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Abstract: In recent years, the utilization of dual-arm robots has gained substantial prominence across
various industries owing to their collaborative operational capabilities. In order to achieve collision
avoidance and facilitate cooperative task completion, efficient path planning plays a pivotal role.
The high dimensionality associated with collaborative task execution in dual-arm robots renders
existing path planning methods ineffective for conducting efficient exploration. This paper introduces
a multi-agent path planning reinforcement learning algorithm that integrates an experience replay
strategy, a shortest-path constraint, and the policy gradient method. To foster collaboration and
avoid competition between the robot arms, the proposed approach incorporates a mechanism known
as “reward cooperation, punishment competition” during the training process. Our algorithm
demonstrates strong performance in the control of dual-arm robots and exhibits the potential to
mitigate the challenge of reward sparsity encountered during the training process. The effectiveness
of the proposed algorithm is validated through simulations and experiments, comparing the results
with existing methods and showcasing its superiority in dual-arm robot path planning.

Keywords: path planning; dual-arm robot; multi-agent reinforcement learning

MSC: 93C85; 93C95

1. Introduction

In the era of Industry 4.0, one key aspect of achieving smart factories is reducing
reliance on human labor through collaborative automation using robot manipulators [1].
This reduction in reliance has become particularly evident in various tasks, including factory
assembly lines, space exploration, customer service, as well as exploration and rescue
missions. Consequently, enhancing the operational efficiency of multi-arm manipulators
has become of utmost importance.

In the manufacturing industry, human experts manually search for collision-free paths
for robotic manipulators to perform specific tasks. Robot path planning research commonly
uses sampling-based algorithms which sample nodes from collision-free spaces to compute
paths between the initial and target points [2]. Traditional path planning algorithms
like Dijkstra’s and A* find the shortest paths by selecting nodes and updating distances.
However, they have limitations in terms of speed and handling negative-weight edges. The
rapidly-exploring random tree (RRT) algorithm is a probabilistic sampling-based approach
for motion planning but lacks optimality and smoothness. Probabilistic roadmap (PRM) is
another probabilistic sampling-based method that constructs graphs to represent feasible
paths but may face efficiency challenges in high-dimensional spaces. Artificial potential
field (APF) guides movement using artificial potential fields but can become stuck in local
minima [3–6]. However, these methods are limited to single-arm robots, and become more
challenging for multi-arm manipulators due to increased dimensionality [7]. Additionally,
multi-arm manipulators require efficient and optimal path learning, even with arbitrary
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starting and target positions. Recent advancements in model-free reinforcement learning
have successfully addressed single-arm robot path planning [8]. Reinforcement learning
(RL) is a machine learning methodology with the objective of enabling an agent (or an
agent, in common parlance) to acquire the ability to take actions through interaction with its
environment with the aim of maximizing the cumulative reward. Multi-agent reinforcement
learning (MARL) represents an extension of RL, encompassing scenarios where multiple
intelligent agents coexist and interact simultaneously. Within the domain of MARL, each
individual agent retains its capacity for autonomous decision making; however, it is
essential to acknowledge that the decisions made by one agent have consequential effects
on both its peers and the overarching environmental context. Consequently, the domain
of intelligent agent reinforcement learning encompasses the study of interactions and
cooperative behaviors among multiple intelligent agents. The utilization of reinforcement
learning in the context of multiple agents is of paramount importance when addressing the
intricate challenge of path planning for dual-arm robots [9].

In the realm of robotic arm control, deep reinforcement learning techniques have
demonstrated the ability to generate smoother trajectories compared to conventional meth-
ods. These approaches also excel in planning robotic arm movements in dynamic envi-
ronments [10]. Model-free reinforcement learning has made significant progress in robot
planning and control, allowing autonomous agents to acquire skills through interaction
with their environment, thereby simplifying the complexities associated with the modeling
and manual tuning of controller parameters.

Reinforcement learning demonstrates its effectiveness prominently in projects like Dex-
Net, which leverages comprehensive object datasets and nuanced object attribute modeling
to develop effective gripping strategies for robotic manipulators. This process involves
optimization through the application of reinforcement learning methodologies [11–13]. The
manipulator’s grasp-related actions are carried out within a simulated environment, where
the quality of the grasp is evaluated using predefined reward functions.

DQN (deep Q-network) and Rainbow are notable examples in the realm of value-based
reinforcement learning methods. DQN combines deep neural networks with Q-learning
techniques tailored to address the challenges posed by high-dimensional state spaces.
Rainbow is an extension and refinement of the foundational DQN framework [14]. It
incorporates various reinforcement learning enhancements to tackle issues encountered by
DQN in complex tasks, such as overestimation and low sample efficiency [15]. In contrast,
SAC (soft actor-critic) and DDPG (deep deterministic policy gradient) are two policy-based
reinforcement learning approaches. DDPG is designed to handle reinforcement learning
problems in continuous action spaces. SAC employs the maximum entropy policy to strike
a balance between exploration and exploitation by maximizing entropy in the decision-
making process, promoting more effective exploration of the environment. Google’s
robot learning in homes initiative harnesses reinforcement learning and transfer learning
paradigms to enable robotic systems to assimilate knowledge from simulated environments
and subsequently apply it to real domestic settings [16]. By executing tasks and learning
through interactions within simulated environments, the robot then adapts its acquired
proficiency to diverse real-world home scenarios via transfer learning methodologies [17].

Classic deep reinforcement learning algorithms such as proximal policy optimization
(PPO), deep deterministic policy gradient (DDPG), and soft actor-critic (SAC) have been
proven to solve planning problems for single-arm robots [18–20].

However, single-arm robots have limitations in operation and control. Dual-arm
robots with coordinated operations and excellent human–robot collaboration capabilities
demonstrate clear advantages. As an illustration, the MADDPG algorithm exemplifies a
class of multi-agent reinforcement learning methodologies adept at managing coopera-
tive and competitive interactions between dual robotic arms [21]. This capability allows
these intelligent agents to collaborate harmoniously, working in concert to attain shared
objectives. Furthermore, it is noteworthy that the MADDPG algorithm exhibits scalabil-
ity, extending its applicability to systems encompassing a substantial quantity of agents,
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rendering it particularly well suited for addressing challenges within intricate multi-agent
environments.

Since path planning for dual-arm manipulators is a high-dimensional problem, ex-
isting reinforcement learning-based path planning algorithms may suffer from poor ex-
ploration performance, resulting in suboptimal generated paths [22]. Providing arbitrary
starting and target positions for reinforcement learning-based path planning can pose
challenges due to physical constraints or the high dimensionality of the configuration space,
leading to sparse rewards as the agent struggles to find the shortest path [23].

In order to improve the real-time planning efficiency of dual-arm robots in dynamic
environments and enhance exploration efficiency in high-dimensional spaces, this paper
proposes a dual-arm robot path planning algorithm based on the deep deterministic policy
gradient (DDPG) algorithm. The contributions of this paper can be summarized as follows:

(i) In order to address the path planning challenges inherent in the dual-arm robot
system, we have devised a dedicated configuration space tailored to accommodate
the specific setup of dual arms. Furthermore, we have formulated a path cost function
with the aim of facilitating efficient path planning under these circumstances.

(ii) To tackle the issue of reward sparsity in multi-agent reinforcement learning, a series
of strategic measures have been implemented, including the introduction of a replay
buffer and the expansion of experience storage. These endeavors are intended to
harness existing experiential data to generate more valuable training samples.

(iii) To minimize the cost associated with path planning, we have integrated A* shortest-
path constraints into the loss function. Additionally, our algorithm has undergone
validation and testing within the pybullet simulation environment, the results of
which confirm its efficacy in addressing the reward sparsity challenge in reinforcement
learning and enhancing path planning for dual-arm robots.

2. Related Work

This chapter primarily provides an overview of research related to the utilization
of multi-agent reinforcement learning for the control of robotic arms. When employing
multi-agent reinforcement learning methods for controlling a robotic arm, it is essential to
pre-configure the workspace. In other words, the design of the robotic arm’s configuration
space is a prerequisite for conducting deep reinforcement learning.

Concurrently, multi-agent reinforcement learning methods are confronted with the
challenge of reward sparsity, which can give rise to specific issues such as learning stagna-
tion and excessive exploration. Therefore, mitigating the problem of reward sparsity holds
significant academic and practical significance.

2.1. Multi-Agent Reinforcement Learning

Reinforcement learning is a decision-making process based on Markov decision pro-
cesses (MDP), which is a mathematical framework for describing stochastic processes in
decision problems. It extends Markov chains and decision theory and is widely applied
in reinforcement learning and optimization problems. Reinforcement learning methods
can be categorized into value-based methods and policy-based methods [24]. Value-based
methods use techniques like deep Q-networks (DQN) to approximate the optimal value
function and derive the corresponding optimal policy from the approximated value func-
tion [25]. Policy-based methods directly compute the optimal policy based on the agent’s
experience.

In multi-agent tasks, policy-based methods (also known as policy gradients) have
shown better performance than value-based methods in continuous action tasks [26]. There-
fore, in the context of robot path planning, multi-agent reinforcement learning methods
primarily employ policy-based methods to solve tasks.

MADDPG and MATD3 are two multi-agent reinforcement learning methods. MATD3
(multi-agent twin delayed deep deterministic policy gradient) is a multi-agent reinforce-
ment learning algorithm proposed in 2018. It is an extension of the TD3 algorithm to
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multi-agent environments, aiming to address cooperation or competition issues among
multiple agents [27].

The MADDPG (multi-agent deep deterministic policy gradient) algorithm represents
a significant advancement in addressing challenges inherent to multi-agent reinforcement
learning problems. In the MADDPG algorithm, each agent has its own actor network and
critic network, which are based on the DDPG algorithm. The actor network is responsible
for generating actions based on the agent’s state, while the critic network evaluates the
value of actions. Notably diverging from conventional single-agent DDPG algorithms,
the critic network within MADDPG encompasses an additional dimension: it evaluates
the worth of actions not only in light of an agent’s personal state and actions but also in
consideration of the states and actions undertaken by fellow agents. During the training
process, both the actor and critic networks of each agent need to be optimized. The target
value for the critic network depends not only on the agent’s own state and actions but also
on the states and actions of other agents. By virtue of the MADDPG algorithm, a mechanism
is established through which multiple agents can actively engage and acquire knowledge
within their environment. This engagement facilitates the refinement of their distinct
strategic approaches while concurrently fostering the exchange of pertinent information.
This dual process culminates in the attainment of collaborative decision-making dynamics
and the emergence of cooperative behaviors among the agents.

In the process of utilizing deep reinforcement learning for dual-arm robot path plan-
ning, the design of the configuration space holds a pivotal role. The configuration space
serves to delineate feasible poses of the robot and facilitate trajectory planning. A sig-
nificant challenge encountered in deep reinforcement learning pertains to the sparsity of
re-wards during the learning process. Next, we have expounded upon the endeavors
pertaining to configuration space design and initiatives directed towards the amelioration
of reward sparsity.

2.2. Configuration Space

The establishment of a robot’s configuration space represents a pivotal component
within the realm of robot motion planning, underscoring its profound significance within
this domain. This workspace configuration is represented as Q, which refers to all possible
combinations of the robotic arm joint angles. Typically, we use a joint angle vector to
represent Q. Joint space path planning is the process of generating a curve of joint variable
changes under given constraints of joint angles (such as start point, target point, or positions,
velocities, and accelerations of intermediate nodes). In joint space, each vector represents
a position and orientation of the robotic arm’s motion. Specifically, assuming the robotic
arm uses n joint mechanisms, the workspace configuration Q can be defined as a subset
of an n-dimensional vector space, where each vector represents a joint angle vector, i.e.,
Q = {(q1, q2, . . . , qn) | qi ∈

[
qi_min, qi_max

]
, i = 1, 2, . . . , n}, where qi represents the angle

of the i-th joint, and qi_min and qi_max represent the minimum and maximum allowable
angles for that joint.

By defining and describing the configuration Q of the workspace, we can determine the
feasible range of motion for the robotic arm’s joint mechanisms, enabling path planning and
control. The grid-based method divides the configuration space into grid cells, where each
cell represents a feasible configuration region. The sampling-based path planning method
divides the configuration space into smaller regions called cells. The local segmentation
method divides the configuration space into local subspaces or regions. Prior knowledge
or rules can also be utilized to divide the configuration space. For example, based on
prior knowledge such as the geometric shape of the robotic arm, joint limitations, and task
requirements, the configuration space can be divided into reasonable regions.

Tom et al. introduced a novel approach to enhance robotic arm path planning by
integrating the firefly algorithm with Q-learning. Through a Q-learning policy, the optimal
parameter values of the firefly algorithm are learned, leading to improved efficiency. This
technique has been successfully applied to robotic arm path planning, yielding promising
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outcomes. In a separate study [28], a path planning strategy for continuum arms was pro-
posed, emphasizing the robot’s workspace rather than its configuration space. Furthermore,
another study [29] presented a path planning algorithm employing the SAC (soft actor-
critic) algorithm, facilitating rapid and effective path planning for multi-arm manipulators.

Traditional path planning methods struggle to perform well in complex high-dimensional
environments. Additionally, treating multiple robotic arms as a single arm in reinforce-
ment learning methods may not effectively control the coordinated motion of multiple
arms. Therefore, using multi-agent reinforcement learning algorithms for multi-arm path
planning is a worthwhile area of research.

2.3. The Problem of Reward Sparsity

In practical applications of deep reinforcement learning, the problem of reward sparsity
has always been a core challenge [30]. The agent struggles to obtain sufficient reward
signals, leading to difficulties in learning and high time costs. The reward sparsity problem
refers to the situation where the reward signal appears only in a few states or actions,
making it difficult for the agent to learn the correct behavioral policy [31]. This can result
in challenges in the algorithm’s convergence during iterations.

Savinov et al. [32] presented an innovative curiosity-based methodology aimed at
mitigating the challenge of sparse rewards. This approach leverages episodic memory to
generate novelty bonuses, thereby enhancing the learning process. Another noteworthy
technique, reward shaping, involves the deliberate manipulation of reward functions to
facilitate the acquisition of accurate policies by the agent. Notably, a recent contribution
to the discourse on reward shaping methods is the research by Jin et al. [33]. Hierarchical
reinforcement learning (HRL) has emerged as a robust strategy for addressing challenges
posed by long-horizon problems characterized by sparse and delayed rewards. In a work
by Li et al. [34], a comprehensive framework for HRL is introduced, integrating auxiliary
rewards founded on intrinsic functions. This HRL framework stands as an efficient conduit
for the harmonious acquisition of high-level policies and low-level skills, obviating the
necessity for domain-specific expertise. In parallel, the HER (hindsight experience replay)
algorithm [35] proffers an alternate avenue for tackling the issue of sparse rewards. The core
concept underlying HER is to recontextualize exploration failures as successful outcomes,
thus optimizing the utility of exploration data in scenarios where rewards are scarce.

The experience pool stores
(
s,at,rt,s’), and we expand it to

(
s||g,a,rg,t,s’||g

)
, where

the corresponding goal information is additionally stored. Furthermore, the action policy
is also dependent on the goal, denoted as πb(st||g). Then, a complete agent experience
sequence is sampled from the experience pool based on the actual goal g. Finally, the
rewards are recalculated using the new goal g′. The reward formula is as follows:

r’←r
(

a,s||g’
)

, (1)

3. Proposed Method

In this section, to design a path planning algorithm for a dual-arm robot based on
MADDPG, we modeled the reinforcement learning problem as an MDP (Markov de-
cision process) and used the HER (hindsight experience replay) algorithm to improve
reward sparsity in MADDPG, thereby enhancing training efficiency and algorithm stability.
Additionally, we expanded the configuration space of the dual-arm robot. In the given
collaborative task, the dual-arm robot needs to learn how to cooperate and accomplish
the task through a series of actions. This involves two agents controlling the robot in
a non-deterministic environment with a continuous action space. During the training
process, the strategies of each agent will evolve. The intelligent agents need to adapt to the
environmental states and coordinate their action policies with other agents. Figure 1 is the
overall framework diagram of our algorithm. Upon the completion of each transition, it is
customary to enqueue said transition into a designated queue referred to as the “Replay
Buffer.” The capacity of this replay buffer is determined by a hyperparameter denoted
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as “n”, allowing it to store a maximum of n distinct transitions. In the event that the
replay buffer reaches its full capacity, any newly incoming transition will replace the oldest
existing transition within the buffer. The update process for both the actor and critic is
carried out by uniformly sampling a minibatch of data from this buffer.
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In MADDPG, each intelligent agent, during the forward pass of computing its own
critic, concatenates the observations of all agents, including itself, into an observation vector
s = {s1,s2,. . .,sn}, and concatenates all agents’ actions into an action vector a = {a1,a2,. . .,an}.
This (s, a) pair serves as the input to the online critic network, which outputs a one-
dimensional Q-value, denoted as Qφi

(s,a). In other words, it employs the global informa-
tion from agents in the environment (global observations and actions) to “centralize” the
training of its own critic network. Having obtained Q-values and the ability to calculate
Q ~

φi
(s,a) using replay samples, the subsequent steps mirror those of DDPG.

During the forward pass of computing their individual actor networks, each intelligent
agent only utilizes its own local observation vector s={s1,s2,. . .,sn} as the input to the online
actor network, which outputs a deterministic action ai, denoted as µθi(si). Subsequently,
following the same procedure as DDPG, the mean squared error (MSE) loss function for
temporal difference errors is computed, and gradients with respect to parameter θi are
calculated. These gradients are then utilized for parameter updates using gradient descent.

R is an experience replay buffer, composed of elements
(
x, x’, a1,· · · , an, r1,· · · , rn

)
.

The update method for the centralized critic is inspired by the TD and target network ideas
in DQN,

L(θi)=Ex,a,r,x’ [
(

Qµ
i (x,a1,· · · ,an)−y)2

]
, and y=r1+γ

¯
Q

µ’

i

(
x’,a’

1,· · · ,a’
n

)
|a’

j=µ’
j(0j)

(2)

Qµ
i represents the target network,

[
µ’

1,· · · ,µ’
n
]

are the parameters θ’
j of the target

policy with delayed updates. The strategies of other agents can be obtained by fitting
approximation without communication interaction.
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As indicated above, the critic network utilizes global information for learning, while
the actor network only relies on local observational information. One key insight from
MADDPG is that if we have knowledge of all agents’ actions, the environment becomes
stable, even when policies are continuously updated. This is because the dynamics of the
environment remain stable and unaffected by policy changes:

P
(
s’|s,a1,· · · ,an,π1,· · · ,πn

)
=P
(
s’|s,a1,· · · ,an

)
=P
(
s’|s,a1,· · · ,an,π’

1,· · · ,π’
n
) , (3)

The approximation cost is a logarithmic cost function, and with the entropy of the
policy, the cost function can be written as:

L
(

φ
j
i

)
=−Eoj,aj

[
log

^
µφj
(
aj|oj

)
+λH

(
^
µφj

)]
, (4)

As long as the above cost function is minimized, other agent strategies can be approxi-
mated. Therefore, y in Equation (8) can be replaced.

y=ri+γ
¯
Q

µ’

i

(
x’,

^
µ

’

φ
j
i
(o1),· · · ,

^
µ

’n

φ
j
i
(on)

)
, (5)

Before updating Qµ
i , update

^
µ

φ
j
i

using a sample batch from experience replay.

In a multi-agent environment, each intelligent agent, at each time step t, selects an
action from its action space based on its individual policy. The combination of these
individual actions constitutes the joint action, while the aggregation of individual policies
forms the joint policy. For a task involving N intelligent agents, the MADDPG algorithm
consists of N policy functions and N evaluation functions. The gradient for the i-th agent is:

∇θi J(θi)=Ex,ai∼πi

[
∇θi logπi(ai|oi)Qπ

i (x,a1,· · · ,aN)
]

(6)

MADDPG introduces the concept of a policy ensemble. The policy for the i-th agent
is represented by a collection of K sub-policies, and in each training episode, only one
sub-policy µ

(k)
θi

(abbreviated as µ
(k)
i ) is utilized. For each agent, we maximize the collective

reward of its policy ensemble:

∇
θ
(k)
i

Je(µi)=
1
K

E
x,a∼D(k)

i
[∇

θ
(k)
i

µ
(k)
i (ai|oi)∇ai Q

µi(x,a1,· · · ,an)|ai=µ
(k)
i (oi)

] (7)

3.1. Motion Planning and Configuration Space for Dual-Arm Robots

Preceding the application of reinforcement learning, a foundational step involves
the formulation of a problem model. MDP (Markov decision process) provides a formal
method for describing problems with decision making and stochasticity. By modeling
the problem as an MDP, the reinforcement learning problem can be transformed into
a mathematical framework, making the problem more structured and solvable. MDP
clearly describes the key elements of a decision-making process by defining states, actions,
transition probabilities, and reward functions, among other components. This allows the
essence and critical factors of the problem to be accurately captured and represented.

In preparation for the formalization of the problem into an MDP, a foundational
prerequisite entails the definition of the configuration space intrinsic to the dual-arm robot.
The dual-arm robot consists of two identical robotic arms with n degrees of freedom. Let Qr
represent the configuration space of the right arm, let Qr represent the configuration space
of the left arm, and denote the joint configuration space of the dual arms as Q = Qr × Ql.
During the motion of the robotic arms, the configuration space that encounters collisions
with obstacles is referred to as the obstacle space, denoted as Qobs. The configuration space
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without collisions is referred to as the free space, denoted as Qfree. Thus, the configuration
space Q can be represented as the union of Qobs and Qfree, i.e., Q = Qobs + Qfree.

Assuming the initial configuration of the robotic arms is q_init and the goal con-
figuration is q_goal, the motion planning of the robotic arms can be represented as
β =

{
Qfree, qinit, qgoal

}
, where β represents a collision-free motion path from the initial

configuration to the goal configuration. For the planned motion path β, the path cost
is calculated using a composite function composed of multiple variables. In this paper,
the path cost function consists of distance cost and smoothness cost. The distance cost
calculates the distance between each node on the path and the target position using the
Euclidean distance, which helps find the shortest path. The Euclidean distance refers to
the straight-line distance between two points in Euclidean space. Define the distance cost
function as D. By calculating the Euclidean distance between the current position of the
robotic arm and the target position, we can obtain the distance cost.

The smoothness cost is calculated according to the curvature of the path, and the
smoothness cost is conducive to reducing the drastic changes in the motion of the manipu-
lator. Rate cost measures the smoothness of a path by calculating the angle formed by three
adjacent points on the path. Define the smoothness cost function as S.

Therefore, the path cost function can be defined as follows:

DJ=α ∗ D + β ∗S, (8)

J represents the total cost of the path, where D is the distance cost, S is the smoothness
cost, and α and β are coefficients that balance the two.

3.2. MDP Modeling for Dual-Arm Robot Path Planning

The MDP sequence unit is composed of a tuple (S, A, P, R, γ). Unlike the MDP in a
single-agent scenario, here the transition function P and the reward function R are based
on the joint action space A = A1×· · · ×AN , where P = S1×A1· · · ×AN and R = R1· · · ×RN .
For agent i, all other agents except itself are denoted as −i = N \{i}. In this case, the value
function depends on the joint action a=(ai,a−i) and the joint policy π(s,a) = ∏jπ

(
s,aj
)
.

Vπ
i (s)=∑a∈Aπ(s,a)∑s’∈ST

(
s,ai,a−i,s’

)[
Ri(s,ai,a−i)+γVi

(
s’
)]

, (9)

Let π represent the random policy, and the value function η(π) is obtained by taking
the expected reward:

η(π) 〉=Es0,u0,. . .[
∞

∑
t=0

γtr(st)], (10)

The MDP model consists of three elements: the action space, the reward space, and the
state space. In the context of the robotic arm path planning problem in this paper, the speed
of the arm’s movement is not considered. The MDP diagram in this paper is illustrated in
Figure 1. The paper proposes combining the target position in Cartesian space with the
gripper’s opening and orientation to define the action space. The agent can simultaneously
control the arm’s position and the gripper’s state to perform tasks such as grasping and
placing objects. The state space includes the current joint angles, end-effector position and
orientation of the robotic arm, information about obstacles and the environment, as well as
the target task position and requirements. The reward function plays a crucial role in deep
reinforcement learning algorithms as it determines the convergence speed and extent of the
algorithm. In this paper, the reward function is defined based on the task and environment
settings. When the end-effector of the robotic arm is within a fixed range ω near the target,
the agent receives a positive reward to incentivize reaching the target point. If the next
action of the robotic arm reduces the distance cost D or the smoothness cost S, the agent
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also receives a positive reward. On the other hand, if the robotic arm collides with other
arms or obstacles, the agent receives a negative reward to discourage collisions.

rt+1=


0.5, if St+1≤St

0.5, if Dt+1≤Dt

−1, if qt+1∈Qobs

2 , if
∣∣∣ qt+1−qqoal

∣∣∣<ω
, (11)

3.3. Two-Arm Path Planning Algorithm Based on Depth Deterministic Strategy Gradient

The PPDDPG algorithm utilizes two agents to control two robotic arms and is trained
using the DDPG algorithm. To promote cooperation between the agents, reduce competi-
tion, and enhance collaboration in overlapping action spaces, the two agents share their
observations and actions with each other. Each agent adjusts its action policy based on the
output of the other agent, enabling cooperation to be achieved. The block diagram of a
single agent is shown in Figure 2.
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Each robotic arm has its own stochastic policy that only uses its own observations and
actions πθi:Oi×Ai 7→[0,1], which is a probability distribution over actions given its own
observations or a deterministic policy µ_θi: Oi 7→ Ai. Each robotic arm learns a centralized
action-value function µθi:Oi 7→Ai, where a1∈A1,. . .,aN∈AN are the actions of all the agents.
For each Qµ →

i , i=1,. . .,N is learned independently, so each robot can have arbitrary forms
of reward functions, including conflicting reward functions in competitive environments.
At the same time, each agent’s actor network explores and updates its policy parameters
θi independently. Each robotic arm takes actions in the current state s, receives a reward
r, and observes the next state s’. The tuple

(
s,a,r,s’) is then stored in an experience replay

buffer R. Once the size of the buffer R exceeds a threshold, the networks start learning.
The online policy network comprises an architectural framework consisting of input,

hidden, and output layers. The meticulous design of the input layer’s structure is of
paramount importance, as it must be tailored to receive information that encapsulates the
current state of the robotic arm. This state information may encompass various parameters,
including but not limited to position, orientation (angles), and velocity, among others. The
judicious selection of the appropriate number of hidden layers and their associated neurons
is imperative. These hidden layers serve the crucial role of facilitating feature extraction
and introducing essential non-linear transformations, thereby enhancing the network’s
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capacity to effectively represent the state and policy of the robotic arm. Additionally, the
output layer assumes the responsibility of generating the actions to be executed by the
robotic arm. It typically encompasses dimensions corresponding to the action space within
which the robotic arm operates. In the context of a continuous action space, it is admissible
for the output layer to incorporate multiple neurons, with each neuron dedicated to a
specific action dimension.

The target policy network, akin to the online policy network in structural composition,
diverges significantly in the aspect that its parameters remain invariable. In order to ensure
the target policy network’s congruence with the online policy network, periodic parameter
updates are necessary to sustain alignment between the two.

The A* algorithm is an efficient direct search method for finding the shortest path for
a robot in a static working environment. The algorithm’s search speed depends on how
close the estimated distances are to the actual values. Based on the A* algorithm, we can
incorporate the A* shortest-path constraint into the loss function. The purpose of this loss
function is to train a single robot to learn the shortest movement route using the A* path
planning algorithm. The specific formula for expressing the loss function, denoted as LA* ,
can be expanded as follows:

LA* =− 1
T∑T

t=1

[
v(t)log· ~πt(at)+(1−v(t))log·

(
1− ~

πt(at)
)]

, (12)

v(t) represents the ground truth value of whether the action at taken by the agent at
time t is the same as the A* algorithm’s action. If the A* algorithm chooses an action at time
t, v(t) is 1 (correct), otherwise it is 0 (incorrect).

~
πt represents the probability of outputting

this action by the policy at time t, ranging from 0 to 1.
Algorithm 1 is the pseudocode for our proposed path planning algorithm for a dual-

arm robot based on the depth deterministic strategy gradient algorithm. The details of the
algorithm are as follows:

Algorithm 1: Path planning algorithm of dual-arm robot based on depth deterministic strategy
gradient algorithm

Initialize: target actor network π’
i with the parameter θ’i of each agent i

actor network πi with the parameter θi of each agent i
target critic network Qµ’

i
with the parameter µ’

i of each agent i
critic network Qµ’

i
with the parameter µi of each agent i

Experience Replay Buffer R
1. For episode = 1 to Max-episodes do
2. Initialize a random process G for exploration of action
3. Sample a goal g
4. Get initial state s
5. For t = 1 to Max-step do
6. For each agent i, select action ai

t=µθi (ok)+Gt from the action space, the
current policy and exploration
7. Execute action at=

(
at

1,at
2
)

and observe new state s’

8. End for
9. For t = 1 to Max-step do
10. For each agent i, calculate reward rt

i :=r
(
xt,at

i ,g
)

11. Store (s, a, r, s’) in replay buffer R
12. Sample a set of additional goals for replay G:=S
13. For g’ ∈ G do
14. For each agent i, rt

i :=r
(
xt, at

i , g
)

15. Store (s, a, r, s’) in replay buffer R
16. End for
17. End for
18. For t = 1 to Max-step do
19. For agent i = 1 to 2 do
20. Sample a random minibatch of N samples (sk, ak, rk, s’k) from R
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Algorithm 1: Cont.

21. Set yk=rk
i +γQµ’

i

(
s’k,a’

1,a’
2

)
|ai=µi (ok

i )

Update the parameter of critic’s evaluation network by minimizing the loss

L(θi)= 1
N ∑k

(
yk−Qµ’

i
(
sk,ak

1 ,ak
2
))2

22. Update the actor policy using the sampled policy gradient

∇θkJ≈ 1
N ∑

j
∇θi µi

(
oj

i

)
∇ai Q

µ
i

(
sj,aj

1,aj
2

)
|ai=µi(o

j
i)

23. End for
24. Update target network parameters for each agent i:
θ’

i←τθi+(1−τ)θ’
i

25. End for
26. End for

First, we initialize the actor and critic networks for each individual agent and initialize
the experience replay buffer. The experience replay buffer is used to ensure that the samples
are independently and uniformly distributed. At each step, both the actor and critic update
their parameters by sampling mini-batches from the buffer. At the beginning of each
episode, we initialize a random noise process and set an initial target goal. We obtain the
initial state and start the iteration. Each agent executes an action based on its policy and
the noise process. After each agent executes an action, we observe the total reward and
obtain the new state. To improve the convergence of the algorithm, we employ the HER
(hindsight experience replay) algorithm to process the samples. The new tuple (s, a, r, s’)
is stored in the experience replay buffer, and the new state s’ is used as the starting state for
the next iteration.

4. Experiments and Results

This section mainly introduces how to train the path planning of the dual-arm robot
based on PPDDPG, and shows the results through simulation and experiment.

4.1. Experimental Detail

i. Algorithm Selection

We have chosen the MADDPG algorithm [21], SAC algorithm [20], TD3 algorithm [36],
and PRM algorithm [6] as the algorithms for comparative analysis.

The PRM algorithm represents a conventional graph-based approach for path planning.
Conversely, the SAC and TD3 algorithms belong to the category of reinforcement learning
techniques, catering to scenarios characterized by continuous action spaces; notably, these
algorithms remain unaltered for multi-agent contexts. In contrast, the MADDPG algorithm
is explicitly tailored to accommodate multi-agent reinforcement learning. The rationale
behind our selection of these algorithms resides in the intent to showcase the superior
efficacy of our proposed approach in dual-arm path planning compared to conventional
path planning methods. Moreover, our algorithm exhibits enhanced suitability for dual-arm
robotic systems in comparison to reinforcement learning algorithms that do not account for
multi-agent considerations.

ii. Parameter Settings

To implement the proposed PPDDPG algorithm, we employed two five-degree-of-
freedom robotic arms. We created and simulated the environment for the dual-arm robot
using the gym and pybullet toolkits [37,38]. The training process of the algorithm was
conducted within the simulation environment. During the experiments, we conducted
multiple tasks to evaluate the algorithm’s performance. During the training process, we
utilized the Nvidia GeForce RTX 2080Ti GPU and Intel i9-13900 k CPU. The entire training
process took approximately 18 h.
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iii. Evaluation Metrics

The pivotal assessment criteria within the experiment encompass the success rate and
the average path cost. The latter, identified as Formula (7), encompasses both the distance
cost and the smoothness cost.

4.2. Results and Discussion

i. Experiment 1—Reach the target

Illustrated in Figure 3a, the primary objective of the initial experiment was to position
the end effectors of the robotic arms at the designated location of a blue target object.
The diagram delineates the workspace of the left arm through white lines, while the
workspace of the right arm is enclosed by green lines. Both workspaces are equally sized
and exhibit areas of overlap, giving rise to a shared space at their intersection. When the
target object resides within this shared space, both end effectors are capable of reaching
the target’s position. However, if the target object occupies the exclusive space of either
arm, only the arm associated with that region can access the target’s location. Figure 3b
visually portrays the trajectory of paths traced during the training phase. In each episode,
both arms are tasked with determining the shortest route from their individual starting
points to the respective target positions. The success rates of the left and right arms
reaching the target object’s position are depicted by the purple and red lines in Figure 4a.
Notably, with increasing numbers of training iterations, the success rates progressively
improve, ultimately leading to minimal instances of failure. These outcomes underscore
the favorable performance exhibited by the PPDDPG algorithm in the domain of dual-arm
robot path planning.
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trajectories during training. The three converging lines on the left side of the diagram (blue, red, green)
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structure delineate the boundaries of the manipulator’s workspace.

Within the experimental context, rewards emerged as a pivotal metric for the com-
prehensive assessment of the algorithm’s efficacy. In the context of this study, rewards
encapsulated the attributes of reduced path lengths, enhanced path smoothness, and the
avoidance of collisions. The temporal evolution of rewards throughout the training phase
is visually elucidated in Figure 4b, wherein the vertical axis denotes rewards and the
horizontal axis denotes episode count. The depicted graph underscores the perceptible
convergence of rewards for both agents. This convergence trend mirrors the agents’ pro-
gressive acquisition of optimized strategies, leading to the attainment of elevated rewards
within the realm of path planning. The observable reward convergence signifies the al-
gorithm’s proficiency in acquiring apt behavioral policies, ultimately culminating in the
generation of superior path planning outcomes. The fluctuations in rewards, as manifested
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in the experimentation, substantiate the algorithm’s efficacy and its tendency to converge
over training epochs. This empirical observation serves as an additional confirmation of
the robust performance exhibited by the PPDDPG algorithm in addressing the intricate
dual-arm robot path planning challenge.
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During the conducted experiment, apart from the PPDDPG algorithm, several addi-
tional reinforcement learning methodologies were also subjected to training and application
for the purpose of path planning. Figure 5 visually presents the outcomes attained by four
distinct reinforcement learning methods throughout the training regimen, showcasing the
evolution of success rates, critic loss for the right arm, and variations in reward values.
Within the figure, the red line corresponds to our proposed algorithm (PPDDPG), the green
line represents the SAC algorithm, the blue line denotes the TD3 algorithm, and the purple
line signifies the MADDPG algorithm.

It is evident from the depicted results that both our enhanced algorithm and the
MADDPG algorithm exhibit expedited convergence with respect to success rate and critic
loss. The underlying rationale lies in the fact that both the proposed algorithm and the
MADDPG algorithm are meticulously tailored for multi-agent systems, where each agent is
equipped with an individualized policy network and action-value function network. When
contrasted with alternative algorithms, these two methodologies emerge as particularly
suited for tasks requiring multi-agent cooperation. They effectively optimize policies and
value functions, consequently manifesting enhanced convergence and performance within
the context of path planning.

Further scrutiny reveals that, relative to the MADDPG algorithm, our proposed
algorithm, enriched with refinements, achieves superior performance by augmenting the
speed of convergence in success rate and critic loss. This comparative analysis serves
to underscore that the proposed algorithm surpasses several conventionally employed
reinforcement learning methods when appraised in terms of performance and efficacy
within the dual-arm robot path planning problem.

During the conducted experiment, we undertook a comparative analysis between the
conventional path planning approach, PRM, and a deep reinforcement learning algorithm
that had been subjected to training. To this end, we randomly generated a total of 100 target
positions and subsequently employed various algorithms for path planning by the robotic
arm. The outcomes of these experimental endeavors are succinctly presented in Table 1.
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Table 1. Comparison between different methods for different values of the episode (Experiment 1).

Method PRM SAC MADDPG PPDDPG (Ours) Episode

Success rate 86% 90% 95% 98% 15,000
Average path cost 5.10 4.23 3.86 3.32 15,000

Success rate 82% 61% 82% 90% 9000
Average path cost 5.13 6.64 3.92 3.18 9000

Success rate 87% 1% 11% 5% 3000
Average path cost 5.08 8.76 5.51 5.82 3000

ii. Experiment 2—Grasp the target object

As depicted in Figure 6, the research involves the utilization of two robotic arms,
each outfitted with two-finger grippers, for accomplishing multi-object grasping tasks.
Within the framework of the proposed algorithm, each robotic arm possesses the capacity
to grasp objects only within its designated workspace. In instances where an object is
positioned within the shared workspace of both arms, the arm in closer proximity to the
object assumes the responsibility of grasping. The graphical representation in Figure 7
offers a comparative portrayal of Experiment 2, juxtaposing scenarios involving dual-arm
and single-arm executions, thereby providing an overview of the complete robotic arm
grasping process.
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In the context of Experiment 2, the evaluation extends to diverse algorithms for object
grasping. These algorithms encompass the conventional PRM sampling-based approach,
the SAC reinforcement learning method, the MADDPG multi-agent reinforcement learning
algorithm, and the proposed PPDDPG algorithm. For Experiment 2, each algorithm was
subjected to 100 grasping tasks, with the resulting success rates documented in Table 2.
Notably, the findings highlight the relatively lower success rates achieved by the PRM
and SAC algorithms. This outcome is attributed to the inherent limitations of the PRM
algorithm in accommodating multi-agent control and the confinement of the SAC algorithm
to singular-agent reinforcement learning, lacking extensions to address multi-agent contexts.
Particularly evident in Experiment 2, the SAC algorithm treats both robotic arms as a
singular entity for control, rendering it prone to errors when both arms concurrently
engage in object grasping attempts.

Conversely, the MADDPG algorithm and the proposed PPDDPG algorithm exhibit
notably higher success rates within the context of Experiment 2. This phenomenon stems
from the intrinsic design of the MADDPG algorithm for multi-agent systems, whereby
each agent boasts an individual policy network and action-value function network. Addi-
tionally, Figure 7 provides a comparative visualization of movement trajectories during
task execution involving single-arm and dual-arm scenarios. Through both quantitative
metrics and qualitative observations, it becomes evident that the path cost associated with
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dual-arm task execution is lower than that of single-arm task execution. Importantly, the
PPDDPG algorithm, introduced within this study, not only refines the performance and
stability of the MADDPG algorithm but also showcases superior attributes.
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Figure 7. The image depicts a comparison of the movement paths when executing tasks with a single
arm and dual arms. The (a1–a6) illustrates the movement path of the dual arms, while the (b1–b6)
represents the movement path of the single arm. This experiment serves as an illustrative example of
a single trial selected from the pool of 100 conducted trials.

Table 2. Comparison between different methods for different values of the episode (Experiment 2).

Method PRM SAC MADDPG PPDDPG (Ours) Episode

Success rate 83% 86% 91% 96% 15,000
Average path cost 5.48 4.63 4.12 3.42 15,000

Success rate 78% 61% 82% 90% 9000
Average path cost 5.51 6.96 4.34 3.18 9000

Success rate 84% 1% 10% 3% 3000
Average path cost 5.43 9.12 5.77 5.95 3000

In synthesis, the outcomes of Experiment 2 affirm the advantages offered by the pro-
posed algorithm in comparison to conventional methodologies and alternative reinforce-
ment learning techniques when addressing multi-object grasping tasks. It demonstrates an
enhanced capacity for multi-agent cooperative control.

As demonstrated in Tables 1 and 2, we have conducted a comprehensive comparison
of various algorithms based on performance metrics across different episodes. From the
data presented in Tables 1 and 2, it is evident that PRM algorithm, being graph based,
outperforms other algorithms when training episodes are relatively small. Additionally,
MADDPG algorithm exhibits superior performance over our algorithm in the early stages
of training. However, as the number of episodes increases, our algorithm begins to demon-
strate its advantages.
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iii. Experiment 3—Ablation comparison

Furthermore, ablation experiments were conducted to assess the influence of distinct
components within the algorithm or model on performance. Tables 3 and 4 present the
result of these experiments. To be specific, we conducted comparative experiments by
removing the improvement made by our algorithm to the baseline algorithms. This was
performed to verify the effectiveness of the algorithm improvements.

Table 3. Success rate of experiment.

Method Experiment 1 Experiment 2

PPDDPG (ours) 98% 96%
Without HER 95% 92%

Without A* shortest-path constraint 98% 95%
Baseline algorithm 95% 91%

Table 4. Average path cost comparison.

Method Experiment 1 Experiment 2

PPDDPG (ours) 3.32 3.42
Without HER 3.41 3.53

Without A* shortest-path constraint 3.75 3.91
Baseline algorithm 3.86 4.12

Table 3 offers an overview of the success rates attained in both Experiment 1 and Exper-
iment 2, showcasing the efficacy of the various algorithms under examination. Meanwhile,
Table 4 provides a comparative examination of the average path costs encountered within
Experiment 1 and Experiment 2. Through these evaluations, we sought to quantify the
impact of different algorithmic components on performance outcomes, thereby providing
insights into the algorithm’s robustness and effectiveness across diverse scenarios.

5. Conclusions

This paper presents a novel path planning methodology, referred to as the path
planning for dual-arm robots based on multi-agent deep deterministic policy gradient
(PPDDPG) algorithm, aimed at addressing the path planning challenges specific to dual-
arm robots. The proposed approach leverages advanced multi-agent deep reinforcement
learning techniques to enhance path planning capabilities.

The core innovation of the PPDDPG algorithm lies in its tailored configuration space,
designed to meet the unique path planning requirements of dual-arm robots. Additionally,
our algorithm incorporates a replay buffer as a crucial component, enabling the reuse of
previously acquired experiential data. This inclusion facilitates the practice of experience
replay, strategically employed to address the challenge of reward sparsity encountered
during the training process. We further integrate the A* shortest path constraint into the
loss function with the aim of minimizing the path cost of the robotic arm.

To substantiate the implementation of PPDDPG, comprehensive simulations were con-
ducted using the gym and pybullet environments. The experiments serve to demonstrate
the effectiveness and advantages of our algorithm for motion planning in dual-arm robots.

Although our proposed algorithm has made remarkable achievements, it must be
recognized that it has some limitations and needs further improvement. The tasks dealt
with in this study are relatively basic, so it is necessary to conduct in-depth research in
more complex manipulator planning scenarios. We believe that in an environment full of
dynamic obstacles, the collaborative planning task in multiple manipulators is an important
part of our future work.
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