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Abstract: Over the last decade, the Age of Information has emerged as a key concept and metric for
applications where the freshness of sensor-provided data is critical. Limited transmission capacity
has motivated research on the design of tractable policies for scheduling information updates to
minimize Age of Information cost based on Markov decision models, in particular on the restless
multi-armed bandit problem (RMABP). This allows the use of Whittle’s popular index policy, which
is often nearly optimal, provided indexability (index existence) is proven, which has been recently
accomplished in some models. We aim to extend the application scope of Whittle’s index policy
in a broader AoI scheduling model. We address a model with no buffers incorporating random
packet arrivals, unreliable channels, and nondecreasing AoI costs. We use sufficient indexability
conditions based on partial conservation laws previously introduced by the author to establish the
model’s indexability and evaluate its Whittle index in closed form under discounted and average
cost criteria. We further use the index formulae to draw insights on how scheduling priority depends
on model parameters.
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1. Introduction

The last decade has witnessed a fast-growing interest in research on the Age of Infor-
mation (AoI) concept and metric as proposed in Kaul et al. [1,2] and extensions thereof.
The AoI quantifies the freshness of information at a receiver in a communication system,
as it measures the time elapsed since the most recently received packet was generated
at its source. See, e.g., Kosta et al. [3] and Yates et al. [4] for authoritative introductions
and surveys. AoI metrics have become increasingly relevant as the demand for real-time
applications, where timely information delivery is critical, continues to grow. These include
Internet of Things, video streaming, online gaming, remote control, and real-time traffic
monitoring.

1.1. AoI Minimization via Transmission Scheduling and Restless Bandit Framework

Much AoI research has addressed the design of transmission scheduling policies to
minimize AoI costs in communication networks so that users have access to as much up-to-
date information as possible. A relatively simple yet relevant setting for addressing the
optimal scheduling problem is that of single-hop wireless communication networks, where
information sources generate packets targeted to corresponding users. Packet transmissions
are mediated by a base station (BS), i.e., a communications node that connects sources to
users through a given set of channels. In such a scenario, the scheduling problem can
be formulated as a restless multi-armed bandit problem (RMABP). See, e.g., the work
reviewed in Section 1.2.
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The RMABP is a versatile Markov decision process (MDP) (see, e.g., Puterman [5] and
Bertsekas [6]) modeling framework for optimal dynamic priority allocation, introduced by
Whittle in [7] as an extension of the classic multi-armed bandit problem (MABP). It concerns
the optimal dynamic selection of up to M out of N projects, with 1 6 M < N. Such projects
are generic entities modeled as binary-action MDPs, which can be either active/selected or
passive/rested at each time. In the present setting, there are N projects representing users
and M channels. Selecting a project means allocating a channel for attempting to transmit a
packet held at the BS to the corresponding user.

An intuitively appealing and tractable type of policies for the RMABP is provided by
priority-index policies (or index policies for short). These attach an index to each project/user,
i.e., a scalar function of its state, which is used as a dynamic measure of selection priority:
the larger a project’s current index value, the higher the selection priority.

Index policies can be optimal in special models, in particular in the classic MABP
(where passive projects do not change state) with M = 1, as first shown by Gittins and
Jones [8], and in Klimov’s model [9]. Yet, they are generally suboptimal for the RMABP,
which is computationally intractable (P-space hard, see Papadimitriou and Tsitsiklis [10]).
Still, Whittle [7] proposed a now widely popular heuristic index policy for the RMABP,
which he conjectured to be asymptotically optimal under the average criterion, as M and N
grow to infinity in a fixed ratio. Weber and Weiss [11] showed that such a conjecture does
not hold in general but identified sufficient conditions under which it does hold.

Since its introduction, research on the RMABP has generated a vast amount of liter-
ature, which was partially reviewed in [12]. Much work has addressed applications of
Whittle’s index policy in a wide variety of models, where numerical studies often report a
near-optimal performance. Yet, researchers aiming to apply such a policy to a particular
RMABP model are confronted with two major roadblocks, widely regarded as difficult:
(1) proving that the model is indexable, meaning that it possesses a well-defined Whittle
index, which cannot be taken for granted, and (2) devising an efficient index evaluation
scheme.

Over the last two decades, the author has developed a framework based on partial
conservation laws (PCLs) to overcome such roadblocks in increasingly general settings. See,
e.g., Niño-Mora [13–17]. This approach is different from prevailing approaches and still not
widely applied. We will apply it here, demonstrating its simplicity and effectiveness for
solving a hitherto unsolved problem: proving indexability and evaluating the Whittle index
for an AoI optimization model in which such results had not been previously obtained.

1.2. Related Prior Work: AoI Cost Minimization via Whittle’s Index Policy

A number of recent papers have applied the RMABP and Whittle’s index policy for
AoI minimization in single-hop wireless communication network models. A major stream
of such work considers no-buffer models where untransmitted packets in a time slot are lost.
Kadota et al. [18] addressed a no-buffer network model having unreliable channels with a
fixed transmission success probability for each user. Packet generation was deterministic:
each source generated one packet at the start of each frame. The frames consisted of a fixed
number of time slots at which transmissions could be attempted. If a packet transmission
failed, it could be reattempted in the following slot of the current frame, if any. The goal was
to minimize the (long-run) average linearly weighted AoI cost. Indexability was proven, the
Whittle index was obtained in closed form, and, in a simulation study, Whittle’s policy was
benchmarked and shown to be nearly optimal and to outperform alternative index policies.

Hsu et al. [19] considered an RMABP model for average linearly weighted AoI min-
imization incorporating random packet arrivals transmitted through reliable channels.
Indexability was established, Whittle’s index was derived in closed form, and the resulting
policy was tested. The online setting, where arrival rates are inferred, was also addressed.

Sun et al. [20] and Jhunjhunwala and Moharir [21] proposed the adoption of nonlinear
AoI cost metrics to better model the growth of user dissatisfaction with data staleness.
Tripathi and Modiano [22] incorporated average cost metrics into an RMABP model with
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nondecreasing AoI costs in a no-buffer system with deterministic arrivals and unreliable
channels. They proved indexability, obtained Whittle’s index in closed form, and tested
Whittle’s index policy.

Note that the aforementioned work does not address models incorporating both
random packet arrivals and unreliable channels, which is a gap that the present paper fills.

A related stream of work focuses on establishing the asymptotic optimality of Whittle’s
index policy in the above models under appropriate assumptions. Maatouk et al. [23] estab-
lished asymptotic optimality for the model in [18] under a numerically verifiable recurrence
condition. Kriouile et al. [24] proved such a result under a less stringent condition.

The no-buffer assumption is replaced in another stream of work by that of one-packet
buffers, where the BS stores the last packet generated by a source. Sun et al. [25] considered
a one-packet buffer variant of the model in [19], which was shown to result in performance
gains. In addition to obtaining and testing Whittle’s index policy, a decentralized index
policy was proposed. Sun et al. [26] extended the model in [25] by incorporating both
random packet arrivals and unreliable channels. Yet, Ref. [26] did not prove that the
model is indexable, as it stated that “it is really hard to establish indexability”. An index was
proposed that is meant to approximate the Whittle index as if the model were indexable.
The resulting policy was benchmarked in a numerical study, showing that it is near-
optimal. Tang et al. [27] extended the model in [25] to incorporate nondecreasing AoI
costs. They argued that the model is indexable, derived the Whittle index, and tested it in a
numerical study.

The aforementioned work has focused on the average AoI cost minimization criterion.
Yet, recent work has argued the relevance of the much less applied discounted cost criterion
for such problems. Badia and Munari [28] motivated its use based on applications, e.g., in
underwater environments, where the assumption of unlimited operation is unreasonable.
In such settings, the discounted criterion, which is well known to model a geometrically
distributed time horizon, is more appropriate. In particular, Ref. [28] focused on the per-
formance evaluation of discounted AoI metrics in a model with deterministic arrivals and
unreliable channels, assuming that transmissions were attempted with a fixed probability.

Wu et al. [29] considered a discounted AoI minimization model with deterministic ar-
rivals and reliable channels, proving a property of optimal transmission policies. However,
they did not consider the design of tractable suboptimal policies with good performance.

Zhang et al. [30] investigated the pricing of AoI updates in a discounted model.

1.3. Contributions over Prior Work

This paper presents the following contributions:

1. We prove indexability for a no-buffer AoI optimization model with random packet
arrivals, unreliable channels, and general nondecreasing costs, giving closed formulae
for its Whittle index, under both discounted and average cost criteria. Table 1 clarifies
the gaps filled by this paper on indexability under the average cost criterion. Note
that the “approx.” beside Ref. [26] indicates that a proxy of the Whittle index was
considered there, as indexability was not proven. As for indexability under the
discounted criterion, to the best of the author’s knowledge, it has not been addressed
in an AoI setting. We thus demonstrate the effectiveness of the PCL-indexability
approach (based on partial conservation laws (PCLs), see [13–17]) to prove indexability
and evaluate the Whittle index by analyzing an AoI model that has not yet yielded to
the prevailing approach.

2. We provide simplified Whittle index formulae for relevant special cases, in particular
linear, quadratic, and threshold-type AoI costs. The resulting expressions allow for a
more efficient index evaluation than direct application of the general formulae.

3. We analyze the Whittle index formulae to elucidate how a user’s transmission priority
depends on model parameters under Whittle’s policy, in particular on the probabilities
of packet arrival and successful transmission. The index is nonincreasing in the former;
so, other things being equal, Whittle’s policy gives higher transmission priority to
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users with lower arrival rates. As for the latter probability, the index increases with
it for linear costs, thus prescribing higher priority to users for which transmission
attempts are more likely to succeed. Yet, for nonlinear costs, the index is generally
non-monotonic in that probability.

Table 1. Indexability analyses in RMABP AoI optimization models under the average cost criterion.

Arrivals/Channels Reliable Unreliable

Deterministic
Costs/Buffers No Yes No Yes

Linear [18] [25] [18] [26] (approx.)

Nonlinear [22] [27] [22] [27]

Random

Costs/Buffers No Yes No Yes

Linear [19] [25] this paper [26] (approx.)

Nonlinear this paper [27] this paper [27]

1.4. Structure of the Paper

The remainder of the paper is organized as follows. Section 2 describes the system
model and formulates it as an RMABP. Section 3 reviews the concepts of indexability and
Whittle index in the present setting. Section 4 reviews the PCL-indexability approach
and applies it to prove indexability and evaluate the Whittle index under the discounted
criterion. Section 5 presents a PCL-indexability analysis for the average cost criterion.
Section 6 elucidates the dependence of Whittle’s index on model parameters and evaluates
the index for special cost functions. Finally, Section 7 concludes the paper. The paper
includes two appendices, which contain some of the given proofs.

2. System Model and RMABP Formulation

We consider a system model where N information sources (e.g., monitoring stations)
generate status update packets aimed to N corresponding users (e.g., applications or
sensors). Time is slotted and time slots are denoted by t = 0, 1, 2, . . .. Packet generation is
modeled by independent Bernoulli processes: source n = 1, . . . , N generates a packet at the
start of a time slot with probability 0 < λn 6 1.

A BS connects sources to users. Transmission capacity is limited, as there are M < N
channels, so the BS can attempt to transmit at most M packets per slot among those that have
been just generated, if any exist. The BS has no buffering capacity, so any untransmitted
packets in a slot are lost.

Channels are unreliable: if the BS attempts to transmit a freshly generated packet from
source n to user n, the transmission succeeds with probability 0 < µn 6 1 independently
across channels and slots. If the packet is transmitted, the BS receives an instantaneous
acknowledgment so that it can keep track of the current AoI for each user. Packet generation
and transmission error processes are mutually independent.

The state of user n at the beginning of slot t is denoted by Yn(t) , (Bn(t), Xn(t)),
where Bn(t) equals 1 if a packet has just been generated by source n and is 0 otherwise, and
Xn(t) is the AoI for user n. Thus, Yn(t) lies in the state space Y , {0, 1} ×N, where N is
the set of natural numbers with elements 1, 2, 3, . . ., as we assume that Xn(t) > 1, because
it takes one time slot for a packet to reach the user.

Figure 1 represents a system with M = 3 channels and N = 5 users in a slot where
two packets from sources 1 and 3 have been generated. Only two channels can be allocated,
which is indicated with gray filling. Figure 2 shows a snapshot of the same system with all
channels allocated in a slot, as there are at least as many packets available as channels. Yet,
the packet from source 5 will be lost, as it cannot be transmitted in the slot.
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sources: λ1 λ2 λ3 λ4 λ5

packets:

channels:

µ1 µ2 µ3 µ4 µ5

users: X1(t) X2(t) X3(t) X4(t) X5(t)

Figure 1. System snapshot showing underutilization of channels.

sources: λ1 λ2 λ3 λ4 λ5

packets:

channels:

µ1 µ2 µ3 µ4 µ5

users: X1(t) X2(t) X3(t) X4(t) X5(t)

Figure 2. System snapshot where a generated packet will be lost.

The cost incurred by user n in a slot is given by a general nonnegative and nondecreas-
ing function cn(in) of its AoI in at the beginning of the slot.

At the start of each slot, a controller at the BS decides which packets to attempt to
transmit, among those just generated, if any, up to a maximum of M.

We shall assume that action choice is based only on the current joint state. This
corresponds to considering scheduling policies π from the class Π(M) of stationary policies
that attempt to transmit up to M packets at each slot. We denote by An(t) the action chosen
for user n in slot t, which can be 1 (attempt transmission of an available packet) or 0
otherwise (note that this action must be taken if no packet is available). As in [14], we shall
refer to Y{0,1} , {1} ×N as the set of controllable states for user n, where both actions are
available, and to Y{0} , {0} ×N as the set of uncontrollable states, where only the passive
action is available.

The state transition probabilities for user n under action an, denoted by pan
(bn ,in),(b′n ,i′n)

,

P{Yn(t + 1) = (b′n, i′n) |Yn(t) = (bn, in), An(t) = an} for any time slot t, are given by

p0
(bn ,in),(b′n ,i′n)

=


1− λn if (b′n, i′n) = (0, in + 1)
λn if (b′n, i′n) = (1, in + 1)
0 otherwise,

(1)

and, for bn = 1,

p1
(1,in),(b′n ,i′n)

=



(1− λn)(1− µn) if (b′n, i′n) = (0, in + 1)
(1− λn)µn if (b′n, i′n) = (0, 1)
λn(1− µn) if (b′n, i′n) = (1, in + 1)
λnµn if (b′n, i′n) = (1, 1)
0 otherwise.

(2)
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Given a discount factor 0 < β < 1, the expected total discounted cost incurred by
policy π ∈ Π(M) starting from the joint state Y(0) = (B(0), X(0)) = (b, i) ∈ {0, 1}N ×NN ,
where we use the vector notation B(t) = (Bn(t))N

n=1, X(t) = (Xn(t))N
n=1, b = (bn)N

n=1 and
i = (in)N

n=1, is

Fπ
(b,i) ,Eπ

(b,i)

[ ∞

∑
t=0

N

∑
n=1

cn(Xn(t))βt
]

. (3)

In (3), Eπ
(b,i) is the expectation under policy π, conditioned on starting from (b, i). The

discounted cost problem is to find an admissible policy (i.e., in Π(M)) minimizing the cost
objective in (3) for any initial joint state (b, i).

We shall also consider the average cost problem, which is to find an admissible
scheduling policy minimizing the average expected cost per slot, given by

F̄π
(b,i) , lim sup

T→∞

1
T
Eπ
(b,i)

[ T

∑
t=0

N

∑
n=1

cn(Xn(t))
]

. (4)

Note that we restrict attention to stationary policies, even though we have not proven
that they are optimal among the wider class of history-dependent policies. Conditions
ensuring such a result in MDP models with countable states and unbounded costs are given,
e.g., in Sections 6.10 (discounted criterion) and 8.10 (average criterion) of Puterman [5]. Yet,
since such issues are only of ancillary interest to this paper, we do not pursue them here,
except for certain single-user subproblems (see Proposition 2).

The above problems are formulated as RMABPs by identifying projects with users
and taking the active action on a project with attempting to transmit a packet for a user.

Given the intractability of computing an optimal policy, we aim to design suboptimal
policies that can be implemented with low complexity and perform well. Index policies are
appealing in this setting; they are based on defining an index αn : Y{0,1} → R for each user
n, a scalar function of its controllable states (1, in). In a slot starting in (b, i), where b and i
are as in (3), the policy attempts to transmit up to M available packets, if any exist, giving
higher priority to users with larger nonnegative index values and breaking ties arbitrarily.

This raises the issue of how to design easily computable index policies that perform
well, if possible. Regarding ease of calculation, a simple choice is the greedy index policy,
based on the index αn(1, in) , cn(in). A more sophisticated idea for constructing index
policies was proposed by Whittle [7], as discussed below.

3. Indexability and Whittle Index

This section discusses indexability and the Whittle index, adapting the approach in
Whittle [7] to the nuances of the present model. We focus on the discounted cost problem,

minimize
π∈Π(M)

Fπ
(b,i), (5)

where Fπ
(b,i), defined in (3), is the system’s cost metric, giving the expected total β-discounted

cost under policy π starting from (b, i). We define F∗(b,i) to be the optimal cost.
We start by formulating a relaxation of optimization problem (5) by replacing the class

of admissible scheduling policies Π(M), which can allocate up to K channels per slot, with
a larger class of policies. In particular, we use the class of policies Π(N), which can allocate
up to N channels per slot, and further impose the additional constraint

Gπ
(b,i) 6 Mβ, (6)

where Mβ , M/(1− β) and

Gπ
(b,i) , Eπ

(b,i)

[
∞

∑
t=0

N

∑
n=1

An(t)βt

]
.
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We shall refer to Gπ
(b,i) as the system’s work metric, which gives the expected total discounted

number of transmission attempts.
Note that (6) is implied by the sample-path constraints implicit in Π(M), namely,

N

∑
n=1

An(t) 6 M, t = 0, 1, . . .

The resulting relaxed problem is

minimize
π∈Π(N), (6)

Fπ
(b,i). (7)

Note that, by construction, the optimal cost FR
(b,i) of (7) is a lower bound on F∗(b,i).

We now attach a nonnegative Lagrange multiplier, or, more properly, since we are
dealing with an inequality-constrained optimization problem, a Karush–Kuhn–Tucker
(KKT) multiplier, ν > 0, to constraint (6) in (7), and formulate the Lagrangian function

Lπ
(b,i)(ν) , Fπ

(b,i) + ν
(
Gπ
(b,i) −Mβ

)
, (8)

and the Lagrangian relaxation
minimize

π∈Π(N)
Lπ
(b,i)(ν). (9)

Note that multiplier ν represents a charge per transmission attempt. Again, by construc-
tion, the optimal cost L∗(b,i)(ν) of problem (9) gives in turn a lower bound on FR

(b,i) for any
ν > 0, which follows from the elementary weak duality relation

L∗(b,i)(ν) 6 Fπ
(b,i), for any π ∈ Π(N) satisfying (6) and ν > 0. (10)

The Lagrangian dual problem is to find a multiplier yielding the best lower bound:

maximize
ν>0

L∗(b,i)(ν). (11)

Note that (11) is a concave optimization problem—since function L∗(b,i)(ν) is concave in ν,
being a minimum of linear functions—which facilitates its computational solution.

We would like to ensure strong duality, meaning that L∗(b,i)(ν
∗) = Fπ∗

(b,i) for some

π∗ ∈ Π(N) satisfying (6) and ν∗ > 0, and hence, FR
(b,i) = Fπ∗

(b,i) and L∗∗(b,i) = FR
(b,i), where

L∗∗(b,i) = L∗(b,i)(ν
∗) is the optimal value of problem (11). For such a purpose, we adapt the

concept of complementary slackness (CS) from inequality-constrained optimization. Given a
policy π ∈ Π(N) and a multiplier ν > 0, we say that they satisfy CS if

ν
(
Gπ
(b,i) −Mβ

)
= 0. (12)

The next result gives a sufficient condition for strong duality, which can be used to
compute the bound FR

(b,i).

Proposition 1. Suppose that π∗ ∈ Π(N) solves (9) with ν∗ > 0, and that they satisfy CS. Then,

(a) π∗ solves the relaxed problem (7);
(b) ν∗ solves the Lagrangian dual problem (11);
(c) Strong duality holds.

Proof. The results follow straightforwardly from the above discussion and the identities

Fπ∗
(b,i) −L∗(b,i)(ν

∗) = Fπ∗
(b,i) + ν∗

(
Gπ∗
(b,i) −Mβ

)
−L∗(b,i)(ν

∗) = Lπ∗
(b,i)(ν

∗)−L∗(b,i)(ν
∗) = 0.
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The solution of the Lagrangian relaxation (9) is further facilitated by the fact that it
naturally decouples into the single-user subproblems

minimize
πn∈Πn

Fπn
n,(bn ,in)

+ νGπn
n,(bn ,in)

, (13)

for n = 1, . . . , N, where Πn denotes the stationary transmission policies for the subsystem
corresponding to user n in isolation with a single channel. Note that

Fπn
n,(bn ,in)

, Eπn
(bn ,in)

[
∞

∑
t=0

cn(Xn(t))βt

]
(14)

and

Gπn
n,(bn ,in)

, Eπn
(bn ,in)

[
∞

∑
t=0

An(t)βt

]
(15)

are the user’s cost metric and work metric, respectively, as defined in Niño-Mora [14]. This
follows from considering decoupled policies π = (πn)N

n=1, where πn is used on user n, so

Fπ
(b,i) =

N

∑
n=1

Fπn
n,(bn ,in)

and Gπ
(b,i) =

N

∑
n=1

Gπn
n,(bn ,in)

,

hence the Lagrangian function in (8) can be decomposed as

Lπ
(b,i)(ν) =

N

∑
n=1

(
Fπn

n,(bn ,in)
+ νGπn

n,(bn ,in)

)
−Mβν. (16)

We shall call the model indexable if, for each user n and AoI jn ∈ N, there exists a critical
transmission attempt charge ν∗(1,jn)

, which, viewed as an index, characterizes the optimal
policies for subproblem (13) under any ν ∈ R, as follows: in state (1, jn), it is optimal—for
any initial state (bn, in)—to attempt to transmit if and only if ν∗(1,jn)

> ν, and it is optimal to
not attempt to transmit if and only if ν∗(1,jn)

6 ν. We shall refer to ν∗(1,jn)
as user n’s Whittle

index. Note that we define Whittle’s indexability property as formulated in, e.g., [17,31].
The Whittle index policy for the N-user model gives higher transmission priority to

available packets targeted to users with larger nonnegative indices.

4. PCL-Indexability Analysis: Discounted Cost Criterion

This section reviews the PCL-indexability approach in [15,16] and applies it to prove
indexability of the single-user subproblems (13) and derive the discounted Whittle index.

4.1. A Verification Theorem for Threshold-Indexability

Consider a single-user subproblem (13), dropping the user label n and writing the AoI
cost function as cj. The discounted cost and work performance metrics are given by

Fπ
(b,i) , Eπ

(b,i)

[
∞

∑
t=0

cX(t)β
t

]
, (17)

and

Gπ
(b,i) , Eπ

(b,i)

[
∞

∑
t=0

A(t)βt

]
, (18)

so the single-user subproblem of concern is formulated as follows:

minimize
π∈Π

Fπ
(b,i) + νGπ

(b,i). (19)
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We shall write the packet arrival and the transmission success probabilities as λ and
µ, respectively, dropping the user label. We shall further use the parameter p , λµ, the
probability that in a time slot both a packet is generated and a corresponding transmission
attempt succeeds, and consider the complementary probability q , 1− p. Note that p > 0,
but q may equal 0, in the case of deterministic arrivals and a reliable channel (λ = µ = 1).

We make the following standing assumption on the one-slot cost function ci.

Assumption 1.

(i) ci is nonnegative and nondecreasing;

(ii)
∞

∑
i=1

ciqi < ∞.

Note that part (ii) is a mild growth condition on ci. We next show that Assumption 1
implies the existence of optimal stationary deterministic policies for subproblem (19).

Proposition 2. Single-user subproblem (19) is solved optimally by stationary deterministic policies
determined by Bellman’s equations.

Proof. The result is trivial in the case q = 0. In the case q > 0, we apply Theorem 6.10.4 in
Puterman [5], which ensures the stated result provided that Assumptions 6.10.1 and 6.10.2
therein hold, which are formulated in terms of an appropriate weight function. Here, we
take w(b,i) , q−i as the weight function, which satisfies Assumption 6.10.1 in [5] because
ci/w(b,i) = ciqi is bounded under Assumption 1.

To prove Assumption 6.10.2 in [5], we use the sufficient condition provided by Propo-
sition 6.10.5.a in [5]. In the present setting, this reduces to

(1− λ)(1− µ)w(0,i+1) + (1− λ)µw(0,1) + λ(1− µ)w(1,i+1) + λµw(1,1) 6 w(1,i) + L, (20)

for some L > 0. This follows by verifying that the expression

(1− λ)(1− µ)w(0,i+1) + (1− λ)µw(0,1) + λ(1− µ)w(1,i+1) + λµw(1,1) − w(1,i)

= (1− λ)(1− µ)q−(i+1) + (1− λ)µq−1 + λ(1− µ)q−(i+1) + λµq−1 − q−i

= (1− µ)q−(i+1) + µq−1 − q−i

is decreasing in i, and hence its maximum value is reached by i = 0. This allows us to take
L , λµ/(1− λµ) = (1− q)/q > 0 satisfying (20).

We shall consider a class of structured policies that intuition suggests might be optimal
for problem (19) for any transmission attempt charge ν ∈ R, and which will later be proven
to be, indeed, optimal: threshold policies, defined as follows. For a nonnegative integer k > 0,
the k-threshold policy (or k-policy for short) attempts to transmit a packet in controllable state
(1, j) if and only if j > k. We shall write its performance metrics as Fk

(b,i) and Gk
(b,i).

We shall further consider marginal performance metrics, giving the increments in cost
and work metrics under threshold policies resulting from a change in the initial action.
Thus, the marginal cost metric for the k-policy starting from (1, i) is

f k
(1,i) , F〈0,k〉

(1,i) − F〈1,k〉
(1,i) , (21)

where 〈a, z〉 denotes the policy that takes action a in the initial time slot t = 0 and then
follows the k-policy from time t = 1 onward. Note that f k

(1,i) measures the decrease in cost
that results from modifying the k-policy by attempting to transmit initially in state (1, i)
compared to not doing so. The marginal work metric is

gk
(1,i) , G〈1,k〉

(1,i) − G〈0,k〉
(1,i) , (22)
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which measures the corresponding increase in work expended.
If gk

(1,i) > 0 for every i ∈ N, we further define the marginal productivity (MP) metric

mk
(1,i) ,

f k
(1,i)

gk
(1,i)

, (23)

and the MP index
m(1,i) , mi

(1,i). (24)

Consider now the following PCL-indexability (PCLI) conditions:

(PCLI1) Positive marginal work: gk
(1,i) > 0 for every AoI i > 1 and threshold k > 0.

(PCLI2) Monotone nondecreasing MP index: m(1,i) is nondecreasing in i.

The following verification theorem formulates, in the present setting, a result proven
by the author in prior work for restless bandits in increasingly general settings. See [13]
[Corollary 2] (finite-state projects), [14] [Theorem 6.3] (finite-state projects with general work
metrics), [15] [Theorem 4.1] (semi-Markov countable-state projects), and [17] [Theorem
1 and Proposition 1(c)] (real-state projects). The result refers to threshold-indexability—
indexability consistent with threshold policies—meaning that both the model is indexable
and threshold policies are optimal for subproblem (19) for any ν ∈ R.

Theorem 1. Suppose that condition (PCLI1) holds. Then, the model is threshold-indexable if and
only if condition (PCLI2) holds, with Whittle index given by the MP index, i.e., ν∗(1,i) = m(1,i).

Note that [13–15] show that (PCLI1) and (PCLI2) are sufficient conditions for indexa-
bility of discrete-state projects, with the Whittle index being given by the MP index. The
characterization of threshold indexability in Theorem 1 under (PCLI1) is stated in [17] as a
consequence of Theorem 1 and Proposition 1(c) therein.

We emphasize that the PCL-indexability approach does not entail proving first optimality
of threshold policies, as in the currently prevailing approach to indexability: both indexability
and optimality of threshold policies follow in one fell swoop from Theorem 1.

We next set out to apply Theorem 1 to the present model, which entails verifying
PCL-indexability conditions (PCLI1) and (PCLI2).

4.2. Work Metric Analysis and Condition (PCLI1)

We start with condition (PCLI1), namely that the marginal work metric under thresh-
old policies be positive. Recall that the k-policy, with threshold k > 0, takes the active action
(attempt to transmit) in state (1, i) if i > k, and the passive action otherwise.

We next address evaluation of the work metric Gk
(b,i) under the k-policy. Even though

in the system model we assumed that the AoI i is a positive integer, for obtaining the Gk
(b,i)

we include the fictitious value i = 0.
From the dynamics in (1) and (2) it follows that the work metric Gk

(b,i) satisfies the
following linear equations: for i, k > 0,

Gk
(0,i) = β(1− λ)Gk

(0,i+1) + βλGk
(1,i+1), (25)

and

Gk
(1,i) =


β(1− λ)Gk

(0,i+1) + βλGk
(1,i+1), i 6 k

1 + β(1− λ)µGk
(0,1) + βλµGk

(1,1)

+β(1− λ)(1− µ)Gk
(0,i+1) + βλ(1− µ)Gk

(1,i+1), i > k.

(26)

In the future, to simplify the notation, we will find it convenient to define

σi , 1− βq− βi+1 p, (27)
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and

Γk
i ,

βk−iΓk
k, i < k

βλ

σk
, i > k,

The next result gives closed-form expressions for evaluating the work metric Gk
(b,i).

Lemma 1. We have

Gk
(0,i) = Γk

i and Gk
(1,i) =

{
Γk

i , i 6 k
1 + µΓk

0 + (1− µ)Γk
i , i > k.

Proof. See Appendix A.

The following result evaluates the marginal work metric gk
(1,i). Note that we use the

standard notation x+ , max(x, 0).

Lemma 2.

gk
(1,i) = 1− µ(β(k−i)+ − βk)Gk

(0,k) =
1− β(1− (1− β(k−i)+)p)

1− β(1− (1− βk)p)
=

1− βq− β(k−i)++1 p
1− βq− βk+1 p

=
σ(k−i)+

σk
, i > 1.

Proof. We can use the above results to represent gk
(1,i) as

gk
(1,i) = G〈1,k〉

(1,i) − G〈0,k〉
(1,i) = 1 + µGk

(0,0) + (1− µ)Gk
(0,i) − Gk

(0,i) = 1− µ
(
Γk

i − Γk
0
)

=

{
1− µ(βk−i − βk)Γk

k, i 6 k
1− µ(1− βk)Γk

k, i > k
=



1− βq− βk−i+1 p
1− βq− βk+1 p

=
σk−i
σk

, i 6 k

1− β

1− βq− βk+1 p
=

σ0

σk
, i > k.

We thus obtain that the model satisfies condition (PCLI1).

Lemma 3. gk
(1,i) > 1− β, and hence condition (PCLI1) holds.

Proof. It is immediately apparent from Lemma 2 that gk
(1,i) is decreasing in i for i 6 k, and

hence
gk
(1,i) > gk

(1,k) =
1− β

1− β(1− (1− βk)p)
> 1− β, i 6 k.

As for i > k, Lemma 2 shows that gk
(1,i) = gk

(1,k), which completes the proof.

4.3. Cost Metric Analysis

We continue by analyzing cost and marginal cost metrics under the k-policy. As above,
we will find it convenient to include the fictitious AoI value i = 0.

We start by analyzing the cost metric, which satisfies the following linear equations:

Fk
(0,i) = ci + β(1− λ)Fk

(0,i+1) + βλFk
(1,i+1), i > 0 (28)
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and

Fk
(1,i) =


ci + β(1− λ)Fk

(0,i+1) + βλFk
(1,i+1), i 6 k

ci + β(1− λ)µFk
(0,1) + βpFk

(1,1)

+β(1− λ)(1− µ)Fk
(0,i+1) + βλ(1− µ)Fk

(1,i+1), i > k.

(29)

In the future, to simplify notation, we will find it convenient to define, for i > 1,

Ci(q) ,


∞

∑
j=1

(βq)j−1ci−1+j, if q > 0

ci, if q = 0.
(30)

We further define quantities Φk
i as follows. For i = k,

Φk
k ,

1
σk

[
p

k−1

∑
j=0

βj+1cj + (1− βq)
(
ck + βCk+1(q)

)]
;

for i < k,

Φk
i ,

k−1

∑
j=i

βj−icj + βk−iΦk
k;

and, for i > k,

Φk
i ,



(βq)k−i
(

Φk
k − βp

1− (βq)i−k

1− βq
Φk

0 − ck

−β
i−k−1

∑
j=1

(βq)j−1ck+j − βp(βq)i−k−1ci

)
, if q > 0

ci + βci+1 + βΦk
0, if q = 0.

The following result gives closed-form expressions for evaluating the cost metric Fk
(b,i).

Lemma 4. We have

Fk
(0,i) = Φk

i and Fk
(1,i) =

{
Fk
(0,i), i 6 k

µci + µFk
(0,0) + (1− µ)Fk

(0,i), i > k.

Proof. See Appendix B.

The next result evaluates the marginal cost metric f k
(1,i) in closed form.

Lemma 5. We have

(a) f k
(1,i) = µ

(
Φk

i −Φk
0 − ci

)
;

(b) In particular, in the case i = k,

f i
(1,i) =

µ

σi

[
β(1− βi)(1− βq)Ci+1(q)− (1− β)

i

∑
j=0

βjcj

]
.

Proof. See Appendix B.

4.4. MP Index Analysis and Condition (PCLI2)

We next give a closed formula for the discounted MP index m(1,i) defined in (24).
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Lemma 6. We have

m(1,i) =



µ

[
β(1− βi)(1− βq)

1− β
Ci+1(q)−

i

∑
j=1

βjcj

]
, if q > 0

β(1− βi)

1− β
ci+1 −

i

∑
j=1

βjcj, if q = 0.

(31)

Proof. The result follows straightforwardly from Lemmas 2 and 5, using (30).

We are now ready to establish the PCL-indexability condition (PCLI2).

Lemma 7. Under Assumption 1, m(1,i) is monotone nondecreasing, so condition (PCLI2) holds.

Proof. We have, using that Ci(q) = ci + βqCi+1(q) and ci is nondecreasing,

(1− βi)Ci+1(q)− (1− βi−1)Ci(q) = (1− βi)Ci+1(q)− (1− βi−1)
(
ci + βqCi+1(q)

)
=
(
1− βi − (1− βi−1)βq

)
Ci+1(q)− (1− βi−1)ci

=
(
1− βq− βi p

)
Ci+1(q)− (1− βi−1)ci

>
(
1− βq− βi p

) ∞

∑
j=1

(βq)j−1ci − (1− βi−1)ci

=
(1− β)βi−1

1− βq
ci.

On the other hand,
i

∑
j=1

βjcj −
i−1

∑
j=1

βjcj = βici.

Hence, we have, for i > 2,

m(1,i) −m(1,i−1) >
µ

1− β

[
β(1− βq)

(1− β)βi−1

1− βq
ci − (1− β)βici

]
= 0,

which completes the proof.

We thus obtain the following result.

Proposition 3. Under Assumption 1, the discounted model is threshold-indexable, with Whittle
index given by the MP index m(1,i).

Proof. The result follows from Lemmas 3 and 7 by applying Theorem 1.

5. PCL-Indexability Analysis: Average Cost Criterion

This section applies Theorem 1 to the present model under the average cost criterion.
This entails verifying conditions (PCLI1) and (PCLI2) for average metrics that are counter-
parts of the discounted metrics above. Note that the PCL-indexability theory under the
average criterion, based on Laurent series expansions, is discussed in [13] [Section 5], [14]
[Section 6.5], and [15] [Section 5.2], upon which we draw for the following analyses.
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5.1. Work Metric Analysis and Condition (PCLI1)

We start with condition (PCLI1), namely the positivity of the marginal work metric
under threshold policies. We start by evaluating the average work metric under the k-policy,

Gk
(b,i) , lim

T→∞

1
T
Ek
(b,i)

[
T

∑
t=0

A(t)

]
. (32)

The following result evaluates Gk
(b,i) in closed form, which shows that it does not

depend on the initial state (b, i); hence, we write it as Gk. This follows from standard results
relating discounted and average cost metrics in MDPs. See, e.g., [5] [Theorem 8.10.7]. Note
that, below, we incorporate the discount factor β in the notation for the discounted metrics
considered above to distinguish them from their average criterion counterparts. Thus, e.g.,
we write the discounted work metric as Gk

β,(b,i).

Lemma 8. We have
Gk = Gk

(b,i) = lim
β→1

(1− β)Gk
β,(b,i) =

λ

kp + 1
.

Proof. The result follows by using the expressions for Gk
β,(b,i) in Lemma 1.

The next result evaluates the average marginal work metric gk
(1,i) based on the above

formulae for its discounted counterpart, which we now write as gk
β,(1,i).

Lemma 9. We have

gk
(1,i) = lim

β→1
gk

β,(1,i) =
(k− i)+p + 1

kp + 1
, i > 1.

Proof. The result follows by using the expression for gk
β,(1,i) in Lemma 2.

We thus obtain satisfaction of condition (PCLI1) under the average criterion.

Lemma 10. gk
(1,i) > 0, and hence condition (PCLI1) holds.

Proof. The result follows directly from Lemma 9.

5.2. Cost Metric Analysis

We continue by analyzing the average cost and marginal cost metrics under the
k-policy for k > 0, starting with the average cost metric, given by

Fk
(b,i) , lim

T→∞

1
T
Ek
(b,i)

[
T

∑
t=0

cX(t)

]
. (33)

In the future, we will find it convenient to define (cf. (30)), for i > 1,

Ci(q) ,


∞

∑
j=1

qj−1ci−1+j, if q > 0

ci, if q = 0,
(34)

Let us now define quantities Φk as follows: for any i > 0,

Φk , lim
β→1

(1− β)Φk
β,i =

1
kp + 1

[
p

k−1

∑
j=0

cj + p
(
ck + βCk+1(q)

)]
.
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The following result evaluates Fk
(b,i) in closed form, which shows that it does not

depend on the initial state (b, i); hence, we write it as Fk. This follows from standard results
(see, e.g., [5] [Theorem 8.10.7]). Below, we denote the discounted cost metric as Fk

β,(b,i).

Lemma 11. We have
Fk = Fk

(b,i) = lim
β→1

(1− β)Fk
β,(b,i) = Φk.

Proof. The result follows by using the formulae for Fk
β,(b,i) in Lemma 4.

The next result gives a closed-form expression for the average marginal cost metric
f i
(1,i), which is the only one needed for our analyses. Below, we denote the discounted

marginal cost metric as f k
β,(1,i).

Lemma 12. We have

f i
(1,i) = lim

β→1
f i
β,(1,i) =

µ

ip + 1

(
ip Ci+1(q)−

i

∑
j=0

cj

)
.

Proof. The result follows by using the expression for f i
β,(1,i) in Lemma 5(b).

5.3. MP Index Analysis and Condition (PCLI2)

We are now ready to address the PCL-indexability condition (PCLI2), namely, the
nondecreasingness of the MP index defined by (24), using the marginal metrics for the
average cost criterion. The next result gives closed formulae for such an average criterion
MP index by drawing on the discounted MP index derived above, which we now denote
as mβ,(1,i).

Lemma 13.

m(1,i) = µ

[
ip Ci+1(q)−

i

∑
j=1

cj

]
=



µ

[
ip

∞

∑
j=1

qj−1ci+j −
i

∑
j=1

cj

]
, if q > 0

ip ci+1 −
i

∑
j=1

cj if q = 0.

(35)

Proof. The result follows by taking the limit m(1,i) = limβ→1 mβ,(1,i) using the formulae in
Lemma 6 for mβ,(1,i).

We next establish satisfaction of condition (PCLI2).

Lemma 14. Under Assumption 1, the average criterion MP index m(1,i) is monotone nondecreas-
ing, so (PCLI2) holds.

Proof. The result follows from the nondecreasingness of the discounted MP index in
Lemma 7, since m(1,i) = limβ→1 mβ,(1,i).

We can now establish the model’s indexability and evaluate its Whittle index.

Proposition 4. Under Assumption 1, the model is threshold-indexable under the average criterion,
with Whittle index given by the MP index m(1,i).

Proof. The result follows from Lemmas 10 and 13 using Theorem 1 (in its average criterion
version).
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6. Index Dependence on Model Parameters and Evaluation for Special Cost Functions

This section exploits the Whittle index formulae obtained above for two interrelated
purposes: exploring the dependence of the index on model parameters, drawing corre-
sponding insights, and specializing the index formula to relevant special cost functions.

6.1. Monotonicity of the Whittle Index on the Arrival Rate

We have the following result.

Proposition 5. Both the discounted Whittle index mβ,(1,i) and the average Whittle index m(1,i) are
nonincreasing in the packet arrival probability λ.

Proof. For the discounted criterion, we use the expression of the index in (31), along with

d
dλ

Cβ,i+1(q) =
d

dλ

∞

∑
j=1

(βq(λ))j−1ci+j =
d

dλ

∞

∑
j=2

(βq(λ))j−1ci+j

= β

( ∞

∑
j=2

(j− 1)(βq(λ))j−2ci+j

)
d

dλ
q(λ)

= −βµ
∞

∑
j=1

j(βq)j−1ci+j+1,

to obtain

d
dλ

mβ,(1,i) = −
(βµ)2(1− βi)(1− βq)

1− β

∞

∑
j=1

j(βq)j−1ci+j+1 6 0.

For the average criterion, we use the expression of the index in (35), along with

d
dλ

Ci+1(q) = −µ
∞

∑
j=1

jqj−1ci+j+1,

to obtain
d

dλ
m(1,i) = −ipµ2

∞

∑
j=1

jqj−1ci+j+1 6 0.

Proposition 5 provides the following insight regarding the packet transmission priority
under Whittle’s index policy: other things being equal, the policy gives higher (or, more
precisely, not lower) transmission priority to users whose packets arrive at lower rates. This
is consistent with the numerical results in [19] [Section 7.1] on the properties of optimal
scheduling policies for the special case with reliable channels under the average criterion.

It is readily verified with examples that, for general cost functions, the Whittle index
does not need to be monotonic on the transmission success probability µ. Yet, some mono-
tonicity properties can be identified in the case of special cost functions, as discussed below.

6.2. Whittle Index Formulae for Special Cost Functions

We next consider evaluation of the Whittle index for special cost functions, which
yields formulae that can be implemented with greater efficiency than the general formulae
above. We shall consider the cases of linear, quadratic, and threshold-type AoI costs.
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6.2.1. Linear AoI Cost

We start with the case of a linear cost ci , ci, with c > 0. The discounted index
reduces to

mβ,(1,i) =
βcµ

1− β

[
i− β

(
1− βi)p

(1− β)(1− βq)

]
, (36)

and the average criterion index simplifies to

m(1,i) =
cµ

2

(
i2 +

1 + q
p

i
)
= cµi

(
i− 1

2
+

1
p

)
. (37)

Even though, for general costs, the Whittle index is not necessarily monotonic in the
probability of successful transmission µ, in this special case it turns out to be increasing in
µ (for i > 2 under the average criterion, since m(1,1) = c/λ).

Proposition 6. For linear costs, the discounted Whittle index mβ,(1,i) is increasing in µ. The same
holds for the average Whittle index m(1,i) for i > 2.

Proof. Under the discounted cost criterion, we have

d
dµ

mβ,(1,i) =
βc

1− β

[
i− β

(
1− βi)(2− β(2− p))p
(1− β)(1− βq)2

]
> 0,

which follows because

β(2− β(2− p))p
(1− β)(1− βq)2 6

1
1− β

<
i

1− βi . (38)

Note that (38) holds because i/(1− βi) increases with i, and the left-most expression
in (38) attains the value 1/(1− β) for p = 1 and increases with p (recall that q , 1− p), since

d
dp

β(2− β(2− p))p
(1− β)(1− βq)2 =

2β(1− β)

(1− βq)3 > 0.

Under the average cost criterion, we have, for i > 2,

d
dµ

m(1,i) =
ci(i− 1)

2
> 0.

This proves the result.

Hence, for linear AoI costs, other things being equal, Whittle’s policy gives higher
transmission priority to users for which packet transmissions are more likely to succeed.

We next graphically illustrate the above results for the base instance with linear cost
ci , i and the parameters λ = 0.7, µ = 0.8, and β = 0.8 for the states (1, 1), (1, 2), and
(1, 3). Figure 3 plots the corresponding Whittle index vs. the AoI under the discounted and
average cost criteria. The plots show that the discounted index grows nearly linearly in the
AoI, in contrast to the quadratic growth of the average criterion index.

Regarding the dependence on λ, Figure 4 plots the discounted and the average
criterion Whittle indices vs. λ for AoI values i = 1, 2, 3. The plot is consistent with
Proposition 5, as the Whittle index is decreasing in λ. A significant difference is that, as
λ→ 0, the discounted index converges to a finite limit, easily seen to be limλ→0 mβ,(1,i) =
βcµi/(1− β), whereas the average criterion index diverges to infinity. Thus, under the aver-
age cost criterion, the increase in priority becomes steeper as the packet arrival probability
becomes lower.

Consider now the dependence on µ. Figure 5 plots the discounted and the average
criterion Whittle indices vs. µ for AoI values i = 1, 2, 3. The plot is consistent with Proposi-
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tion 6, as the index increases with µ (except for i = 1 under the average criterion, where it
remains constant as µ varies). Note that the increase is linear under the average criterion.
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Figure 3. Discounted (a) and average (b) criterion Whittle index vs. AoI i for linear AoI cost.
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Figure 4. Discounted (a) and average (b) criterion Whittle index vs. λ for linear AoI cost.
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Figure 5. Discounted (a) and average (b) criterion Whittle indices vs. µ for linear AoI cost.

6.2.2. Quadratic AoI Cost

We next turn to the case of a quadratic cost function ci , ci2. Then, the discounted
Whittle index has the evaluation

mβ,(1,i) =
βcµ

1− β

[
i2 +

2
(
1− β + pβi+1)

(1− β)(1− βq)
i− βp

(
1− βi)(3− β(1 + (1 + β)q))

(1− β)2(1− βq)2

]
, (39)
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whereas the average criterion Whittle index reduces to

m(1,i) = cµ

[
2
3

i3 +
4− (1 + q)2

2p2 i2 +
21− (3 + p)2

6p2 i
]

. (40)

Considering the same instance as above, Figure 6 plots the corresponding Whittle
index vs. the AoI under the discounted and average cost criteria. The plots show that the
Whittle index growth with the AoI is much steeper under the average criterion (having
cubic growth) than under the discounted criterion (having quadratic growth).
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Figure 6. Discounted (a) and average (b) criterion Whittle index vs. AoI i for quadratic AoI cost.

As for the dependence on λ, the plots in Figure 7 are also consistent with Proposition 5.
As was the case for the linear cost case, we see that, as λ → 0, the discounted index
converges to a finite limit, whereas the average criterion index diverges to infinity.
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Figure 7. Discounted (a) and average (b) criterion Whittle indices vs. λ for quadratic AoI cost.

Consider now the dependence on µ. Figure 8 plots the discounted and the average
criterion Whittle index vs. µ for the same instance. The plot reveals a strikingly different
behavior of the discounted and average criterion Whittle indices. Thus, for i = 1, the
discounted index appears to first increase and then to decrease in µ. To verify it, note that

mβ,(1,1) =
β(3− βq)cµ

(1− βq)2 ,

and
d

dµ
mβ,(1,1) =

βc(3− β(4− β + (1 + β)p))
(1− βq)3 .
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Thus, for the given instance, we have

d
dµ

mβ,(1,1) =
100(55− 126µ)

(5 + 14µ)3 ,

and hence mβ,(1,1) increases in µ for 0 < µ < 55/126 and decreases in µ for 55/126 < µ < 1.
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Figure 8. Discounted (a) and average (b) criterion Whittle indices vs. µ for quadratic AoI cost.

On the other hand, the plot shows that the discounted Whittle index increases with µ
for i = 2 and for i = 5. It is readily verified analytically that such is the case in this instance
for AoI values i > 2.

In contrast, the plot shows that the average criterion Whittle index m(1,1) decreases
with µ. We can readily verify this, noting that

d
dµ

m(1,i) = c
[

2i3

3
− i2

2
−
(

1
6
+

2
p2

)
i
]
= ci

[
2
3

i2 − 1
2

i−
(

1
6
+

2
p2

)]
, (41)

and hence
d

dµ
m(1,1) = −

2c
p2 < 0.

Furthermore, we have, for 0 < p < 1,

d
dµ

m(1,2) = c
(

3− 4
p2

)
< 0,

and hence m(1,2) also decreases with µ, consistently with the plot.
As for m(1,5), the plot shows that it first decreases and then increases with µ. Using (41),

it is readily verified analytically that such behavior holds provided λ > 1/
√

7, since

d
dµ

m(1,5) = c
(

70− 10
λ2µ2

)
,

and hence m(1,5) has a unique minimum at µ∗ = 1/(λ
√

7) ∈ (0, 1) for such λ.
The same qualitative behavior holds for m(1,i) where i > 3, first decreasing and then

increasing with µ, provided that

λ >
2
√

3√
4i2 − 3i− 1

since in such cases m(1,i) has a unique minimum as a function of µ at

µ∗ =
2
√

3

λ
√

4i2 − 3i− 1
∈ (0, 1).
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Note also that as µ→ 0, mβ,(1,i) → 0, whereas m(1,i) → ∞.

6.2.3. Threshold-Type AoI Cost

Finally, consider the case of a threshold-type cost function, with ci , c 1{i>k}. Then, it
is readily verified that the discounted Whittle index is given by

mβ,(1,i) =


βcµ

1− β
(1− βi)(βq)k−i, if i < k

βcµ

1− β
(1− βk), if i > k,

(42)

whereas the average criterion index has the evaluation

m(1,i) =


cµiqk−i, if i < k

cµk, if i > k.

(43)

Considering the same instance as above, with k = 10, Figure 9 plots the Whittle index
vs. the AoI under the discounted and average cost criteria. The plots show that the Whittle
index growth with the AoI is slightly steeper for i < k under the average criterion than
under the discounted criterion. For i > k, both indices remain constant as the AoI i grows.
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Figure 9. Discounted (a) and average (b) criterion Whittle index vs. AoI i for threshold-type AoI cost.

Regarding the dependence on λ, we have

d
dλ

mβ,(1,i) =


− β2cµ2

1− β
(1− βi)(k− i)(βq)k−i−1, if i < k

0, if i > k,

and

d
dλ

m(1,i) =


−cµ2i(k− i)qk−i−1, if i < k

0, if i > k.

Figure 10 plots the discounted and the average criterion Whittle indices vs. λ. The
plot shows that both indices are decreasing in λ for i < k and remain constant for i > k.
Note that the indices decrease linearly with λ for i = k− 1.



Mathematics 2023, 11, 4394 22 of 28

0 1
0

1

2

3

λ

m
β
,(
1
,i
)

(a)

i = 3
i = 9
i = 10

0 1
0

2

4

6

8

λ

m
(1

,i
)

(b)

i = 3
i = 9
i = 10

Figure 10. Discounted (a) and average (b) criterion Whittle indices vs. λ for threshold-type AoI cost.

As for the dependence of the Whittle index on µ, we have, for the discounted index,

d
dµ

mβ,(1,i) =


−c

β2(1− βi)(βq)k−i−1

1− β
((k− i + 1)p− 1), if i < k

c
β(1− βk)

1− β
, if i > k,

and, for the average criterion index,

d
dµ

m(1,i) =


−ciqk−i−1((k− i + 1)p− 1), if i < k

ck, if i > k.

Hence, for i < k, both indices mβ,(1,i) and m(1,i) decrease with µ whenever (k − i +
1)p > 1, i.e., for µ > 1/(λ(k− i + 1)), and increase with µ for sufficiently low µ values, in
particular for µ < 1/(λ(k− i + 1)). In contrast, for i > k, both indices increase linearly in
µ. Such behavior is illustrated in Figure 11.
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Figure 11. Discounted (a) and average (b) criterion Whittle indices vs. µ for threshold-type AoI cost.

7. Discussion

This paper has addressed a broad model for scheduling AoI updates simultaneously
incorporating the features of random packet arrivals, unreliable channels, and general
nondecreasing AoI costs in a no-buffer setting. Indexability (existence of the Whittle index)
had only been established in prior work for special cases of this model and only under the
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average cost criterion using the prevailing approach for indexability analysis, based on first
establishing optimality of threshold policies and then exploiting the monotonicity property
of the optimal threshold. We have proven that the broad model addressed is indexable and
have evaluated its Whittle index in closed form, both under the discounted and the average
criterion, by carrying out a PCL-indexability analysis, an approach that has been developed
by the author over the last two decades. By demonstrating its effectiveness in a relevant
model that had not previously yielded to the prevailing analysis approach, we aim to bring
such an approach to the attention of researchers in the area so that they can use it to analyze
other models. We have further drawn qualitative insights on how scheduling priority
under Whittle’s index policy depends on models parameters by exploiting the closed
formulae for Whittle’s index for general costs and for special cost functions. It remains to
numerically test the performance of Whittle’s index policy in the present model. Future
research directions include carrying out a PCL-indexability analysis in more complex AoI
scheduling models, such as those incorporating buffers.
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Appendix A. Work Metric Evaluation

Proof of Lemma 1. The fact that Gk
(1,i) can be expressed in terms of the Gk

(0,j) through

Gk
(1,i) =

{
Gk
(0,i), i 6 k

1 + µGk
(0,0) + (1− µ)Gk

(0,i), i > k.
(A1)

follows straightforwardly from (25) and (26).
On the other hand, we have the following recursions for Gk

(0,i):

Gk
(0,i) = βGk

(0,i+1), i < k

Gk
(0,i) = β(λ + pGk

(0,0)) + βqGk
(0,i+1), i > k.

(A2)

The first recursion follows from (25) and (A1) as, for i < k,

Gk
(0,i) = β(1− λ)Gk

(0,i+1) + βλGk
(1,i+1) = β(1− λ)Gk

(0,i+1) + βλGk
(0,i+1) = βGk

(0,i+1).
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The second recursion also follows from (25) and (A1) because, for i > k (recall that
p , λµ, q , 1− p):

Gk
(0,i) = β(1− λ)Gk

(0,i+1) + βλGk
(1,i+1)

= β(1− λ)Gk
(0,i+1) + βλ

(
1 + µGk

(0,0) + (1− µ)Gk
(0,i+1)

)
= β(λ + pGk

(0,0)) + βqGk
(0,i+1).

Since the recursions in (A2) are readily expressed as a backward and a forward
recursion, we need to obtain the value of pivot element Gk

(0,k) to solve them. The following
identities readily follow by induction on the first and the second recursions in (A2):

Gk
(0,i) = βk−iGk

(0,k), i < k

Gk
(0,k) = (1 + · · ·+ (βq)l−1)β(λ + pGk

(0,0)) + (βq)lGk
(0,k+l), l > 1.

(A3)

From the first identity in (A3) we obtain Gk
(0,0) = βkGk

(0,k). Now, using that

(βq)lGk
(0,k+l) → 0 as l → ∞ (because Gπ

(b,i) 6 1/(1− β)), we obtain

Gk
(0,k) = β

λ + pGk
(0,0)

1− βq
. (A4)

We thus have a 2× 2 linear equation system characterizing Gk
(0,0) and Gk

(0,k), which yields

Gk
(0,k) =

βλ

1− βq− βk+1 p
.

From this and (A3) we further obtain Gk
(0,k+l) ≡ Gk

(0,k) for l > 1, completing the proof.

Appendix B. Cost Metric Evaluation

Proof of Lemma 4. It follows from (28) and (29) that Fk
(1,i) can be expressed in terms of the

Fk
(0,j) as

Fk
(1,i) =

{
Fk
(0,i), i 6 k

µci + µFk
(0,0) + (1− µ)Fk

(0,i), i > k.
(A5)

On the other hand, we have the following recursions for Fk
(0,i):

Fk
(0,i) = ci + βFk

(0,i+1), i < k

Fk
(0,i) = ci + βpci+1 + βpFk

(0,0) + βqFk
(0,i+1), i > k.

(A6)

The first recursion follows from (28) and (A5) as, for i < k,

Fk
(0,i) = ci + β(1− λ)Fk

(0,i+1) + βλFk
(1,i+1)

= ci + β(1− λ)Fk
(0,i+1) + βλFk

(0,i+1) = ci + βFk
(0,i+1).

The second recursion also follows from (28) and (A5) because, for i > k,

Fk
(0,i) = ci + β(1− λ)Fk

(0,i+1) + βλFk
(1,i+1)

= ci + β(1− λ)Fk
(0,i+1) + βλ

(
µci+1 + µFk

(0,0) + (1− µ)Fk
(0,i+1)

)
= ci + βpci+1 + βpFk

(0,0) + βqFk
(0,i+1).
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Since the recursions in (A6) are readily expressed as a backward recursion and a
forward recursion, we need to obtain the value of pivot element Fk

(0,k) to solve them. For

such a purpose we shall derive equations on Fk
(0,k) and Fk

(0,0). Thus, from the first recursion
we readily obtain by induction the following identities:

Fk
(0,i) =

k−1

∑
j=i

βj−icj + βk−iFk
(0,k), i < k. (A7)

To analyze the second recursion in (A6) we need to distinguish two cases, depending
on whether q = 0 or q > 0. Consider first the case q = 0, in which the second expression
in (A6) is not actually a recursion, as it reduces to

Fk
(0,i) = ci + βci+1 + βFk

(0,0), i > k. (A8)

Now we solve the 2× 2 linear equation system

Fk
(0,0) =

k−1

∑
j=0

βjcj + βkFk
(0,k)

Fk
(0,k) = ck + βck+1 + βFk

(0,0)

to obtain

Fk
(0,0) =

1
1− βk+1

k+1

∑
j=0

βjcj

and

Fk
(0,k) = ck + βck+1 +

β

1− βk+1

k+1

∑
j=0

βjcj =
1

1− βk+1

(
k−1

∑
j=0

βj+1cj + ck + βck+1

)
.

The above expressions give the stated closed-form formulae for Fk
(0,i) in the case q = 0.

Consider now the case q > 0. Then, the following identities readily follow by induction
on the second recursion in (A6): for l > 1,

Fk
(0,k) =

l−1

∑
i=0

(βq)i(ck+i + βpck+i+1 + βpFk
(0,0)

)
+ (βq)l Fk

(0,k+l)

=
βp(1− (βq)l)

1− βq
Fk
(0,0) + (βq)l Fk

(0,k+l) + ck + β
l−1

∑
i=1

(βq)i−1ck+i + βp(βq)l−1ck+l ,

(A9)

where we have used that

l−1

∑
i=0

(βq)i(ck+i + βpck+i+1) =
l−1

∑
i=0

(βq)ick+i + βp
l−1

∑
i=0

(βq)ick+i+1

= ck + βq
l−1

∑
i=1

(βq)i−1ck+i + βp
l

∑
i=1

(βq)i−1ck+i

= ck + β
l−1

∑
i=1

(βq)i−1ck+i + βp(βq)l−1ck+l .

Now, using that (βq)l Fk
(0,k+l) → 0 and (βq)l−1ck+l → 0 as l → ∞ (which follows from

Assumption 1), we obtain, letting l → ∞,

Fk
(0,k) =

βp
1− βq

Fk
(0,0) + ck + β

∞

∑
i=1

(βq)i−1ck+i. (A10)
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We thus have a 2× 2 linear equation system determining Fk
(0,0) and Fk

(0,k), which yields

Fk
(0,k) =

βp
1− βq

(
k−1

∑
j=0

βjcj + βkFk
(0,k)

)
+ ck + β

∞

∑
i=1

(βq)i−1ck+i

=
βk+1 p
1− βq

Fk
(0,k) +

βp
1− βq

k−1

∑
j=0

βjcj + ck + β
∞

∑
i=1

(βq)i−1ck+i,

whence (
1− βk+1 p

1− βq

)
Fk
(0,k) =

p
1− βq

k−1

∑
j=0

βj+1cj + ck + β
∞

∑
i=1

(βq)i−1ck+i,

i.e.,
1− βq− βk+1 p

1− βq
Fk
(0,k) =

p
1− βq

k−1

∑
j=0

βj+1cj + ck + β
∞

∑
i=1

(βq)i−1ck+i

i.e.,

Fk
(0,k) =

1
1− βq− βk+1 p

[
p

k−1

∑
j=0

βj+1cj + (1− βq)
(

ck + β
∞

∑
i=1

(βq)i−1ck+i

)]
.

This completes the proof.

We next give the proof of Lemma 5.

Proof of Lemma 5. First, we draw on the results in Section 4.3 to represent f k
(1,i) as

f k
(1,i) , F〈0,k〉

(1,i) − F〈1,k〉
(1,i)

= Fk
(0,i) −

(
µci + µFk

(0,0) + (1− µ)Fk
(0,i)
)

= µ
(

Fk
(0,i) − Fk

(0,0) − ci
)
= µ

(
Φk

i −Φk
0 − ci

)
.

(A11)

In the case q = 0, we have

f i
(1,i) = µ

(
Φi

i −Φi
0 − ci

)
= Φi

i −
i−1

∑
j=0

βjcj − βiΦi
i − ci = (1− βi)Φi

i −
i−1

∑
j=0

βjcj − ci

=
1− βi

1− βi+1

( i−1

∑
j=0

βj+1cj + ci + βci+1

)
−

i−1

∑
j=0

βjcj − ci

=
β(1− βi)

1− βi+1 ci+1 −
(

1− β(1− βi)

1− βi+1

) i−1

∑
j=0

βjcj −
(

1− 1− βi

1− βi+1

)
ci

=
1

1− βi+1

[
β(1− βi)ci+1 − (1− β)

i

∑
j=0

βjcj

]
.
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As for the case q > 0, we have (recall that σi , 1− βq− βi+1 p)

f i
(1,i) = µ

(
Φi

i −Φi
0 − ci

)
= µ

[
(1− βi)Φi

i −
i−1

∑
j=0

βjcj − ci

]

= µ

[
1− βi

σi

(
p

i−1

∑
j=0

βj+1cj + (1− βq)
(

ci + β
∞

∑
j=1

(βq)j−1ci+j

))
−

i−1

∑
j=0

βjcj − ci

]

= µ

[
β(1− βi)(1− βq)

σi

∞

∑
j=1

(βq)j−1ci+j

−
(

1− β(1− βi)p
σi

) i−1

∑
j=0

βjcj −
(

1− (1− βi)(1− βq)
σi

)
ci

]

=
µ

σi

[
β(1− βi)(1− βq)

∞

∑
j=1

(βq)j−1ci+j − (1− β)
i

∑
j=0

βjcj

]
.

This completes the proof.
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