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Abstract: Type 1 diabetes, a chronic condition characterized by insulin deficiency, is associated with
various complications and reduced life expectancy and is increasing in global prevalence. Maintaining
glycaemic control in children with type 1 diabetes, as reflected by glycated hemoglobin levels (A1C),
is a challenging task. The American Association of Diabetes (ADA), the Pediatric Endocrine Society,
and the International Diabetes Federation (ISPAD) recommend the adoption of a harmonized A1C
of <7.5% across all pediatric groups. Our retrospective study included 79 children with type 1 diabetes
and aimed to identify determinants pivotal to forecasting glycemic control, focusing on a single A1C
cut-off value and exploring how machine learning algorithms can enhance clinical understanding,
particularly with smaller sample sizes. Bivariate analysis identified correlations between glycemic
control and disease duration, body mass index (BMI) Z-score at onset, A1C at onset above 7.5 g/dL,
family income, living environment, maternal education level, episodes of ketoacidosis, and elevated
cholesterol or triglyceride. Binary logistic regression stressed the association of ketoacidosis episodes
(β = 21.1, p < 0.01) and elevated A1C levels at onset (β = 3.12, p < 0.01) and yielded an area under
the receiver operating characteristic curve (AUROC) of 0.916. Two-step clustering emphasized
socioeconomic factors, as well as disease complications and comorbidities, and delineated clusters
based on these traits. The classification and regression tree (CART) yielded an AUROC of 0.954,
slightly outperforming binary regression, providing a comprehensive view of interactions between
disease characteristics, comorbidities, and socioeconomic status. Common to all methods were
predictors regarding ketoacidosis episodes, the onset of A1C levels, and family income, signifying
their overarching importance in glycaemic control. While logistic regression quantified risk, CART
visually elucidated complex interactions and two-step clustering exposed patient subgroups that
might require different intervention strategies, highlighting how the complementary nature of these
analytical methods can enrich clinical interpretation.

Keywords: pediatric type 1 diabetes; glycemic control; binary regression; machine learning; two-step
cluster analysis; CART decision trees

MSC: 92C50; 62H30

1. Introduction

Type 1 diabetes, a chronic condition characterized by insulin deficiency due to au-
toimmune β-cell depletion, is associated with various complications and reduced life
expectancy [1–4]. The global prevalence was 8.4% in 2017 and is projected to reach 9.9% by
2045, with an estimated 425 million cases worldwide, including 58 million in Europe [5].
Multiple factors, such as demographics, biology, and socioeconomic status, influence
glycemic control, which is measured using glycated hemoglobin (A1C) in pediatric pa-
tients [6–17]. A detailed comprehension of such factors can provide much-needed aid in
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understanding and limiting the complications that arise during the progression of type 1
diabetes and in an attempt to improve the quality of life and lifespan of these patients [6–14].
Maintaining glycemic control in type 1 diabetes children is a challenging task in clinical
practice. These levels are tailored to age group categories. The current consensus advocates
maintaining an A1C goal of under 8.5% for youths under the age of 6 years, 8% for those
6–12 years old, and 7.5% for those aged 13–19 years. Nevertheless, the American Diabetes
Association (ADA) proposed the harmonization of its glycemic goals with those of the
Pediatric Endocrine Society and the International Diabetes Federation (ISPAD) using a
single A1C of <7.5% across all pediatric age groups [15,16].

Our hypothesis centers on leveraging the potential of both supervised(CART and
logistic regression) and unsupervised machine learning methods(two-step clustering analy-
sis) to demonstrate the feasibility of a single A1C cut-off <7.5% for the outcome variable
(good glycemic control) across all pediatric age groups, even in a small cohort. This ap-
proach allows for a thorough analysis and emphasis on the impact of covariates, such as
disease duration, body mass index (BMI) Z-score at onset, an A1C at onset above 7.5 g/dL,
family income, living environment, maternal education level, episodes of ketoacidosis, and
elevated cholesterol or triglycerides.

To achieve this goal, our retrospective study sought to identify the risk factors im-
pacting glycemic control through bivariate analysis first and then explored their influence
as predictors using advanced statistical methods, including binary regression, two-step
clustering, and the classification and regression tree (CART) algorithm focusing on a single
cut-off value consistent across age groups.

Bivariate analysis offers the advantage of being easy to implement and has a relatively
intuitive interpretability. It is frequently employed in cross-sectional retrospective studies
examining a particular dichotomous outcome. It poses, however, certain key disadvantages
due to data collection bias when it comes to small sample sizes or when exposed to multi-
collinearity and confounding factors. While it is essential to identify potential risk factors
for the targeted outcome variable, bivariate analysis fails to explore complex interrelations
between the studied variables, which can affect the outcome. Moreover, in addition to these
aforementioned limitations, retrospective studies are confronted with different levels of
missing data for the independent variables in the dataset. This limitation restrains sample
sizes, especially when dealing with linear models.

To address these issues, we adopted advanced algorithms for a better interpretation of
our results. We selected binary logistic regression for a deeper insight into the hierarchy of
the observed risk factors. This enabled a direct comparison of coefficients, highlighting each
predictor’s significance. Bivariate analysis assesses the effect sizes for similar variables, but
binary regression concurrently manages both categorical and continuous ones, allowing
their collective expression of effect. This yields a linear prediction model grounded in each
risk factor’s weight. Conversely, the CART decision tree, a nonlinear supervised learning
method, segments predictor space using optimal cut-off points. This captures intricate
data relationships, producing distinct subgroups based on cumulative decisions and the
proportion of the outcome—glycemic control in our study.

Clinical interpretation often relies on grouping populations by risk profiles for tailored
interventions. The intricate relationship between risk factors is not merely linear; it often
necessitates sophisticated methods like CART decision trees to discern how these factors
shape groups and outcomes. Two-step cluster analysis, an unsupervised learning method,
achieves similar goals using a distinct mathematical approach. It differentiates groups
by optimizing Euclidean distances between variable entries and their cluster centroids.
Thus, our hypothesis is grounded on the potential complementarity of methods in creating
specific risk profile groups, leading to more nuanced interpretations given their flexibility
to handle both categorical and continuous variables. Eventually, we intend to compare the
effectiveness of CART decision trees, cluster analysis, and logistic regression to enhance
the clinical interpretation of results and reduce the impact of confounding variables among
a limited group of children with type 1 diabetes.
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2. Materials and Methods
2.1. Setting and Time Frame

We performed a retrospective analysis of relevant data extracted from the discharge
letters or outpatient files of patients admitted to the Pediatric Clinical Hospital Sibiu
between January 2010 and August 2023. All unique health records related to the diagnosis
of type 1 diabetes (E.10.11–E.10.90 according to the International Classification of Disease-
ICD-10) and meeting the inclusion criteria were retrieved from the Pediatric Clinical
Hospital Sibiu’s database. Of the 506 distinct cases identified, only 79 had complete data
records for each variable. A filtering approach was employed based on the following
sequence of commands in SPSS v.21: [select cases→ if condition(list of variables)→ not
missing].

2.2. Inclusion and Exclusion Criteria

Patients aged between 0 and 18 years old diagnosed with type 1 diabetes were enrolled
in the study. The diagnosis of type 1 diabetes was established according to the latest recom-
mendations of the American Diabetes Association as follows [4]: FPG ≥ 126 mg/dL or 2 h
PG ≥ 200 mg/dL during OGTT or A1C ≥ 6.5% or a random plasma glucose ≥ 200 mg/dL
in a patient with classic symptoms of hyperglycemia or hyperglycemic crisis (FPG—fasting
plasma glucose where fasting is defined as no caloric intake for at least 8 h; 2h-PG—2 h
plasma glucose; OGTT—oral glucose tolerance test as described by the World Health Organ-
isation (WHO) using a glucose load containing the equivalent of 75 g anhydrous glucose
dissolved in water [18]). Patients were excluded from analysis if data were missing in any
of the studied variables or if they were documented as at risk for blood disorders affecting
the HbA1c measurement, pancreatitis with a personal or familial history of MEN types 2A
or B, thyroid issues, medullary thyroid cancer or taking steroids in the past 2 months prior
to admittance. Out of the 427 patients excluded based on incomplete health records, none
of them met the medical exclusion criteria.

2.3. Data Collection and Structure

We recorded characteristics describing the patients’ demographic, socioeconomic,
anthropometric, laboratory, and disease-related factors in a similar approach to Niba
et al. [14] and Urbach et al. [19]. Then, we checked for duplicate detection and made use
of descriptive statistics(mean, median, mode, standard deviation, minimum, maximum)
along with histograms and box plots to identify outliers or values that did not make
sense. For categorical variables, cross-tabulations were used to understand how different
categories intersected.

Table 1 provides an overview of the data collected, how they were processed, and
relevant references in the literature with similar, validated approaches where appropriate.
The level of education was measured according to ISCED levels (International Standard
Classification of Education [20]). The insulin regimen in all patients fell into one of two
categories: regimen 1, with 3 rapid-acting insulin administrations and one long-acting
insulin administration, and “Regimen 2”, with 3 short-acting insulin administrations and
one slow insulin administration. In addition, the mean A1C was calculated as the average,
taking into account all the available documented values for this parameter measured during
follow-up within the above-specified period of a patient. This approach is similar to Beck
et al. [20]. A dichotomous approach was then implemented using the cut-off value of mean
AIC = 7.5 g/dL. Values larger than or equal to the cut-off were considered as poor overall
glycemic control according to the aforementioned guidelines [15,16].

Consequently, the outcome variable in our study was ”Glycemic control”, which
divided our patients into two groups—one with adequate overall glycemic control and one
without—based on an A1C cutoff of 7.5 g/dL. For bivariate analysis, primary hypotheses
were then generated based on the tested variable type. For categorical variables, the
null hypotheses were phrased as follows: ”there is no significant association between
glycemic control and [categorical variable]”. For continuous variables, namely the body
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mass index (BMI) Z-score and disease duration, the null hypotheses were phrased as
“The means of [continuous variable] do not differ significantly between patients with or
without adequate overall glycemic control”. Variables that were found to significantly
correlate with glycemic control were essentially highlighted as risk factors in this regard
and subsequently considered for inclusion in further advanced statistical methods or
machine-learning algorithms.

Table 1. Collected data and references with similar approaches to data curation for each variable.

Variable Raw Data Processed Variable Type (Explanation) Ref.

Demographic characteristics

Gender Dichotomous Dichotomous (Male/Female) [14,19]

Paternal level of education Ordinal
(ISCED 0–7)

Dichotomous (ISCED > 4 vs. ISCED ≤ 4)
Higher education vs. no higher education

[13,14,21–27]

Maternal level of education

Family income Continuous Categorial (High/average/low compared to the
average income in Romania for 2018)

Living conditions Dichotomous Dichotomous (Rural/Urban)

Disease characteristics

Family history of diabetes Dichotomous Dichotomous (Yes/No) [14,21,28]

Type of onset Nominal

Categorial (Asymptomatic or symptomatic with
no ketoacidosis/

Mild or moderate ketoacidosis/
severe ketoacidosis)

[28,29]

A1C at onset Continuous Dihotomous (<7.5 g/dL/≥7.5 g/dL) [22,30–33]

Age of onset Continuous Categorial (<5 years/5–10 years/>10 years) [13,22,28]

BMI at onset (Z-score, according
to WHO 2007 growth reference

data [34])
Continuous

Continuous, Categorical (underweight/normal
weight/overweight or obese) according to WHO

Reference values for BMI Z-score
(<2; 2–1; >1)

[13,14,35]

Disease duration Continuous Continuous [24,36,37]

Identified associated
autoimmune diseases Nominal Dichotomous (Yes/No) [38]

Episodes of hypoglicemia Discrete Dichotomous (Yes/No) [21,39]

Episodes of ketoacidosis
(excluding onset [39]) Discrete Dichotomous

(Yes/No) [39,40]

Episodes of viral infections Discrete Dichotomous (Yes/No)

[41]
Episodes of bacterial infections Discrete Dichotomous

(Yes/No)

Episodes of microalbuminuria Discrete Dichotomous
(Yes/No) [21,32,42]

Serum Cholesterol
(last documented value) Continuous Dihotomous (≥200 mg/dL/<200 mg/dL)

[13,35]
Serum Triglycerides

(last documented value) Continuous Dihotomous (≥150 mg/dL/<150 mg/dL)

Insulin regimen Nominal Dichotomous (Regimen 1/Regimen
2—explained in text) [13,14,43]

Neutrophil to lymphocyte ratio Continuous Continuous [44–46]

Mean platelet volume Continuous Continuous [47–49]
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Specifically, we adjusted disease duration and the BMI Z-score by centering them
around the sample’s mean for use in binary logistic regression. This process involved
subtracting the sample mean from each data point within these variables, a step undertaken
to diminish the numerical instability that can arise in regression models due to large
variable values.

For categorical variables like family income, we adopted a dummy variable approach.
Here, income levels were categorized as low, average, or high, with each category rep-
resented as a separate, dichotomous variable, assuming values of 0 or 1. This approach
simplifies the interpretation of regression outcomes, particularly for variables like “high
family income.” To further enhance interpretability, we reverse-coded this variable as
“low or average income”, converting the 0s to 1s and vice versa. This strategy was in-
tended to yield positive regression coefficients in binary regression, streamlining the data
interpretation process by aligning coding with expected outcome directions.

2.4. Data Analysis
2.4.1. Bivariate Analysis

Categorical variable analyses and results were presented as frequencies and percent-
ages, while continuous variables were presented as means, standard deviations, mini-
mum and maximum values, the interquartile range, and 95% confidence intervals for
means. Continuous variables were tested for normality using the Kolmogorov–Smirnov
or Shapiro–Wilk tests where appropriate. Groups were compared using the Chi-square or
Fischer’s exact test for categorical variables and the independent t-test or Mann–Whitney
U-test for continuous variables. An α-level of 0.05 was considered statistically significant
for bivariate analysis and potential inclusion in logistic regression models as well as the
two-step clustering and CART algorithms.

2.4.2. Logistic Regression

Variables found to significantly correlate with glycemic control in bivariate analysis
were included in the binary logistic regression models. Binary logistic regression is used
to predict the outcome of a dichotomous dependent variable based on the input predictor
variables. Inputs can be mapped using the sigmoid function, which turns them into a value
between 0 and 1, enabling them to be treated as probabilities [50]:

σ(z) =
1

1 + e−z (1)

where

• σ(z) is the output value (constrained between 0 and 1).
• z is the input to the function, calculated as the weighted sum of inputs.

The sigmoid function is the inverse of the logit function, which transforms a probability
value back to a real-value number, which can then be used as the target variable in linear
regression models [50,51].

logit(p) = ln
(

p
1− p

)
(2)

To predict the outcome targeted by the model, probability estimation is employed [50]:

p = σ(β0 + β1x1 + β2x2 + · · ·+ βkxk) (3)

where

• p is the probability that the dependent event occurred based on the linear combination
of independent variables.

• βi is the regression coefficient for variable xi
• β0 is the intercept value.
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Consequently,

logit(p) = β0 + β1x1 + β2x2 + · · ·+ βkxk (4)

In order to measure the performance of the classification model where the prediction
input is a probability value between 0 and 1, the Log Loss function [50] can be used.

Log Loss = −(ylog(p) + (1− y)log(1− p)) (5)

where

• y is the true class label (0 or 1 in binary regression);
• p is the predicted probability of the instance belonging to class 1.

Smaller values of Log Loss indicate the better performance of the classification model.
In order to estimate the distribution of regression coefficients, resampling methods

such as bootstrapping can be implemented, which repeatedly samples replacements from
the data. The bias-corrected and accelerated (BCa) method is an advanced bootstrapping
technique that adjusts for both bias and skewness in bootstrap distribution.

Bias correction [52] comes from the proportion of bootstrap resamples that are less
than the original statistic if

• θ∗ denotes the statistic from a bootstrap sample;
• θ is the original statistic, and the bias correction is given as follows:

z0 = Φ−1

(
1
B

B

∑
i=1

I(θ∗i < θ)

)
(6)

where

• Φ−1 is the quantile function of the standard normal distribution,
• B is the number of bootstrap resamples,
• I is the indicator function.

Bias correction accounts for any systematic overestimation or underestimation using
the bootstrap samples compared to the original sample estimate.

Acceleration accounts for the skewness of the bootstrap distribution and is calcu-
lated from jackknife estimates. The jackknife method involves systematically leaving out
one observation at a time from the sample set and calculating the estimate over n − 1
observations [53].

α =
∑n

i=1

(
θ− θ̂

(−i)
)3

6
[

∑n
i=1

(
θ− θ̂

(−i)
)2
]3/2 (7)

where

• θ̂
(−i) is the statistic with the ith observation removed.

• θ is the average of jackknife estimates.

The acceleration adjustment corrects for the skewness in the bootstrap distribution,
ensuring that the confidence intervals are symmetric around the sample estimate. This
method provides more accurate confidence intervals, especially in situations where data
may not be perfectly symmetrical or when the sample size is small.

With the bias correction z0 and acceleration α calculated, confidence intervals can be
computed as follows:

CI =
(
θ∗α1

, θ∗α2

)
(8)

where

α1 = Φ
(

z0 +
z0 + zα/2

1− α(z0 + zα/2)

)
(9)
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α2 = Φ
(

z0 +
z0 + z1−α/2

1− α(z0 + z1−α/2)

)
(10)

• z1−α/2 is the α/2 quantile of the standard normal distribution.

In our study, the successive exhaustive addition or removal of variables was employed
in order to find the optimal regression model. Continuous variables were centered around
their mean to avoid multicollinearity, and categorical variables were recoded into dummy
variables. Bootstrapping with 10,000 samples and calculated 95% confidence intervals for
the regression coefficients were performed using the bias-corrected and accelerated method.
Variables with a significant contribution to predict glycemic control (p < 0.05 and both 95%
CI limits for coefficients above 0) were kept in the model.

2.4.3. Two-Step Cluster Algorithm

Variables found to significantly correlate with glycemic control were further fed
to a two-step cluster algorithm. The functioning principle behind two-step clustering
algorithms is based on combining a pre-clustering step using the k-means algorithm and
hierarchical agglomerative clustering in sequence in order to classify cases based on similar
characteristics, both regarding categorical and continuous variables. In the first step, the
algorithm scans through the dataset to create many small sub-clusters. This is performed
by measuring the distance (or similarity) between data points [54]. The centroid of a cluster
resulting after the initial pre-cluster step serves as the ‘average’ for all points in a cluster,
thereby summarizing the features of this cluster. The centroid of a cluster [55] is calculated
by the following formula:

Centroid =
1
|C| ∑x∈C

x (11)

where

• |C| is the number of data points in the cluster.
• x corresponds to individual data points in the cluster.

The centroid function’s essence is to calculate the average of all data points within a
cluster. By doing so, the algorithm can efficiently group similar data points together and
ensure that the clusters are compact and distinct from each other. K-means clustering aims
to find cluster centroids, defining clusters that are as cohesive as possible. To measure
this aspect, the following objective function (or the Within-Cluster Sum of Squares (WCSS)
using distance as the norm) [56] is implemented.

Objective function =
n

∑
i=1

k

∑
j=1

wij‖ xi − cj ‖2 (12)

where

• n is the total number of data points.
• k is the number of clusters.
• wij is a weight (defined as one if the datapoint I belongs to cluster j and 0 otherwise);
• xi is the ith data point;
• cj is the centroid of the jth cluster;
• ‖ xi − cj ‖2 is the squared Euclidean distance, which measures how far a point is from

the centroid of its cluster.

K-means clustering aims to minimize WCSS, meaning that data points are as close as
possible to the centroids of their respective clusters, leading to tight, distinct clusters.

Hierarchical clustering then merges the closest individual points in order to produce
increasingly large clusters. The final number of clusters and the most accurate model can
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be selected by calculating the Akaike Information Criterion (AIC) or Bayesian Information
Criterion (BIC) [50]:

AIC = −2× Log-likelihood + 2× k (13)

BIC = −2× Log-likelihood + log(N)× k (14)

where

• k is the number of parameters in the model;
• N is the number of data points in the set.

BIC penalizes models with more parameters. The Log-likelihood distance measure
gauges how well the model explains observed data, and a higher value indicates a better fit:

Log-likelihood = ∑ logp(xi|θ) (15)

where

• θ represents the parameters of the model;
• p(xi|θ) is the probability of the data point xi being observed given the parameters θ.

In the context of the two-step clustering method, we can refine this to the following:

Log− likelihood = −Ns

(
KA

∑
k=1

1
2

log
(
σ2

k + σ2
sk

)
+

KB

∑
k=1

Esk

)
(16)

where

• Ns is the total number of data records in cluster s.
• KA is the total number of continuous variables.
• KB is the total number of categorical variables.
• σ2

k is the estimated variance of the continuous variable k for the entire dataset.
• σ2

sk is the estimated variance of the continuous variable k in cluster s.
• Esk represents the entropy-based metric for categorical variables k in cluster s.

Esk = −∑Lk
l=1

Nskl
Ns

log
Nskl
Ns

(17)

where

• Lk is the number of categories for the k-th categorical variable [54].
• Nskl is the number of observations in cluster s where the categorical variable k takes

the value of l.
• Ns is the total number of observations where the categorical variable k takes the value

of l.

Consequently, smaller values for AIC and BIC indicate a better model. Comparing
these parameters across various cluster models, which differ in their number of clusters,
can yield the most accurate representation.

Finally, to measure how similar an object is to its own cluster compared to other
clusters, the Silhouette Score can be used [57].

Silhouette score =
b− a

max(a, b)
(18)

where

• a is the average distance from the sample to the other points in the same cluster.
• b is the smallest average distance from the sample to the points in other clusters and

minimized over clusters.
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A high Silhouette Score indicates that the object is adequately matched to its own
cluster and poorly matched to neighboring clusters, showcasing good clustering.

In our study, Akaike’s Information Criterion was implemented for optimal cluster
number selection. The successive exhaustive addition or removal of variables was em-
ployed until a good average silhouette of cohesion separation (>0.5) was obtained. Variables
with a predictor importance of at least 0.5 (+/−0.01) were kept in the model. Bivariate
analysis was then applied in order to explore correlations between the resulting cluster
variable and glycemic control.

2.4.4. CART Algorithm

The CART algorithm was further applied to explore a prediction model. Decision
trees are supervised machine-learning algorithms that classify data, revealing patterns tied
to user-defined outcomes and providing a visual representation of the model. The construc-
tion of this model initiates from the principal root and progresses through branching until
no further divisions are feasible, correlating all predictor variables with the anticipated out-
come. These bifurcations arise from conditions (internal nodes) set on predictor variables,
culminating in further subdivisions and resolutions. Child nodes or “leaves” situated at
the end of a branch represent the final resolutions given by the algorithm [58].

The metrics governing tree expansion encompass several measures to quantify and
guide the bifurcations. One of the core measures used is Entropy: a metric that gauges
disorder or impurity in a dataset. Mathematically [59], it is defined as:

Entropy(t) = −
k

∑
i=1

pilog2(pi) (19)

where pi represents the proportion (or probability) of samples that belong to class i at
node t. It is calculated by dividing the number of samples of class i by the total number of
samples at that node. The whole formula captures the unpredictability or randomness of
the data. When Entropy is low (close to 0), it means the data are very predictable (or pure).
Conversely, data are very unpredictable (or impure) when Entropy is high. In the context
of decision trees, splits that result in child nodes with low Entropy are generally preferred,
as they lead to clearer distinctions between classes.

After a potential split, considering the different sizes and heterogeneities of the result-
ing child nodes, weighted Entropy can be calculated. It gives the average Entropy across all
child nodes (or subsets) that result from the split, weighted by the size of each child subset:

Weighted Entropy(children) = ∑
c∈Children

|c|
|t| Entropy(c) (20)

where

• |c| represents the number of samples in child node c;
• |t| is the total number of samples in the current node (parent node) before the split.

As such, the division between these two parameters yields a weight for each child
node based on its size relative to the parent node. It ensures that larger child nodes have
a more significant impact on the overall weighted Entropy than smaller child nodes. By
weighing the entropies based on the relative sizes of the child nodes, one can obtain an
appropriately balanced view of the overall disorder or impurity resulting from the split.

A crucial decision criterion, called “Information Gain”, is then computed as the
difference between Entropy and weighted Entropy to measure how well a feature separates
the dataset as follows:

Information Gain = −
k

∑
i=1

pilog2(pi)− ∑
c∈Children

|c|
|t| Entropy(c) (21)
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However, to ensure that a potential split does not merely add complexity without
substantive Information Gain, “Split Information” is then considered:

Split Information = − ∑
c∈Children

|c|
|t| log2

(
|c|
|t|

)
(22)

This parameter gauges the potential for a feature to overfit based on the number and
size of the child nodes it creates. To balance the trade-off between Information Gain and
Split Information, the “Gain Ratio” is computed:

Gain Ratio =
Information Gain
Split Information

=
−∑k

i=1 pilog2(pi)−∑c∈Children
|c|
|t|Entropy(c)

−∑c∈Children
|c|
|t| log2

(
|c|
|t|

) (23)

The Gain Ratio normalizes Information Gain using Split Information, thereby reducing
the potential for overfitting.

The Gini Index is a further measure of impurity, like Entropy. A smaller Gini Index
value indicates a purer node.

Gini Index = 1−
k

∑
i=1

p2
i (24)

where pi is the proportion of samples that belong to class i for a particular node t. The
Gini Index is 0 when all data in a node belong to a single class (pure node), and it is the
maximum when data are evenly distributed across multiple classes. The Gini Index is vital
not only in the initial splitting decisions of the tree but also in the pruning process. When
pruning the tree, branches that result in nodes with high Gini Index values (indicating
impurity or reduced predictive power) are primary candidates for removal. By focusing
on nodes that do not significantly decrease the Gini Index, or in other words, do not add
substantial clarity or predictive power, the pruning process ensures a more optimal and
interpretable tree structure.

CART refers to binary decision trees that leverage the abovementioned metrics to
partition data based on predictor variables and node homogeneity. The optimal division
is chosen from all possible bifurcation trajectories while progressing from the parent to
the child node. This methodology iterates until halting conditions are met, and no further
decrease in node heterogeneity is possible. After reaching its maximal depth, the decision
tree undergoes pruning, which removes nodes with minimal informational values. This
pruning process is mathematically represented as the Complexity Cost:

Cost(T) = ∑
leaves∈T

wleaf × errorleaf + α× (number of terminal nodes) (25)

where

• wleaf is the proportion of samples reaching the leaf;
• errorleaf is the error at that leaf;
• α controls the trade-off between the complexity and fit of the tree.

Pruning aims to minimize this cost to avoid overfitting by removing sections of the
tree that provide little predictive power, effectively reducing its size.

Pruned CART models deploy cross-validation through cost-complexity techniques
for refinement, aiming to reduce average mean square prediction errors and enhance
model stability. The CART decision tree’s adaptability, resilience to outliers, and proficient
management of absent data underscore its versatility in clinical data analysis.

We employed CART in the pruning mode to avoid overfitting, which internally uses
cross-validation to select the best-pruned tree. This algorithm was fed with the variables
that correlated with glycemic control, while those that did not contribute to the prediction
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were removed to attain the optimal model. We allowed for the automatic selection of
maximum growing levels (i.e., 5), with 5 as the minimum number of cases for parent nodes
and 3 for child nodes. Regarding the Gini impurity measure, a minimum change in the
improvement of 0.0001 was set (the maximum difference of risk in standard errors was 0).

2.4.5. Method Comparison and Agreement

The area under the receiver operating characteristic curve (AUROC) was used to
evaluate the performance of our predictive models. Specifically, it revealed the discrimi-
natory abilities of the CART and binary regression techniques for predicting inadequate
glycemic control.

The receiver operating characteristic (ROC) curve is a graphical plot illustrating the
diagnostic capacity of a binary classifier system as its discrimination threshold varies.
The ROC curve is created by plotting the true positive rate (sensitivity) against the false
positive rate (1 specificity) at various threshold settings. The true positive rate denotes
the proportion of actual positives correctly identified as such, while the false positive rate
represents the proportion of negatives incorrectly classified as positives.

The area under the ROC curve (AUROC) is a crucial metric derived from the ROC
curve that quantifies the overall ability of the model to discriminate between the two
categories under consideration. The AUROC value ranges from 0 to 1, where a value
of 0.5 suggests no discrimination (akin to random guessing), and a value of 1 indicates
perfect discrimination. Essentially, a higher AUROC value signifies that the model has
a higher likelihood of classifying outcomes correctly. In the context of binary logistics
regression, the AUROC interprets the probability estimates that each case belongs to a
particular category (e.g., good versus poor glycemic control) based on predictor variables.
A higher area under the curve indicates that this model has a good measure of separability,
successfully distinguishing between patients with different outcomes based on the input
variables. When it comes to CART algorithms, which are typically more complex due to
their hierarchical structure, the AUROC is calculated using predicted probabilities derived
from the classification tree. These probabilities, representing the likelihood of each case,
belong to a specific category and are assessed at each terminal node of the tree. As with
logistics regression, a higher AUROC value indicates a more robust model that is adept at
segregating outcomes based on the decision rules generated during the analysis.

We operated the Kappa coefficient to measure consistency between risk classes derived
from two-step clustering and CART decision tree analysis. The Kappa coefficient measures
the agreement between two categorical methods, correcting for agreement via chance.
It is calculated using a contingency table, where the observed agreement (Po) and the
probability of expected agreement (Pe) are assessed. The Kappa value is derived using the
following formula:

Kappa =
Po − Pe

1− Pe
(26)

The kappa coefficient ranges from −1 (total disagreement) to +1 (perfect agreement),
and a score of 0 indicates an agreement equivalent to chance. Guidelines for interpreting the
strength of the kappa agreement vary, but one common interpretation by Landis and Koch
(1977) [60] is as follows: <0—Poor agreement, 0 to 0.20—Slight agreement, 0.21 to 0.40—Fair
agreement, 0.41 to 0.60—Moderate agreement, 0.61 to 0.80—Substantial agreement, 0.81 to
1.00—Almost perfect agreement. In our research, we categorized the results of CART and
two-step cluster analysis into three risk classes to enable method agreement measurements.

2.4.6. Handling Outliers

The outlier’s problem for continuous variables (4 cases for disease duration) was
handled by running the prediction models, including and excluding the respective records
to check the stability of our results.
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3. Results
3.1. Bivariate Analysis
3.1.1. Demographic and Socioeconomic Characteristics

A total of 79 patients were included in the study. In total, 46 patients (58.2%) had a
mean A1C ≥ 7.5 g/dL, corresponding to poor glycemic control.

Table 2 shows the results for each demographic and socioeconomic variable studied and
the associated p-value for appropriate statistical tests and correlation with glycemic control.

Table 2. Demographic and socioeconomic characteristics.

Variable Categories
Frequency of Good
Glycemic Control
(% of Category)

Frequency of Poor
Glycemic Control
(% of Category)

Total
(% of Grand Total) p-Value

Gender
Male 22 (48.9%) 23 (51.1%) 45 (57%)

0.14Female 11 (32.4%) 23 (67.6%) 34 (43%)

Family income
High 8 (80%) 2 (20%) 10 (12.7%)

<0.01Average 18 (45%) 22 (55%) 40 (50.6%)
Low 7 (24.1%) 22 (75.9%) 29 (36.7%)

Living
Environment

Urban 26 (50%) 26 (50%) 52 (65.8%)
0.04Rural 7 (25.9%) 20 (74.1%) 27 (34.2%)

Maternal
education

≤ISCED 4 24 (36.4%) 42 (63.6%) 66 (83.5%)
0.028>ISCED 4 9 (69.2%) 4 (30.8%) 13 (16.5%)

Paternal education
≤ISCED 4 27 (39.1%) 42 (60.9%) 69 (87.3%)

0.305>ISCED 4 6 (60%) 4 (40%) 10 (12.7%)

3.1.2. Disease Characteristics

Tables 3 and 4 show the results for each variable studied and the associated p-value for
appropriate statistical tests (Chi-square or Fisher exact) for correlation with the glycemic control.

Table 3. Disease characteristics—categorical variables.

Variable Categories
Frequency of Good

Glycemic Control (%
of Category)

Frequency of Poor
Glycemic Control
(% of Category)

Total
(% of Grand Total) p-Value

Family history of
diabetes

Yes 7 (38.9%) 11 (61.1%) 18 (22.8%)
0.778No 26 (42.6%) 35 (57.4%) 61 (77.2%)

Type of onset
(Ketoacidosis

severity)

None 5 (62.5%) 3 (37.5%) 8 (10.1%)
0.384Mild/moderate 23 (39.7%) 35 (60.3%) 58 (73.4%)

Severe 5 (38.5%) 8 (61.5%) 13 (16.5%)

A1C at onset
<7.5 g/dL 8 (80%) 2 (20%) 10 (12.7%)

0.011≥7.5 g/dL 25 (36.2%) 44 (63.8%) 69 (87.3%)

Age of onset
<5 years 6 (68.4%) 13 (31.6%) 19 (24.7%)

0.2755–10 years 10 (34.5%) 19 (65.5%) 29 (37.7%)
>10 years 15 (51.7%) 14 (48.3%) 29 (37.7%)

Nutritional status
at onset

Underweight 11 (64.7%) 6 (35.3%) 17 (21.5%)
0.08Normal weight 18 (37.5%) 30 (62.5%) 48 (60.8%)

Overweight/obese 4 (28.6%) 10 (71.4%) 14 (17.7%)

Autoimmune
diseases

Yes 2 (33.3%) 4 (66.7%) 6 (7.6%)
1.0No 31 (42.5%) 42 (57.5%) 73 (92.4%)

Hypoglicemia
episodes

Yes 4 (36.4%) 7 (63.6%) 11 (13.9%)
0.754No 29 (42.6%) 39 (57.4%) 68 (86.1%)



Mathematics 2023, 11, 4388 13 of 28

Table 3. Cont.

Variable Categories
Frequency of Good

Glycemic Control (%
of Category)

Frequency of Poor
Glycemic Control
(% of Category)

Total
(% of Grand Total) p-Value

Ketoacidosis
episodes

Yes 0 (0%) 15 (100%) 15 (19%)
<0.01No 33 (51.6%) 31 (48.4%) 64 (81%)

Viral infections
Yes 11 (30.6%) 25 (69.4%) 36 (45.6%)

0.064No 22 (51.2%) 21 (48.8%) 43 (54.4%)

Bacterial infections
Yes 11 (32. 4%) 23 (67.6%) 34 (43%)

0.140No 22 (48.9%) 23 (51.1%) 45 (57%)

Microalbuminuria
Yes 8 (32%) 17 (68%) 25 (31.6%)

0.231No 25 (46.3%) 29 (53.7%) 54 (68.4%)

Serum Cholesterol
≥200 mg/dL 3 (12%) 22 (88%) 25 (31.6%)

<0.01<200 mg/dL 30 (55.6%) 24 (44.4%) 54 (68.4%)

Serum
Triglycerides

≥150 mg/dL 2 (15.4%) 11 (84.6%) 13 (16.5%)
0.035<150 mg/dL 31 (47%) 35 (53%) 66 (83.5%)

Insulin Regimen 1 12 (34.3%) 23 (65.7%) 35 (44.3%)
0.2292 21 (47.7%) 23 (52.3%) 44 (55.7%)

Table 4. Disease characteristics—continuous variables.

Variable Descriptive
Parameter

Glycemic Control
p-Value

Good Poor

Disease duration
(months)

Mean 68.09 90.65

0.04

StdDev 57.78 58.27
IQR 64 87
MIN 6 7
MAX 252 252
95%CI 47.57–88.55 73.35–107.96

BMI Z-score

Mean −1.32 −0.32

0.01

StdDev 1.55 1.72
IQR 2.47 2.52
MIN −3.91 −4.61
MAX 1.59 2.93
95%CI −1.87–−0.77 −0.83–0.19

NLR

Mean 1.91 1.73

0.477

StdDev 1.28 1
IQR 0.97 1.02
MIN 0.55 0.52
MAX 7.15 5.09
95%CI 1.46–2.37 1.43–2.03

MPV (fL)

Mean 10.55 10.67

0.62

StdDev 0.9 1.24
IQR 1 1.35
MIN 8.7 7.9
MAX 12.8 13.6
95%CI 10.22–10.87 10.3–11.04

StdDev—standard deviation, IQR—interquartile range; MIN—minimum observed value; MAX—maximum
observed value; 95%CI—95% confidence interval for the mean; BMI—body mass index; NLR—Neutrophil-to-
lymphocyte ratio; MPV—mean platelet volume.

3.2. Binary Logistic Regression

The variables that correlated with glycemic control were the category of A1C at
onset, with at least one episode of ketoacidosis (apart from disease onset), the BMI z-score
(centered around the mean), low or average family income (dummy variable derived from
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the initial categorical variable) and the last-documented value for total cholesterol above
200 mg/dL; this provided an adequate binary logistic regression model for predicting
glycemic control. The model had an overall efficiency of 83.5% (87.9% for predicting
adequate glycemic control and 80.4% for predicting poor glycemic control) and satisfactory
goodness of fit (Hosmer–Lemeshow p-value = 0.655). Table 5 provides details regarding the
statistical significance of the included parameters as well as the 95% confidence intervals
for the regression coefficients, as calculated via the BCa method.

Table 5. Binary regression model.

Variable β p
BCa 95% CI for β

Lower Higher

Ketoacidosis episodes (X1) 21.1 <0.01 17.62 39.2
A1C at onset ≥ 7.5 g/dL (X2) 3.12 <0.01 0.38 30.25

Family income low or average (X3) 2.73 0.018 0.32 57.02
Cholesterol ≥ 200 mg/dL (X4) 2.43 0.029 0.15 38.74

BMI Z-score (mean-centered) (X5) 0.58 <0.01 0.1 1.94
Constant −5.57 <0.01 −24.84 −5.08

β—regression coefficient; BCa 95% CI for β—95% confidence interval for β calculated using the bias-corrected
accelerated method; BMI (mean-centered)—body mass index centered around the mean of the sample.

Consequently, according to (1)–(4):

logit(p) = ln
(

p
1− p

)
= −5.57 + 21.1X1 + 3.12X2 + 2.73X3 + 2.43X4 + 0.58X5

This equation provides the log odds of the probability of poor glycemic control given
the predictor values. The odds can then be converted to the probability using the following
equation:

p =
elogit(p)

1 + elogit(p)

3.3. Two-Step Clustering Algorithm

We implemented a two-step cluster algorithm using Akaike’s Information Criterion.
The variables included were maternal education, living environment, family income, ke-
toacidosis episodes, and the presence of elevated triglycerides. The resulting model defined
four clusters with an average silhouette of cohesion separation at 0.6, indicative of good
model quality. An overview of the model and its resulting clusters is presented in Table 6.

Table 6. Two-step cluster analysis overview.

Variable Category Cluster 1 Cluster 2 Cluster 3 Cluster 4 Predictor
Importance

Count - 19 (24.1%) 19 (24.1%) 28 (35.4%) 13 (16.5%) -

Higher maternal
education

No 19 (100%) 19 (100%) 28 (100%) 0 (0%)
1Yes 0 (0%) 0 (0%) 0 (0%) 13 (100%)

Living environment Rural 8 (42.1%) 19 (100%) 0 (0%) 0 (0%)
0.73Urban 11 (57.9%) 0 (0%) 28 (100%) 13 (100%)

Family income
Low 9 (47.4%) 11 (57.9%) 9 (31.1%) 0 (0%)

0.67Average 10 (52.6$) 8 (42.1%) 19 (67.9%) 3 (23.1%)
High 0 (0%) 0 (0%) 0 (0%) 10 (76.9%)

Ketoacidosis episodes Yes 15 (78.9%) 0 (0%) 0 (0%) 0 (0%)
0.73No 4 (21.1%) 19 (100%) 28 (100%) 13 (100%)

Elevated triglycerides Yes 12 (63.2%) 0 0 1 (7.7%)
0.49No 7 (36.8%) 19 (100%) 28 (100%) 12 (92.3%)

A visual representation of the cluster characteristics is further provided in Figure 1.



Mathematics 2023, 11, 4388 15 of 28

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 29 
 

 

Family income 
Low 9 (47.4%) 11 (57.9%) 9 (31.1%) 0 (0%) 

0.67 Average 10 (52.6$) 8 (42.1%) 19 (67.9%) 3 (23.1%) 
High 0 (0%) 0 (0%) 0 (0%) 10 (76.9%) 

Ketoacidosis epi-
sodes 

Yes 15 (78.9%) 0 (0%) 0 (0%) 0 (0%) 
0.73 No 4 (21.1%) 19 (100%) 28 (100%) 13 (100%) 

Elevated triglyc-
erides 

Yes 12 (63.2%) 0 0 1 (7.7%) 
0.49 No 7 (36.8%) 19 (100%) 28 (100%) 12 (92.3%) 

A visual representation of the cluster characteristics is further provided in Figure 1. 

 
Figure 1. Cluster comparison. 

The frequency of poor glycemic control across clusters is presented in Figure 2. The 
differences observed are statistically significant (p < 0.01). 

 

Figure 1. Cluster comparison.

The frequency of poor glycemic control across clusters is presented in Figure 2. The
differences observed are statistically significant (p < 0.01).

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 29 
 

 

Family income 
Low 9 (47.4%) 11 (57.9%) 9 (31.1%) 0 (0%) 

0.67 Average 10 (52.6$) 8 (42.1%) 19 (67.9%) 3 (23.1%) 
High 0 (0%) 0 (0%) 0 (0%) 10 (76.9%) 

Ketoacidosis epi-
sodes 

Yes 15 (78.9%) 0 (0%) 0 (0%) 0 (0%) 
0.73 No 4 (21.1%) 19 (100%) 28 (100%) 13 (100%) 

Elevated triglyc-
erides 

Yes 12 (63.2%) 0 0 1 (7.7%) 
0.49 No 7 (36.8%) 19 (100%) 28 (100%) 12 (92.3%) 

A visual representation of the cluster characteristics is further provided in Figure 1. 

 
Figure 1. Cluster comparison. 

The frequency of poor glycemic control across clusters is presented in Figure 2. The 
differences observed are statistically significant (p < 0.01). 

 
Figure 2. Frequency of poor glycemic control across clusters.

3.4. CART Decision Tree

The CART decision tree model was generated based on the following variables: disease
duration (continuous), low family income (dichotomous), living conditions (dichotomous),
A1C at onset (dichotomous), episodes of ketoacidosis (dichotomous), and elevated choles-
terol (dichotomous). The resultant model is presented in Figure 3.
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Figure 3. CART decision tree.

The CART decision tree showed an 88.6% overall accuracy (91.3% for predicting
poor glycemic control and 84.8% for predicting adequate glycemic control). The decision
paths indicated by our algorithm were distinguished between separate risk categories
defined by a series of particular traits. Consequently, three risk levels were identified.
Table 7 presents an overview of the identified risk categories, the characteristics of patients
within each category, and the percentage of inadequate glycemic control observed in each
analyzed subgroup.
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Table 7. CART risk categories and subgroup characteristics composed.

Risk
Category

Poor Glycemic
Control (%) Subgroup Characteristics

High

100%
22 patients with high cholesterol, 17 with a disease duration above 63 months, and 6 with a

disease duration under 63 months but living in a rural environment.

12 patients with normal cholesterol, 6 of which presented at least one episode of
ketoacidosis (excluding onset) and 6 of which did not present any episodes of ketoacidosis
but had an onset A1C above 7.5 g/dL, a disease duration above 89.5 months and lived in an

urban environment.

Moderate
61.5% 13 patients with normal cholesterol levels, no ketoacidosis episodes, an A1C onset above

7.5 g/dL, a disease duration under 89.5 months, and a low family income.

33.3% 3 patients with normal cholesterol levels, no ketoacidosis episodes, an onset of A1C above
7.5 g/dL, and disease duration above 89.5 months, originating from a rural environment.

Low

16.7%
18 patients with normal cholesterol levels, average or high family income, a disease

duration of 89.5 months or under, an onset A1C of 7.5 g/dL or under, and no ketoacidosis
episodes.

0% 8 patients with normal cholesterol levels, no ketoacidosis episodes, and an onset A1C of
7.5 g/dL or under.

0% 3 patients with high cholesterol levels had a disease duration of 63 months or less and lived
in an urban environment.

3.5. Comparison and Agreement between Methods
3.5.1. CART vs. Regression

Figure 4 depicts the receiver operating characteristic (ROC) curve, which maps the
predicted probabilities of inadequate glycemic control as determined by both the CART
and binary regression methods. The AUROC for CART was 0.954, while the value for
binary regression was 0.916.
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3.5.2. Two-Step-Clustering vs. CART

Comparing the results from the CART decision tree and two-step clustering analysis,
we evaluated the distribution of terminal nodes and their corresponding risk classes within
the generated clusters. Risk classes were defined according to the proportion of patients
exhibiting inadequate glycemic control within the node or the cluster. Accordingly, high
risk was defined by a proportion of 66.6–100% (cluster 1 and nodes 4, 6, 10, 15), moderate
risk as 33.3–66.5% (clusters 2 and 3 and nodes 14, 16, 13) and low risk as 0–33.2% (clusters 4
and nodes 8, 9).

A visual representation of patient distributions within the terminal nodes and across
clusters is given in Table 8.

Table 8. Patient distribution across clusters and terminal nodes with corresponding risk class (%
across column categories).

High Risk Medium Risk Low Risk

Node 4 Node 6 Node 10 Node 15 Node 14 Node 16 Node 13 Node 8 Node 9

High risk Cluster 1 6 (100%) 9 (52.9%) 2 (40%) 1 (16.7%) 1 (7.7%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Moderate
risk

Cluster 2 0 (0%) 4 (23.5%) 3 (60%) 0 (0%) 5 (38.5%) 3 (100%) 2 (11.1%) 2 (25%) 0 (0%)

Cluster 3 0 (0%) 2 (11.8%) 0 (0%) 4 (66.7%) 7 (53.8%) 0 (0%) 9 (50%) 5 (62.5%) 1 (33%)

Low risk Cluster 4 0 (0%) 0 (0%) 0 (0%) 1 (16.7%) 0 (0%) 0 (0%) 7 (38.9%) 1 (12.5%) 2 (66%)

The kappa coefficient of agreement between the methods was 0.363, highlighting their
capacity to achieve a ‘fair agreement’ when categorizing patients into the three risk classes
(p < 0.01).

3.6. Handling Outliers

We excluded the four outliers in our data regarding disease duration (204 months or
above). Nevertheless, cluster analysis revealed similar patterns regardless of the missing
patients, while binary logistics regression had a marginally reduced overall performance
(82.7% overall accuracy; 87.1% for predicting good glycemic control; 79.5% for predicting
poor glycemic control; Hosmer–Lemeshow p-value = 0.308; Au-ROC = 0.908). Including the
disease duration variable in the binary regression model with the outlier patients filtered
out did not significantly contribute to its prediction capacities (p = 0.208).

When it came to the CART algorithm, removing outliers yielded a similar tree. Never-
theless, in the selection process, two of these predictors were swapped (elevated cholesterol
and the presence of ketoacidosis). Notably, the cut-off values for disease duration in subse-
quent nodes remained unchanged, and the overall performance of the tree had a marginal
reduction (overall accuracy: 88%, 83.9% for predicting good glycemic control, 90.9% for
predicting poor glycemic control, AUROC-0.949).

4. Discussion

Our study included 79 pediatric patients with type 1 diabetes, for which we attempted
to analyze potential predictors for adequate long-term glycemic control. This approach
and sample size were successfully implemented before [61]. Our main findings, as re-
vealed by bivariate analysis with references highlighting similar results, are showcased in
Appendix A. Essentially, the bivariate analysis found correlations between poor glycemic
control (A1C > 7.5 g/dL) and longer disease duration, a higher BMI Z-score, A1C at on-
set > 7.5 g/dL, lower family income, rural living environment, lower maternal education
level, experiencing ketoacidosis episodes beyond the onset of disease, total cholesterol
levels > 200 mg/dL and triglyceride levels > 150 m/dL. We further leveraged the potential
of three distinct analytical methods—binary logistic regression, two-step clustering, and
CART decision trees—to uncover predictors of long-term glycemic control. Each method
offered unique advantages, revealing various layers of understanding while confirming the
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influence of clinical and socioeconomic variables. Binary logistic regression found correla-
tions between poor glycemic control and ketoacidosis episodes, A1C at onset > 7.5 g/dL,
lower family income, total cholesterol levels >200 mg/dL, and BMI Z-score. Meanwhile,
cluster analysis grouped patients with poor glycemic control together if they experienced
ketoacidosis episodes, mothers lacking higher education, rural background, and triglyc-
eride levels >150 m/dL. The CART decision tree further highlighted a higher risk for poor
glycemic control with increasing disease duration, total cholesterol levels >200 mg/dL,
lower family income, and rural living conditions.

Binary logistics regression quantified with an accuracy rate of 83.5% the significance
of each predictor, notably identifying the strong association between ketoacidosis episodes
(β = 21.1, p < 0.01) and uncontrolled A1C levels at onset (β = 3.12, p < 0.01) with poor
glycemic control. Family income, elevated cholesterol, and BMI Z-score were also signifi-
cant, showcasing the complex interplay between socioeconomic status, body weight, and
glucose control. On a similar sample size but with arbitrary cut-off points based on the
A1C values distribution documented in the study population., Niba et al. [14] showed a
statistically independent association between having a mother as the primary caregiver
(β = −3.436, p < 0.01) and good glycemic control.

Two-step clustering blended the strengths of both hierarchical and partitioning meth-
ods, offering an advanced technique for data categorization. By initially employing the
k-means algorithm to form numerous small sub-clusters and subsequently using hierarchi-
cal agglomerative clustering, the algorithm ensured precise and interpretable groupings.
With a good average silhouette of cohesion separation (>0.5), we are in agreement with
Dalmaijer ES et al. [62], suggesting that sufficient statistical power can be achieved with
relatively small samples. Our approach highlights the importance of socioeconomic factors
and a nuanced interplay between socioeconomic factors and indicators in relation to dis-
ease progression and associated risk, which appear to synergistically influence each other.
Cluster 1, marked by statistically significant poor glycemic control (94%), mainly comprises
patients with at least one ketoacidosis episode (beyond onset), elevated triglycerides, and
those who come from families with a low-to-average income lacking maternal higher
education. Conversely, in Cluster 4, only 30.8% exhibited inadequate glycemic control.
This group had protective factors like maternal tertiary education, urban living, and a high
family income. None experienced ketoacidosis, and over 90% had normal triglyceride
levels. Clusters 2 and 3 presented intermediate traits compared to Clusters 1 and 4. Both
featured the absence of maternal higher education and had normal triglyceride levels.
Cluster 2, however, demonstrated a greater prevalence of poor glycemic control and was
entirely rural. Cluster 3 only included urban patients. Neither had high-income families.
Nevertheless, Cluster 3 leaned toward an average family income, while Cluster 2 had more
low-income families. This two-step clustering algorithm emphasized the profound inter-
play between socioeconomic and clinical factors in influencing glycemic control. The stark
disparities between clusters underscore the imperative to understand and address both
socioeconomic and clinical factors collectively in the pursuit of improving patient outcomes
in diabetes care. Rohan et al. [63] sufficiently documented the importance of two-step
cluster analysis in profiling diabetic children in terms of different self-management groups
based on youth, maternal, and paternal reports. An analysis of variance indicated that the
pattern of less optimal diabetes and self-management was associated with worse glycemic
control, suggesting interventions based on these specific patterns of self-management to
improve the management of diabetes.

CART decision trees provided a holistic, visual framework to identify complex interac-
tions between predictors and outcomes. With an AUROC of 0.954, it slightly outperformed
logistic regression’s 0.916. CART, which pinpointed risk groups based on disease duration,
cholesterol levels, living conditions, and family income, offered an 88.6% accuracy rate
in predicting glycemic outcomes. CART decision trees are robust at handling small sam-
ples and yielding stable predictive performances above 10 entries per variable, as shown
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in previous implementations studying various clinical dichotomous outcomes in small
datasets [64–66].

The comparison of CART and two-step clustering revealed nuances in patient strati-
fication. Some nodes and clusters showed strong agreement, while others demonstrated
considerable variation. This variation suggests that while both methods can be used to
stratify patients, they might capture different aspects or nuances of data, which can be
beneficial depending on the clinical question or operational need.

The Kappa coefficient pointed out a fair agreement of 0.363 between the two methods,
suggesting they capture different but complementary aspects of the data. This fair agree-
ment might indicate the utility of employing both methods for a more comprehensive risk
assessment, depending on the clinical question at hand or the research context.

Table 9 provides an overview of how each of the advanced methods implemented in
our study impacted the interpretation of variables that correlated with glycemic control via
bivariate analysis.

Table 9. Impact of advanced data processing methods on clinical interpretation.

Variable Method Key Findings Clinical Implications

Ketoacidosis episodes

Binary logistic regression Highest impact variable in binary
logistics regression.

Essential predictor is prevalent
across all methods.

Steep modulatory impact across
the conglomeration of all other

predictor categories in CART and
two-step cluster analysis.

High impact predictor.
Requires attentive management

and assertive prevention.

Two-step cluster analysis

CART

Family Income

Binary logistic regression
Essential predictor is prevalent

across all methods.

An integrative approach is
necessary to handle the

environmental conditions of
pediatric patients with type 1

diabetes. In particular,
interventions should be adapted

to caretaker comprehension levels
and available resources with

tailored information and
management strategies for each

category.

Two-step cluster analysis

CART

Living environment
Two-step cluster analysis Important predictor, prevalent

across methods that employ
patient categorizationCART

Higher maternal
education Two-step cluster analysis

Important modulatory effect
when taken in conjunction with

other essential socioeconomic and
disease-related characteristics

A1C at onset

Binary logistics regression
Prevalent across prediction

algorithms

Disease onset can predict future
outcomes. More aggressive
screening strategies may be

warranted.
CART

Elevated Cholesterol
Binary logistics regression Prevalent across prediction

algorithms
An integrated approach to

lifestyle management and risk
factor mitigation is essential.

While some predictors may have
a smaller impact on glycemic

control, their modifiable nature
presents unique therapeutic
opportunities for an overall
increased effect on clinical

outcomes.

CART

Elevated Triglycerides Two-step cluster analysis
Modulatory effect in conjunction
with other disease characteristics

and socioeconomic status

BMI Z-score Binary logistics regression Low impact predictor, but present
nonetheless
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Table 9. Cont.

Variable Method Key Findings Clinical Implications

Disease duration CART Modulatory impact on disease
profiles

Dynamic changes within the
disease patterns require attentive
monitoring of pediatric patients

with type 1 diabetes.
Treatment up-scaling may take
this aspect into consideration.

Notably, all three methods underscored the influence of socioeconomic factors on
glycemic outcomes. However, their emphasis was varied and nuanced; they played a
pivotal role in two-step clustering, which included all three of the variables related to
socioeconomic status. Family income was consistently present in all three techniques
while living conditions featured in only two of the methods employed. In addition, the
recurrent appearance of ketoacidosis across all methods underscored its severity in disease
manifestation within our studied group. CART analysis uniquely emphasized disease dura-
tion, suggesting stratified exposures to determinants and hinting at a more heterogeneous
patient profile. While the BMI Z-score was confined to regression, the inclusion of triglyc-
erides in clustering underscored socioeconomic impacts on health. Elevated cholesterol
was a generic predictor in regression, but in CART, it either intensified vulnerabilities or
became less prominent against stronger determinants. Suboptimal A1C at onset played a
significant role in regression, but in CART, it relied on interactions like disease duration
and environmental factors.

Strengths and Limitations

The main limitation of our study is related to the small sample size. Nevertheless, our
results align with other reports regarding performance and adaptability to small sample
sizes [64–67]. We overcame this drawback by leveraging the capacity of machine-learning
algorithms to generate patterns tailored to unique clinical interpretations. However, another
issue relates to the retrospective nature of this study.

Retrospective studies are inherently susceptible to certain biases. Recall bias occurs
when collected data are dependent upon the memory of the participants involved. This
may impact variables such as family income or the education levels of parents. Neverthe-
less, these records were carefully checked for consistency with the general practitioners’
databases if proof of income or education level was missing at admittance. Future research
in prospective studies could mitigate these aspects by asking participants to provide proof
of income or education level. Recording and selection bias are also capable of influencing
data. Recording bias refers to the fact that the methods of recording data were not intended
for the research question addressed by our study but rather for the clinical interpretation
of each individual case. The studied variables, however, employed standardized quantifi-
cation methods used in the Pediatric Clinical Hospital of Sibiu, in particular referring to
laboratory and anthropometric measurements. Selection bias may have arisen due to the
inclusion only of complete datasets, as previously described. This may impact the general-
izability of our findings. However, two key points should be considered. Firstly, our results
are in agreement with previous findings on larger datasets concerning the correlations
found between glycemic control and its predictors. Secondly, the main purpose of this study
was to showcase the potential role of advanced statistical methods and machine-learning
algorithms to enhance data interpretation. While our findings require larger datasets from
multiple centers to provide a broader, more generalizable overview of glycemic control
predictors in pediatric type 1 diabetic patients, they still provide valuable input pertaining
to the particular population in Sibiu County. More importantly, our design offers a solid
framework for approaching similar research questions in different datasets—both in small
samples whereby the results may influence local practices or larger ones where the purpose
is the generalization of a conclusion.
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Another point in terms of strengths and limitations relates to the intrinsic discrimina-
tion capacity of each method, given their distinct analytical perspectives. Binary logistics
regression is notable for its ability to evaluate multiple predictors concurrently, offering
a holistic predictive model. For instance, in our sample, the occurrence of ketoacidosis
episodes markedly overshadowed other factors like the onset of A1C, family income, choles-
terol levels, or BMI Z-score in terms of influence. However, the comprehensive insight
provided by binary regression remains invaluable for each variable considered. While
ketoacidosis is a significant complication in diabetes and a critical indicator of glycemic
control, its prevention is already a key management target [38,39]. Other predictors like the
onset of A1C and family income, despite their substantial impact, offer limited intervention
opportunities. Arguably, more diligent screening programs could exert some influence on
the values of A1C onset; still, such initiatives are notoriously cumbersome. Cholesterol
levels and weight status, despite having modest effects, offer promising paths for thera-
peutic intervention to potentially improve glycemic control outcomes. Importantly, while
binary logistic regression can be influenced by outliers, consistent results upon outlier
exclusion in our analysis addressed this concern. By contrast, the CART algorithm has
a sequential, hierarchical strategy to craft detailed patient subgroups, which are crucial
for personalized clinical interventions. Our algorithm highlights the importance of factors
akin to those in binary regression yet facilitates a deeper patient segmentation in relation to
the living environment and disease duration. Notably, the inclusion of disease duration
was insightful, especially given its outlier values, exemplifying CART’s robustness against
such extremes. This resilience is rooted in CART’s methodology, prioritizing node purity
enhancement with each division based on the decision variable’s optimal cut-off values.
However, the risk of overfitting, especially in smaller samples, remains an acknowledged
limitation of CART. To alleviate this, we employed CART in the pruning mode. In parallel,
two-step clustering analysis effectively identifies patient subgroups but can be skewed
by outliers due to its reliance on centroid calculations. Nevertheless, it did not select
the variable with outliers(disease duration) prior to or after extreme values have been
removed. Two-step clustering analysis revealed interplays between disease characteristics
and socio-economic factors, solidifying ketoacidosis episodes as a primary predictor and
highlighting unique variables like maternal education level and triglyceride levels. This
insight is invaluable for tailoring interventions, considering lifestyle factors and caregiver
comprehension capacities. When viewed collectively, the complementary nature of these
methods is clear. Each has its vulnerabilities, but their combined use in our study helped
mitigate these issues, reinforcing our conclusions’ reliability.

An integrated approach in clinical decision-making allows clinicians to provide tai-
lored care for specific patient subgroups. In our study, each method brought a unique
perspective on the clinical data. Two-step clustering-segmented patients based on com-
mon traits emphasized the socioeconomic and clinical influences on glycemic control.
Binary logistic regression predicted the likelihood of a poor control using specific variables,
quantifying each predictor’s impact. The CART decision tree blended both segmentation
and prediction, visually representing patient profiles and showing how combined factors
influence outcomes step by step.

All three methods offer insights into patient profiles, each adding its unique layer to
data interpretation and aiding clinicians in personalized care for better diabetes outcomes.
Specific populations may respond better to tailored interventions, as described, for example,
in patients with type 2 diabetes, whereby low-income patients show improvements in
glycemic control upon their inclusion in chronic care management programs, which include
patient visits and education [68].

Our results highlight the diverse factors influencing glycemic control, from clinical to
socioeconomic aspects. Future research should investigate why methods differ in patient
groups and consider including more variables or qualitative data for deeper understanding.
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5. Conclusions

Exploring pediatric patients with type 1 diabetes requires a holistic understanding
of the determinants of glycemic control that have emerged based on advanced statistical
methods. Binary logistics regression quantified relationships, the two-step clustering
algorithm underscored the importance of socioeconomic and clinical attributes, while the
CART decision tree revealed the interplay between intricate variables. Together, these
methodologies emphasize the concept of complementarity, given that no single approach
can capture by itself a complete view of such complex interactions. The variations observed
in stratifications between clustering and CART analysis highlight the richness of clinical
data and underscore the need for an integrated analytical framework. Future research
should consider combining these techniques, delving deeper into these nuances, and
seeking to merge qualitative and quantitative insights. Such an integrated approach holds
promise for a more tailored and evidence-based care paradigm in pediatric type 1 diabetes
management.

Author Contributions: Conceptualization, B.N. and M.O.N.; methodology, B.N. and M.O.N.; soft-
ware, B.N. and M.O.N.; validation, B.N.; formal analysis, B.N.; investigation, B.N. and I.N.; resources,
B.N.; data curation, B.N. and M.O.N.; writing—original draft preparation, B.N.; writing—review and
editing, B.N., M.O.N. and I.N.; visualization, B.N. and M.O.N.; supervision, B.N.; project administra-
tion, B.N.; funding acquisition, B.N. All authors have read and agreed to the published version of
the manuscript.

Funding: Project financed from Lucian Blaga University of Sibiu research grants LBUS-IRG-2018-04.

Data Availability Statement: The data presented in this study are available upon reasonable request
from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Appendix A. Results Obtained through Bivariate Analysis

In our study, we found no differences between genders concerning glycemic control.
Mohammad et al. [13] found similar results, although when stratifying patients by age
and sex, girls above the age of 15 had a higher prevalence of inadequate glycemic control
when compared to boys in the same age category. Their study included a sample much
larger than ours, thus permitting an adequate analysis of such sub-strata of the population.
Springer et al. found the female sex to be associated with poor glycemic control [23],
while Noorani et al. found no such connection [61], and other studies, such as the one
conducted by Niba et al., found girls to have a lower A1C without, however, reaching
statistical significance [14]. It is difficult to draw a hard conclusion based on the available
inconsistent data. Multiple factors pertaining to, but not limited to, geographical and
cultural particularities, as well as a great variability in physiological changes attributable
to growth, especially during puberty, can all contribute to conflicting results. Further
epidemiological studies may shed light on these aspects.

Socioeconomic factors, including higher family income, urban versus rural environ-
ment, and maternal level of education, showed a significant correlation with better glycemic
control in our study. Interestingly, the paternal level of education did not show any correla-
tion to glycemic control. The relationship between good glycemic control and maternal
involvement in the caregiving of patients with type 1 diabetes has been previously de-
scribed in the literature [14,61]. The greater influence of maternal education in these patients
is, therefore, somewhat to be expected. With regard to socioeconomic status and family
income, there is a well-documented correlation to glycemic control in the literature [23–27].
In addition, a correlation between rural environment and poorer glycemic control has also
been documented, particularly in patients under the age of 26 [69].
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A family history of diabetes showed no correlation to glycemic control in our study.
This is a similar finding to Niba et al. [14]. Fredheim et al. found that a positive family
history of diabetes was correlated with a lower likelihood of presenting with diabetic
ketoacidosis but a higher AIC level over time [28]. Larger samples taking into account
more refined characteristics concerning diabetes type, evolution, and control within the
family may be warranted in order to clarify these aspects. Disease awareness (rather
than mere presence) within the family may play a fundamental role in this regard as a
confounding factor.

We stratified our patients according to the type of onset in a similar fashion to Fredheim
et al. [28]. In contrast to their study, we found no significant correlation between onset
type and glycemic control. This is probably due to the comparatively smaller sample we
used, which did not provide enough statistical power to reach the same conclusions as
Fredheim et al.

A1C levels at onset were a strong predictor for long-term glycemic control in our study.
This result is consistent with other findings in the literature, which show that early glycemic
control has a great prognostic value for the subsequent course of type 1 diabetes [22,30–33].

In relation to the age of onset, we stratified our patients in a similar fashion to Mo-
hammad et al. [13]. Their study concluded that patients with an onset of diabetes under
5 years of age were more likely to have better glycemic control. We did not, however,
find any significant correlation between the onset age category and glycemic control. On
the one hand, inconsistent data might arise due to small sample sizes. This applies both
to our study as well as to the one conducted by Mohammad et al., where the group of
patients with an onset of T1D under the age of 5 was represented by only 23 patients. On
the other hand, there is also a lack of consensus in this regard in the literature. For example,
Samuelsson et al. found that patients with a lower age at T1D onset had higher AIC values
during follow-up [22], in opposition to the results presented by Mohammad et al., while
Svensson et al. had findings similar to ours, with no differences among onset age categories
which closely resembled the ones we utilized [33]. Further studies geared at clarifying
these aspects could shed more light on existing data, particularly if conducted with the
goal of adjusting for various confounding factors that may interfere with the results.

However, weight status at disease onset has been previously linked to glycemic control,
with inconsistent results [13,35]. In our study, patients with poor glycemic control had a
higher BMI z-score than those with adequate control.

We found increasing disease duration to have a significant correlation with poor
glycemic control. McKinney et al. found a similar link with their results indicating increas-
ing mean AIC levels with increasing disease duration [36], similar to Carter et al. [24] and
Hiliard et al. [37].

Various autoimmune diseases are frequently associated with T1D [38]. Our study did
not, however, find a correlation between glycemic control and the presence of these diseases.

Attempting to obtain glycemic control in T1D patients inherently carries the potential
of hypoglycemia episodes. Existing data suggest a possible correlation between lower A1C
levels and the number of hypoglycemia events [39]. Our study did not, however, show a
correlation between glycemic control and the presence or absence of hypoglycemic events
during follow-up. This may be attributed to the small sample size in conjunction with a
more cautious approach to insulin therapy. Ketoacidosis episodes, on the other hand, are
acute manifestations of improper glycemic control and have been found to correlate with
poorer A1C values in T1D patients [39,40]. Our study found similar results.

Microalbuminuria is a potential manifestation of nephropathy that is associated with
type 1 diabetes and constitutes part of the spectrum of microvascular complications related
to this disease [21]. Virk et al. found A1C variability to correlate with the microvascular
complications of T1D [42]. In our study, glycemic control did not correlate with the presence
of microalbuminuria. This is most probably due to inconsistent screening protocols and a
small sample size.
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The systemic dysregulation characteristic of type 1 diabetes often extends beyond
the metabolism of glucose. As such, type 1 diabetes may be associated with a complex
dysmetabolic aggregate, which may sometimes be associated with elevated circulating
lipids. As an image of this spectrum, high-serum cholesterol and triglycerides have been
previously shown to correlate with inadequate glycemic control in patients with type 1
diabetes [13,35]. Our results concur with these findings.

An interplay between viral or bacterial infections and type 1 diabetes has been pre-
viously described in the literature [41]. Our study did not find a correlation between the
presence of one or more viral or bacterial infections requiring hospital admission and
glycemic control. While a dysregulation in glucose metabolism attributable to the acute
changes characteristic of infectious diseases is to be somewhat expected, multiple factors
may come into play when considering their long-term effects on glycemic control in type 1
diabetes patients. The frequency of episodes that require hospitalization within a certain
time frame may be more relevant than their dichotomous presence or absence. However,
our study did not have a large enough sample to evaluate this aspect. Further studies in
this direction may bring a better understanding of the subject.

The neutrophil-to-lymphocyte ratio has been proposed as a predictor for ketoacidosis
in T1D patients [44–46]. Our study showed no differences between glycemic control groups
with regard to this variable. This may be due to the limits imposed by our small sample
size. The same can most probably be stated concerning the mean platelet volume, a marker
for which we found no prognostic value in glycemic control, although there are data to
suggest a possible connection in this regard [47–49].

Treatment regimens did not, in our study, correlate with glycemic control. Niba et al.
found that a treatment regimen based on two administrations a day was associated with
better glycemic control compared with multiple (three or more) injections a day [14]. These
results may, however, be biased due to the upscaling of treatment targeted toward pa-
tients who do not achieve optimal control with only two injections a day. Mohammad
et al. found a higher prevalence of adequate glycemic control in patients with one basal
dose of insulin and three injections of regular insulin every day when compared to either
two injections of premixed intermediate-acting and regular insulin daily or two injections
of intermediate-acting insulin associated with one or more injections of regular insulin
daily [13]. Alemzadeh et al. found that flexible therapy with multiple insulin admin-
istrations improved glycemic control and reduced hypoglycemic episodes [43]. Finally,
insulin pumps have been shown to contradict evidence in the literature. Svoren et al., for
example, found lower A1C values in patients using these pumps and fewer hypoglycemic
events [70], while Holl et al. found no correlation between insulin pump use or multiple in-
sulin injections and A1C values [71]. The lack of a general rule and the conflicting evidence
point toward the necessity of relying on clinical judgment in every case to find a tailored
approach for each patient. The interplay between the numerous factors that intervene in
achieving optimal glycemic control is a key element in guiding treatment decisions.
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