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Abstract: The ant colony algorithm faces dimensional catastrophe problems when solving the large-
scale traveling salesman problem, which leads to unsatisfactory solution quality and convergence
speed. To solve this problem, an adaptive ant colony optimization for large-scale traveling salesman
problem (AACO-LST) is proposed. First, AACO-LST improves the state transfer rule to make it
adaptively adjust with the population evolution, thus accelerating its convergence speed; then, the
2-opt operator is used to locally optimize the part of better ant paths to further optimize the solution
quality of the proposed algorithm. Finally, the constructed adaptive pheromone update rules can
significantly improve the search efficiency and prevent the algorithm from falling into local optimal
solutions or premature stagnation. The simulation based on 45 traveling salesman problem instances
shows that AACO-LST improves the solution quality by 79% compared to the ant colony system
(ACS), and in comparison with other algorithms, the PE of AACO-LST is not more than 1% and the
Err is not more than 2%, which indicates that AACO-LST can find high-quality solutions with high
stability. Finally, the convergence speed of the proposed algorithm was tested. The data shows that
the average convergence speed of AACO-LST is more than twice that of the comparison algorithm.
The relevant code can be found on our project homepage.

Keywords: meta-heuristic algorithm; adaptive optimization; traveling salesman problem; large-scale
optimization; path optimization

MSC: 68T20; 68T07

1. Introduction

Optimization problems belong to an important branch of operations research, and the
corresponding solution problems can be mainly classified into three categories: discrete,
continuous, and mixed-integer planning problems, depending on the problem to be solved.
Continuous optimization problems are characterized by continuous decision variables
and are usually solved by Newton’s method [1] and the gradient descent method [2].
Combinatorial optimization problems [3] differ from continuous optimization problems
in that their decision variables are discrete. Accurately solving algorithms, such as in-
teger programming [4], cut-plane method [5], branch-and-bound method [6], dynamic
programming [7], and minimum spanning tree method [8] are widely used in solving
combinatorial optimization type problems. However, as the scale of TSP increases, the time
cost of accurately solving algorithms also increases exponentially, which poses obstacles to
the use of this type of algorithms.

Currently, artificial intelligence has brought significant changes to the development
of the world, and complex tasks represented by the recognition of DNA-protein binding
have been effectively solved [9]. However, for combinatorial optimization problems,
the difficulty of solving the resulting NP-hard problem increases exponentially as the
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problem size increases. In this class of problems, if a strictly exact solution is required,
the computational complexity will increase exponentially with the increase of decision
variables. To cope with complex optimization problems, heuristic algorithms are introduced
and used to solve this class of problems while obtaining superior search efficiency. However,
heuristic algorithms are difficult to jump out of the local optimal solution, which also creates
a bottleneck for the improvement of search efficiency. Therefore, meta-heuristic algorithms
have been proposed and widely used in this field. These algorithms are represented by
differential evolution [10], genetic algorithm [11,12], and ant colony optimization [13–16],
which introduce stochastic search into a heuristic algorithm to help the algorithm better
jump out of locally optimal solutions and increase the possibility of finding globally
optimal solutions.

The traveling salesman problem (TSP) is a classical combinatorial optimization prob-
lem where the objective of the problem is to find the shortest route between a given set
of cities that can visit all of them and return to the starting city at the end. Although the
TSP has been proven to be NP-hard theoretically, it still receives the attention of many
researchers due to its applications in many practical scenarios, such as route planning,
circuit board design, and military communication [12]. The ant colony algorithm, which
has a strong advantage in solving TSP, is a heuristic optimization algorithm proposed by
Dorigo [17], who was inspired by people’s research results on the collective behavior of real
ant colonies in nature, and it has the same advantages as genetic algorithm [11], particle
swarm optimization [14–21], and immune algorithm [22–25], such as strong robustness
and easy to combine with other methods, and has a wide range of application areas.

With the development of modern technology, there is an increasing need to solve TSP
on a larger scale and higher complexity. On the one hand, in terms of practical applications,
in the manufacturing field, large-scale TSP optimization reduces equipment downtime and
improves the output of the production line through the optimization of paths. In the field
of bioinformatics, the large-scale TSP derived from gene sequencing provides a method for
understanding the structure and function of the genome. In addition, it has a huge role
to play in the modeling of navigation satellite systems, in the logistics and transportation
industry, in the wiring of large-scale circuits, and many other areas. On the other hand, in
terms of the importance of the research, large-scale TSP is an important challenge in the
field of computer science and operations research, and studying and solving this problem
can help to advance algorithmic research. For this reason, scholars have proposed many
improvement strategies. Wang et al. [26] proposed hybrid symbiotic organisms search
(SOS) and ant colony optimization (ACO) to solve the TSP, which can adaptively optimize
the parameters of ACO through SOS, reduce the complexity of parameter allocation of the
algorithm, and also cited a simple local optimization strategy to improve the convergence
rate and solution quality of it. Yang et al. [27] introduced the nucleolar game strategy into
the algorithm, and the cooperative ant colony system (ACS) groups shared the pheromone
distribution and allocated the cooperative profits through nucleolus to improve the con-
vergence of the algorithm. In reference [28], a dynamic flight ant colony optimization
algorithm is used to solve the TSP. The colony in the algorithm includes common ants and
flying ants, and the flying ants store pheromones by injecting them from a distance, so the
pheromones add to the path between adjacent nodes, and the number of nodes receiving
pheromones will change according to the quality of the solution compared with the rest of
the solutions, thus achieving a balance in exploitation and exploration. Zhang et al. [29]
applied opposition-based learning (OBL) to the ant colony algorithm. According to the
characteristics of the solution of TSP, two strategies of constructing opposite paths by
using OBL were proposed, and three different algorithm frameworks were designed to
utilize the information of opposite paths to improve the algorithm performance. In the
traditional ant colony algorithm, the heuristic information is obtained by the reciprocal
of the distance between nodes, without considering the need to return to the starting city
in the last step. Shahadat et al. [30] adopted the general formula of visibility heuristic
associated with the final destination city to intelligently deal with the problem of returning
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to the starting city. Yu et al. [31] found that the traditional ant colony algorithm would fall
into the local optimum when increasing the pheromone concentration factor. To solve this
problem, a disturbance factor was added to the algorithm to eliminate the interference of
other factors on the ant colony movement, and then the functional relationship between the
moving distance and the pheromone concentration was increased. In addition, the firefly
algorithm was introduced to further optimize it. Li et al. [32] proposed a heuristic smooth
ant colony algorithm with differential edge information to solve TSP, which strengthened
the exploration of differential edge by using the differential edge information obtained from
candidate solutions and made the evaporation operation of pheromone trail can get more
reasonable guidance. In this article, the state transfer rule of ACS [17] is improved by using
the sine-cosine function, then the 2-opt operator is introduced to locally optimize the better
part of paths, thus the adaptive pheromone update rule is constructed. Experiments show
that adaptive ant colony optimization for large-scale TSP (AACO-LST) has a significant
effect on solving large-scale TSP.

In this article, the related work was introduced in Section 2. In Section 3, we discussed
the principles of the ant colony algorithm and gave the main framework and details of
the AACO-LST algorithm. Section 4 presents comparison results between AACO-LST
and other comparison algorithms on different TSP instances. Section 5 outlines future
research directions.

2. Related Work

Combinatorial optimization problems have always been a significant research direction
in the fields of computer science and operations research, which can be described in a
formulaic manner: 

min f (x)
s.t. g(x) ≥ 0

x ∈ D
(1)

In Equation (1), f (x) is the objective function, g(x) is the constraint function, x is the
decision variable, and D denotes a finite discrete decision space. The traveling salesman
problem is a popular field of study in combinatorial optimization. There is a lot of related
work on the TSP, and exact algorithms belong to the early part of algorithms that were
used to solve it, specifically dating back to 1954. When a dynamic programming algorithm
for solving the symmetric TSP was proposed by Dantzig, Fulkerson, and Johnson, it was
also called the Dantzig-Fulkerson-Johnson (DFJ) algorithm. The model of the algorithm
includes allocation constraints and sub-loop elimination constraints in addition to binary
constraints on the decision variables. However, the exponential increases in the number
of constraints of the model with the increase in the size of the city causes the algorithm
to be ineffective in solving large-scale TSP. Therefore, it is necessary to construct a TSP
model with only polynomial constraints to improve the solution efficiency. For example,
Pérez-Carabaza S. et al. [33] extended the current popular Rank-based Ant System (ASrank)
by introducing a strategy of initial reinforcement for top ranked solutions and a pheromone
smoothing mechanism to avoid the stagnation, effectively improving the search ability of
the algorithm; Miller C. E. et al. [34] proposed a mixed-integer programming model with a
polynomial number of constraints to describe the TSP. Mixed-integer programming prob-
lems are usually solved exactly using the branch-and-bound method. Nikolaev A. et al. [35]
proposed a branch-and-bound algorithm based on the 1-tree Lagrangian relaxation method,
which proposes a new branching strategy, i.e., branching on 1-tree edges belonging to
vertices in the 1-tree of the highest degree with the largest tolerance, which is shown by
testing on benchmark instances in TSPLIB to have higher solution quality compared to
branching on the shortest edge and the strong branching proposed by Held M. et al. [36].
However, the exact algorithm still has limitations for solving large-scale TSP due to the
limitations of the number of variables and the number of constraints.

To cope with the computational complexity of the TSP, various heuristic algorithms
have been introduced to find approximate optimal solutions. Among them, the ant colony
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optimization, genetic algorithm, particle swarm optimization, and simulated annealing
algorithm have become the focus of research. Roy A. et al. [37] proposed a novel memetic
genetic algorithm (NMGA) to solve the TSP, which incorporates Boltzmann probabilis-
tic selection and random variation multipoint crossover techniques. During multipoint
crossover, the paternal chromosomes and common crossover points are randomly se-
lected. Two zygotic chromosomes are produced after a cost and distance comparison
of neighboring crossover points of the paternal chromosomes involved in the crossover.
Emambocus B. A. S. et al. [38] proposed an enhanced swap sequence-based particle swarm
optimization. The strategy of integrating the extended particle swarm optimization (XPSO)
in the exchange sequence-based particle swarm optimization is because even though XPSO
is only suitable for solving sequential optimization problems, it also has a high performance
in variants of PSO. İlhan İ. et al. [39] proposed a new optimization algorithm for solving
TSP called a list-based simulated annealing algorithm with crossover operator (LBSA-CO),
a population-based meta-heuristic algorithm. In the LBSA-CO, a list-based temperature
cooling scheme is used which adapts to the topology of the solution space. The solutions
in the population are improved by inversion, insertion, and 2-opt local search operators.
The sequential crossover and edge-reorganization crossover operators are applied to the
improved solutions to accelerate the convergence. In addition, the parameters of LBSA-CO
were tuned using the Taguchi method, resulting in a significant improvement in the perfor-
mance of LBSA-CO over SA. These heuristic algorithms mentioned above find suboptimal
solutions in acceptable time through their optimization process, which also show good
performance and scalability in solving large-scale TSPs.

In recent years, the field of machine learning has been making impressive achieve-
ments, and the application of reinforcement learning (RL) to solve combinatorial opti-
mization problems has become a new research direction. Ma et al. [40] used RL to train
hierarchical graph pointer networks (HGPNs) to find the optimal city alignments under
constraints by learning a hierarchical strategy, which can effectively solve large-scale TSP.
Zheng et al. [41] applied Q-learning, Sarsa, and Monte Carlo to the Lin-Kernighan-Helsgaun
(LKH) algorithm, replacing the inflexible traversal operation in the LKH algorithm by using
RL to allow the program to learn to make choices at each step of the search. However, the
exploration of intelligence in RL is built on sequences of state information, such as the
features of state, action, reward, and new state, in which the feature states need to be set
up in a time-consuming manner. It is difficult to cope with the complexity of continuous
states and high-dimensional action spaces, which can easily lead to a large increase in
dimensionality.

The research work of this article is to propose an adaptive ant colony algorithm for
large-scale TSP (AACO-LST). Compared with ACS, the key parameters in AACO-LST will
be adjusted adaptively and dynamically with the iteration of the algorithm, expanding the
solution space while searching, accelerating the convergence speed of the algorithm, and
introducing an effective local optimization strategy into it, which can avoid the algorithm
from falling into the local optimum prematurely. Therefore, the advantage of the AACO-
LST will be more and more obvious with the increase in the number of cities. The main
contributions of this work are as follows:

(1) The state transfer rules of the ACO are a crucial part of the algorithm, which
determines the rule for choosing the next action during the search process for each ant.
However, the ant of the traditional ACO often falls into the local optimal solution too early
during the search process, which leads to the premature convergence of the algorithm
and prevents the algorithm from finding a better solution. This is usually due to the
over-reliance of state transfer rules on pre-existing pheromone guidance and the lack of
exploration mechanisms. To help ants strike a balance between exploration and exploitation,
this article improves the state transfer rule of the traditional ant colony algorithm. When
the number of iterations of the algorithm increases, the pheromone concentration on
the optimal path is gradually much higher than that on the other paths. To prevent the
algorithm from falling into local optimality, the importance of the pheromone concentration
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in the path selection should be gradually reduced. The weight factors α and β will be
adjusted stochasticly and adaptively by combining the sine-cosine function, i.e., the value
of α will gradually decrease and the value of β will increase accordingly in a nonlinear
manner, expanding the search space of the solution and finding the optimal solution faster.

(2) The k-opt is a commonly used local search optimization algorithm. It generates new
solutions by disconnecting k-th edges on a path and reconnecting them. By introducing
the local search mechanism of k-opt, ants can try different ways of path reconnection
and perform a broader search within the local neighborhood. To improve the solution
performance, a simplified 2-opt operator is introduced in AACO-LST to locally optimize
the ants’ path. During each iteration, to avoid the huge time cost associated with local
optimization of all ants’ paths, AACO-LST performs this operation only for the paths
between two nodes of some of the selected ants. At this point, the paths between these
two nodes are reversed and new paths are formed in this way, and then the better one is
compared and selected. This helps to extend the exploration capability of the algorithm
in the search space, jumping out of the local optimum and further exploring the globally
optimal solution.

(3) To improve population diversity, the global search capability of the algorithm is
strengthened, and a set of adaptive pheromone updating rules are constructed in AACO-
LST. Incorporating the ant’s number factor into the local pheromone update rule makes
the pheromone initialized with a uniform distribution of individuals and good population
diversity, increasing the probability of finding the global optimal solution. Regarding the
dimensions of the pheromone release, the global pheromone update is performed on the
locally optimized paths, and in the global pheromone update rules, those rules from the
ASrank [33] are incorporated. Then, the locally optimized paths are ranked in ascending
order of length, with the higher-ranked ants releasing more pheromones, so the algorithm
can strongly guide ant searches through differences in the concentration of different paths.
Regarding the dimension of pheromone volatilization, an adaptive method is used to adjust
the global pheromone volatilization factor, and an iterative threshold is set for the global
volatilization factor so that once the algorithm falls into a local optimum in the mid-to-
late stages, the value of the global volatilization factor is reduced to avoid the algorithm
from falling into premature stagnation. The improved local pheromone updating rules
and global pheromone updating rules cooperate, and jointly promote the AACO-LST to
gradually converge to the global optimal solution during the search process through the
adaptive method, and maintain a certain balance of exploration and exploitation.

3. Design of Algorithm Framework
3.1. Principles of the Experiments

In this section, a general summary of the formulas in this article is provided. The
formulas in Section 3.2 are derived from the ant system proposed by Dorigo M. et al. [42],
which describes the working principle of the ant system. Equation (2) shows a state
transition rule that determines the probability that the next city may be visited by the
k-th ant. To prevent ants from choosing cities that have already been visited, tabuk is
used to represent the taboo table for the k-th ant. So Equation (3) calculates the set of
cities that ant k can visit next. Equation (4) is used to update the amount of pheromone
on each edge. Dorigo M. et al. [42] have given three different models, each model of
ants has their way of releasing pheromones, respectively, as shown in Equations (5)–(7),
the current general use of Equation (7). Kumar S. et al. [43] integrated the sine-cosine
functions into the ant colony algorithm to enhance the ability of global exploration and
local development of their proposed algorithm. Inspired by this, this article adaptively
adjusts the weight factors α and β through Equations (8) and (9) in Section 3.3 by using the
mathematical properties of the cosine function and sine function, so that the parameter
values are close to the optimal value in the search, so the state transition Equation (2) is
adjusted to Equation (10). Tuani A. F. et al. [44] use 3-opt to locally optimize the path taken
by ants, and its algorithm complexity is O(n3). On this basis, a simplified 2-opt operator
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with time complexity O(n) is designed in this article to improve the quality of the solution
while reducing the time complexity, as shown in Equations (11) and (12) in Section 3.4.
The formulas in Section 3.5 are all modifications of the ACS pheromone update rules and
Equation (13) incorporates an ant population factor into the local pheromone update rules to
enhance population diversity. Meanwhile, the global pheromone update rules are modified
to Equations (14)–(16), focusing on adaptive regulation in both the release and evaporation
of pheromones. Equations (17)–(19) in Section 4.2 are several indicators for measuring
the quality of solutions. Equation (17) represents the degree of deviation between the
algorithm’s obtained optimal solution and the known optimal solution. Equation (18)
represents the relative error between the algorithm’s average solution and the known
optimal solution. Equation (19) represents the relative error between the obtained optimal
solution and the average solution [26]. The experiment will refer to these three indicators
to verify the quality of algorithmic solutions. Equations (20)–(22) show the principle of
calculating the diversity of a population. The relevant code can be found on our project
homepage: https://github.com/xiongfeide/AACO-LST (accessed on 29 September 2023).

3.2. Basic Ant Colony Algorithm

Suppose there is a set C of n cities, m ants, D(i, j) (i, j = 1, 2, . . ., n) denotes the distance
from city i to j, and τij(t) denotes the concentration of pheromone on the line connecting
city i to j at the moment t. At the initial moment, the amount of pheromone on each path is
equal. The k-th ant (k = 1, 2, . . ., m) decides the transfer direction according to the amount
of information on each path during its movement. Pk

ij(t) denotes the probability that k-th
ant transfers from position i to j at the moment t:

Pk
ij(t) =


[τij(t)]

α(t) ·[ηij(t)]
β(t)

∑
s∈allowedk

[τis(t)]
α(t) ·[ηis(t)]

β(t) , if j ∈ allowedk

0, otherwise
s.t. ηij =

1
D(i,j)

(2)

In Equation (2), ηij is the heuristic information, which indicates the desired degree of
transferring from city i to j, and α, β reflect the number of pheromones accumulated by the
ants during the movement process and the importance of the heuristic information in the
ant’s choice of path, respectively. At this time, the set of cities that the k-th ant is allowed to
choose next can be expressed as:

allowed = {C− tabuk} (3)

To avoid the infinite accumulation of pheromones, the updating rules of pheromone
concentration on each path after an ant has traveled all cities is as follows: τij(t + 1) = (1− ρ)·τij(t) + ∆τij(t), ρ ∈ (0, 1)

∆τij(t) =
m
∑

k=1
∆τk

ij(t)
(4)

In Equation (4), ρ is the volatilization factor of the pheromone and τij(t) is the
pheromone concentration on path ij in this iteration, the initial moment τij(t) = 0, ∆τij(t) is
the sum of pheromone concentrations released by all ants on path ij in this iteration, and
∆τk

ij(t) denotes the number of pheromones released by the k-th ant when it passes through
path ij in this iteration.

The ant colony algorithm can be categorized into three classical models, which are
called ant quantity system, ant density system, and ant cycle system, and their differ-
ences lie in the different expressions for the calculation of ∆τk

ij(t). In the models of the

https://github.com/xiongfeide/AACO-LST
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ant quantity system and ant density system, the calculation method of ∆τk
ij(t) follows

Equations (5) and (6), respectively:

∆τk
ij(t) =

{
Q
dij

, when k−th ant passes through the path ij

0, otherwise
(5)

∆τk
ij(t) =

{
Q, when k−th ant passes through the path ij
0, otherwise

(6)

In the above equations, Q denotes the pheromone increase intensity coefficient, and Lk
is the total length of the path passed by the k-th ant during this iteration. In addition, the
calculation method of ∆τk

ij(t) follows Equation (7) in the ant cycle system model:

∆τk
ij(t) =

{
Q
Lk

, when k−th ant passes through the path ij
0, otherwise

(7)

In the above three models, the first two utilize local information, that is, the ants update
the pheromones on the path after each step, while the latter utilizes global information,
that is, the ants update all the pheromones on the path after completing a cycle, which
has better practical results. Usually, the ant cycle system is used as the basic model. The
complexity of this algorithm is O(nc·m·n2) according to the theory of algorithm complexity
analysis, where nc represents the number of iterations.

3.3. Improvements in State Transfer Rules

In the ant state transfer rules, the weight factors α, β control the weight relationship
between the role of heuristic information and the pheromone concentration, but the α, β in
the traditional ACO are fixed during each iteration. Indeed, in the real biological world, the
sensitivity of organisms to external stimuli changes over time. Thinking further from this
principle, dynamically adjusting the weighting factors α and β during the iteration of the
proposed algorithm helps to improve the diversity of path selection. At the beginning of the
iteration of the algorithm, the concentration of pheromone on each path is low, and at this
time the pheromone weighting factor dominates the path selection. In the experiments, α
can be pre-set to be a larger value and β to be a smaller value, and as the iteration continues,
the pheromone concentration on certain paths accumulates. To avoid falling into the local
optimal solution, the value of the weighting factor α can be gradually reduced and the
value of β can be increased, which can accelerate the convergence speed of the AACO-LST
while expanding the search space of the solution.

To make the changes in the values of the weighting factors α, and β smoother and
more stable, some researchers have considered adaptive adjustment with the sine-cosine
functions. As shown in Figure 1a,c, this article proposes a stochastic adaptive adjust-
ment method based on the randomness as shown in Figure 1b,d, and the improved rules
as follows:

α(nc) = cos(
r1·nc·π
2·ncmax

) + A (8)

β(nc) = sin(
r2·nc·π
2·ncmax

) + B (9)

In the Equations (8) and (9), r1 and r2 are random numbers between [0, 1], and ncmax
is the maximum number of iterations, A and B are experimentally given values. In this
article, we set A = 2, B = 3, so the improved transfer probability can be calculated by:

Pk
ij(t) =


[τij(t)]

α(t) ·[ηij(t)]
β(t)

∑
s∈allowedk

[τis(t)]
α(t) ·[ηis(t)]

β(t) , if j ∈ allowedk

0, otherwise

(10)
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3.4. Local Optimization Strategy

Due to the slow convergence speed of the ACO, long optimization time, and easy
to premature stagnation defects, AACO-LST adopts a k-opt local optimization operator
for its local optimization and is currently used in the local search of improved ant colony
algorithm is generally a 2-opt or 3-opt. The 2-opt is the two-element optimization operator
which chooses two cities of the original solution and exchanges them to try to get a new
solution with a shorter path length, which takes the order of the new path of the new
solution if it is good, and keeps the original solution if it is bad. Although experimental
studies show that the solution quality of the 3-opt operator is higher than that of the 2-opt
operator, AACO-LST adopts the 2-opt operator for local optimization after considering the
computational quantity and time cost of the algorithm.

The time complexity of the 2-opt operator is O(n2), which is lower compared to the
time complexity of the 3-opt operator. However, for solving the TSPs, it is obvious that
2-opt local optimization of the paths of all ants in each iteration would add too much
computational effort, and the optimal paths are only a few. To increase the convergence
speed of the proposed algorithm, the path lengths of ants are sorted in ascending order.

Only the top λ·m ranked ant paths are locally optimized, where λ is a control parameter
for the number of ants obtained after multiple experiments. To further improve the solution
quality of AACO-LST and avoid premature stagnation, a simplified 2-opt operator with a
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time complexity of O(n) is used in the proposed algorithm. Let C be C0, C1, C2, . . ., Cn−1 of
the set, the algorithm begins with i = 0. If i is greater than n, then let n = i%n. At this point,
i is a positive value not greater than n, and the optimization rule is as follows:{

replace(Ci+1, Ci+2), if Li+1 > Li+2
remain(Ci+1, Ci+2), otherwise

(11)

{
Li+1 = D(i, i + 1) + D(i + 2, i + 3)
Li+2 = D(i, i + 2) + D(i + 1, i + 3)

(12)

The local optimization of this path ends when all n cities are traversed. According to
the above optimization rules, the optimal solution of a certain iteration of example berlin52
is used as the original solution. The path nodes constructed by the ant colony algorithm,
as shown in Figure 2a, exhibit intersections, resulting in a path length of 7639.31. By
implementing local optimization, the cross-interference can be eliminated. The optimized
result is shown in Figure 2b. The path length is currently 7544.37, which indicates that the
above rules significantly enhance the precision in solving larger-scale TSP.
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3.5. Adaptive Pheromone Update Rules

The updating rules of pheromones directly affects the overall performance of the ACO,
and this article improves both the methods of calculation of local pheromones and global
pheromones. First of all, to avoid too many residual pheromones affecting the possibility
of the subsequent ants exploring other paths, when the ants pass through the path ij, the
pheromone on this path will be updated locally as follows:

τij(t) = (1− ε) · τij(t) +
ε

m · Lnn
(13)

In the above equation, ε∈(0, 1) is the volatilization factor of the local pheromone, m is
the number of ants, and Lnn is the length of the path constructed by the greedy algorithm,
the initial value of the pheromone obtained by using the inverse of the two has a better
population diversity, which is conducive to obtaining the global optimal solution.

Second, to further expand the search space of the solution and improve the synergy
between ants, AACO-LST combines with the ant system-based ASrank to improve the
pheromone updating rules when all the ants have completed the construction of paths
within the current iteration. The ants are ranked in an ascending order based on the lengths
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of their paths, and only some of the best λ·m ants are allowed to carry out the global
pheromone update, the update rules are as follows:

τij(t + 1) = (1− ρ)·τij(t) + ρ·
λm

∑
k=1

(λm− rank(k) + 1)·∆τk
ij (14)

∆τk
ij (t) =

{
Q
Lk

, rank(k) ≤ λ·m
0, otherwise

(15)

In Equations (14) and (15), ρ is the volatilization factor of the global pheromone,
rank(k) is the rank of the ants after ascending order, and the magnitude of the weight of the
pheromone released by the ants on Lk is (λ·m − k + 1). The more highly ranked ants release
greater amounts of pheromone, and the weights acted as an amplifier of the differences
in pheromone concentration across paths. To achieve a better balance between the global
and local optimization abilities, an adaptive approach was used by AACO-LST to adjust
ρ. When ρ is too large, the likelihood of previously searched paths being selected again is
too high, too, which affects the randomization and global search ability of the proposed
algorithm; Conversely, by decreasing ρ, although the stochastic performance and global
search ability of the algorithm can be improved, the convergence speed of the algorithm
will again be reduced. Therefore, ρ is set to the maximum value ρ0 at the beginning of the
iteration, while positive pheromone feedback dominates. If the algorithm obtains the same
optimal result for a certain number of loops, it means that the algorithm is trapped in a
local optimal solution, and the value of ρ should be reduced, which is calculated as follows:

ρ(nc + 1) =
{

ρ0, nc < ω · ncmax
γ · ρ(nc), nc > ω · ncmax and s > s0

(16)

In the above equation, γ ∈ (0, 1) is the decreasing factor of the global pheromone, ω
is the control parameter obtained after multiple experiments, s is the number of times the
optimal solutions of each generation are consecutively equal, and s0 is a pre-set integer
greater than 1.

3.6. The Algorithm Process of AACO-LST

The specific steps of the proposed algorithm are as follows. Correspondingly, the
algorithm flowchart of AACO-LST is shown in Figure 3. The proposed algorithm will
perform a path search according to the below process until the stop condition is reached.
Based on the pseudocode of AACO-LST, it can be observed that the algorithm maintains a
time complexity of O(nc·m·n2). Like the basic ACO, the local optimization strategy uses a
simplified 2-opt operator, whose time complexity is just O(n) and only partially optimizes
the paths of the optimal ants locally. Therefore it will not increase the complexity of the
algorithm and can effectively save the time cost. The space complexity of the algorithm is
the same as the basic ACO, depending on the pheromone matrix, the path matrix stored
by the ants, the space complexity of the pheromone matrix is O(n2) and the complexity of
the path matrix stored by the ants is O(m·n), so the total space complexity of AACO-LST is
O(n2 + m·n). The algorithm process of AACO-LST is shown in Algorithm 1.
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Algorithm 1: AACO-LST
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Algorithm 1: AACO-LST 
 Input : The maximum iteration number ncmax, the volatility factor ε, λ, Q, ρ0, ω. 

 Output : The obtained optimal path Rbest and the optimal solution Lbest. 
1: Initialization : Initialize the pheromone matrix. 
2: Place m ants in the set C consisting of n cities. 
3: nc ← 0; 
4: while nc < ncmax do 
5:  for k = 1 to m do 

 
  Ant chooses the next city according to the improved transfer probability and 

completes their respective tours. 
6:   for i = 1 to n do 
7:    Select the next node according to Equations (8)–(10); 
8:    Modify the list of tabu; 
9:    Local pheromone update according to Equation (13). 

10:   end 
11:  end 
12:  Calculate the length Lk of the tour constructed by the k-th ant; 
13:  Local optimization of the top λ·m ants according to Equations (11) and (12); 
14:  for each edge do 
15:   Global pheromone update according to Equations (14)–(16). 
16:  end 
17:  nc ← nc +1; 
18: end 
19: Find the optimal path Rbest and the optimal solution Lbest generated in the iterative process; 
20: return Rbest and Lbest 

4. Simulation Experiments and Results

To verify the feasibility of AACO-LST, 45 instances of TSP using Euclidean distance
were selected from the TSP standard test library (TSPLIB) for testing. The simulation
experiments were programmed using the MATLAB software with the version of R2020b,
MathWorks – Apple Hill Campus, MA 01760-2098, USA. Meanwhile, the operating system
of Microsoft Windows 10 Pro 64-bit and 8GB of RAM were used in the experiments. All
experiments were completed on the Intel (R) Core (TM) i7-10700 CPU in Jingdezhen, China,
while the processor is produced by Intel.

4.1. Ablation Experiments

To fully demonstrate the impact of AACO-LST design and improved modules on
the effectiveness of solving TSPs, this section conducts ablation experiments to validate
the efficacy of each module. The settings of some of the key parameter parameters of the
experiments, such as ant number m, pheromone enhancement factor Q, and pheromone
volatilization factor ρ, are inspired by the work of Du, P.-Z. et al. in [45]. The algorithm
proposed by them achieves good results in similar environments and shows that proper
tuning of these parameters can improve the performance of the algorithm. Therefore, to
adapt the algorithm of this article, the values of some parameters were optimized by grid
search based on reference [45], and the finalized experimental parameter settings are shown
in Table 1.

In Table 1, ACO refers to the standard algorithm of ACS, ACO-ISTR refers to the ACS
with improved state transition rules, and ACO-LOS-AP refers to the ACS with added local
optimization strategy and adaptive pheromone updating rules. In fact, adaptive rules for
updating pheromones are introduced, which guides ants in updating their pheromones
after on partial optimal ant paths. Therefore, the local optimization strategy and adaptive
pheromone updating rules essentially function as a module and cannot be tested sepa-
rately. The instances eil51, st70, eil76, and rat99 are selected for 10 experiments each in
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the TSP standard test library TSPLIB. Each experiment consisted of 1000 iterations. The
experimental results are presented in Table 2. In each column of Table 2, BKS represents
the known optimal solution for each instance, Best denotes the algorithm’s best solution
obtained, Avg represents the average solution obtained from multiple algorithm tests, and
Std is the standard deviation.

Table 1. Parameter list of comparison algorithms.

Algorithm Parameter

ACO m = 1.5n, α = 2, β = 4, ε = 0.1, ρ = 0.3, Q = 100
ACO-ISTR m = 1.5n, ε = 0.1, ρ = 0.3, Q = 100

ACO-LOS-AP m = 1.5n, α = 2, β = 4, ε = 0.1, λ = 0.1, ρ0 = 0.3, ω = 0.7, s0 = 30, γ = 0.8,
Q = 100

AACO-LST m = 1.5n, ε = 0.1, λ = 0.1, ρ0 = 0.3, ω = 0.7, s0 = 30, γ = 0.8, Q = 100

Table 2. Results of ablation experiments.

TSP (BKS) Algorithm Best Avg Std

eil51 (426)

ACO 429.53 433.62 4.30
ACO-ISTR 428.98 431.70 3.41

ACO-LOS-AP 428.98 430.25 2.78
AACO-LST 428.87 429.88 1.83

st70 (675)

ACO 681.22 687.81 7.68
ACO-ISTR 678.62 684.70 6.10

ACO-LOS-AP 680.50 682.80 4.46
AACO-LST 677.11 680.83 2.87

eil76 (538)

ACO 547.40 558.56 6.50
ACO-ISTR 546.39 554.95 6.10

ACO-LOS-AP 545.39 549.32 3.70
AACO-LST 544.37 548.75 2.71

Rat99 (1211)

ACO 1238.48 1295.16 15.76
ACO-ISTR 1223.80 1243.11 15.23

ACO-LOS-AP 1220.36 1230.13 8.62
AACO-LST 1219.24 1225.07 5.21

According to the results of the four TSP instances shown in Table 2, ACO-ISTR and
ACO-LOS-AP outperform ACO in obtaining optimal and average solutions. This demon-
strates that improved state transition rules can expand the search space for solutions,
helping ants achieve a balance between exploration and exploitation. The combination
of local optimization strategies and adaptive pheromone updating rules can effectively
enhance the accuracy of the solution. Each improvement method can contribute to en-
hancing ACO performance. The Avg and Std of ACO-LOS-AP are superior to ACO-ISTR,
indicating that combining a local optimization strategy with adaptive per-update rules
has a significantly better effect on global search than improving state transition rules. The
optimal and average solutions obtained by AACO-LST are higher than those of ACO-ISTR
and ACO-LOS-AP indicating that the integration of various improvement methods leads to
better results compared to individual enhancement approaches. In particular, AACO-LST
demonstrates better stability in solving the standard deviation of various instances com-
pared to individual improvement methods. From this perspective, it also demonstrates that
AACO-LST exhibits superior overall performance and represents an effective enhancement
of the standard ACO.

4.2. Comparison of Solution Quality

A series of TSP instances were selected for two reasons in current experiments. Firstly,
TSP instances used in the experiment were adapted from reference [45], which investigated
the application of an object-oriented multi-role ant colony optimization algorithm in solving
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the TSPs. Therefore, these instances are reused in this article. Secondly, they cover a range
of TSP instances with varying sizes, which helps to better demonstrate the effectiveness of
solving TSP of different scales.

In this stage of the experiments, two algorithms, ACS and AACO-LST, are used
respectively to solve 45 TSP instances 30 times for comparison, and each time 1000 iterations
are performed. The experimental parameters are the same as those in Section 4.1. The
experimental results are shown in Table 3. In the columns of Table 1, Dev represents
the degree of deviation between the optimal solution obtained by the algorithm and
the known optimal solution, which can be calculated by Equation (17). As can be seen
from Table 1, among the 45 TSP instances solved by AACO-LST, except for the instance
burma14, which is of a very small scale and achieves the same solution quality as ACS, the
solution quality of the remaining 44 instances is significantly better than ACS. The average
Dev of AACO-LST for solving 45 instances is 1.44%, while ACS achieves an average Dev
of 7.02%. In other words, AACO-LST improves the solution quality over ACS by 79%.
In comparison to instances such as oliver30, berlin52, st70, kroA100, etc., AACO-LST’s
obtained optimal solutions are slightly worse than the known optimal solutions. This is
due to the limited precision of floating-point numbers stored in computers. For the same
optimal path, calculating it from different starting points may result in slightly different
lengths. Furthermore, some of the known optimal solutions in Table 1 are integers, slightly
smaller than the floating-point solutions. Given these reasons, the solutions with Dev
below 0.5% in some instances in Table 1 have reached the optimum. Out of the 45 test
cases, AACO-LST achieves Dev below 0.5% in 21 sets, accounting for a high proportion
of 47%; while ACS has only 2 sets of instances with Dev below 0.5%, accounting for 9%.
If reaching the known optimal solution is taken as the criterion, the solution accuracy of
AACO-LST is more than 5 times that of ACS. As shown in Figure 4, in all 45 instances, the
Dev of AACO-LST is consistently lower than ACS. Specifically, the Dev of AACO-LST has
more than 15% on instances gr229 and gr434, and the Dev of ACS has more than 27% on
gr229 and gr431, which indicates that the solution accuracy of AACO-LST is significantly
superior to ACS. To summarize, AACO-LST is far superior to ACS in terms of the quality
of solutions obviously.

Dev =

(
Best− BKS

BKS

)
× 100% (17)

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 28 
 

 

AACO-LST is significantly superior to ACS. To summarize, AACO-LST is far superior to 
ACS in terms of the quality of solutions obviously. 

 
Figure 4. Comparison of solution quality deviation. 

100%Best BKSDev
BKS

− = × 
 

 (17) 

Table 3. Comparison of algorithmic solution. 

Tag TSP BKS 
Best Dev (%) 

ACS AACO-LST ACS AACO-LST 
1 burma14 30.88 30.88 30.88 0 0 
2 ulysses22 * 75.67 75.88 75.31 0.28 −0.47 
3 bays29 9074.15 9111.6 9074.15 0.41 0 
4 oliver30 423.74 425.08 424.87 1.84 0.27 
5 att48 33,523.71 33,772.05 33,523.71 0.74 0.32 
6 eil51 426 429.53 428.87 0.83 0.67 
7 berlin52 7542 7590.07 7544.37 0.64 0.03 
8 st70 675 681.22 677.11 0.92 0.31 
9 pr76 108,159.4 110,032.63 109,840.83 1.73 1.55 

10 eil76 538 547.4 544.37 1.75 1.18 
11 gr96 * 512.31 522.18 510.89 1.93 −0.28 
12 rat99 1211 1238.48 1219.24 2.27 0.68 
13 kroA100 21,282 21,593.58 21,285.44 1.46 0.02 
14 kroB100 22,141 22,704.05 22,263.98 2.54 0.56 
15 kroC100 20,749 21,294.39 20,750.76 2.63 0.01 
16 kroD100 21,294 22,640.24 21,309.58 6.32 0.07 
17 kroE100 22,068 23,085.56 22,098.13 4.61 0.14 
18 eil101 629 658.44 640.98 4.68 1.9 
19 lin105 14,379 14,618.75 14,383 1.67 0.03 
20 pr107 * 44,303 44,541.26 44,301.68 0.54 −0.003 
21 bier127 118,282 123,365.27 118,816.98 4.3 0.45 
22 ch130 6110.86 6250.02 6171.96 2.28 1 
23 gr137 698.53 724.14 707.02 3.67 1.22 
24 ch150 6528 6665.42 6533.81 2.11 0.09 

Figure 4. Comparison of solution quality deviation.



Mathematics 2023, 11, 4439 15 of 26

Table 3. Comparison of algorithmic solution.

Tag TSP BKS
Best Dev (%)

ACS AACO-LST ACS AACO-LST

1 burma14 30.88 30.88 30.88 0 0
2 ulysses22 * 75.67 75.88 75.31 0.28 −0.47
3 bays29 9074.15 9111.6 9074.15 0.41 0
4 oliver30 423.74 425.08 424.87 1.84 0.27
5 att48 33,523.71 33,772.05 33,523.71 0.74 0.32
6 eil51 426 429.53 428.87 0.83 0.67
7 berlin52 7542 7590.07 7544.37 0.64 0.03
8 st70 675 681.22 677.11 0.92 0.31
9 pr76 108,159.4 110,032.63 109,840.83 1.73 1.55

10 eil76 538 547.4 544.37 1.75 1.18
11 gr96 * 512.31 522.18 510.89 1.93 −0.28
12 rat99 1211 1238.48 1219.24 2.27 0.68
13 kroA100 21,282 21,593.58 21,285.44 1.46 0.02
14 kroB100 22,141 22,704.05 22,263.98 2.54 0.56
15 kroC100 20,749 21,294.39 20,750.76 2.63 0.01
16 kroD100 21,294 22,640.24 21,309.58 6.32 0.07
17 kroE100 22,068 23,085.56 22,098.13 4.61 0.14
18 eil101 629 658.44 640.98 4.68 1.9
19 lin105 14,379 14,618.75 14,383 1.67 0.03
20 pr107 * 44,303 44,541.26 44,301.68 0.54 −0.003
21 bier127 118,282 123,365.27 118,816.98 4.3 0.45
22 ch130 6110.86 6250.02 6171.96 2.28 1
23 gr137 698.53 724.14 707.02 3.67 1.22
24 ch150 6528 6665.42 6533.81 2.11 0.09
25 kroA150 26,524 28,155.86 26,787.78 6.15 0.99
26 kroB150 26,130 27,660.02 26,156.38 5.86 0.1
27 rat195 2323 2421.73 2342.13 4.25 0.82
28 d198 15,780 16,861.08 15,965.24 6.85 1.17
29 kroA200 29,368 31,419.63 29,491.02 6.99 0.42
30 kroB200 29,437 31,523.68 29,662.52 7.09 0.77
31 gr202 * 550 498.18 490.74 −9.42 −10.77
32 ts225 126,643 130,864.42 127,441.15 3.33 0.63
33 tsp225 * 3916 3960.36 3892.06 1.13 −0.61
34 pr226 80,369 82,983.87 80,440.1 3.25 0.09
35 gr229 1346.02 1779.42 1684.5 32.2 25.15
36 gil262 2378 2546.8 2414.13 7.1 1.52
37 lin318 42,029 44,949.7 42,371.29 6.95 1.21
38 rd400 15,281 16,011.51 15,467.56 4.78 1.22
39 fl417 11,861 12,661.42 12,081.41 6.75 1.86
40 gr431 1714.14 2192.29 1982.37 27.89 15.65
41 pr439 107,217 113,797.02 108,937.9 6.14 1.61
42 pcb442 50,778 58,410.35 51,837.94 15.03 2.09
43 d493 35,002 39,983.51 36,074.31 14.23 3.06
44 u574 36,905 42,789.92 38,169.74 15.95 3.43
45 vm1084 239,297 280,979.88 256,344.84 17.42 7.12

* AACO-LST has a negative Dev on those instances, which indicates that the optimal solution obtained by
AACO-LST is not only better than that obtained by ACS but also better than that of the known optimal solution.

As shown in Figure 5, the optimal solutions derived from various sizes of TSPs are
computed using AACO-LST, and the quality of these solutions can be evaluated based on
the results, and the red dots represent cities, while the blue lines represent paths between
cities. The flower pollination algorithm (FPA) is an optimization algorithm that simulates
the pollination behavior of flowers in nature. On this basis, a new hybridization scheme
based on FPA, ACO with local search, ant supervised by flower pollination with local
search (ASFPA-Ls) proposed in the reference [46] incorporates a local search strategy in
the algorithm as does AACO-LST to avoid falling into a local optimum, and this article
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compares it with ASFPA-Ls alone, as shown in Table 4, where Err represents the relative
error between the average solution and the known optimal solution, as shown in the
Equation (18). It can be seen in Table 4 that the adaptive dynamic adjustment of AACO-LST
is good, and Avg and Err are significantly better than the optimal solutions obtained from
the comparison algorithm, which indicates that AACO-LST has good robustness.

Err =
(

Avg− BKS
BKS

)
× 100% (18)
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The tree-seed algorithm (TSA) algorithm is an optimization algorithm that simulates
the reproduction of trees by generating seeds. On this basis, the TSA is redesigned by
integrating the swap, shift, and symmetry transformation operators (DTSA) [47] was pro-
posed and applied in the comparative experiment of this article. Based on the comparison
with ACS and ASFPA-Ls, AACO-LST is compared horizontally with multi-subdomain
grouping-based particle swarm optimization (MSGPSO) [48], multi-domain inversion-
based algorithm (MDIGA) [49], DTSA [47], improved greedy algorithm (IMGRA) [50],
improved genetic algorithm based on soft actor-critic model (GA-SAC) [51], and simulated
annealing algorithm with large neighborhood search (SALNS) [52] concerning solving the
TSP of different sizes, and the solution quality results are shown in Tables 5 and 6. PE
denotes the relative error between the optimal and average solutions obtained by each
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algorithm, as shown in Equation (19) [26]. As can be seen from Tables 5 and 6, Err does
not exceed 2% in all instances tested, which indicates that AACO-LST can effectively find
high-quality solutions, and PE does not exceed 1%, which suggests that AACO-LST has
high stability. In addition, for small-scale TSPs, AACO-LST has a slightly worse average
than some algorithms (SALNS and GA-SAC), but as the size of the TSP increases, such
as in examples tsp225 and lin318, AACO-LST has a better average than other algorithms,
which suggests that AACO-LST has some advantages for solving large-scale TSPs.

PE =

(
Avg− Best

Best

)
× 100% (19)

Table 4. Longitudinal comparison of ASFPA-Ls and AACO-LSTs.

TSP (BKS) Algorithm Avg Err (%)

eil51 (426)
ASFPA-Ls 437.13 2.61

AACO-LST 429.88 0.9

st70 (675)
ASFPA-Ls 768.00 2.84

AACO-LST 683.78 1.3

eil76 (538)
ASFPA-Ls 620.00 5.26

AACO-LST 549.40 2.1

Rat99 (538)
ASFPA-Ls 1271.22 4.95

AACO-LST 1229.68 0.68

kroA100 (21,282)
ASFPA-Ls 22,003.405 3.53

AACO-LST 21,416.6 0.63

Table 5. Horizontal comparison in kroA100.

TSP (BKS) Algorithm Best Avg Err (%) PE (%)

kroC100
(20,749)

MSGPSO 21,161.51 22,657.77 1.99 7
MDIGA 21,394.58 23,138.13 3.11 8
DTSA - 21,506.78 1.06 -

IMGRA 22,506.83 - - -
AACO-LST 20,750.76 20,927.37 0.86 0.85

Table 6. Horizontal comparison of algorithms.

TSP (BKS) Algorithm Best Avg Err (%) PE (%)

eil51
(426)

SALNS 426 426 0 0
GA-SAC 426 427.40 0.33 0.33
IMGRA 429.53 - - -

AACO-LST 428.87 430.80 1.13 0.45

st70
(675)

SALNS 675 675 0 0
GA-SAC 675 678.90 0.58 0.58
IMGRA 725.51 - - -

AACO-LST 677.11 683.78 1.3 0.99

rat99
(1211)

SALNS 1211 1212 0.08 0.08
GA-SAC 1211 1222.45 0.95 0.95
IMGRA 1313.76 - - -

AACO-LST 1219.24 1225.79 1.22 0.54

tsp225
(3916)

SALNS 3896 3910 −0.15 0.36
GA-SAC 3900 3918.60 0.07 0.47
IMGRA 4170 - - -

AACO-LST 3892.06 3906.42 −0.24 0.37

lin318
(42,029)

SALNS - - - -
GA-SAC 42,329 42,902.40 2.08 1.35
IMGRA 45,036.36 - - -

AACO-LST 42,371.29 42,726.78 1.66 0.84
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Simulations based on 45 TSP instances show that the average Dev is 1.44% for AACO-
LST and 7.02% for ACS, i.e., AACO-LST improves the solution quality by 79% compared to
ACS. In the longitudinal comparison with ASFPA-Ls, the average Err is 3.84% for ASFPA-
Ls, but 1.12% for AACO-LST, which is much lower than ASFPA-Ls. Further horizontal
comparison with the algorithms, the PE of AACO-LST is not more than 1%. The Err is
not more than 2%, which indicates that AACO-LST can find high-quality solutions with
high stability. Finally, the convergence speed of the algorithm is tested, and the average
convergence speed of the algorithm of AACO-LST has reached more than two times of
ACS and particle swarm algorithm (PSO). This indicates that the proposed meta-heuristic
algorithm, AACO-LST, could find a higher quality solution for large-scale TSP than other
tested algorithms, with better stability and convergence.

4.3. Statistical Comparison of Solution Quality

In this section, instances eil51, eil101, gr202, and lin318 were selected from TSPLIB, the
standard test library of TSPs, and 100 experiments were conducted on each of these four
instances using AACO-LST and ACS for 1000 iterations each, with the same experimental
parameters as in Section 4.1. The results of the 100 experiments are analyzed using the
quartile method, where the values are first arranged from smallest to largest and divided
into four equal parts. Then, take the positional values of the three divisions, including the
lower, median, and upper quartile. The difference between the upper and lower quartiles
is called the quartile spacing. The statistical results are shown in Figure 6. The solid line
in the figure represents the median path length of the algorithm for each generation of
optimization in 100 experiments, the upper dashed line represents the upper quartile, and
the lower dashed line represents the lower quartile.
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As seen in Figure 5, for small-scale TSPs (e.g., eil51), the median path length of AACO-
LST is only slightly better than that of ACS, and the interquartile distance is not much
different. But for large-scale TSPs, it can be seen that the larger the problem size is, the
better the median path length of AACO-LST is than that of ACS, which indicates that the
solution quality of AACO-LST for large-scale problems is better than that of ACS, and
the quartile distance is also significantly smaller than that of ACS, which indicates that
the algorithm has better stability and robustness. The optimal paths of the four instances
obtained are shown in Figure 6.

4.4. Convergence Speed Comparison

In this section, the classical PSO is selected to perform 100 experiments on instances
eil51, eil101, gr202, and lin318 with 1000 iterations each. The convergence speed of PSO
is then compared with that of ACS and AACO-LST, and a comparison of the optimal
value curves for each algorithm is shown in Figure 7, which illustrates that the process of
optimizing the path length with increasing iterations, and from the curve, then, the number
of iterations when the algorithm reaches its optimal solution can be observed. For the eil51,
PSO obtains the optimal solution 436.03 in the 554th iteration, ACS obtains the optimal
solution 429.53 in the 555th iteration, and AACO-LST obtains the optimal solution 428.87 in
the 189th iteration; for the eil101 example, PSO obtains the optimal solution 714.75 in
the 950th iteration, and ACS obtains the optimal solution 658.44 in the 735th iteration.
AACO-LST obtains the optimal solution 640.98 in the 290th iteration; for the gr202 example,
PSO obtains the optimal solution 637.48 in the 829th iteration, ACS obtains the optimal
solution 498.18 in the 893rd iteration, and AACO-LST obtains the optimal solution 490.74 in
the 404th iteration; for the lin318 instance, PSO obtains the optimal solution 66,755.52 in
the 996th iteration, ACS obtains the optimal solution 44,949.7 in the 966th iteration, and
AACO-LST obtains the optimal solution 42,371.29 in the 493rd iteration; combining with
Figure 5, it can be seen that the solution quality and robustness of AACO-LST are better
than that of ACS, especially in these four instances. The average convergence speed of the
AACO-LST algorithm has reached more than two times the convergence speed of ACS
and PSO.

4.5. Population Diversity and Convergence Analysis of AACO-LST

In this section, the population diversity and convergence of the proposed algorithm
will be further analyzed. That helps to understand that improving strategies have inherent
impacts on the structure of simulation experiments. To analyze the level of population
diversity in the AACO-LST during the process of optimization, we tracked and analyzed the
population diversity, using the kroA100 instance as a representative case. At this moment,
the number of cities is n = 100, the number of ants is m = 150, and the maximum iteration
count of the experiment has been set to 1000. During the tracking process, the population
will be saved every 200 iterations for analysis. To facilitate analysis, the population PopIte
that has undergone the Ite-th iteration is defined as: PopIte =

m
∪

AN=1
DecAN

s.t. DecAN = [xAN
1 , yAN

1 , xAN
2 , yAN

2 , . . . , xAN
n , yAN

n ]
(20)

In the Equation (20), m and n respectively represent the number of ants and cities, (xi
AN,

yi
AN) represents the coordinate of the i-th city visited by the AN-th ant, and DecAN is the

decision variable for the AN-th ant. To better track the extent of changes in diversity within
a population, the decision variable of an individual is defined as a 2n-dimensional vector
formed by accessing the coordinates of all cities, instead of using a collection represented
by the codes of the city number. To analyze the difference between individuals and the
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population center, the calculation method for individual difference distance (IDD) is defined
in the Equation (21):

IDDAN
Ite =

√
n
∑

CN=1
(xAN

CN − xCN)
2
+

n
∑

CN=1
(yAN

CN − yCN)
2

s.t. PopCenIte = mean(PopIte) = (x1, y1, x2, y2, . . . , xn, yn)

PopIte =
m
∪

AN=1
DecAN

xCN = 1
m

m
∑

AN=1
xAN

CN

yCN = 1
m

m
∑

AN=1
yAN

CN

(21)

In the above equation, AN and CN refer to the ant number and city number, re-
spectively. Meanwhile, IDDite

AN refers to the individual difference distance of the AN-th
individual in the population that has undergone Ite iterations, (xCN

AN, yCN
AN) is the co-

ordinate of the CN-th city visited by the AN-th ant, mean(·) is a calculation function that
computes the mean value along columns, PopCenIte is the population center at the Ite-th
iteration. To measure the diversity of a population, the calculation process of population
distribution diversity (PDD) is defined as follows:

PDDIte = std(
m
∪

AN=1
IDDAN

Ite ) (22)

In the Equation (22), PDDIte refers to the population distribution diversity at the Ite-
th iteration, and std(·) refers to a function used for calculating standard deviation. The
analysis results of the diversity within the AACO-LST population are displayed in Figure 8.
In Figure 8, blue, purple, red, light yellow, and orange are used to represent the population
states at 200, 400, 600, 800, and 1000 iterations, respectively. The left vertical axis refers to the
value of IDD and a box plot is used to display the distribution of IDD among individuals in
different iterations of the population. Meanwhile, the vertical axis on the right refers to the
values of PDD, and a black line is used to depict the PDD values at different iteration counts.
On one hand, during the first 80% of the iteration process, the distribution of IDD becomes
slightly more centralized, which also indicates that the proposed algorithm accelerates
convergence in the search process. In the final 20% of the process, the distribution of IDD
becomes even more dispersed, surpassing its state at 200 iterations. This also indicates that
the AACO-LST does not experience a significant decrease in population diversity as the
number of iterations increases, unlike traditional PSO. On the other hand, the value of PDD
slightly decreases during the process of evolution, but it quickly exceeds its initial state.
This indicates that the AACO-LST is capable of effectively maintaining diversity levels at
both the individual and population levels, leading to improved search efficiency.

In the previous experimental analysis, we tested the performance of the AACO-LST
with several other comparison algorithms to verify that the proposed algorithm has a more
excellent performance. In this section, we analyze the convergence of the AACO-LST in
the following experiments to further explore its stability level. The optimal path lengths
searched by the algorithm are analyzed under four different path lengths and the results are
shown below. In the standard TSP test library, instances eil51, eil101, gr202, and lin318 are
selected in this article to carry out further experiments. In Figure 9, the results of running
100 repetitions of experiments for each of these four instances using the AACO-LST are
shown, where each instance is represented using a separate horizontal axis, and OPL
denotes optimal path length. In addition, the median is labeled above each horizontal axis,
while the upper and lower quartiles and the corresponding boxplots are plotted below
the corresponding horizontal axis. In the three instances of eil51, eil101, and gr202, the
distribution of their OPLs is relatively dense, and at the same time, the difference between
the median and the upper and lower quartiles is closer in all three cases, which all show
a close Gaussian distribution. With the increase in the number of cities, the difficulty of
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the solution searching increases, at the same time, there is also a significant growth in the
corresponding path length in the lin318 instance. Similarly, the distribution of its OPL is
similar to the state of Gaussian distribution. The final results show that the distribution
of path lengths in each instance shows a highly concentrated pattern, and the lengths of
the intervals formed by the upper and lower quartiles are relatively short. For example,
in the OPL set of eil51 instances, the interval composed of upper and lower quartiles is
[429.48, 432.50], the median is 430.88, and the length of the interval is only 3.02. This also
demonstrates that the AACO-LST has a high degree of convergence, and further proves
that the algorithm has good search performance.

Mathematics 2023, 11, x FOR PEER REVIEW 21 of 28 
 

 

 
Figure 7. Comparison of optimal curves for each example. 

4.5. Population Diversity and Convergence Analysis of AACO-LST 
In this section, the population diversity and convergence of the proposed algorithm 

will be further analyzed. That helps to understand that improving strategies have inherent 
impacts on the structure of simulation experiments. To analyze the level of population 
diversity in the AACO-LST during the process of optimization, we tracked and analyzed 
the population diversity, using the kroA100 instance as a representative case. At this 
moment, the number of cities is n = 100, the number of ants is m = 150, and the maximum 
iteration count of the experiment has been set to 1000. During the tracking process, the 
population will be saved every 200 iterations for analysis. To facilitate analysis, the 
population PopIte that has undergone the Ite-th iteration is defined as: 

1

1 1 2 2. .   [ , , , ,  ... , , ]

m

Ite AN
AN

AN AN AN AN AN AN
AN n n

Pop Dec

s t Dec x y x y x y
=

 =

 =


 (20) 

In the Equation (20), m and n respectively represent the number of ants and cities, 
(xiAN, yiAN) represents the coordinate of the i-th city visited by the AN-th ant, and DecAN is 
the decision variable for the AN-th ant. To better track the extent of changes in diversity 
within a population, the decision variable of an individual is defined as a 2n-dimensional 
vector formed by accessing the coordinates of all cities, instead of using a collection 
represented by the codes of the city number. To analyze the difference between 
individuals and the population center, the calculation method for individual difference 
distance (IDD) is defined in the Equation (21): 

Figure 7. Comparison of optimal curves for each example.

Overall, the impact of different improvement modules on algorithm performance was
tested through ablation experiments in Section 4.1. This demonstrates that each improved
module has a positive impact on the performance. AACO-LST reduces the average variance
of each instance by 60% compared to ACO, showcasing its excellent stability. In Section 4.2,
the solution quality of ACS and AACO-LST was compared through 45 TSP instances from
TSPLIB. The results show that on burma14, the smallest TSP instance, the optimal solutions
of the two algorithms are the same. In addition, on the other 44 TSP instances, the optimal
solutions of AACO-LST are superior to ACS. Among them, the optimal solution obtained by
AACO-LST on 5 instances is even better than the known optimal solution, and the average
Dev is less than 1.5%, far lower than the average Dev of ACS. In the comparison algorithms,
ASFPA-Ls is an improved ant colony algorithm that integrates FPA and incorporates a
local search strategy. Therefore, the ASFPA-Ls were chosen for conducting longitudinal
comparative experiments in this article. The data shows that the average solution and error
of AACO-LST are better than those of ASFPA-Ls. To further analyze the performance of
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AACO-LST, algorithms such as MSGPSO, MDIGA, GA-SAC, IMGRA, SALNS, and DTSA
were selected for comparison. Horizontal comparative experiments were conducted on
TSP instances of different scales, and the results showed that as the problem size increased,
the advantages of AACO-LST became more apparent. In Section 4.3, to further analyze
the solution quality of selected algorithms, 100 repeated experiments were conducted
on 4 TSP instances using AACO-LST and ACS. The results of this stage of experiments
show that the median length of the AACO-LST path is smaller than ACS, and as the
problem size increases, the difference in median length between them increases, indicating
that the performance of AACO-LST is less affected by the problem size. In Section 4.4,
AACO-LST was compared with PSO and ACS to analyze the convergence speed of the
proposed algorithm. The results show that the convergence speed of AACO-LST has
reached more than twice that of PSO and ACS. Multiple experimental results have shown
that the improved state transition rules guide ants to choose the next city to arrive at,
enhancing their adaptive search ability. At the same time, the simplified 2-opt operator
also improves the accuracy of the algorithm. Finally, the constructed adaptive pheromone
update rules also enhance the population diversity of the AACO-LST, and make the release
and volatilization of pheromones more reasonable through adaptive calculation, enhancing
the global search ability of AACO-LST at the same time. In summary, AACO-LST has
significant advantages in solving quality, stability, and convergence speed compared to
those comparative algorithms, and can be used to effectively solve large-scale TSPs
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5. Conclusions

In this work, we provide a comparison of the solution quality, average convergence
speed, and related stability between the AACO-LST algorithm and other algorithms. The
AACO-LST algorithm achieved an average Dev of 1.44% for solving all 45 instances selected
from TSPLib, while ACS exhibited an average Dev of 7.02%. This indicates that AACO-
LST has significantly enhanced the solution quality by 79% compared to ACS. Among
them, there are 21 groups in AACO-LST with a Dev lower than 0.5%, accounting for a high
proportion of 47%; whereas ACS only has 2 groups with a Dev lower than 0.5%, representing
merely 9%. If the criterion is to achieve the known optimal solution, then AACO-LST has
an accuracy that is over five times higher than ACS. In the statistical comparison graph
of solving quality with ACS, it was observed that as the problem size increases, the gap
between the median path length of AACO-LST and ACS also widens, while the interquartile
range of AACO-LST gradually narrows. In a longitudinal comparison with ASFPA-Ls,
AACO-LST has more than 50% less Err per TSP instance than ASFPA-Ls. In the comparison
with six optimization algorithms of each type, (MSGPSO, MDIGA, DTSA, IMGRA, GA-
SAC, and SALNS), there is no significant advantage of AACO-LST for small-scale TSPs
such as eil51, st70, and rat99. For the large-scale TSP tsp225, AACO-LST reduces Err by 60%
over SALNS, which is the best performer among the algorithms, with a PE difference of
0.03%, and both the optimal and average solutions exceed the SALNS. For larger instances
like lin318, AACO-LST outperforms the comparison algorithms in terms of both optimal
and average solutions, reducing Err by 20% and PE by 37%, surpassing even the best-
performing GA-SAC algorithm. In convergence speed tests conducted on eil51, eil101,
gr202, and lin318 instances, it was observed that the average convergence speed of AACO-
LST was more than 50% higher than that of ACS and 142% higher than that of PSO. In
the process of population diversity and convergence analysis, AACO-LST has also been
shown to be better able to maintain the diversity level of the population to avoid falling into
a local optimum. Meanwhile, the results obtained from multiple repetitive experiments
also confirm the high degree of convergence that AACO-LST has, which indicates that
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the proposed algorithm is more stable. In the future, the practical application areas of
AACO-LST can be expanded, such as wireless communication routing, DNA sequencing,
etc., to fulfill more practical needs. Of course, AACO-LST is not limited to solving the TSP;
it can also be extended to other optimization problems in continuous spaces, which is the
direction of our next research.
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39. İlhan, İ.; Gökmen, G. A list-based simulated annealing algorithm with crossover operator for the traveling salesman problem.
Neural Comput. Appl. 2022, 34, 7627–7652. [CrossRef]

40. Ma, Q.; Ge, S.; He, D.; Thaker, D.; Drori, I. Combinatorial optimization by graph pointer networks and hierarchical reinforcement
learning. arXiv 2019, arXiv:1911.04936.

41. Zheng, J.; He, K.; Zhou, J.; Jin, Y.; Li, C.M. Combining reinforcement learning with Lin-Kernighan-Helsgaun algorithm for the
traveling salesman problem. In Proceedings of the AAAI Conference on Artificial Intelligence; AAAI: California, CA, USA, 2021;
pp. 12445–12452. [CrossRef]

42. Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern.
Part B 1996, 26, 29–41. [CrossRef]

43. Kumar, S.; Parhi, D.R.; Muni, M.K. Optimal path search and control of mobile robot us-ing hybridized sine-cosine algorithm and
ant colony optimization technique. Ind. Robot 2020, 47, 535–545. [CrossRef]

44. Tuani, A.F.; Keedwell, E.; Collett, M. Heterogenous adaptive ant colony optimization with 3-opt local search for the travelling
salesman problem. Appl. Soft Comput. 2020, 97, 106720. [CrossRef]

45. Du, P.-Z.; Tang, Z.-M.; Sun, Y. An object-oriented multi-role ant colony optimization algorithm for solving TSP problem. Control.
Decis. 2014, 29, 1729–1736. [CrossRef]

46. Rokbani, N.; Kumar, R.; Abraham, A.; Alimi, A.M.; Long, H.V.; Priyadarshini, I.; Son, L.H. Bi-heuristic ant colony optimization-
based approaches for traveling salesman problem. Soft Comput. 2021, 25, 3775–3794. [CrossRef]

47. Cinar, A.C.; Korkmaz, S.; Kiran, M.S. A discrete tree-seed algorithm for solving symmetric traveling salesman problem. Eng. Sci.
Technol. 2020, 23, 879–890. [CrossRef]

48. Cui, Y.; Zhong, J.; Yang, F.; Li, S.; Li, P. Multi-subdomain grouping-based particle swarm optimization for the traveling salesman
problem. IEEE Access. 2020, 8, 227497–227510. [CrossRef]

49. Xin, J.; Zhong, J.; Yang, F.; Cui, Y.; Sheng, J. An improved genetic algorithm for path-planning of unmanned surface vehicle.
Sensors 2019, 19, 2640. [CrossRef] [PubMed]

https://doi.org/10.1016/j.swevo.2022.101222
https://doi.org/10.1016/j.swevo.2023.101286
https://doi.org/10.1016/j.dt.2021.12.006
https://doi.org/10.1016/j.asej.2021.101677
https://doi.org/10.1016/j.asoc.2020.106522
https://doi.org/10.1016/j.asoc.2021.107439
https://doi.org/10.1007/s10489-020-01799-w
https://doi.org/10.3390/s19081837
https://doi.org/10.3390/math8101650
https://doi.org/10.3390/math10142448
https://doi.org/10.1088/1742-6596/2253/1/012010
https://doi.org/10.1016/j.asoc.2022.109943
https://doi.org/10.3390/app122111219
https://doi.org/10.1145/321043.321046
https://doi.org/10.1007/978-3-319-94667-2_26
https://doi.org/10.1007/BF01584070
https://doi.org/10.31181/dmame1902076r
https://doi.org/10.1109/ACCESS.2021.3133493
https://doi.org/10.1007/s00521-021-06883-x
https://doi.org/10.1609/aaai.v35i14.17476
https://doi.org/10.1109/3477.484436
https://doi.org/10.1108/IR-12-2019-0248
https://doi.org/10.1016/j.asoc.2020.106720
https://doi.org/10.13195/j.kzyjc.2013.1173
https://doi.org/10.1007/s00500-020-05406-5
https://doi.org/10.1016/j.jestch.2019.11.005
https://doi.org/10.1109/ACCESS.2020.3045765
https://doi.org/10.3390/s19112640
https://www.ncbi.nlm.nih.gov/pubmed/31212651


Mathematics 2023, 11, 4439 26 of 26

50. Rao, W.; Jin, C.; Lu, L. An Improved Greedy Algorithm with Information of Edges’ Location for Solving the Euclidean Traveling
Salesman Problem. Chin. J. Comput. 2013, 36, 836–850. [CrossRef]

51. Chen, B.; Liu, W. SAC Model Based Improved Genetic Algorithm for Solving TSP. J. Front. Comput. Sci. Technol. 2021, 15,
1680–1693. [CrossRef]

52. Sun, J.; Liu, S.; Wu, X. Simulated Annealing Algorithm Based on Large Neighborhood Search To Solve TSP. Comput. Simul. 2023,
40, 415–420. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3724/SP.J.1016.2013.00836
https://doi.org/10.3778/j.issn.1673-9418.2010065
https://doi.org/10.3969/j.issn.1006-9348.2023.06.076

	Introduction 
	Related Work 
	Design of Algorithm Framework 
	Principles of the Experiments 
	Basic Ant Colony Algorithm 
	Improvements in State Transfer Rules 
	Local Optimization Strategy 
	Adaptive Pheromone Update Rules 
	The Algorithm Process of AACO-LST 

	Simulation Experiments and Results 
	Ablation Experiments 
	Comparison of Solution Quality 
	Statistical Comparison of Solution Quality 
	Convergence Speed Comparison 
	Population Diversity and Convergence Analysis of AACO-LST 

	Conclusions 
	References

