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Abstract: This study addresses the analysis of complex multivariate survival data, where each in-
dividual may experience multiple events and a wide range of relevant covariates are available. We
propose an advanced modeling approach that extends the classical shared frailty framework to
account for within-subject dependence. Our model incorporates a flexible frailty distribution, en-
compassing well-known distributions, such as gamma, log-normal, and inverse Gaussian. To ensure
accurate estimation and effective model selection, we utilize innovative regularization techniques.
The proposed methodology exhibits desirable theoretical properties and has been validated through
comprehensive simulation studies. Additionally, we apply the approach to real-world data from the
Medical Information Mart for Intensive Care (MIMIC-III) dataset, demonstrating its practical utility
in analyzing complex survival data structures.
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1. Introduction

In recent years, advancements in biomedicine, genomics, epidemiology, image pro-
cessing, and other fields have led to a surge in high-dimensional data analysis emerging as
a prominent theme in statistics. A notable example is the MIMIC-III (Medical Information
Mart for Intensive Care) study, which aims to identify relevant variables for modeling and
predicting two distinct periods: from ICU admission to discharge and from discharge to
death. This study has generated high-dimensional, correlated multivariate failure time
data which is commonly analyzed by the shared frailty models [1]. Specifically, the Cox
model or relative risk model [2] with frailty is employed to incorporate dependence and
assess the effects of covariates [3].

However, the observed likelihood of the Cox model with shared frailty often lacks an
analytic form, except for the gamma frailty model. Consequently, parameter estimation of
general frailty models is always computationally challenging. To perform variable selection
for frailty models, Ref. [4] initially proposed a theory based on SCAD penalized regression.
Ref. [5] developed an algorithm that utilizes Laplace transformation to handle frailty
distributions in their general form. Ref. [6] applied the Laplace approximation of the full
likelihood and developed an R package to implement their method. However, the methods
mentioned above employ the Newton–Raphson method in their algorithms, resulting in
significant computational burden when dealing with high-dimensional covariates. To avoid
high-dimensional matrix inversion in the Newton–Raphson method, we try to use the
MM (minorize-maximization) principle, to obtain the nonparametric maximum likelihood
estimation for general frailty models, as the objective likelihood derived from the MM
algorithm exhibits a monotonically increasing trend with reliable convergence properties
when initialized appropriately [7].
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In general, we present an MM algorithm for the Cox model with general frailties in
this paper, highlighting its applicability in high-dimensional scenarios. We introduce a
regularized estimation method, in which our algorithm decomposes the objective function
with high-dimensional parameters into separable functions with low-dimensional param-
eters. This approach seamlessly integrates into the analysis of multivariate failure time
data, effectively handling the challenges posed by its high-dimensional nature. LASSO is
a commonly used penalty, but it can introduce notable biases in the resulting estimator.
Therefore, we employ concave penalties such as SCAD [8] and MCP to conduct variable
selection that gives consistent estimates.

The structure of the paper is as follows: In Section 2, we introduce the formulation
of the Cox model with general frailties for high-dimensional multivariate failure time
data. Section 3 presents our proposed MM algorithm for estimating model parameters. In
Section 4, we introduce a regularized estimation method using the profile MM algorithm,
leveraging sparse regression assumptions with high-dimensional parameters. We establish
the convergence properties in Section 5. To assess the finite sample performances, we
conducted simulation studies as described in Section 6. In Section 7, we illustrate the
proposed methods, using the aforementioned MIMIC-III dataset. Finally, we provide
further discussion in Section 8.

2. Data and Model Formulation

Assume there are J different types of events and there are n patients in the study.
Denote the event time for the i-th studied subject (i = 1, . . . , n) and its j-th event type
(j = 1, . . . , J) by Tij, and the corresponding censoring time is denoted by Cij. We use tij to
denote the event time and let Iij be the censoring indicator (Iij = 0 for right-censored obser-
vation; Iij = 1 otherwise) and X>ij = (Xij1, . . . , Xijp) be the high-dimensional covariates. The
observed data consist of Yobs = {tij, Iij, Xij}. Given a noninformative censoring assumption,
the Cox model with generality frailties assume that, conditional on the subject-specific
frailties ξi, i = 1, . . . , n, Tij, j = 1, . . . , J are independent of one other and the conditional
hazard function of Tij given ξi and Xij takes the form

λj(t|Xij, ξi) = ξiλ0j(t) exp{X>ijβ}, (1)

where ξi, i = 1, . . . , n, are the individual-level frailty variables with density function f (ξi|γ),
which are independently and identically distributed. The baseline hazard of the j-th event
is denoted by λ0j(·), and β is a parameter vector. We denote Λ0 = (Λ01, . . . , Λ0J) as the
cumulative hazard functions of all events. The three components make up the model
parameters, i.e., γ, β, and the nonparametric components Λ0. To simplify the wording, we
define θ = (γ, β, Λ0). The observed data likelihood function of model (1) can be written as

L(θ|Yobs) (2)

=
n

∏
i=1

∫
W

f (ξi|γ)
J

∏
j=1

[
λ0j(tij)ξi exp(X>ijβ)

]Iij exp
[
−Λ0j(tij)ξi exp(X>ijβ)

]
dξi.

Generally, there is no closed-form solution of the frailty distribution’s Laplace trans-
form. Hence, we cannot find the explicit form of the marginal hazard in (2). In the following,
we apply the MM principle, to deal with such an intractable case and to separate parame-
ters when the model parameters are especially large, for fast and accurate estimation of
model parameters. The MM principle is presented as follows: the minorization step first
constructs a surrogate function Q(θ|θ(k)), which satisfies

Q(θ|θ(k)) 6 L(θ|Yobs), ∀ θ, θ(k) ∈ Θ and Q(θ(k)|θ(k)) = L(θ(k)|Yobs),
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where θ(k) denotes the current estimate of θ̂ in the k-th iteration. Function Q(·|θ(k)) always
lies under L(·) and is tangent to it at the point θ = θ(k). The maximization step then
updates θ(k) by θ(k+1), which maximizes the surrogate function Q(·|θ(k)) instead of L(·):

L(θ(k+1)|Yobs) > Q(θ(k+1)|θ(k)) > Q(θ(k)|θ(k)) = L(θ(k)|Yobs).

3. Likelihood Function and the Proposed Methodologies

From (2), we then formulate the log-likelihood function as

`(θ|Yobs) =
n

∑
i=1

log
∫
W

τi(ξi|θ)dξi, (3)

where

τi(ξi|θ) = f (ξi|γ)
J

∏
j=1

{[
λ0j(tij)ξi exp(X>ijβ)

]Iij exp
[
−Λ0j(tij)ξi exp(X>ijβ)

]}
. (4)

Given the following weight function,

vi(ξi|θ(k)) =
τi(ξi|θ(k))∫

W τi(ξi|θ(k))dξi
,

then we can rewrite the objective function,

`(θ|Yobs) =
n

∑
i=1

log
[ ∫

W

τi(ξi|θ)
vi(ξi|θ(k))

· vi(ξi|θ(k))dξi

]
. (5)

According to the measure-theoretic form of Jensen’s inequality,

Ψ
[ ∫

X
u(x) · g(x)dx

]
>
∫
X

Ψ
[
u(x)

]
· g(x)dx, (6)

where X ⊂ R, Ψ(·) is concave, g(·) is the corresponding density function on real line X and
u(·) is an arbitrary function on real line X. Then, applying this inequality (6) to Equation (5),
we let vi(ξi|θ(k)) be the corresponding density function g(·), and the u(·) is defined as
τi(ξi|θ)/vi(ξi|θ(k)). Ψ(·) takes the concave log function. Thus, we have,

`(θ|Yobs) ≥
n

∑
i=1

∫
W

log
[

τi(ξi|θ)
vi(ξi|θ(k))

]
· vi(ξi|θ(k))dξi

≥
n

∑
i=1

∫
W

log τi(ξi|θ) · vi(ξi|θ(k))dξi + C1,

where C1 is a constant. Then, substituting τi(ξi|θ), using Equation (4), we can construct the
following surrogate function for `(θ|Yobs):

Q1(θ|θ(k)) = Q11(γ|θ(k)) + Q12(β, Λ0|θ(k)), (7)

where

Q11(γ|θ(k)) =
n

∑
i=1

∫
W

log[ f (ξi|γ)] · vi(ξi|θ(k))dξi, (8)
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with parameter γ. And

Q12(β, Λ0|θ(k)) (9)

=
n

∑
i=1

J

∑
j=1

[
Iij log(λ0j(tij))+ IijX>ijβ−A(k)

i Λ0j(tij) exp(X>ijβ)
]

,

where A(k)
i =

∫
W ξi · vi(ξi|θ(k))dξi, i = 1, . . . , n. Therefore, Q1(θ|θ(k)) successfully sepa-

rates the parameters γ, β, and Λ0 into (8) and (9), correspondingly. Then, in the second
M-step, the γ will be updated by maximizing (8) numerically. However, the updating of
(β, Λ0) by maximizing (9) is challenging, due to the presence of the nonparametric compo-
nents Λ0. Therefore, to tackle this issue, following [9], we utilize their profile estimation
approach in (9), to profile out Λ0 given β, which results in the estimate of Λ0 as

dΛ̂0j(tij) =
Iij

∑n
r=1 I(trj > tij)A(k)

r exp(X>rjβ)
, j = 1, · · · , J. (10)

By substituting (10) into (9), we furthermore have

n

∑
i=1

J

∑
j=1

[
Iij log(λ0j(tij))+ IijX>ijβ−A(k)

i Λ0j(tij) exp(X>ijβ)
]

=
n

∑
i=1

J

∑
j=1

[
Iij log(

Iij

∑n
r=1 I(trj > tij)A(k)

r exp(X>rjβ)
))+ IijX>ijβ

−
n

∑
s=1

I(tsj ≤ tij)

∑n
r=1 I(trj > tsj)A(k)

r exp(X>rjβ)
A(k)

i exp(X>ijβ)
]

=
n

∑
i=1

J

∑
j=1

{
IijX>ijβ− Iij log

[ n

∑
r=1

I(trj > tij)A(k)
r exp(X>rjβ)

]

+ Iij log Iij

}
−

J

∑
j=1

n

∑
s=1

n

∑
i=1

I(tsj ≤ tij)A(k)
i exp(X>ijβ)

∑n
r=1 I(trj > tsj)A(k)

r exp(X>rjβ)

=
n

∑
i=1

J

∑
j=1

{
IijX>ijβ− Iij log

[ n

∑
r=1

I(trj > tij)A(k)
r exp(X>rjβ)

]}
+ C2,

where C2 is a constant. Therefore,

Q13(β|θ(k))=
n

∑
i=1

J

∑
j=1

{
IijX>ijβ− Iij log

[ n

∑
r=1

I(trj > tij)A(k)
r exp(X>rjβ)

]}
, (11)

which includes parameter β only. It is obvious that Q13(β|θ(k)) is of the same form as
the Cox model’s log partial likelihood, where the modified Cox regression technique can
be applied to obtain the updated estimates of β, but this procedure will apply Newton’s
method, which involves matrix inversion, which is computationally inefficient with large
number of covariates. As the MM algorithm helps to separate the estimation of parameters,
here we treat (11) as a new objective function and construct the minorizing function by
reformulating the high-dimensional parameter estimation problem into a collection of
low-dimensional optimizations. Here, we use the hyperplane inequality, which is generally
applied in the MM algorithm [10]:

− log(x) > − log(x0)−
x− x0

x0
. (12)



Mathematics 2023, 11, 4440 5 of 14

In inequality (12), we take

x =
n

∑
r=1

I(trj > tij)A(k)
r exp(X>rjβ), x0 =

n

∑
r=1

I(trj > tij)A(k)
r exp(X>rjβ

(k)).

Then,

Q13(β|θ(k)) ≥
n

∑
i=1

J

∑
j=1

{
IijX>ijβ− Iij

(
log
[ n

∑
r=1

I(trj > tij)A(k)
r exp(X>rjβ

(k))

]

−
∑n

r=1 I(trj > tij)A(k)
r exp(X>rjβ)−∑n

r=1 I(trj > tij)A(k)
r exp(X>rjβ

(k))

∑n
r=1 I(trj > tij)A(k)

r exp(X>rjβ
(k))

)}

≥
n

∑
i=1

J

∑
j=1

[
IijX>ijβ−

Iij ∑n
r=1 I(trj > tij)A(k)

r exp(X>rjβ)

∑n
r=1 I(trj > tij)A(k)

r exp(X>rjβ
(k))

]
+ C3,

with constant C3. Then we have the following surrogate function:

Q14(β|θ(k)) =
n

∑
i=1

J

∑
j=1

[
IijX>ijβ−

Iij ∑n
r=1 I(trj > tij)A(k)

r exp(X>rjβ)

∑n
r=1 I(trj > tij)A(k)

r exp(X>rjβ
(k))

]
. (13)

For the finite form of Jensen’s inequality:

Ψ
[

∑ xi ·ωi

]
> ∑ Ψ

[
xi
]
ωi , (14)

where ωi are positive weights with ∑ ωi = 1 and Ψ(·) is concave. As in [11], the con-
cave function − exp(·) can then adopt inequality (14), and a part of Q14(β|θ(k)) can be
rewritten as

X>rjβ =
q

∑
p=1

δprj[δ
−1
prj Xprj(βp − β

(k)
p ) + X>rjβ

(k)],

where δprj = |Xprj|/ ∑
q
p=1 |Xprj| is the weight in Jensen’s inequality. Thus,

− exp(X>rjβ) ≥ −
q

∑
p=1

δprj exp [δ−1
prj Xprj(βp − β

(k)
p ) + X>rjβ

(k)]. (15)

Then, substituting (15) into Q14(β|θ(k)), the minorizing function can be obtained as

Q15(β1, . . . , βq|θ(k)) =̂
q

∑
p=1

Q15p(βp|θ(k)), (16)

where

Q15p(βp|θ(k)) =
n

∑
i=1

J

∑
j=1

{
IijXpijβp (17)

−
Iij ∑n

r=1 I(trj > tij)A(k)
r δprj exp

[
δ−1

prj Xprj(βp − β
(k)
p ) + X>rjβ

(k)]
∑n

r=1 I(trj > tij)A(k)
r exp(X>rjβ

(k))

}
,
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for p = 1, . . . , q. In the first M-step of the profile MM algorithm, the final minorizing
function using the profiled method for the objective log-likelihood `(θ|Yobs) is

Qpro(γ, β|θ(k)) = Q11(γ|θ(k)) +
q

∑
p=1

Q15p(βp|θ(k)), (18)

with the update of dΛ0 by (10). From (18), maximizing the original objective function
can be transferred into the maximization for a collection of q + 1 univariate functions,
as the γ from Q11(γ|θ(k)) is one-dimensional in most cases. Thus, the next M-step is
conducted by optimizing q + 1 univariate objective functions separately without the in-
efficient matrix inversion. We can see that there exist two integrals,

∫
W ξi · vi(ξi|θ(k))dξi

and
∫
W log[ f (ξi|γ)] · vi(ξi|θ(k))dξi. While our model is designed to address general frailty

forms, the improper integrals presented above may not be computationally retrievable in
extremely sparse and high-dimensional cases. However, as long as these integrals can be
numerically calculated, our MM algorithm will always converge. Then, we propose the
following estimation procedure.

4. The Algorithms

The parameter-separated surrogate functions proposed in Section 3 can cope well with
sparsity-inducing penalties like SCAD or MCP. Therefore, in this section, the regularized
estimation method is proposed, using the MM principle, as discussed in Section 3. Many
variable selection penalties are special cases from the general form given in [8], and the
likelihood function incorporated with the penalty term is written as

`P(θ|Yobs) = `(γ, β, Λ0|Yobs)− n
q

∑
p=1

P(|βp|, λ), (19)

where `(γ, β, Λ0|Yobs) is discussed in the previous section with q-dimensional β. λ is
a non-negative tuning parameter that can also be set as λp in more general cases. The
variable selection can be realized by shrinking some of the coefficients to zero, using a
given penalty. With general frailties, the computation of MLEs is rather complicated, as
the parameters involve three parts, γ, β, Λ0, and it is more challenging when the number
of parameters is high-dimensional, which is indeed our case. From the discussion in the
previous section, our proposed profile MM algorithm separates all these parameters, which
leads to an efficient and accurate estimation. This nice property of our proposed profile
MM algorithm can mesh well with the different kinds of regularization penalties in (19), to
produce efficient and accurate sparse estimation. Using the same profile MM strategies as
in (18), as Qpro(γ, β|θ(k)) is the surrogate function for `(γ, β, Λ0|Yobs), the corresponding
minorization function for `P(θ|Yobs) can be expressed as

Qpro(γ, β|θ(k))− n
q

∑
p=1

P(|βp|, λ), (20)

where P(·, λ) is a concave function that is nondecreasing and piecewise differentiable,
defined on (0, ∞), Ref. [12] proposed an approximation approach for the penalty term,
using quadratic functions:

−P(|βp|, λ) > −P(|β(k)
p |, λ)−

[β2
p − (β

(k)
p )2]P′(|β(k)

p |+, λ)

2|β(k)
p |

, (21)
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combining function (21) with (18):

Qpro(γ, β|θ(k))− n
q

∑
p=1

P(|βp|, λ)

≥ Qpro(γ, β|θ(k))− n
q

∑
p=1

(
P(|β(k)

p |, λ) +
β2

p · P′(|β
(k)
p |+, λ)

2|β(k)
p |

)

≥ Q11(γ|θ(k)) +
q

∑
p=1

[
Q15p(βp|θ(k))−

nβ2
p · P′(|β

(k)
p |+, λ)

2|β(k)
p |

]
+ C4.

Therefore, the final surrogate function based on the MM algorithm for the penalized
log-likelihood (19) is written as

QP
pro(γ, β|θ(k), λ) = Q11(γ|θ(k)) +

q

∑
p=1

[
Q15p(βp|θ(k))−

nβ2
p · P′(|β

(k)
p |+, λ)

2|β(k)
p |

]
. (22)

Equation (22) decomposes the original maximizing function (19) to a sum of univariate
functions that is more computationally efficient. Moreover, off-the-shelf accelerators can
be applied, to improve the efficiency of the optimization problems. Then, we propose an
alternative estimation procedure.

From the literature, there are different criteria for the selection of tuning parameter
λ, such as the BIC (Bayesian information criterion [13]) and the GCV (generalized cross-
validation [14]). In this paper, a BIC-type criterion is applied, which is defined by

BICλ = −2`(θ̂) + Gn(Ŝ + 1) log(n), (23)

where Gn = max{1, log[log(q+ 1)]}with q-dimensional β. Ŝ is the degrees of freedom, and
it denotes the number of estimates from β̂ with nonzero values. To determine the optimal
λ, we use a similar method to the one commonly used in the R package “glmnet” [15]. To
determine the appropriate range of λ, we first conduct a search from R+, using the BIC
criteria. Next, we select the optimal λ, using a grid search within this determined range.

5. Theoretical Properties

The convergence properties are established in this section, for both the profile MM
algorithm and the regularized MM algorithm. Let Q(θ|θ(k)) be the minoring function
based on the original objective `(·|Yobs), where θ denotes the parameters and θ(k) is the k-th
iteration’s estimation. The general convergence of the MM algorithm is provided by [16],
as stated in Lemma 1 below. We denote M(θ) to be the maximizer of Q(·|θ), given the
following regularity conditions:

I. The set S of parameter θ is open Rd.
II. The objective function `(·|Yobs) is continuously differentiable.
III. The set defined as Sc = {θ ∈ S : `(θ|Yobs) ≥ c} is compact in Rd.
IV. The surrogate function Q(θ|θ(k)) is continuously differentiable in θ and continuous

in θ(k).
V. The objective function `(·|Yobs)’s stationary points are isolated.
VI. For the surrogate function Q(·|θ(k)), there exists a unique global maximum.

Lemma 1. Let θ(k), k ∈ N denote a sequence from the MM algorithm:

(i) M(θ) is continuous at θ(k) if VI is satisfied.
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(ii) If I–VI are satisfied, for any initial value θ(0), when k → ∞, θ(k) tends to stationary point
θ∗. Moreover, M(θ∗) = θ∗, and the likelihood `(θ(k)|Yobs) sequence strictly increases to
`(θ∗|Yobs) if θ(k) 6= θ∗ for all k.

Therefore, based on this Lemma, given Condition 1 below, we have the convergence
of our MM algorithm.

Condition 1. Conditions for the convergence of the profile MM algorithm:

(a) `(·|Yobs) is continuously differentiable.
(b) γ and β are compact, given `(θ|Yobs) ≥ c.
(c) Stationary points for `(θ|Yobs) are isolated.

Theorem 1. If Condition 1 holds, for any initial value of θ(0) = {γ(0), β(0), Λ(0)
0 }, the profile

MM algorithm (Algorithm 1) converges to θ(∗).

Algorithm 1 Estimating Procedure.
S1. Provide initial values for parameters γ, β, and Λ0.
S2. Update the estimation of parameter γ, using (8).
S3. Update the estimation of other parameters of covariates βp, using (17) for p = 1, . . . , q.
S4. Compute the estimation of Λ0j(tij), using (10) with the previous estimated β from S3.
S5. Conduct iterations from S2 to S4 repeatedly till convergence.

Proof.

`(θ|Yobs) =
n

∑
i=1

log
[ ∫

W

τi(ξi|θ)
vi(ξi|θ(k))

· vi(ξi|θ(k))dξi

]
≥

n

∑
i=1

∫
W

log
[

τi(ξi|θ)
vi(ξi|θ(k))

]
· vi(ωi|θ(k))dξi

= Q1(θ|θ(k)).

Therefore, the initial minorizing function Q1(θ|θ(k)) satisfies the condition that

`(θ|Yobs) ≥ Q1(θ|θ(k)), `(θ(k)|Yobs) = Q1(θ
(k)|θ(k)).

Then, after profiling out Λ0,

Qpro(γ, β|θ(k)) = Q11(γ|θ(k)) +
q

∑
p=1

Q15p(βp|θ(k))

from (18), Q11(γ|θ(k)) has a unique global maximum and Q15p(βp|θ(k)) is a unimodal
function with a unique global maximum that verifies Condition VI. Condition I is easily
followed from the form of `(·|Yobs). Condition II follows by Condition 1(a) and, hence,
IV is also satisfied. Also, Condition V is followed by Condition 1(c). Then, we verify
Condition III. It follows from the continuity of `(θ|Yobs) that Ωc is closed. If dΛ0j(tij)
is unbounded, `(θ|Yobs) → −∞. By contrast, dΛ0j(tij) is bounded when `(θ|Yobs) ≥ c.
Combined with Condition 1(b), III is satisfied. Thus, by Lemma 1, the profiled MM
algorithm is convergent.

Theorem 2. If Condition 1 holds, for any initial value of θ(0) = {γ(0), β(0), Λ(0)
0 }, the regularized

profile MM algorithm (Algorithm 2) converges to θ(∗).
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Algorithm 2 An alternative method.
S1. Provide initial values for parameters γ, β, and Λ0.
S2. Update the estimation of parameter γ, using (8).
S3. Under the profile MM method, β is updated by maximizing the equation

∑
q
p=1

[
Q15p(βp|θ(k))− nβ2

p · P′(|β
(k)
p |+, λ)/2|β(k)

p |
]
.

S4. Compute the estimates of Λ0j(tij), using (10) with estimated β in S3.
S5. Conduct iterations from S2 to S4 repeatedly till convergence.

Proof. Note that, after profiling out Λ0, the surrogate function consists of Q11(γ|θ(k)) and

Q15p(βp|θ(k))−
nβ2

p ·P′(|β
(k)
p |+ ,λ)

2|β(k)p |
with the unique global maximum, which verifies condition

VI. For the other conditions, I–V, the proof is similar to Theorem 1. Thus, by Lemma 1, the
regularized profiled MM algorithm is convergent.

6. Simulation Study

Example 1. We conducted simulations for the frailty models stated below:

λj(t|Xij, ξi) = ξiλ0j(t) exp{X>ijβ}, ξi ∼


log-normal(0, γ), γ = 1/4,

inverse Gaussian(γ, γ2), γ = 1,

gamma(1/γ, 1/γ), γ = 2,

with two events, J = 2, a sample size n = 300, and λ01(t) = 3, λ02(t) = 5/(1 + 5t). We
set the true value β as (−2>6,−1>6, 1>6, 2>6, 3>6) with dimension q = 30. Covariates Xi’s were
generated independently from a uniform distribution (0, 0.5). The generation process ensured that
the censoring rate fell between 25% and 35%.

We tested the performance of our proposed profile MM algorithms, using the three
different frailty models provided above. For computational issue, our algorithm separated
the estimation of all parameters into univariate objectives, making it easily adaptable to
off-the-shelf accelerators. Utilizing simple off-the-shelf accelerators [17], we can speed up
our MM algorithms. As described in [17], there are several types of accelerators that utilize
quasi-Newton approximation. For our article, we chose to adopt the squared iterative (SqS1)
approach. The simulation results are presented in Table 1, where (MLE) denotes the average
estimation of regression and frailty parameters, and (Bias) denotes their biases. (SD) is their
estimated standard deviations, estimated using empirical standard deviation (for βi, the
estimated standard deviation was 1

200 ∑200
k=1(β̂

(k)
i − β̄i) where β̂

(k)
i was the estimation of βi

in kth replication), (K) is the number of iterations until convergence, (T) is the total run time,
in terms of seconds, and the final value for the objective function is denoted by (L). The
results indicate that our algorithms exhibited fast convergence and performed well across
all three frailty models. Our algorithm also demonstrated good estimation accuracy, as
evidenced by the nearly unbiased results and the high significance of the estimates of β,
which was observed from their estimated standard deviations in all cases.

Example 2. In this example, we conducted a simulation for multivariate frailty models:

λj(t|Xij, ξi) = ξiλ0j(t) exp{X>ijβ}, ξi ∼


gamma(1/γ, 1/γ), γ = 2,

log-normal(0, γ), γ = 0.5,

inverse Gaussian(γ, γ2), γ = 1,

for i = 1, . . . , 400, j = 1, 2, with λ01(t) = 3, λ02(t) = 5/(1 + 5t). Here, we set the
true coefficient vector β as (2, 3, 4, 0>27)

> with dimension q = 30. We generated the covariates
X>= (X1, . . . , Xq) following multivariate normal distribution. The mean was equal to zero and
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the covariance was Σ = {$|r−s|}rs for r, s = 1, . . . , q with a first-order autoregressive form, where
$ = 0.2. Similar to Example 1, there existed censored observation while the censoring proportion
was set to be between 5% to 15%.

In the following simulation study, we tested the correctness of the variable selection of
our proposed regularized profile MM methods in a high-dimensional regression model,
using MCP and SCAD penalties with high parameter sparsity (19). The first derivative of
the penalty function for SCAD was P′(|β|, λ) = λ{I(|β| ≤ λ) + (aλ−|β|)+

(a−1)λ I(|β| > λ)}, and

for MCP it was P′(|β|, λ) = sign(β)(λ− |β|a ). According to [4,18], they suggested taking
a = 3.7 for SCAD and a = 3 for MCP. To assess the performance of the model selection
method, we conducted 200 replications. Based on these replications, we calculated the
probability of obtaining the true model, where all covariates with non-zero parameters
were estimated to have non-zero values, while covariates with zero parameters were not
selected. This measure provided an evaluation of how well the method performed in
correctly selecting the model that accurately represented the underlying data. We counted
the number of correctly identified zero coefficients and the non-zero parameters that were
estimated to be zero in each simulation run, and the average is shown in Table 2. The
column titled “Correct” denotes the average count of true zero coefficients with zero esti-
mated value, and the column titled “Incorrect” represents the average count of parameters
where the true value was not zero but had an estimated zero value. We can observe that it
consistently provided correct variable selection results across three different frailty models.
Furthermore, we report the average parameter estimates and their bias and the correspond-
ing mean squared error with 200 replications in Table 3. We observe that our proposed
MM profile algorithms effectively handled penalties such as MCP and SCAD, producing
accurate estimation results for various frailties. In particular, the inverse Gaussian frailty
model with the SCAD penalty demonstrated excellent performance. Moreover, we also
found that the estimates from the SCAD penalty were consistently more accurate than the
results from the MCP penalty. The results from Tables 2 and 3 highlight the efficacy of
our approach in dealing with different penalty functions and its ability to yield reliable
estimation results for various types of frailty models.

Table 1. Simulation results of Example 1.

Log-Normal Frailty Inverse Gaussian Frailty Gamma Frailty

K 31.2780 162.1980 64.7648
T 4.7591 12.6620 5.1203
L −2702.3917 −2586.3026 −2696.2794

MLE Bias SD MLE Bias SD MLE Bias SD

γ 0.2729 0.0229 0.4236 0.8502 −0.1498 0.3856 2.1017 0.1017 0.4097
β1 −2.0917 −0.0917 0.3814 −2.1046 −0.1046 0.4252 −2.0687 −0.0687 0.3844
β5 −2.0692 −0.0692 0.4076 −2.1536 −0.1536 0.4224 −2.0894 −0.0894 0.3818
β10 −1.0320 −0.0320 0.3822 −1.0597 −0.0597 0.3893 −1.0610 −0.0610 0.4010
β15 1.0606 0.0606 0.3928 1.0692 0.0692 0.3973 1.0348 0.0348 0.4015
β20 2.0530 0.0530 0.3851 2.1129 0.1129 0.4162 2.0891 0.0891 0.3830
β25 3.1770 0.1770 0.4159 3.1770 0.1770 0.4159 3.1120 0.1120 0.3890
β30 3.1071 0.1071 0.3849 3.2102 0.2102 0.4277 3.1410 0.1410 0.4070

Table 2. Simulation results based on three frailty models using two types of penalties. The sample
size was 400, and 200 replications were conducted in Example 2.

Frailty Sparsity Penalties P (Selecting the True Model)
Zeros

Correct Incorrect

Gamma MCP (a = 3) 1 27 0
SCAD (a = 3.7) 1 27 0
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Table 2. Cont.

Frailty Sparsity Penalties P (Selecting the True Model)
Zeros

Correct Incorrect

Log-Normal MCP (a = 3) 1 27 0
SCAD (a = 3.7) 1 27 0

Inverse Gaussian MCP (a = 3) 1 27 0
SCAD (a = 3.7) 1 27 0

Table 3. The estimated parameters’ MLE, Bias, and SD (standard error). The sample size equaled 400
and the replications number was 200 in Example 2.

Frailty Par.
MCP SCAD

MLE Bias SD MLE Bias SD

Gamma

γ 2.1012 −0.1012 0.3106 2.0678 −0.0687 0.3223
β1 2.0891 −0.0891 0.2438 1.9984 0.0016 0.2081
β2 3.1120 −0.1120 0.3517 2.9893 0.0107 0.2729
β3 4.1410 −0.1410 0.3459 4.0175 −0.0175 0.2920

Log-Normal

γ 0.4641 0.0359 0.1182 0.4696 0.0304 0.1101
β1 2.0563 −0.0563 0.1831 2.0282 −0.0282 0.1566
β2 2.9962 0.0038 0.3565 2.9705 0.0295 0.3080
β3 3.9756 0.0244 0.2931 4.0010 −0.0010 0.2230

Inverse Gaussian

γ 0.8999 0.1001 0.2024 1.0193 −0.0193 0.1717
β1 2.0562 −0.0562 0.2240 2.0305 −0.0305 0.1978
β2 3.0888 −0.0888 0.2591 3.0052 −0.0052 0.2548
β3 4.0915 −0.0915 0.1816 4.0055 −0.0055 0.1794

7. Real Data Application

MIMIC-III [19] is a dataset that includes information about patients who have been
admitted to a critical care unit for various diseases. In this study, we specifically focused
on a subset of 8516 patients who were admitted due to respiratory disease. The dataset
included 82 covariates, which consisted of clinical variables such as mean blood pressure,
heart rate, height, and other features, like whether the patient was transferred from another
hospital. Two events were considered in our analysis. The first event was the time from
admission to discharge from the ICU, and the second event was the time from discharge
to death.

Three frailty models—namely gamma, log-normal, and inverse Gaussian—were fitted,
using the regularized profile MM estimation method, with both MCP and SCAD penalties.
The results are given in Table 4. The result obtained using MCP and SCAD penalties
were similar, as they both selected the same set of significant variables, using the BIC
criterion. For both the log-normal and the inverse Gaussian models, a total of 11 significant
covariates were selected. These covariates were primarily clinical variables, as indicated
by Tables 5 and 6. Among the 11 clinical variables that were considered significant, more
than half of them were numerical variables, such as height. These numerical variables
were considered to be more relevant to the two events being studied. On the other hand,
other types of variables, such as categorical variables, may have had less of a direct
relationship with the events. In addition to the clinical variables, it was observed that
patients with booked admission (ELECTIVE) had a significant positive impact on the two
events being studied. This suggests that patients who have planned admissions may have
better outcomes compared to those who are admitted in emergency situations. On the
other hand, variables related to patients’ personal information, such as marital status,
had smaller effects on the two events. This indicates that these personal factors may
have had less influence on the outcomes being studied. For the Gamma frailty model, as
presented by Table 7, more significant covariates were found: for example, the ethnicity
was considered to be significant. It is reasonable that different frailty models will generate
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different estimates. It is worth noting that the Gamma frailty model selected too many
sparse features, including ethnicity, which may not have been preferable in this particular
case. However, regardless of the choice of frailty, there were seven key features that were
consistently selected by all models. This suggests that our model can consistently select
those features which play a vital role in reflecting the length of a patient’s stay in the ICU.

Table 4. The minimum BIC scores (BIC) and number of significant variables from the three
frailty models.

Penalty BIC No. of Significant Variables

Log-Normal Frailty
MCP 160,361 11
SCAD 160,361 11

Inverse Gaussian Frailty
MCP 175,223 11
SCAD 175,127 11

Gamma Frailty
MCP 160,684 31
SCAD 160,690 31

Table 5. Parameter estimates for covariates using the inverse Gaussian frailty model.

The Inverse Gaussian Frailty Model

Clinical
Fraction of inspired oxygen 0.221
Glucose −0.128
Heart Rate −0.069
Height −0.173
Oxygen saturation 0.109
Respiratory rate −0.147
Elective 0.486
Emergency room admit −0.152(Admission location)
Phys referral/normal deli 0.220(Admission location)

Personal Information
Engl (Language) 0.156
Married (Marriage status) 0.079

Table 6. Parameter estimates for covariates, using the log-normal frailty model.

The Log-Normal Frailty Model

Clinical
Fraction of inspired oxygen 0.208
Glucose −0.120
Heart Rate −0.065
Height −0.165
Oxygen saturation 0.098
Respiratory rate −0.139
Elective 0.433
Emergency room admit −0.138(Admission location)
Phys referral/normal deli 0.229(Admission location)

Personal Information
Engl (Language) 0.134
Married (Marriage status) 0.070
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Table 7. Parameter estimates for covariates, using the gamma frailty model.

The Gamma Frailty Model

Clinical
Fraction of inspired oxygen 0.246
Glucose −0.048
Height −0.162
Respiratory rate −0.141
Elective 0.533
Phys referral/normal deli 0.365(Admission location)
TRANSFER FROM OTHER HEALT 0.833

Personal Information
Engl (Language) 0.220
Separated (Marriage status) 0.355
Unitarian universalist 0.338

Ethnicity
Asian −0.317
Hispanic/Latino–Puerto Rican 0.373
Multi-race ethnicity 0.262
Asian–other −0.265
Hispanic/Latino–Colombian 1.790
Hispanic/Latino–Dominican 0.465
Middle eastern 0.306
Hispanic/Latino–Cuban 0.664
Asian–Asian Indian 0.664
White–eastern European 0.362
White–Brazilian 0.888
Portuguese −0.315
Hispanic/Latino–Mexican −0.345
Asian–Japanese −1.110
Hispanic/Latino–Salvadoran 0.808
American Indian/Alaska native −0.841Federally recognized tribe
Asian–Filipino −0.465
Asian–Korean 0.263
Hispanic/Latino–Guatemalan −0.221
American Indian/Alaska native −0.426
Asian–Cambodian 0.240

8. Discussion

We have developed an innovative algorithm for parameter estimation in the analysis
of complex multivariate failure time data with high-dimensional covariates. This type of
data presents challenges, due to its intricate nature and the presence of multiple corre-
lated survival outcomes. Estimating frailty models, which incorporate random effects to
capture unobserved heterogeneity, typically requires nonparametric maximum likelihood
estimation, due to the unknown baseline hazard function. Most existing researches apply
the gamma frailty model because it provides an explicit formula for parameter estimation
in each iteration, reducing the computational burden. By contrast, our method offers the
advantage of being applicable to general frailty models and providing efficient estimation
results, even in high-dimensional cases. This is achieved through the incorporation of
regularization methods.

Our proposed algorithm efficiently addresses these challenges by accurately estimat-
ing the high-dimensional parameters. Our method avoids the Laplace approximation and
the traditional Newton–Raphson method, which can result in inaccurate and inefficient
estimation when dealing with high-dimensional data. A significant contribution of our
method is the utilization of a decomposition approach, which splits the minorizing function
into a collection of univariate functions. This approach improves computational efficiency
and ensures robust parameter estimation. In high-dimensional cases, the traditional EM
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algorithm for parameter estimation of frailty models can lead to significant computational
costs. In practical applications involving various clinical and genetic covariates, our algo-
rithm enables the estimation procedure to be completed within a reasonable timeframe,
thus facilitating effective identification of key features.

Importantly, our algorithm can be applied to various settings and complexities of
multivariate survival data without relying on specific regularization techniques. In addition
to the multiple event data modeled in this article, our algorithm can be further extended,
to handle data with different structures of correlation, such as recurrent event data and
clustered survival data with general frailties. The package “frailtyMMpen” can be down-
loaded from CRAN, providing convenient support for setting up various types of survival
data and regularization methods in the model. By leveraging this algorithm, researchers
and practitioners can effectively analyze and gain insights from real-world applications
of multivariate survival data. Understanding the relationships between covariates and
survival outcomes is crucial for informed decision-making and predictive modeling in
these scenarios.
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