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Abstract: Based on the modified Moore–Gibson–Thompson (MGT) model, transversely isotropic
visco-thermoelastic material is investigated for frequency shift and thermoelastic damping. The Green–
Naghdi (GN) III theory of thermoelasticity with two temperatures is used to express the equations
that govern heat conduction in deformable bodies based on the difference between conductive and
dynamic temperature acceleration. A mathematical model for a simply supported scale beam is
formed in a closed form using Euler Bernoulli (EB) beam theory. We have figured out the lateral
deflection, conductive temperature, frequency shift, and thermoelastic damping. To calculate the
numerical values of various physical quantities, a MATLAB program has been developed. Graphical
representations of the memory-dependent derivative’s influence have been made.
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1. Introduction

In modern engineering structures, materials are often exposed to high temperatures,
which makes viscoelastic materials, such as polymer science, of great interest. A certain
amount of viscoelastic response is evident in all materials. Among the most common metals
are steel, aluminium, and copper. If a material exhibits both viscous and elastic properties
when deformed, it is termed viscoelastic. When linear materials show dependency on
both time and temperature, they are described as rheological viscoelastic materials. As
a consequence of engineering structures’ variation in temperature, approximating their
material characteristics no longer holds even in an approximation context. Temperature
affects the thermal and mechanical properties of materials, so it is necessary to consider
the temperature dependence of their properties when performing a thermal stress analysis.
Heat conductance is crucial in materials science and related sciences, especially at high
working temperatures. Depending on the circumstances, metals and other materials may
react differently to temperature changes. Free electrons are the main cause of conductivity
in metals. As a general rule, a metal’s thermal conductivity (Kelvin) is proportional to its
electric conductivity at absolute temperatures.

Visco-thermoelasticity and variational laws in irreversible thermodynamics were
discussed by Biot [1]. Using an elastic moduli model and relaxations as parameters,
Drozdov [2] developed a thermo-viscoelasticity constitutive model. Applied magneto-
thermo-viscoelastic media were studied by Bera [3]. An isotropic visco-thermoelastic
model was developed by Ezzat and El-Karamany [4] to investigate volume relaxations in
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viscoelasticity. Ezzat et al. [5] developed the equation of generalized thermo-viscoelasticity
with one relaxation time and two relaxation times, ignoring the volume’s relaxation effects.
Visco thermoelastic micro-polar transversely isotropic (TI) media were studied by Kumar
et al. [6] to determine the effect of viscosity on the amplitude ratios of plane waves. In
contrast, Green and Naghdi [7–9] presented Green–Nagdhi (GN) theories of thermoelastic-
ity with and without energy dissipation. A generalized fractional-order thermoelasticity
(FOT) model, introduced by Povstenko [10], introduced both classical thermoelasticity and
generalized thermoelasticity with GN.

Several academic works have recently analysed and interpreted the Moore–Gibson–
Thompson (MGT) equation because of its wide range of applications. There are several
important applications of the MGT equation, including fluid dynamics and viscoelastic-
ity [11]. According to Lasiecka and Wang [12], certain fluid dynamics can be modelled by a
differential equation of the third order. Quintanilla [13,14] used the MGT equation with 2T
to develop a new model of heat conduction. The modified Fourier equation, also known as
the MGT equation, is as follows:(

1 + τ0
∂

∂t

)
q = −Kij∇T − K∗ij∇ϑ, where,

.
ϑ = T (1)

Later, the memory effect of thermoelasticity was subsequently demonstrated with a
better model of MDD (rate of sudden change dependent on past state). “MDD is defined in
an integral form of a common derivative with a kernel function on a slip-in interval”. Wang and
Li [15] presented the first-order MDD with respect to time delay τ0 > 0 for a fixed time t,
for the differentiable function f (t):

Dτ0 f (t) =
1
τ0

∫ t

t−τ0

K(t− ξ) f ′(ξ)dξ, (2)

Taylor’s series of MDD may be used to extend q(x, t + τ0) while ignoring words up to
the first order in time delay:

q(x, t + τ0) = q(x, t) + τ0Dτ0 q(x, t), (3)

Thus, Fourier’s law in the theory of generalized heat conduction is provided by Ezzat
et al. [16] using the Taylor series of MDD.

q(x, t) + τ0Dτ0 q(x, t) = −KT,i, (0 < τ0 ≤ 1), (4)

The selection of the kernel functions K(t− ξ) and τ0 is influenced by the characteristics
of the raw materials. Following Ezzat et al. [16–18], the K(t− ξ) is used here in the form

K(t− ξ) = 1− 2β

τ0
(t− ξ) +

α2

τ2
0
(t− ξ)2 =


1,

1 + (ξ − t)/τ0,
ξ − t + 1,

[1 + (ξ − t)/τ0]
2,

α = 0, β = 0,
α = 0, β = 1/2,
α = 0, β = τ0/2,

α = 1, β = 1.

(5)

Despite this, several researchers such as Marin [19,20], Abbas and Marin [21], Kaur
et al. [22,23], Van Do et al. [24], Doan et al. [25], Craciun et al. [26], Lata et al. [27], Jafari
et al. [28], Craciun et al. [29], Malik et al. [30], and Sharma and Marin [31] studied the
theories of thermoelasticity. Besides this, there have not been any studies on frequency
shift and thermoelastic damping in visco-beams with the MGT and MDD theories of
thermoelasticity.

In this research, the GN III theory of thermoelasticity and the Moore–Gibson–Thompson
(MGT) equation have been revisited, and they are adopted to analyse the free vibrations
in visco-thermoelastic beams with MDD. EB beam theory has been used to formulate the
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mathematical simulation for the visco-beams. The effect of MDD on the various quantities
is graphically depicted.

2. Basic Equations

The basic equations for an anisotropic thermo-visco-elastic medium without heat
sources and body forces [8,32,33] utilizing the MGT and MDD theories are as follows:

1. The stress–displacement–temperature relation:

tij = τmCijklekl − τmβijT, (6)

where τm = 1 + η ∂
∂t , and η is the viscoelastic relaxation time due to the viscosity.

2. The strain–displacement relation:

eij =
1
2
(
ui,j + uj,i

)
, i, j = 1, 2, 3. (7)

3. The MGT thermoelastic heat conduction equation with MDD is

Kij
.
ϕ,ij + K∗ij ϕ,ij =

(
1 + τ0Dτ0 − η2∇2

)(
βijτmT0ëij + ρCE

..
T
)

, (8)

where

T = ϕ− aij ϕ,ij, (9)

βij = Cijklαij, (10)

βij = βiδij, Kij = Kiδij, K∗ij = K∗i δij , i is not summed. Cijkl are elastic parameters and have

symmetry (C ijkl = Cklij = Cjikl = Cijlk

)
.

3. Mathematical Modelling of the Problem

As illustrated in Figure 1, we have taken a visco-beam with length (0 ≤ x ≤ L), width(
− b

2 ≤ y ≤ b
2

)
, and thickness

(
− h

2 ≤ z ≤ h
2

)
in Cartesian coordinates. Let the beam’s

x-axis serve as its axis. Its two endpoints should be at x = 0 and x = h, and the origin
should be located in the middle of the end at x = 0. Consider that beam is free from any
stress and strain and is at a uniform temperature T0 in a stable position. Additionally, the
upper and bottom surfaces of the beam do not experience any heat transfer; therefore,

∂ϕ

∂z
= 0, at z = ±h

2
. (11)
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Figure 1. Diagram of the visco-beam.

The EB model describes that “any plane cross-section, initially perpendicular to the
axis of the beam remains plane and perpendicular to the neutral surface during bending”.
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Therefore, according to Youssef et al. [34], the following displacement components are
given for small deflection:

u(x, y, z, t) = −z
∂w
∂x

, v(x, y, z, t) = 0, w(x, y, z, t) = w(x, t), (12)

The 1D constitutive Equation (6) using Equation (12) becomes

txx = −C11τmz
∂2w
∂x2 − β1τmT, (13)

where β1 = (C 11 + C13)α1 + C13α3.
The thermoelastic parameter β3 = 2C13α1 + C33α3 does not exist along the z-axis

according to the EB hypothesis.
The flexural moment of the cross-section M(x, t) for the beam is provided by Rao [35]

as

M(x, t) = −
∫ h

2

− h
2

∫ b
2

−b
2

txxzdzdy = C11τm I
∂2w
∂x2 + β1τm MT , (14)

where

MT = b
∫ h

2

−h
2

Tzdz , (15)

I =
bh3

12
.

Since T ≡ T(x, z, t) and ϕ ≡ ϕ(x, z, t), the thermodynamic temperature of a trans-
versely isotropic beam from Equation (14) is given by

T =

{
ϕ−

(
a1

∂2 ϕ

∂x2 + a3
∂2 ϕ

∂z2

)}
. (16)

The equation for the motion of the visco-beam without pressures in the transverse
direction [35,36] is written as

∂2M
∂x2 + ρA

∂2w
∂t2 = 0, (17)

where A = bh.
Using Equation (14) in Equation (17), we obtain

C11 Iτm
∂4w
∂x4 + β1τm

∂2MT

∂x2 + ρA
∂2w
∂t2 = 0. (18)

Equation (8), with the help of Equation (12), becomes(
K∗1 + K1

∂
∂t

)
∂2 ϕ

∂x2 +
(

K∗3 + K3
∂
∂t

)
∂2 ϕ

∂z2 = −zβ1T0(1 + τ0Dτ0)τm
∂4w

∂x2∂t2 +

ρCE(1 + τ0Dτ0)
∂2

∂t2

{
ϕ−

(
a1

∂2 ϕ

∂x2 + a3
∂2 ϕ

∂z2

)}
.

(19)

The beam’s time harmonic behaviour may be described as

[w(x, t), ϕ(x, z, t)] = [w(x), ϕ(x, z)]eiωt. (20)

The dimensionless quantities are given as

x′ = x
L , z′ = z

L , w′ = w
L , h′ = h

L , b′ = b
L , t′ = c1

L t, η′ = c1
L η, T′ = T

T0
,

ϕ′ = ϕ
T0

, ρc2
1 = C11, t′xx = txx

β1T0
, a′1 = a1

L2 , a′3 = a3
L2 , M′T = MT

T0L3 .
(21)
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Equation (21) is applied to Equations (18) and (19) to yield the non-dimensional version
of these equations after suppressing the primes, which is represented as

Iτ∗m
∂4w
∂x4 + τ∗m

β1T0L4

c11

∂2MT

∂x2 − AL2ω2w = 0, (22)

(
K∗1 + K1

c1
L iω

) ∂2 ϕ

∂x2 +
(
K∗3 + K3

c1
L iω

) ∂2 ϕ

∂z2 = zc2
1β1ω2(1 + τ0G)τ∗m

∂2w
∂x2 −

ρCEc2
1ω2(1 + τ0G)

{
ϕ−

(
a1

∂2 ϕ

∂x2 + a3
∂2 ϕ

∂z2

)}
.

(23)

where τ∗m = 1 + ηiω

G =
i
ω


(
1− eiωτ0

)
i

ωτ0
− 2β

[
(1− iωτ0)eiωτ0 − 1

(ωτ0)
2

]
+ α2


(

i
(
(ωτ0)

2 − 2
)
− 2τω

)
eiωτ0 − 2i

(ωτ0)
3


4. Boundary Conditions

Let us assume that the beam is initially at rest and intact. As a result,

w(x, 0) =
∂w(x, 0)

∂t
= 0, (24)

ϕ(x, z, 0) =
∂ϕ(x, z, 0)

∂t
= 0, (25)

As considered, the ends of the beam are simply supported; therefore,

w(0, t) = w(L, t) = 0, (26)

∂2w(0, t)
∂x2 =

∂2w(L, t)
∂x2 = 0. (27)

Now imagine that there is no heat transfer between the two surfaces of the beam, i.e.,
along the bottom surface z = h

2 and the upper surface z = − h
2 , which results in

∂ϕ

∂z

(
x,

h
2

, 0
)
=

∂ϕ

∂z

(
x,
−h
2

, 0
)
= 0. (28)

5. Solution of the Problem along the Thickness Direction

Lifshitz and Roukes [37] state that the thermal gradient is zero in the y-direction.
Additionally, “due to geometry, the thermal gradients in the plane of the cross-section along the
thickness direction i.e., z-axis are much larger than those along its axis i.e., x-axis of the -beam”

(i.e., ∂2 ϕ

∂x2 �
∂2 ϕ

∂z2 , hence ∂2 ϕ

∂x2 can be ignored in Equation (22)), and hence Equation (22) for
heat conduction may be changed to

∂2 ϕ

∂z2 + ζ2
1 ϕ =

β1ζ2
1τ∗m

ρCE

∂2w
∂x2 z, (29)

where

ζ1 =

√
ρCEc2

1ω2(1 + τ0G)(
K∗3 + K3

c1
L iω− a3ρCEc2

1ω2(1 + τ0G)
) .

Equation (29) yields the following solution:

ϕ(x, z) =
β1τ∗m
ρCE

(
z− sin ζ1z

ζ1cos ζ1h
2

)
∂2w
∂x2 . (30)
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Using Equation (30) in Equation (15) with the aid of Equation (16), we obtain

MT =
Iβ1τ∗m
ρCE

(
1 +

(
−1 + a3ζ2

1

)
f (ω)

)
∂2w
∂x2 . (31)

and using Equation (31) in Equation (22), we obtain

Lω
∂4w
∂x4 −ω2w = 0, (32)

where
Lω = I

AL2 τ∗m
[
1 + εT

(
1−

(
1 + a3ζ2

1
)

f (ω)
]
,

εT =
β2

1T0L4

ρCE
,

f (ω) =
24

ζ3
1h3

(
ζ1h
2
− tan

ζ1h
2

)
.

Now, Equation (32) can also be written as

∂4w
∂x4 − ζ4w = 0, (33)

where

ζ4 =
ω2

Lω
.

Applying Laplace transforms defined by

w(s) =
∫ ∞

0
w(x)e−sxdx, (34)

on Equation (33) and using boundary conditions defined by Equations (26) and (27), we
obtain the following solution of Equation (33):

w(s) =
A1

2ζ

(
1

s2 + ζ2 +
1

s2 − ζ2

)
+

A2

2ζ2

(
1

s2 − ζ2 −
1

s2 + ζ2

)
. (35)

Now, taking the inverse Laplace transform of Equation (35) gives

w(x) =
A1

2ζ
(sin(ζx) + sinh(ζx)) +

A2

2ζ3 (sinh(ζx)− sin(ζx)). (36)

After including the dimensionless quantities defined by Equation (21) in the boundary
conditions (26) and (27), solving Equation (36) at x = L provides

sin(ζ)sinh(ζ) = 0. (37)

which yields ζn = nπ, n ≥ 1. Thus, the solutions for the lateral deflection from Equation (24)
and the thermal moment expressions from Equation (35) for ζn = nπ, n ≥ 1 are derived by
using (31) as follows:

w(x, t) = 1
2 ∑n

An
ζn(sin ζn+sinhζn)

{(sin ζn+sinhζn)(sin ζnx+sinhζnx)−
(−sin ζn+sinhζn)(− sinζnx + sinhζnx)}eiωnt,

(38)

MT(x, z, t) = Iβ1τ∗m
ρCE

(1 + (1

+a3ζ2
1) f (ω)

)
∑
n

Anζn
(sin ζn+sinhζn)

{(sin ζn

+sinhζn)(− sinζnx+sinhζnx)
−(−sin ζn+sinhζn)(sin ζnx+sinhζnx)}eiωnt.

(39)
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From Equation (32), the beam’s vibrational frequency is determined by

ωn = n2π2√Lω = ω0

√
1 + εT

(
1 +

(
1 + a3ζ2

1
)

f (ω), (40)

where

ω0 =
hn2π2

L
√

12

If we replace ω with ω0 and f (ω) with (ω0), we obtain the solution for all the media
having εT � 1 as follows:

ωm = ω0

√
1 + εT

(
1 +

(
1 + a3ζ2

1
)

f (ω). (41)

The thermoelastic damping (TED) quality, also known as the thermal quality Q-factor,
may be determined by

Q−1 = 2
∣∣∣∣ωn

I
ωn

R

∣∣∣∣, (42)

where n is the mode number and is related to the transcendental roots in Equation (37),
and ωn

R and ωn
I are the real and the imaginary parts of frequency ωn. Due to thermal

variations, the frequency shift (FS) may be given by

ωS =

∣∣∣∣ωn
R −ω0

ω0

∣∣∣∣. (43)

6. Particular Cases

1. We can obtain the solution of physical quantities for simply supported visco-beams
with the GN-II theory of thermoelasticity if K1 = K3 = 0 in Equations (38)–(43).

2. We can obtain the solution of physical quantities for simply supported visco-beams with
the classical theory of thermoelasticity if we take K∗1 = K∗3 = 0 in Equations (38)–(43).

3. We can obtain the solution of physical quantities for simply supported cubic crystal
thermoelastic visco-beams with the GN type-III theory of thermoelasticity if we take
C11 = C22 = C33, C12 = C13, C44 = C66, α1 = α3 = α′, β1 = β3 = β′, K1 = K3 =
K, K∗1 = K∗3 = K∗ in Equations (38)–(43).

4. We can obtain the solution of physical quantities for free vibrations in simply sup-
ported visco-beams with energy dissipation similar to Abbas [38] if we take C11 =
C33 = λ + 2µ, C12 = C13 = λ, C44 = 2µ, α1 =α3 = α’, a1 = a3 = a,K1 = K3 = K, K∗1 =
K∗3 = K∗ in Equations (38)–(43).

7. Results and Discussion

Physical information for cobalt material (transversely isotropic) for the beam was
selected from Dhaliwal and Singh [39] to illustrate the theoretical results:

C11 = 3.071× 1011Nm−2, C12 = 1.650× 1011Nm−2, C13 = 1.027× 1010Nm−2,

C33 = 3.581× 1011 Nm−2, C44 = 1.510× 1011 Nm−2, CE = 4.27× 102 Jkg−1K−1,

β1 = 7.04× 106 Nm−2K−1, ρ = 8.836× 103kgm−3, T0 = 298 K,

β3 = 6.90× 106 Nm−2K−1, L = 1m, b = 0.01m

K1 = 0.690× 102 Wm−1K−1, K3 = 0.690× 102 Wm−1K−1,
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K∗1 = 0.02× 102 NSec−2K−1, K∗3 = 0.04× 102 NSec−2K−1,

η = 0.01, τ0 = 0.02. Here, we have taken An = 1.

The following physical data for copper, which is an isotropic material, were taken:

λ = 7.76× 1010 Nm−2, µ = 3.86× 1010 Nm−2, ρ = 8.954× 103 Kgm−3,

K = 386 Wm−1K−1, α’ = 1.78× 10−5 K−1, CE = 383.1 JKg−1K−1, T0 = 293 K,

K∗ = 1.0× 1010 Nm−2

A program was developed in MATLAB to determine the numerical values of w,
conductive temperature ϕ, MT, Q−1, and ωS, and graphs drawn for different modes of
kernel function of MDD are presented in Figures 2–6.
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Figure 2 demonstrates the variation in the lateral deflection w with respect to the length
of the visco-beam for different modes of kernel function 1− 2β

τ0
(t− ξ) + α2

τ2
0
(t− ξ)2 of MDD

based on the values of α and β. As both ends of the visco-beam are simply supported,
from the graph, it can be observed that the lateral deflection at x = 0 and x = L is zero,
which satisfies the boundary conditions. Moreover, for the kernel function 1 + (ξ − t)/τ0
of MDD, the visco-beam shows the minimum variation as compared to when the value of
the kernel function is [1 + (ξ − t)/τ0]

2. Therefore, the memory effect is clearly noticeable
from the graph.

Figure 3 shows the variation in thermal moment MT with the length of the beam
for different modes of kernel function 1− 2β

τ0
(t− ξ) + α2

τ2
0
(t− ξ)2 of MDD based on the
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values of α and β. As both ends of the visco-beam are simply supported, from the graph, it
can be observed that the thermal moment at x = 0 and x = L is zero, which satisfies the
boundary conditions. Moreover, for the kernel function 1 for α = 0 and β = 0 of MDD, the
visco-beam shows the minimum variation, whereas the thermal moment is at its maximum
when the value of kernel function is [1 + (ξ − t)/τ0]

2. Therefore, the memory effect is
clearly noticeable from the graph.
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Figure 4 demonstrates the variations in the conductive temperature ϕ with the length
x for different modes of kernel function 1− 2β

τ0
(t− ξ) + α2

τ2
0
(t− ξ)2 of MDD based on the

values of α and β. As both ends of the visco-beam are simply supported, from the graph, it
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can be observed that the conductive temperature at x = 0 and x = L is zero, which satisfies
the boundary conditions. Moreover, for the kernel function 1 for α = 0 and β = 0 of MDD,
the visco-beam shows the minimum variation in conductive temperature and shows the
opposite behaviour to other values of kernel function of MDD, whereas the conductive
temperature is at its maximum when the value of kernel function is [1 + (ξ − t)/τ0]

2.
Therefore, the memory effect is clearly noticeable from the graph.

Figure 5 demonstrates the variations in the thermoelastic damping Q−1 with the length
x for different modes of kernel function 1− 2β

τ0
(t− ξ) + α2

τ2
0
(t− ξ)2 of MDD based on the

values of α and β. For the kernel function 1 for α = 0 and β = 0 of MDD, the visco-beam
shows the maximum variation in thermoelastic damping, whereas thermoelastic damping
is at its minimum when the value of kernel function is [1 + (ξ − t)/τ0]

2. Therefore, the
memory effect is clearly noticeable from the graph.

Figure 6 exhibits the frequency shift ωS with length x for different modes of kernel
function 1− 2β

τ0
(t− ξ) + α2

τ2
0
(t− ξ)2 of MDD based on the values of α and β. For the kernel

function 1 for α = 0 and β = 0 of MDD, the visco-beam shows the minimum variation
in thermoelastic damping, whereas the thermoelastic damping is at its maximum when
the value of kernel function is [1 + (ξ − t)/τ0]

2. Therefore, the memory effect is clearly
noticeable from the graph. It is observed that as the length of the beam increases, the
frequency shift ωS abruptly decreases from its highest value to zero.

8. Conclusions

A mathematical model for a simply supported scale beam was formed in a closed form
using Euler Bernoulli (EB) beam theory based on the modified Moore–Gibson–Thompson
(MGT) model to investigate the frequency shift, thermoelastic damping, and other pa-
rameters of visco-beams. The Green–Naghdi (GN) III theory of thermoelasticity with two
temperature- and memory-dependent derivatives was used to express the equations that
govern heat conduction in deformable bodies. The solutions of PDE were obtained using
Laplace transforms.

We came to the following conclusions after the discussion:

• The kernel function of the memory-dependent derivative plays a dominant role. As the
kernel function changes, the amplitudes of the lateral deflection and thermal moment
increase, but amplitude of the thermoelastic damping factor decreases with change in
the kernel function.

• It was noticed that the frequency of time harmonic sources has a significant impact on
the various properties of the beam.

• It was observed that the thermoelastic damping Q−1 grows first to reach the maximum
values before decreasing with length. For the kernel function 1 for α = 0 and β = 0
of MDD, the visco-beam shows the maximum variation in thermoelastic damping,
whereas the thermoelastic damping is at its minimum when the value of kernel
function is [1 + (ξ − t)/τ0]

2. Therefore, the memory effect is clearly noticeable from
the graph.

• As the length of the beam increases, the frequency shift ωS decreases from its high
value at the beginning to zero.

• Theoretical research and computational results demonstrate that memory effects can
amplify the thermoelastic field variations.

• Theoretical research and applications in viscoelastic materials have become crucial for
solid mechanics because of the quick development of polymer science and the plastics
industry, as well as the widespread use of materials that can withstand high tempera-
tures in contemporary technology, sensing and actuation, mechanical resonators, and
the integration of biology and geology into engineering.
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Nomenclature
δij Kronecker delta
Cijkl Elastic parameters
βij Thermal elastic coupling tensor
T Absolute temperature
T0 Reference temperature
ϕ Conductive temperature
tij Stress tensors
eij Strain tensors
ui Components of displacement
ρ Medium density
CE Specific heat
aij Two temperature parameters
ω Frequency
I Moment of inertia
C11 I Flexural rigidity of the visco-beam
s Laplace transform parameter
εT Thermoelastic coupling
A Area of cross-section
MT Thermal moment
M(x, t) Flexural moment
w(x, t) Lateral deflection
t Time
αij Linear thermal expansion coefficient
Kij Thermal conductivity
K∗ij Materialistic constant
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