics of emotional state progression and gains
more accurate predictions.

4. Simulation and Results Analysis

The questionnaire data collected are employed as machine learning samples to con-
struct a random forest algorithm for prediction purposes. From the model constructed
in Section 2.1, it can be seen that the prediction essentially consisted of a classification
problem. Random forest is a commonly used method in machine learning that employs
decision trees for data analysis. The random forest (RF) algorithm can avoid overfitting to a
certain extent in classification problems and is suitable for parallel operations [39]. Finally,
testing and visualization are conducted through simulation.

4.1. Model Parametric Construction
4.1.1. Initial State of Each Scenario

1. Grid division of the scenarios

The emotional contagion within a population in physical space is closely related to the
distribution of individuals. To avoid excessively long queues in the setting, the grid of the
scenarios determines the number of columns by taking the square root of the total number
of passengers and rounding it down, while the number of rows is determined by rounding
it up.

2. Distance between passengers

Passenger spatial distribution is categorized according to different densities, as illus-
trated in Figure 10.

For a density of 2 m2/person, the spatial allocation entails a longitudinal gap of 1 m
in the front–back direction and a lateral gap of 0.5 m in the left–right direction.

In the case of a density of 3 m2/person, the spatial distribution involves a longitudinal
gap of 1 m in the front–back direction, coupled with a lateral gap of 0.75 m in the left–
right direction.

When considering a density of 4 m2/person, the spatial configuration encompasses a
longitudinal gap of 1 m in the front–back direction and a lateral gap of 1 m in the left–right
direction. The personnel arrangement shape in each scene should be as close to a square
as possible.

3. Initial number of passengers and initial transition probabilities

The initial passenger count is determined by rounding the proportions of individuals
in various emotional states on Day 1, as per the statistical data collected from the surveys.
Priority is given to preserving the proportion of individuals in extreme emotional states,
with subsequent adjustments made for individuals in other states.

The initial values for the emotion transition rates were set based on data gathered
through a questionnaire. However, it should be noted that the respondents may not
have fully understood the impact of emotional contagion among passengers in different
scenarios, so the data may be more biased toward passenger emotional transitions. The rate
of conversion for each emotion from Day 1 to Day 3 was calculated to determine the initial
value for each emotion conversion rate. For example, in the questionnaire for Scenario 1,
there were 67 passengers recorded in a normal state on Day 1. On Day 3, 1 passenger
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transitioned to the extreme anxiety state, 25 passengers transitioned to the anxious state,
22 passengers remained in the normal state, and 14 passengers transitioned to the calm
state. If the transition probabilities at Day 1 are not affected by extreme emotions, the
values of (α 31, α32, α33, α34, α35) are (0.1, 0.4, 0.3, 0.2, 0).
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The specific initial passenger numbers and transition probabilities for each scenario
are as follows:

T1 =
[
0 2 3 13 12

]
, (15)

T2 =
[
1 5 14 20 10

]
, (16)

T3 =
[
6 26 30 22 16

]
, (17)

T4 =
[
0 2 5 12 11

]
, (18)

T5 =
[
0 2 5 10 13

]
, (19)
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P1 =


0 1 0 0 0

0.32 0.63 0.05 0 0
0.01 0.39 0.37 0.23 0

0 0 0.59 0.39 0.02
0 0 0 0.8 0.2

, (20)

P2 =


0.63 0.37 0 0 0
0.35 0.6 0.05 0 0
0.01 0.5 0.38 0.11 0

0 0 0.65 0.33 0.02
0 0 0 0.81 0.19

, (21)

P3 =


0.88 0.12 0 0 0
0.4 0.56 0.04 0 0
0.04 0.58 0.32 0.06 0

0 0 0.67 0.28 0.05
0 0 0 0.79 0.21

, (22)

P4 =


0.4 0.6 0 0 0
0.44 0.53 0.03 0 0

0 0.29 0.56 0.15 0
0 0 0.5 0.48 0.02
0 0 0 0.67 0.33

, (23)

P5 =


0.6 0.4 0 0 0
0.27 0.63 0.1 0 0
0.02 0.25 0.6 0.13 0

0 0 0.42 0.56 0.02
0 0 0 0.54 0.46

, (24)

where (T1, T2, T3, T4, T5) represent the initial number of passengers from scenario 1 to
scenario 5 and (P1, P2, P3, P4, P5) represent the transition probabilities from scenario 1 to
scenario 5.

4.1.2. Other Model Parameters

According to the definition in the previous part, R(E) and R(V) are functions of
distance and time. Emotional transmission is a complex phenomenon that is influenced
by a combination of factors, including non-verbal communication, social influences, and
group effects. There are fewer studies on the expression of specific functions between
emotional contagion and distance and time. However, some research suggests that emo-
tional contagion may be more likely to occur when people are in close proximity to each
other [33]. Emotional contagion can also spread quickly in a relatively short period of time
and spread further over time [40]. To enhance the analytical and computational processes
while ensuring a tractable problem formulation, we introduce postulates for the functions
R(E) and R(V), as delineated below:

R(E) =
a1

d1
+ b1 × t2 , (25)

R(V) =
a2

d2
+b2 × t2 , (26)

where a1, a2, b1, b2 are coefficients greater than 0, of which all initial values are 1. d1 and
d2 are the linear distances from passengers in the extremely anxious state to passengers in
the very calm state. d1 denotes the Euclidean distance between a passenger and one of the
passengers exhibiting extreme anxiety. Conversely, d2 represents the Euclidean distance
between a passenger and one of the passengers displaying significant calmness.



Mathematics 2023, 11, 4461 20 of 54

4.2. Algorithm Flow

Based on an improved weighted random forest algorithm [41–45], the prediction
problem of emotional contagion in the SRtP process of cruise ships could be constructed as
a classification problem. Figure 11 is the algorithm flowchart and the detailed process is
as follows:
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Step 1: Data pre-processing of the original dataset, mainly including data cleaning
and feature encoding.

Step 2: Repeat sampling with playback is used to extract K + 1 datasets, wherein K
constitutes a training set and the other constitutes a test set, and the capacity of each dataset
is equal to the total sample capacity, and where the value of K is 100.

Step 3: By simulating a realistic area separation, each scene is sampled without
replacement from the sample set based on the predetermined number of passengers until
the collection is complete. Each sample is taken as a sub-training set.

Step 4: Scenario categorization. Each decision tree is divided into five scenarios set
by the questionnaire. Fm represents the degree of similarity between the scenario m and
the scenario i. The smaller the Fm, the more similar it is to the training scenario i, which is
introduced into this scenario. The specific calculation of Fm is as follows:

Fm = ε1·
|ρm − ρi|

ρi
+ ε2·

|nm − ni|
ni

, (27)

It is assumed that the parameters for the passenger m of Day 1 to be classified are
(ρm,nm,em), where ρm represents the population density of the group in which the passenger



Mathematics 2023, 11, 4461 21 of 54

to be classified belongs, nm is the total number of passengers in the group, em indicates the
emotional state score, ρi represents the population density of the scenario i, and ni is the
total number of passengers in scenario i. ε1 and ε2 are weight coefficients with an initial
value of 0.5, which are adjusted through computational calculations. If multiple scenarios
have equal Fm values, they participate in the subsequent voting session together.

Step 5: Emotion score calculation and classification result statistics. According to each
possible transition direction and the corresponding infection rate equations given in the
previous infectious disease model, the next stage score can be calculated. The results of the
calculations are then weighted and disaggregated into statistics.

Gk is the weighting coefficient for the k-th training set which can be calculated by
Equation (28):

Gk = σ1·
nk − nk1

nk
+ σ2·

nk − nk5
nk

, (28)

where σ1 and σ2 are weight coefficients with an initial value of 0.5, which are adjusted
through computational calculations. nk is the total number of passengers in the k-th
training set scenario. nk1 is the number of passengers with a score of 1 in the k-th training
set, and nk5 is the number of passengers with a score of 5 in the k-th training set. By using
comprehensive weighting coefficients to vote on all sub-training sets, then classification
results could be obtained.

Step 6: Determining whether the requirements are met. Compare the final proportions
of each emotional state with the test set. If the results do not meet the specified requirements,
make parameter adjustments and return to step 4. If the results meet the requirements,
output the final result.

Table 6 shows the values of the parameters (e.g., number of trees, etc.) of the applied
random forest algorithm.

Table 6. Values of the parameters.

Parameters Values

bagSizePercent 100
batchSize 100

numIterations 100
n_estimators 500
max_depth 5

4.3. Results and Discussion
4.3.1. Evaluation of Models

According to the previous study, the situation on Day 1 is used as the initial value for
prediction learning over the following days. The confusion matrix of the model is shown in
Figures 12–15, with the horizontal axis representing the predicted emotional score and the
vertical axis representing the actual emotional score. The confusion matrix diagram can
clearly reflect the accuracy of predicting various emotional states and the distribution of
misjudgments.

From Figures 12–15, it is evident that the prediction accuracy for the extreme anxiety
and very calm states is high. The prediction accuracy for the very calm state gradually
improves over time, especially on Day 10, where it reaches 100%. There are several reasons
for this result:

(1) The high prediction accuracy for the very calm state is due to the fact that it has only
two transition directions: maintaining the current status or transitioning into the calm
state. This makes it relatively easy to predict. Additionally, the changing trend of the
very calm state is relatively fixed, with an overall transition towards a calm state over
time. Furthermore, the probability of transitioning from the calm state to the very
calm state is low, which also contributes to the high prediction accuracy.
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(2) In the absence of intervention measures, the number of passengers in the very calm
state decreases rapidly until it reaches zero. As a result, the model’s prediction
accuracy for the very calm state reaches 100% on Day 10.

(3) The prediction accuracy of the extreme anxiety state remained at around 80%, with
some fluctuations. This is because there are three possible transition directions for
this state, making it not easy to predict accurately. In another, in the absence of
interventions, the extreme anxiety state will gradually dominate. There is a reciprocal
change between the extreme anxiety state and the anxiety state, leading to fluctuations
in prediction accuracy.

(4) According to the findings presented in Figures 12 and 13, it is evident that the ini-
tial few days exhibit a significantly low prediction accuracy for the calm state, with
accuracy levels not surpassing 30%. A significant portion of these misclassifications
involves predicting a very calm state when the actual state is a calm state. One pos-
sible explanation for this observation is that the RF algorithm possesses an inherent
tendency to predict extreme emotional states.

Furthermore, Figures 14 and 15 exhibit a notable improvement in the prediction ac-
curacy for the calm state in the later days, surpassing 90%. Moreover, there is a distinct
enhancement in the prediction accuracy for the calm state observed in Figures 14 and 15,
particularly in the later days, where it consistently exceeds 90%. This significant advance-
ment can be predominantly attributed to the precipitous reduction in the count of passen-
gers experiencing the calm state as time progresses, eventually converging towards zero.

(5) The predictive precision of both states, anxious and normal, demonstrates a height-
ened trend of fluctuation. This phenomenon may be attributed to an enhanced
tendency of the underlying transitional dynamics between these two states, resulting
in frequent and oscillating transitions.

Table 6 presents a statistical table of algorithm indicators, including accuracy, precision,
recall, and the F-measure. From Table 7, it can be seen that the previously introduced model
can effectively capture the characteristics of passenger emotion transmission during the
SRtP process.
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Table 7. Algorithm performance.

Accuracy Precision Recall F1-Score

Day3 0.57 0.55 0.57 0.54
Day5 0.56 0.54 0.56 0.54
Day7 0.68 0.67 0.69 0.67

Day10 0.81 0.80 0.81 0.81

4.3.2. Visualization and Analysis of Emotional Infections in Questionnaire Scenarios

Utilizing the previously introduced model, we simulate and visualize the five scenarios
presented in the questionnaire using the AnyLogic software [46]. In order to visualize
the process of emotion transmission and examine the variations in its parameters, there
are a total of 39 sets of simulation experiments. In Scenario 5, where passengers are
equally spaced in front, behind, left, and right, there is no requirement to account for the
conversion of spatial grid distribution into rows and columns, unlike the other scenarios.
Tables 8–12 show the parameter settings for each simulation experiment for Scenarios 1 to 5.
The value of (a1, b1, a2, b2) can be adjusted through machine learning techniques, where
the value of (a1, b1, a2, b2) for (Sim1− 1, Sim2− 1, Sim3− 1, Sim4− 1, Sim5− 1) are
obtained through manual tuning. Grid space is the hyperparameter of this model. We
examine how hyperparameters affect the model by configuring various grid spaces such as
(Sim1− 1, Sim1− 5 to 9).

Table 8. Parameter settings of Scenario 1.

Simulation No. (a1,b1,a2,b2) Grid Space (Row×Column)

Sim1− 1 a1 = 0.8, b1 = 0.8,
a2 = 0.1, b2 = 0.1,

6× 5

Sim1− 2 a1 = 1, b1 = 0,
a2 = 1, b2 = 0,

6× 5

Sim1− 3 a1 = 0, b1 = 1,
a2 = 0, b2 = 1,

6× 5

Sim1− 4 a1 = 1, b1 = 1,
a2 = 1, b2 = 1,

6× 5

Sim1− 5 a1 = 0.8, b1 = 0.8,
a2 = 0.1, b2 = 0.1

5× 6

Sim1− 6 a1 = 0.8, b1 = 0.8,
a2 = 0.1, b2 = 0.1

3× 10

Sim1− 7 a1 = 0.8, b1 = 0.8,
a2 = 0.1, b2 = 0.1

10× 3

Sim1− 8 a1 = 0.8, b1 = 0.8,
a2 = 0.1, b2 = 0.1

2× 15

Sim1− 9 a1 = 0.8, b1 = 0.8,
a2 = 0.1, b2 = 0.1

15× 2

Table 9. Parameter settings of Scenario 2.

Simulation No. (a1,b1,a2,b2) Grid Space (Row×Column)

Sim2− 1 a1 = 0.5, b1 = 0.6,
a2 = 0.2, b2 = 0.2,

8× 7
(The space is not fully occupied)

Sim2− 2 a1 = 1, b1 = 0,
a2 = 1, b2 = 0,

8× 7
(The space is not fully occupied)

Sim2− 3 a1 = 0, b1 = 1,
a2 = 0, b2 = 1,

8× 7
(The space is not fully occupied)

Sim2− 4 a1 = 1, b1 = 1,
a2 = 1, b2 = 1,

8× 7
(The space is not fully occupied)
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Table 9. Cont.

Simulation No. (a1,b1,a2,b2) Grid Space (Row×Column)

Sim2− 5 a1 = 0.5, b1 = 0.6,
a2 = 0.2, b2 = 0.2,

8× 7
(The space is not fully occupied)

Sim2− 6 a1 = 0.5, b1 = 0.6,
a2 = 0.2, b2 = 0.2, 5× 10

Sim2− 7 a1 = 0.5, b1 = 0.6,
a2 = 0.2, b2 = 0.2, 10× 5

Sim2− 8 a1 = 0.5, b1 = 0.6,
a2 = 0.2, b2 = 0.2, 2× 25

Table 10. Parameter settings of Scenario 3.

Simulation No. (a1,b1,a2,b2) Grid Space (Row×Column)

Sim3− 1 a1 = 0.2, b1 = 0.2,
a2 = 0.1, b2 = 0.1, 10× 10

Sim3− 2 a1 = 1, b1 = 0, a2 = 1, b2 = 0, 10× 10
Sim3− 3 a1 = 0, b1 = 1, a2 = 0, b2 = 1, 10× 10
Sim3− 4 a1 = 1, b1 = 1, a2 = 1, b2 = 1, 10× 10
Sim3− 5 a1 = 0.2, b1 = 0.2, a2 = 0.1, b2 = 0.1, 5× 20
Sim3− 6 a1 = 0.2, b1 = 0.2, a2 = 0.1, b2 = 0.1, 20× 5
Sim3− 7 a1 = 0.2, b1 = 0.2, a2 = 0.1, b2 = 0.1, 4× 25
Sim3− 8 a1 = 0.2, b1 = 0.2, a2 = 0.1, b2 = 0.1, 25× 4

Table 11. Parameter settings of Scenario 4.

Simulation No. (a1,b1,a2,b2) Grid Space (Row×Column)

Sim4− 1 a1 = 0.3, b1 = 0.3, a2 = 0.1, b2 = 0.1, 6× 5
Sim4− 2 a1 = 1, b1 = 0, a2 = 1, b2 = 0, 6× 5
Sim4− 3 a1 = 0, b1 = 1, a2 = 0, b2 = 1, 6× 5
Sim4− 4 a1 = 1, b1 = 1, a2 = 1, b2 = 1, 6× 5
Sim4− 5 a1 = 0.3, b1 = 0.3, a2 = 0.1, b2 = 0.1 5× 6
Sim4− 6 a1 = 0.3, b1 = 0.3, a2 = 0.1, b2 = 0.1 3× 10
Sim4− 7 a1 = 0.3, b1 = 0.3, a2 = 0.1, b2 = 0.1 10× 3
Sim4− 8 a1 = 0.3, b1 = 0.3, a2 = 0.1, b2 = 0.1 2× 15
Sim4− 9 a1 = 0.3, b1 = 0.3, a2 = 0.1, b2 = 0.1 15× 2

Table 12. Parameter settings of Scenario 5.

Simulation No. (a1,b1,a2,b2) Grid Space (Row×Column)

Sim5− 1 a1 = 0.3, b1 = 0.3, a2 = 0.1, b2 = 0.1, 6× 5
Sim5− 2 a1 = 1, b1 = 0, a2 = 1, b2 = 0, 6× 5
Sim5− 3 a1 = 0, b1 = 1, a2 = 0, b2 = 1, 6× 5
Sim5− 4 a1 = 1, b1 = 1, a2 = 1, b2 = 1, 6× 5
Sim5− 5 a1 = 0.3, b1 = 0.3, a2 = 0.1, b2 = 0.1 3× 10
Sim5− 6 a1 = 0.3, b1 = 0.3, a2 = 0.1, b2 = 0.1 2× 15

Figures 16–20 provide a depiction of how the trend in passenger emotions evolves
with varying values of the parameters (a1, b1, a2, b2). The x-axis in these figures represents
the number of days, while the y-axis illustrates the proportions of passengers in different
emotional states. These figures make it readily apparent how different emotional states
change over time and highlight the disparities in emotional state proportions within each
day. Furthermore, these figures offer a clear and intuitive representation of the fluctuations
in passenger emotional states.
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Figure 17. Simulation result of Scenario 2; (a) Initial data; (b) Sim2− 1; (c) Sim2− 2; (d) Sim2− 3;
(e) Sim2− 4.
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Figure 20. Simulation result of Scenario 5; (a) Initial data; (b) Sim5− 1; (c) Sim5− 2; (d) Sim5− 3;
(e) Sim5− 4.

Figure 16 presents the distribution of different emotional states among passengers
in Scenario 1 for different values of the parameter (a1, b1, a2, b2). When comparing
Figure 16c–e, we observe that, despite the identical coefficients for R(E) and R(V) in
these three graphs, there are notable distinctions in the distribution of passenger propor-
tions. In Figure 16c, although the overall distribution closely aligns with the original data,
there is a noticeable increase in fluctuation trends. Figure 16d exhibits even more pro-
nounced fluctuation trends, while the distribution in Figure 16e differs substantially from
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the original data. By contrasting the values of parameter (a1, b1, a2, b2) in these graphs,
we can deduce that in Scenario 1, time exerts a predominant influence in comparison to the
inter-individual distances within the population.

Figure 17 illustrates the distribution of passengers in various emotional states in Sce-
nario 2, under different values of the parameter (a1, b1, a2, b2). Similarly, when comparing
Figure 17c–e, it is evident that they closely resemble the trends observed in the original
data. Figure 17c,e seem to project potential future states of the original data, with e ex-
hibiting a notably accelerated rate of development. In contrast, Figure 17d demonstrates
more significant fluctuations compared to the original dataset. By examining the values of
parameter (a1, b1, a2, b2) in these graphs, it becomes evident that in Scenario 2, the impact
of time is considerably more pronounced.

With the continual expansion of the passenger population, the impact of time becomes
notably more significant, as clearly evident in Figure 18c,e. Interestingly, when comparing
Figure 18c–e, it becomes apparent that the fluctuations are gradually decreasing. One pos-
sible explanation for this trend is that as the total number of passengers increases, there is a
directed influence causing passenger emotions to shift towards anxiety.

Comparing Figures 16 and 19 both horizontally and vertically reveals a notable trend:
as the distance between passengers increases, the influence of distance decreases signif-
icantly. Additionally, there is a consistent shift toward calmer emotional states among
passengers overall. When we contrast Scenario 1 with Scenario 4, a few key observations
emerge. In Scenario 4, the proportion of passengers experiencing extreme anxiety further
decreases, while the proportion of those in very calm and calm emotional states rises. This
highlights a significant shift towards emotional calmness in Scenario 4 as compared to
Scenario 1.

Upon a comprehensive comparison of Figures 16, 19 and 20, a significant trend
becomes evident: as the distance between passengers increases, it intensifies the fluctuations
among several positive emotional states. Additionally, this widening distance leads to a
further reduction in the proportion of passengers experiencing extreme anxiety.

Based on the patterns analyzed earlier, an attempt is made to manually fine-tune the
parameters, as shown in the (b) subfigures in Figures 16–20. Further statistical analysis
was conducted to assess the tuning results. Figures 21–25 illustrate the difference-values
(D-value) in emotional state distributions corresponding to different parameters over time,
while Tables 13–17 provide a concise summary of the statistical analysis. Figures 26–30
show the simulation results of manual parameter adjustment.

Table 13. Descriptive Statistics of Extremely Anxious.

Mean Standard
Deviation Mean SE Sum Harmonic

Mean Minimum Maximum

Extremely Anxious 0.16948 0.23723 0.10609 0.8474 0.02103 0.0094 0.5687
SIM1-1-Extremely

Anxious 0.17333 0.22534 0.10077 0.86667 0 0 0.56667

SIM1-2-Extremely
Anxious 0.15333 0.10435 0.04667 0.76667 0 0 0.26667

SIM1-3-Extremely
Anxious 0.08 0.05055 0.02261 0.4 0 0 0.13333

SIM1-4-Extremely
Anxious 0.02 0.01826 0.00816 0.1 0 0 0.03333
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Figure 21. D-value of different emotional states in Scenario 1; (a) Extremely Anxious; (b) Anxious;
(c) Normal; (d) Calm; (e) Very Calm.
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Figure 22. D-value of different emotional states in Scenario 2; (a) Extremely Anxious; (b) Anxious;
(c) Normal; (d) Calm; (e) Very Calm.
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Figure 23. D-value of different emotional states in Scenario 3; (a) Extremely Anxious; (b) Anxi ous;
(c) Normal; (d) Calm; (e) Very Calm.
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Figure 24. D-value of different emotional states in Scenario 4; (a) Extremely Anxious; (b) Anxious; 
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Figure 24. D-value of different emotional states in Scenario 4; (a) Extremely Anxious; (b) Anxious;
(c) Normal; (d) Calm; (e) Very Calm.
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Table 14. Descriptive Statistics of Anxious.

Mean Standard
Deviation Mean SE Sum Harmonic

Mean Minimum Maximum

Anxious 0.24936 0.19171 0.08574 1.2468 0.10677 0.0358 0.5217
SIM1-1-Anxious 0.33333 0.14337 0.06412 1.66667 0.27121 0.13333 0.53333
SIM1-2-Anxious 0.34667 0.21807 0.09752 1.73333 0.25135 0.13333 0.66667
SIM1-3-Anxious 0.34667 0.14644 0.06549 1.73333 0.27815 0.13333 0.5
SIM1-4-Anxious 0.04667 0.05055 0.02261 0.23333 0 0 0.1

Table 15. Descriptive Statistics of Normal.

Mean Standard
Deviation Mean SE Sum Harmonic

Mean Minimum Maximum

Normal 0.23352 0.13432 0.06007 1.1676 0.17736 0.0998 0.42
SIM1-1-Normal 0.24 0.13208 0.05907 1.2 0.11242 0.03333 0.36667
SIM1-2-Normal 0.2 0.09129 0.04082 1 0.16787 0.1 0.33333
SIM1-3-Normal 0.29333 0.05963 0.02667 1.46667 0.28357 0.23333 0.36667
SIM1-4-Normal 0.13333 0.06667 0.02981 0.66667 0.08772 0.03333 0.2

Table 16. Descriptive Statistics of Calm.

Mean Standard
Deviation Mean SE Sum Harmonic

Mean Minimum Maximum

Calm 0.2422 0.20458 0.09149 1.211 0.08732 0.0301 0.4765
SIM1-1-Calm 0.2 0.11055 0.04944 1 0.10511 0.03333 0.33333
SIM1-2-Calm 0.22 0.20083 0.08981 1.1 0.07143 0.03333 0.5
SIM1-3-Calm 0.22667 0.06831 0.03055 1.13333 0.21212 0.16667 0.33333
SIM1-4-Calm 0.27333 0.11879 0.05312 1.36667 0.21607 0.1 0.43333

Table 17. Descriptive Statistics of Very Calm.

Mean Standard
Deviation Mean SE Sum Harmonic

Mean Minimum Maximum

Very Calm 0.10546 0.1628 0.07281 0.5273 0.01622 0.0056 0.3898
SIM1-1-Very Calm 0.05333 0.08367 0.03742 0.26667 0 0 0.2
SIM1-2-Very Calm 0.08 0.14453 0.06464 0.4 0 0 0.33333
SIM1-3-Very Calm 0.05333 0.08367 0.03742 0.26667 0 0 0.2
SIM1-4-Very Calm 0.52667 0.13622 0.06092 2.63333 0.49826 0.36667 0.66667

It is evident from the presented charts and tables that the manual parameter tuning
yielded highly favorable outcomes. Moreover, during the manual tuning process, it is
noted that parameter (a1, b1, a2, b2) demonstrate closer alignment with the initial data
when all its values are less than 1. This observation could be attributed to the fact that the
incidents triggering the cruise ship’s execution of the SRtP procedure are not overly severe,
resulting in relatively minor effects on emotional transitions. However, as the incident
duration increases, the impact accelerates.
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Figure 27. Simulation diagram of 𝑆𝑖𝑚2 − 1; (a) Day 3; (b) Day 5; (c) Day 7; (d) Day 10. 
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Figure 29. Simulation diagram of 𝑆𝑖𝑚4 − 1; (a) Day 3; (b) Day 5; (c) Day 7; (d) Day 10. 

Figure 28. Simulation diagram of Sim3− 1; (a) Day 3; (b) Day 5; (c) Day 7; (d) Day 10.
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Figure 30. Simulation diagram of 𝑆𝑖𝑚5 − 1; (a) Day 3; (b) Day 5; (c) Day 7; (d) Day 10. 
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tance effects become dominant only when 𝑡 is small. 
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Figure 30. Simulation diagram of Sim5− 1; (a) Day 3; (b) Day 5; (c) Day 7; (d) Day 10.

The scenario parameters and simulation results are shown in Figures 16–25. In the
scene simulation diagrams, red indicates extremely anxious passengers, orange indicates
generally anxious passengers, green indicates normal passengers, light blue indicates
generally calm passengers and purple indicates very calm passengers.

Figures 31–35 present an analysis of the impact of spatial grid distribution on emotional
transitions based on the results of manual parameter tuning, specifically exploring the
influence of model hyperparameters.

In Figure 31, when comparing subfigures horizontally, it becomes evident that the con-
version of rows and columns in two different spatial grid configurations affects emotional
state transitions. Vertical comparisons, on the other hand, reveal that a complete alteration
of the spatial grid distribution may or may not influence emotional state transitions.

A similar trend is observed in Figure 32. In horizontal comparisons, there exists a set
of spatial grid row–column conversions that do not produce discernible impacts. In vertical
comparisons, instances of a radical shift in grid distribution do not result in corresponding
changes in emotional state distributions.

Figure 33 highlights this phenomenon more prominently, with emotional state distri-
butions across all comparison groups undergoing only minimal changes.

Both Figures 34 and 35, whether involving the conversion of rows and columns within
the spatial grid or an entire overhaul of the grid, show no notable changes in the distribution
of emotional states.

Several factors may contribute to these observations:

1. In the model developed in this study, the distance component is relatively minor
compared to the temporal component, and its influence diminishes as time progresses.

2. The original data and simulations are based on a daily time scale, with no exploration
of scenarios where t falls between 0 and 1. According to the proposed model, distance
effects become dominant only when t is small.
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Figure 31. Simulation result of Scenario 1; (a) 𝑆𝑖𝑚1 − 1; (b) 𝑆𝑖𝑚1 − 5; (c) 𝑆𝑖𝑚1 − 6; (d) 𝑆𝑖𝑚1 − 7; 
(e) 𝑆𝑖𝑚1 − 8; (f) 𝑆𝑖𝑚1 − 9. 

 
(a) 

Figure 31. Simulation result of Scenario 1; (a) Sim1− 1; (b) Sim1− 5; (c) Sim1− 6; (d) Sim1− 7;
(e) Sim1− 8; (f) Sim1− 9.
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Figure 32. Simulation result of Scenario 2; (a) Sim2− 1; (b) Sim2− 5; (c) Sim2− 6; (d) Sim2− 7;
(e) Sim2− 8.
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Figure 33. Simulation result of Scenario 3; (a) 𝑆𝑖𝑚3 − 1; (b) 𝑆𝑖𝑚3 − 5; (c) 𝑆𝑖𝑚3 − 6; (d) 𝑆𝑖𝑚3 − 7; 
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Figure 34. Simulation result of Scenario 4; (a) 𝑆𝑖𝑚4 − 1; (b) 𝑆𝑖𝑚4 − 5; (c) 𝑆𝑖𝑚4 − 6; (d)  𝑆𝑖𝑚4 − 7; (e) 𝑆𝑖𝑚4 − 8; (f) 𝑆𝑖𝑚4 − 9. 

Figure 33. Simulation result of Scenario 3; (a) Sim3− 1; (b) Sim3− 5; (c) Sim3− 6; (d) Sim3− 7;
(e) Sim3− 8.
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Figure 34. Simulation result of Scenario 4; (a) 𝑆𝑖𝑚4 − 1; (b) 𝑆𝑖𝑚4 − 5; (c) 𝑆𝑖𝑚4 − 6; (d)  𝑆𝑖𝑚4 − 7; (e) 𝑆𝑖𝑚4 − 8; (f) 𝑆𝑖𝑚4 − 9. 
Figure 34. Simulation result of Scenario 4; (a) Sim4− 1; (b) Sim4− 5; (c) Sim4− 6; (d) Sim4− 7;
(e) Sim4− 8; (f) Sim4− 9.
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Figure 35. Simulation result of Scenario 5; (a) 𝑆𝑖𝑚5 − 1; (b) 𝑆𝑖𝑚5 − 5; (c) 𝑆𝑖𝑚5 − 6. 

The aforementioned observations indicate that, in prolonged shelter-in-place scenar-
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3. Emotional transmission emanates from the infection source and radiates outward,
potentially affecting eight, five, or three individuals in the first level of transmission.
Calculations using Euclidean distance indicate that, when conducting row–column
conversions within spatial grids, the overall dynamics of the first-level transmis-
sion remain unaltered. However, the impact gradually becomes noticeable in the
second-level transmission. Notably, the magnitude of this effect increases with greater
disparities in row and column distances within the spatial grid.

The aforementioned observations indicate that, in prolonged shelter-in-place scenarios
akin to SRtP, the spatial distribution of individuals exerts a minimal influence on the
overall emotional state transitions. This implies that safety planning for such scenarios can
incorporate more flexible designs for the shape of spaces.

Upon comparing Figures 31–33, it becomes apparent that, as the total number of
passengers increases, altering the spatial grid distribution does not significantly reduce the
likelihood of emotional transitions towards anxiety. However, strategically implementing
spatial separation to reduce the total number of individuals in each space can indeed
diminish this probability.

Further comparisons involving Figures 31, 34 and 35 reveal that appropriately in-
creasing the distance between individuals does contribute to a lower overall likelihood of
emotional transitions towards anxiety.
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5. Conclusions and Future Work

This study is centered on the emotional contagion process during the cruise ship
SRtP (Ship-to-Rescue-Platform) procedure and presents an improved SIR (Susceptible-
Infection-Removal) model. In comparison to other emotional contagion models, the one
proposed in this paper expands its scope across emotional state divisions, contagion source
configurations, and transition directions. By combining it with the weighted random forest
algorithm for emotional state distribution prediction, the results demonstrate that this
model adeptly captures the fluctuating characteristics inherent in the emotional transition
process. Through simulation experiments, we visualize these fluctuating characteristics
during emotional transition, employing multiple control groups with varying parameters
to analyze the effects of parameter variations.

Although this research focuses on a specific passenger group, the proposed model
exhibits applicability to similar extended-duration emergency scenarios. In summary,
the research findings explore and substantiate the efficacy of the enhanced SIR model
in modeling the emotional contagion process among passengers during the cruise ship
SRtP procedure.

In future research endeavors, we contemplate the integration of individual traits and
demographic factors for further model refinement.
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Appendix A. Questionnaire of the Survey

Questionnaire on Adverse Emotions in the SRtP of Cruise Ship

The setting scenario is: An accident occurs during a cruise ship’s voyage, and the
accident causes a certain degree of damage to the cruise ship, requiring a nearby port call.
At this point, the accident has been handled, and the cruise ship has the ability to navigate
independently and dock at the port. It is necessary to centralize personnel in a fixed area
to facilitate the provision of daily meals and management. All restaurants, shops, and
entertainment activities have ceased normal operation, and unified food distribution has
been implemented instead.

Table A1. The basic information questionnaire of passengers.

Category Content Supplementary
Description The Specific Opinions

Basic information

Gender � Male � Female

Age

Which deck
do you prefer
to stay on?

Deck 4 is the
evacuation deck,
and the accident
occurred on the
Deck 6

Which area would
you prefer to be
assigned to except
guest room?

� Restaurant (food
and beverage
supply suspended)

� Store
(suspended sales
of goods)

� Gangway

Table A2. The emotion questionnaire of passengers.

Category Scenario
No.

Scenario
Setting

Extremely
Anxious Anxious Normal Calm Very Calm

Emotional
states score

Day 1

Scenario 1
ρ = 2 m2/person, n = 30

1 2 3 4 5
Day 3 1 2 3 4 5
Day 5 1 2 3 4 5
Day 7 1 2 3 4 5
Day 10 1 2 3 4 5

Day 1

Scenario 2
ρ = 2 m2/person, n = 50

1 2 3 4 5
Day 3 1 2 3 4 5
Day 5 1 2 3 4 5
Day 7 1 2 3 4 5
Day 10 1 2 3 4 5

Day 1

Scenario 3
ρ = 2 m2/person, n = 100

1 2 3 4 5
Day 3 1 2 3 4 5
Day 5 1 2 3 4 5
Day 7 1 2 3 4 5
Day 10 1 2 3 4 5

Day 1

Scenario 4
ρ = 3 m2/person, n = 30

1 2 3 4 5
Day 3 1 2 3 4 5
Day 5 1 2 3 4 5
Day 7 1 2 3 4 5
Day 10 1 2 3 4 5

Day 1

Scenario 5
ρ = 4 m2/person, n = 30

1 2 3 4 5
Day 3 1 2 3 4 5
Day 5 1 2 3 4 5
Day 7 1 2 3 4 5
Day 10 1 2 3 4 5
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Appendix B. The Results of Reliability and Validity Analysis of the Questionnaire

Table A3. Reliability statistics.

Items Corrected Item–Total
Correlation (CITC) Cronbach α

Gender −0.026

0.916

Question3 0.060
Question4 0.063

Scenario 1
ρ = 2 m2/person, n = 30

Day1 0.505
Day3 0.636
Day5 0.726
Day7 0.691
Day10 0.563

Scenario 2
ρ = 2 m2/person, n = 50

Day1 0.580
Day3 0.671
Day5 0.737
Day7 0.695
Day10 0.567

Scenario 3
ρ = 2 m2/person, n = 100

Day1 0.602
Day3 0.675
Day5 0.673
Day7 0.611
Day10 0.484

Scenario 4
ρ = 3 m2/person, n = 30

Day1 0.536
Day3 0.596
Day5 0.670
Day7 0.691
Day10 0.566

Scenario 5
ρ = 4 m2/person, n = 30

Day1 0.505
Day3 0.525
Day5 0.631
Day7 0.635
Day10 0.579

Cronbach α (Standardized): 0.933.

Table A4. Validity analysis.

Items
Factor Loadings

Communalities
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Gender 0.025 −0.083 −0.015 0.022 0.647 0.427
Question3 0.044 −0.060 0.057 0.126 −0.631 0.423
Question4 0.032 −0.036 0.095 0.055 0.440 0.208

Scenario 1
ρ = 2 m2/person,

n = 30

Day1 −0.135 0.501 0.266 0.622 −0.054 0.731
Day3 0.203 0.372 0.236 0.723 −0.022 0.758
Day5 0.460 0.219 0.326 0.645 −0.000 0.782
Day7 0.663 0.056 0.322 0.489 0.017 0.785

Day10 0.774 −0.091 0.247 0.272 −0.001 0.742

Scenario 2
ρ = 2 m2/person,

n = 50

Day1 −0.147 0.409 0.610 0.464 −0.000 0.776
Day3 0.048 0.300 0.682 0.436 −0.006 0.748
Day5 0.377 0.163 0.666 0.356 0.066 0.743
Day7 0.574 −0.008 0.605 0.250 0.037 0.759

Day10 0.721 −0.124 0.465 0.052 −0.034 0.756

Scenario 3
ρ = 2 m2/person,

n = 100

Day1 −0.080 0.298 0.819 0.235 0.049 0.823
Day3 0.139 0.196 0.876 0.136 0.058 0.847
Day5 0.304 0.087 0.850 0.057 0.006 0.826
Day7 0.480 −0.056 0.766 −0.037 −0.027 0.822

Day10 0.648 −0.193 0.520 −0.099 −0.083 0.743
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Table A4. Cont.

Items
Factor Loadings

Communalities
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Scenario 4
ρ = 3 m2/person,

n = 30

Day1 −0.073 0.815 0.240 0.195 −0.052 0.768
Day3 0.171 0.851 0.131 0.105 −0.049 0.784
Day5 0.465 0.716 0.120 0.100 0.048 0.755
Day7 0.719 0.505 0.123 0.020 0.018 0.787

Day10 0.859 0.255 0.051 −0.039 0.030 0.807

Scenario 5
ρ = 4 m2/person,

n = 30

Day1 −0.092 0.824 0.162 0.244 −0.018 0.773
Day3 0.110 0.858 0.046 0.120 −0.053 0.767
Day5 0.438 0.762 0.027 0.082 0.002 0.780
Day7 0.669 0.586 −0.007 0.052 0.026 0.794

Day10 0.834 0.350 −0.020 0.007 0.048 0.821
Eigenvalues (Rotated) 5.958 5.615 5.426 2.488 1.051 -

Variance (Rotated) 21.277% 20.054% 19.379% 8.885% 3.752% -
Cum. Variance (Rotated) 21.277% 41.331% 60.710% 69.594% 73.346% -

KMO 0.928 -
p-value of Bartlett’s Test of Sphericity < 0.001 -

Appendix C. Theoretical Description and Analysis of Alternative Models

Appendix C.1. CPS-REC Model

The CPS-REC model closely aligns with our theoretical framework. It effectively
addresses the aspects of heterogeneity and recurrent infections. However, there is a key
distinction between the CPS-REC model and our own approach. The CPS-REC model
necessitates a comprehensive consideration of emotional contagion in both the network
and physical space, which may lead to a greater emphasis on individual emotional changes.
In contrast, our model primarily focuses on the physical space of the scenario and excels in
examining the emotional shifts within the group as a whole.

Furthermore, our model introduces the concept of dual infection sources and bidirec-
tional infection, which closely mirrors the actual dynamics observed in the study of group
emotions within refuge scenarios. This distinction underscores our model’s relevance and
applicability in capturing the complexities of emotional contagion in emergency situations
of refuge scenarios.

Let a six-tuple S(i) = (State(i; t), β, µ; , δ; P0) denote the attributes of individuals i in
space, where State(i; t) represents the state of individuals i at any time t, β represents the
contagion rate of infected individuals, µ represents the cure rate of infected individuals,
δ represents the recurrence rate of temporarily immune individuals, and P0 represents
individual spontaneous infection.

State(i, t) = (WS, WI, WR, XS, XI, XR), (A1)

where WS represents the susceptible individuals in physical space; WI represents the
infected individuals in physical space; WR represents the temporarily immune individuals
in physical space; XS represents the susceptible individuals in cyberspace; XI represents
the infected individuals in cyberspace; XR represents the temporarily immune individuals
in cyberspace.

Emotional contagion rules We first define the parameters for our emotional contagion
rules. The probability of susceptible individuals in cyberspace being contagious to infected
individuals is βV . The probability of susceptible individuals in physical space being conta-
gious to infected individuals is βP. The probability of infected individuals in cyberspace
being cured to become temporarily immune individuals is µV . The probability of infected
individuals in physical space being cured to become temporarily immune individuals is
µP. The probability that a temporarily recovered individual in cyberspace will recur as a
susceptible individual is δV . The probability that a temporarily recovered individual in
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physical space will recur as a susceptible individual is δP. The parameter descriptions of
the Mean-Field Equations are shown in Table A5.

dW I(t)
dt

= βP〈k0〉WS(t)W I(t) + P0WS(t) + βV〈k1〉WS(t)X I(t)− µVW I(t)− µPW I(t) (A2)

dWS(t)
dt

= δP〈k0〉WR(t)− βP〈k0〉WS(t)W I(t)− βV〈k1〉WS(t)X I(t)− P0WS(t) (A3)

dWR(t)
dt

= µPW I(t) + µVW I(t)− δPWR(t) (A4)

dX I(t)
dt

= βV〈k1〉XS(t)X I(t) + P0XS(t) + βP〈k0〉XS(t)W I(t)− µV X I(t)− µPX I(t) (A5)

dXS(t)
dt

= δV XR(t)− βV〈k1〉XS(t)X I(t)− βP〈k0〉XS(t)W I(t)− P0XS(t) (A6)

dXR(t)
dt

= µV X I(t) + µPX I(t)− δV XR(t) (A7)

Table A5. The parameter descriptions of the Mean-Field Equations.

Parameters Description

N the number of individuals in CPS
WS(t) the proportion of WS in the crowd at moment t
W I(t) the proportion of WI in the crowd at moment t
WR(t) the proportion of WR in the crowd at moment t
XS(t) the proportion of XS in the crowd at moment t
X I(t) the proportion of XI in the crowd at moment t
XR(t) the proportion of XR in the crowd at moment t
〈k0〉 average degree in physical space
〈k1〉 average degree in cyberspace
P0 probability of spontaneous infection

Appendix C.2. SEEC

The construction of the SEEC model primarily aims to facilitate optimal intervention
in the emotional state of the population, with the ultimate goal of controlling emotional
transmission within the population. Consequently, the SEEC model has been simplified
to serve this purpose. While intervention in crowd emotions is mentioned, it is not the
central focus of the model proposed in this article. Instead, it represents one of the potential
avenues for future research. As a result, the model presented in this article offers a more
diverse framework for categorizing emotional states.

In Equation (A8), β(t) represents the infection rate at time t (i.e., the number of
effective infections per unit time of a single infected individual), and I(t)β(t) represents the
number of individuals who can be infected per unit time. S(t)

N represents the proportion of

susceptible individuals in the crowd at time t. The product of I(t)β(t) and S(t)
N represents

the number of susceptible individuals among those who could be infected, that is, the
number of times that the infection event occurs per unit time. In Equation (A9), γ(t) is
the recovery rate per unit time, and γ(t)I(t) is the number of individuals who recover to
normal per unit time, that is, the occurrence number of the recovery events per unit time.

ψI(R) = I(t)β(t)
S(t)
N

(A8)
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ψR(R) = γ(t)I(t) (A9)

Let T(t) be the history of emotional contagion process. Under the historical condi-
tions, let Pr{d(I(t) = 1|T(t))},Pr{d(I(t) = −1|T(t))},Pr{d(I(t) = 0|T(t))} as the occur-
rence probability of only one infection event, the occurrence probability of only one re-
covery event, and the occurrence probability of no event, respectively. According to
Equations (A8) and (A9), the occurrence probability of event is shown as follows

Pr{d(I(t) = 1|T(t))} ≈ I(t)β(t) S(t)
N dt

Pr{d(I(t) = −1|T(t))} ≈ γ(t)I(t)dt
Pr{d(I(t) = 0|T(t))} ≈ 1− I(t)β(t) S(t)

N dt− γ(t)I(t)dt
(A10)

We define i as the crowd state. i means that there are i infected individuals at time t,
that is, I(t) = i and S(t) = N − i. If an infection event occurs, the state of the crowd will
change from i to i + 1. If a recovery event occurs, the state of the crowd will change from i
to i− 1. Given two states i and j, Equation (A10) shows the state transition probability.

(t, ∆t) =


iβ(t)N−1

N ∆t, i f j = i + 1,
γ(t)i∆t, i f j = i− 1,
1− iβ(t)N−1

N ∆t− γ(t)i∆t, i f j = i,
0, otherwise,

(A11)

where P(j,i)(t, ∆t) is the transition probability from i to j in the time interval (t, t + ∆t).Let
g(t, i) = β(t)N−1

N ∆t and h(t, i) = γ(t)i∆t. Thus, the state transition matrix in a time interval
∆t is given by Equation (A12)

P(t, ∆t) =



1 h(t, 1) 0 · · · 0 0
1− g(t, 1)− h(t, 1) g(t, 2)

g(t, 1) 1− g(t, 2)− h(t, 2)
h(t, 2) · · · h(t, N − 1)

· · · 1− g(t, N − 1)− h(t, N − 1) h(t, N)
g(t, N − 1) 1− h(t, N)

 (A12)

where p(j,i)(t, ∆t) is the (j, i) element of the matrix. P(t, ∆t) is a (N + 1)(N + 1) matrix,
since the states of the crowd are ordered from 0 to N. The subscripts of the matrix indicate
the form of state transition.

[I(t)] =
N

∑
i=0

iPi(t) (A13)

P(t1) = P(t0 + ∆t) = P(t0, ∆t)p(t0) (A14)

P(tn + ∆t) = P(tn, ∆t)p(tn) = P(tn, ∆t) . . . P(t2, ∆t)P(t1, ∆t)P(t0, ∆t)p(t0) (A15)

Appendix C.3. ACSED

An advantageous aspect of the ACSED model lies in its incorporation of a compu-
tational formula for external emotional contagion within the emotion prediction module,
seamlessly integrated with reinforcement learning theory. This aspect holds valuable
lessons for the current article. Because of the intricacies involved in calculating emotional
contagion, the ACSED model simplifies matters by categorizing the population into two dis-
tinct states. In contrast, the model proposed in this article adopts a more nuanced approach
by dividing the population into multiple emotional states. This refined segmentation
proves to be a more practical and robust strategy for studying emotional contagion within
a population.
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The calculation of emotional contagion is shown in Formula (A16):

Ei = Eex
i + Ese

i (A16)

The changing values of emotional contagion of Agent i is defined in Formula (A17):

∆Eex
i,j (t) =

[
1− 1

1 + exp(−D)

]
× Ei(t)× Aj,i × Bi,j (A17)

where D represents the distance between Agent i and other Agent j, Ei represents the
emotion of Agent i, Aj,i is the intensity of emotion received by the affected Agent i fromthe
influencing Agent j, and Bi,j refers to the emotional intensity sent from Agent j to Agent i.

Formula (A18) is to calculate the external emotional contagion of the righteous at time
t. Formula (A19) is to calculate the external emotional contagion of the opposite at time t.

∆Eex
r =

m

∑
i=1

∆Eex
r,ri

(t) +
n

∑
j=1

∆Eex
r,oj

(t) (A18)

∆Eex
o =

n

∑
i=1

∆Eex
o,oi

(t) +
m

∑
j=1

∆Eex
o,rj

(t) (A19)

The mental emotion calculation method is as follows:

∆Ese
i (t) = 0.1×

(
1

δ + exp(γ/ri(t))

)
, ri(t) ≥ γ (A20)

∆Ese
i (t) = −0.1×

(
1

δ + exp(ri(t)/γ)

)
, ri(t) ≤ −γ (A21)

where ri(t) represents the difference between the reward values of two consequent time
steps, δ is an empirical parameter. When ri(t) ∈ (−γ, γ), the action of Agent i has less
effect on its emotions and can be ignored. When ri(t) ≥ γ, it means that Agent i performs
the action to promote the battle result. If Agent i is righteous, its emotions will become
positive, otherwise if it is opposite, it will become negative. When ri(t) ≤ −γ, it means
that the action performed by Agent i is not conducive to the current combat situation.

The amount of emotional contagion of Agent i is shown as Equation (A22)

E(i, t) = E(i, t− 1) + ∆Eex
i (t) + ∆Ese

i (t) (A22)
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