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Abstract: In this paper, a brief survey on the stability of differential systems with impulsive effects is
provided. A large number of research results on the stability of differential systems with impulsive
effects are considered. These systems include impulsive differential systems, stochastic impulsive
differential systems and differential systems with several specific impulses (non-instantaneous
impulses, delayed impulses, impulses suffered by logic choice and impulse time windows). The
stability issues as well as the applications in neural networks are discussed in detail.
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1. Introduction

As is known to all, in the evolution process of many actual systems, variables actively
or passively present the characteristics of sudden changes at some time, which can be
described by impulses or impulsive control. One of the mathematical models with wide
applicability is the impulsive differential system. In addition, time delay is common in
practical systems. The variables of these systems are affected by both the present and the
past states. As a result, impulsive delay differential systems have received a great deal of
attention from early on. On the other hand, strictly speaking, any actual system inevitably
has a variety of random factors, such as internal random parameters, external random
interference and observation noise. Therefore, it is necessary to introduce stochastic effects
into many mathematical models. Stochastic impulsive differential systems have become
one of the most studied issues in recent years.

In the qualitative theory of dynamical systems, finding sufficient conditions to ensure
the stability of the solutions is a common problem, through which many important results
can be obtained [1,2]. It is noted that the essence of ‘impulses’ is to describe or trigger
sudden changes in the state of the system. Therefore, on the one hand, we can describe or
reflect some dynamic processes more realistically through systems with impulsive effects.
On the other hand, we can design appropriate impulsive control according to the actual
demand, which has a positive effect on the system, so as to achieve the desired stability
and other purposes, such as make the unstable system become stable.

Due to the merging, bifurcation, the loss of autonomy and other characteristics of
solutions, the theory of impulsive differential systems is more complex than that of non-
impulsive differential systems. Therefore, researchers have been introducing and improving
research methods over the years. Based on the objective reality, combined with the theoreti-
cal analysis and control requirements, by using the Lyapunov stability theory, Razumikhin
technique, comparison principle, functional analysis theory and other methods, the study
of the stability of impulsive differential equations has achieved a lot of results.
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The study of stochastic systems is developed based on the research of determinis-
tic systems. Some classical research methods have been successfully applied, such as
the Lyapunov method, Lyapunov-Krasovskii functional, Razumikhin technique, Lie alge-
bra, Matrix inequality, Itô’s formula and so on. With the rapid development of research,
scientists have proposed a variety of research methods, such as the Euler-Maruyama
method, average dwell-time method [3], equivalent method [4], Runge-Kutta-Maruyama
method [5], sinh-cosh method [6], sech-function method [7], variational method [8], Haar
wavelet method [9] and so on. Through the application of these methods, researchers have
obtained a significant number of results on stochastic systems.

By analyzing a considerable amount of stability research work, this paper presents a
comprehensive survey on the stability of impulsive differential systems, including analysis
methods, stability results and applications. The organizational structure of this survey is
as follows:

• Section 1 Introduction
• Section 2 Stability of Impulsive Differential Systems

Section 2.1 Stability of Impulsive Differential Systems
Section 2.2 Stability of Impulsive Delay Differential Systems
Section 2.3 Stability of Impulsive Functional Differential Systems

• Section 3 Stability of Stochastic Impulsive Differential Systems
Section 3.1 Stability of Stochastic Impulsive Functional Differential Systems
Section 3.2 Stability of Stochastic Impulsive Delay Differential Systems
Section 3.3 Stability of Stochastic Impulsive Differential Systems with Marko-

vian switching
• Section 4 Stability of Differential Systems with Several Specific Impulses

Section 4.1 Stability of Differential Systems with Non-instantaneous Impulses
Section 4.2 Stability of Differential Systems with Delayed Impulses
Section 4.3 Stability of Differential Systems with Impulses suffered by logic choice
Section 4.4 Stability of Differential Systems with Impulse Time Windows

• Section 5 Applications in Neural Networks
• Section 6 Discussion

Attention. In this paper, for the conditions that each system needs to meet and the
corresponding definitions of various stability systems, please refer to the original reference
literature for details. For the sake of brevity, this paper only describes the common parts of
each system, summarizes the research methods, shows some research results, and finds
some new trends.

Unless otherwise specified, the following notations are used throughout the paper.
Notations. Let R, R+ and N denote the set of real numbers, non-negative real numbers

and positive integers, respectively. Let Rn be the n-dimensional Euclidean space, and ‖ · ‖
denotes the Euclidean norm on Rn. Let C([−τ, 0], Rn) denote the family of φ : [−τ, 0] →
Rn, φ is continuous everywhere except a finite number of points t̂ at which φ(t̂+) and
φ(t̂−) exist, and φ(t̂+) = φ(t̂). Let {Ω, F, {Ft}t≥0, P} be a complete probability space with
a filtration {Ft}t≥0 satisfying the usual conditions (i.e., right continuous and F0 containing
all p-null sets). Let w(t) = (w1(t), w2(t), · · · , wm(t))T be an m-dimensional Brownian
motion defined on {Ω, F, {Ft}t≥0, P}. Let PC([−τ, 0], Rn) denote all piecewise continuous
functions on [−τ, 0], with the norm ‖ξ‖ = sup

−τ≤s≤0
‖ξ(s)‖. Let PCb

F0
([−τ, 0], Rn) denote the

family of Ft0-measurable bounded PC([−τ, 0], Rn)-valued random variables, satisfying
sup
−τ≤s≤0

E‖φ‖p < ∞. Eξ denotes the expectation of stochastic process ξ. K denotes the class

of continuous strictly increasing functions a : R+ → R+ such that a(0) = 0.

2. Stability of Impulsive Differential Systems

In this section, we will review some research work on the stability of impulsive differ-
ential systems, which is divided into three parts: Stability of Impulsive Differential Systems
(IDS) without delay and other effects, Stability of Impulsive Delay Differential Systems (IDDS),
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Stability of Impulsive Functional Differential Systems (IFDS). Furthermore, a brief remark
on the stability of impulsive differential systems with impulses occurring at uncertain
moments is given.

2.1. Stability of Impulsive Differential Systems

Consider the following impulsive differential systems:{
ẋ(t) = f (t, x(t)), t 6= tk

∆x(t) = Ik(x(t)), t = tk, k ∈ N
(1)

where f : J × Rn → Rn is continuous, J = [t0, ∞), Ik : Rn → Rn is continuous, ∆x(t) =
x(t+)− x(t−), the fixed impulsive points {tk}∞

k=1 satisfying 0 ≤ t0 < t1 < · · · < tk < · · · ,
and lim

k→∞
tk = ∞.

IDS in the form (1) was proposed and studied previously; the systematic treatment
of the fundamental stability theory is offered in [1,2]. The relations between various
types of Lipschitz stability notions and sufficient conditions for these stabilities of IDS
(1) were obtained in [10]. By using Lyapunov’s direct method, some stability criteria for
(h0, h)−asymptotically stable and (h0, h)−unstable of IDS (1) were obtained and applied to
some population growth models in [11,12].

From the control point of view, impulsive control is attractive, since the stability of
chaotic systems can be obtained only by small control impulses at discrete points. By using
the comparison theorem, the authors derived some conditions for the asymptotic stability
of IDS (1) in [13] and the asymptotic set-stability of IDS (1) in [14]; both of these results
can be used to design impulsive control laws to achieve stability. In [15], in addition to
the comparison theorem, two Lyapunov-like functions are also used to provide the strict
practical stability criteria of IDS (1). For illustration, we cite the following result from [13].

Definition 1 ([1,13]). Let V : R+ × Rn → R+, then V is said to belong to class V0, if

(i) V is continuous in (tk−1, tk] × Rn, and for each x ∈ Rn, k ∈ N, lim
(t,y)→(t+k ,x)

V(t, y) =

V(t+k , x) exists;
(ii) V is locally Lipschizian in x.

Definition 2 ([2,13]). Let V ∈ V0 and assume that{
D+V(t, x) ≤ g(t, V(t, x)), t 6= tk

V(t, x + Ik(x)) ≤ Ψk(V(t, x)), t = tk

where D+V(t, x) = lim
h→0+

sup
1
h
[V(t + h, x + h f (t, x))−V(t, x)], g : R+ × R+ → R is contin-

uous, and Ψk : R+ → R+ is nondecreasing. Then, the following system is the comparison system
of IDS (1): 

ω̇ = g(t, ω), t 6= tk

ω(t+k ) = Ψk(ω(tk)), k ∈ N
ω(t+0 ) = ω0 ≥ 0

Theorem 1 ([13]). Assume that the following conditions hold.
(i) V ∈ V0, K(t)D+V(t, x) + D+K(t)V(t, x) ≤ g(t, K(t)V(t, x)), t 6= tk. Where, K(t) ≥

m > 0, lim
t→t−k

K(t) = K(tk), k ∈ N, and D+K(t) = lim
h→0+

sup
1
h
[K(t + h)− K(t)]; g is continu-

ous in (tk−1, tk]× Rn for each x ∈ Rn, g(t, 0) = 0, and lim
(t,y)→(t+k ,x)

g(t, y) = g(t+k , x) exists.

(ii) K(t+k )V(t+k , x + Ik(x)) ≤ Ψk(K(tk)V(tk, x)), K ∈ N.
(iii) V(t, 0) = 0 and α(‖x‖) ≤ V(t, x) on R+ × Rn, where α ∈ K.
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Then, the global asymptotic stability of the trivial solution ω = 0 of comparison system implies
global asymptotic stability of the trivial solution of IDS (1).

Based on Lyapunov theory, numerous stability results of IDS (1) are presented. Some
criteria for the strict stability of IDS (1) were obtained by using Lyapunov functions in [16],
and the conditions for the uniform stability and the uniform asymptotic stability of IDS
(1) were obtained in [17]; these results show that impulses do contribute to the stability
behavior of IDS (1).

In the subsequent research, the restrictions on IDS have become less and less conserva-
tive, and the research methods have become more and more diverse. For instance, ref. [18]
discussed IDS (1), where J = [0, T], T > 0 and tk, k = 1, 2, · · ·m. By using the Gronwall
type integral inequality of piecewise continuous functions, four Ulam’s type stability nota-
tions and several stability results are established. Refs. [19,20] investigated the fixed-time
stability of IDS (1), where the function f in IDS (1) is essentially locally-bounded and may
be discontinuous on variable x. In [19], the authors proposed an improved Lyapunov
method, and presented a fixed-time stability criterion, which is effective for both stabilizing
and destabilizing impulses. In [20], by applying the generalized Lyapunov functional
method and some inequality techniques, some fixed-time stability criteria were obtained.
The fixed-time stability was also studied in [21]. Based on the impulsive control theory,
several Lyapunov theorems of IDS (1) were established, where f = f (x(t)). In addition,
the ‘average dwell time’ condition has been well applied in the stability study of IDS, such
as in [22,23].

2.2. Stability of Impulsive Delay Differential Systems

Generally, impulsive differential systems with constant delay can be described as:{
ẋ(t) = f (t, x(t), x(t− τ)), t 6= tk

∆x(t) = Ik(x(t)), t = tk, k ∈ N
(2)

where f : J × Rn × Rn → Rn, J = [t0, ∞), f (t, 0, 0) ≡ 0, Ik : Rn → Rn and satisfying
Ik(0) ≡ 0, τ ≥ 0 is the time delay, ∆x(t) = x(t+) − x(t−), the fixed impulsive points
{tk}∞

k=1 satisfying 0 ≤ t0 < t1 < · · · < tk < · · · , and lim
k→∞

tk = ∞.

Nowadays, the stability of IDDS (2) has been extensively studied. In [24], the author
proposed some sufficient conditions for the stability and uniform stability of IDDS (2),
and showed that the stability of unstable delay differential systems can be caused by
impulses. In [25], the authors focused on the linear form of IDDS (2), where f = Ax(t) +
Bx(t− τ); they presented several asymptotic stability and exponential stability criteria by
using Lyapunov functions and the comparison principle method. In [26–28], the authors
investigated linear and nonlinear IDDS (2), respectively, where ∆x |t=tk= rkx(tk), rk ∈ R
and tk+1 − tk = τ. Some theorems are established such that the stability of IDDS can be
transformed into the stability of the corresponding delay differential equations without
impulsive effects, and the convergent numerical processes are also proposed to calculate
numerical solutions of IDDS.

Next, let us discuss the stability of impulsive differential systems with time-varying
delay. The following linear impulsive delay differential system is considered in [29]:ẏ(t) +

n
∑

i=1
pi(t)y(t− τi(t)) = 0, t 6= tk

y(t+k )− y(tk) = bky(tk), k ∈ N
(3)

where pi : J × R → R are locally summable functions, τi : J × R → R+ are Lebesgue
measurable functions, and t− τi(t)→ ∞(t→ ∞), J = [t0, ∞), i = 1, 2, · · · , n; bk ∈ R and
bk 6= −1 are constants, k ∈ N; the fixed impulsive points {tk}∞

k=1 satisfying 0 ≤ t0 < t1 <
· · · < tk < · · · , and lim

k→∞
tk = ∞.
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In [29], the authors proposed an interesting ‘equivalent method’, which enables us to
reduce the stability problem of IDDS (3) to the stability problem of a corresponding delay
differential system without impulses as follows:

ẋ(t) +
n

∑
i=1

pi(t) ∏
t−τi(t)≤tk<t

(1 + bk)
−1x(t− τi(t)) = 0, t ≥ t0. (4)

Theorem 2 ([29]). For any σ ≥ t0, there exists a positive constant M(σ) such that, for any t ≥ σ,

| ∏
σ≤tk<t

(1 + bk)| ≤ M(σ).

(i) If the zero solution of (4) is stable, then the zero solution of (3) is also stable.
(ii) Assume that M(σ) is independent of t, i.e., M(σ) = M is a constant. If the zero solution

of (4) is uniformly stable, then the zero solution of (3) is also uniformly stable.
(iii) If the zero solution of (4) is asymptotically stable, then the zero solution of (3) is also

asymptotically stable.

This ‘equivalent method’ has attracted the attention of many researchers, such
as [4,5,26–28,30,31]. Nowadays, impulsive delay differential systems have been widely
studied, and a variety of applications have been found. For instance, by using the Lyapunov-
Razumikhin method, some sufficient conditions for the uniform asymptotic stability of
n-species Lotka-Volterra cooperation systems were obtained in [32]. In [33], time-delay is
state-dependent, i.e., τ = τ(t, x(t)), in addition to providing some Lyapunov-based suffi-
cient conditions for the exponential stability, these results are also applied to the stability
analysis of impulsive gene regulatory networks by using the linear matrix inequalities
technique. More information can be found in the references cited in [24–29,32,33] and the
studies in which they are cited.

2.3. Stability of Impulsive Functional Differential Systems

Over the years, the stability research of impulsive functional differential systems has
received a lot of attention due to its great application potential. For the early research work,
please refer to [34] and its references.

Consider the following general impulsive functional differential systems:{
ẋ(t) = f (t, xt), t 6= tk

∆x(t) = Ik(x(t−)), t = tk, k ∈ N
(5)

where f : R+ × D → Rn, D is an open set in C([−τ, 0], Rn), f (t, 0) ≡ 0, Ik : Rn → Rn and
satisfying Ik(0) ≡ 0, ∆x(t) = x(t)− x(t−), xt is defined by xt(s) = x(t + s), −τ ≤ s ≤ 0,
the fixed impulsive points {tk}∞

k=1 satisfying 0 ≤ t0 < t1 < · · · < tk < · · · , and lim
k→∞

tk = ∞.

IFDS in the form (5) has been well studied, and the Lyapunov functions and Razu-
mikhin techniques are widely used in the stability study of it. For instance, by using
Lyapunov functions and Razumikhin techniques, ref. [35] obtained some sufficient condi-
tions for the uniform practical stability of IFDS (5), ref. [36] proposed several strict stability
criteria of IFDS (5), ref. [37] developed some global exponential stability theorems of
IFDS (5), and ref. [38] investigated the uniform-integral stability in terms of two measures.
Furthermore, if Ik = Ik(x(t−)) is extended to the form of Ik = Ik(t, x(t−)) in IFDS (5),
the Lyapunov functions and Razumikhin techniques are also effectively applied in the
stability study. For example, ref. [39] discussed uniformly stability and asymptotically sta-
bility of sets, and ref. [40] put forward some asymptotic stability and uniformly asymptotic
stability criteria. For illustration, we cite the following result from [36].

Theorem 3 ([36]). Assume that the hypotheses in [36] and the following conditions hold:
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(i) There exists V1 ∈ V0, such that b1(‖x‖) ≤ V1(t, x) ≤ a1(‖x‖), where a1, b1 ∈ K.
(ii) For any solution x(t) of IFDS (5), V1(t + s, x(t + s)) ≤ V1(t, x(t)) for s ∈ [−τ, 0],

implies that D+V1(t, x(t)) ≤ 0.
Also, for all k ∈ N and x ∈ S(ρ) = {x ∈ Rn : ‖x‖ < ρ}, V1(tk, x(t−k ) + Ik(x(t−k ))) ≤

(1 + dk)V1(t−k , x(t−k )), where dk ≥ 0 and ∑∞
k=1 dk < ∞.

(iii) There exists V2 ∈ V0, such that b2(‖x‖) ≤ V2(t, x) ≤ a2(‖x‖), where a2, b2 ∈ K.
(iv) For any solution x(t) of IFDS (5), V2(t + s, x(t + s)) ≥ V2(t, x(t)) for s ∈ [−τ, 0],

implies that D+V2(t, x(t)) ≥ 0.
Also, for all k ∈ N and x ∈ S(ρ), V2(tk, x(t−k ) + Ik(x(t−k ))) ≥ (1− ck)V2(t−k , x(t−k )),

where 0 ≤ ck < 1 and ∑∞
k=1 ck < ∞.

Then, the trivial solution of IFDS (5) is strictly uniformly stable.

In addition to the cases of IFDS with finite delay, the theory of IFDS with infinite
delay has also received considerable attention. In [41], the authors examined IFDS (5)
with infinite delay, in which xt(s) = x(t + s), −∞ < s ≤ 0. Unlike most researchers
using Lyapunov-type functions, they used the techniques described in [42] to establish
the existence conditions of global solutions, sufficient conditions for global asymptotic
stability and global exponential stability of the concerned system, and applied the results
to impulsive generalized Cohen–Grossberg systems.

Next, consider impulsive functional differential systems with infinite delay, whose
differential equation part can be described as:

ẋ(t) = f (t, x(·)), t 6= tk (6)

In [43], the author discussed IFDS (6) with impulsive effects ∆x = Ik(tk, xt−k
). By using

Lyapunov functions and Razumikhin techniques, the author obtained the uniform asymp-
totic stability and global stability criteria for a class of IFDS with infinite delay, the results
showed that an unstable system can become stable under appropriate impulsive effects.
In [44], the authors discussed IFDS (6) with impulsive effects ∆x = Ik(x(t−k )), and some
uniformly stable and uniformly asymptotically stable results are also obtained by using Lya-
punov functions and Razumikhin techniques. In [45], the authors discussed IFDS (6) with
impulsive effects ∆x = Ik(tk, x(t−k )); by establishing some new Razumikhin conditions,
the authors put forward several uniform stability criteria. Furthermore, more information
on the stability of IFDS can be found in [46], which is a comprehensive review for IFDS,
including the basic theory and stability analysis of IFDS.

Impulsive differential systems with impulses occurring at fixed times have been exten-
sively investigated and developed, as mentioned above. However, impulsive differential
systems with impulses occurring at uncertain moments are more suitable and realistic to
model some problems in the fields of chemistry, finance, biology, etc. The following remark
gives a brief survey of impulsive differential systems with impulses occurring at uncertain
moments, including the characteristics of several uncertain impulses and the corresponding
stability analysis.

Remark 1. Impulsive differential systems with impulses occurring at uncertain moments.
One of the typical types of uncertain impulses is that the occurrence of impulses is related to

the state variables. In this case, the impulsive points can be described as τk(x), τk(x) < τk+1(x)
and lim

k→∞
τk(x) = ∞, see [47–50] and references therein.

In [47], some sufficient conditions for the uniform stability and uniform asymptotic
stability were obtained by using Lyapunov functions and the Razumikhin technique. In [48],
a (h0, h)-stability criterion is obtained via establishing a comparison principle by vector
Lyapunov functions. In [49], the authors studied the variational stability and variational
asymptotic stability of the concerned system by using the Lyapunov functional. In [50],
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several Lyapunov-like theorems equipped with novel dwell time conditions for global
asymptotic stability are obtained.

Random impulses constitute another typical type of uncertain impulses. Roughly speaking,
the current research is mainly divided into two categories. One is that the impulsive instants and
the number of impulses are random, such as [51–54]. The other is that the impulsive intensity is
random, such as [55].

Let random variables τk (K ∈ N) denote the waiting time between two consecutive
impulsive moments, and meet ∑∞

k=1 τk = ∞ with probability 1. In [51], random variables
τk ∈ Γ(αk, λ) (K ∈ N), that is, τk are independent Gamma-distributed random variables.
The authors obtained some p-moment exponential stability criteria. In [52], random vari-
ables τk are independent exponentially distributed random variables. By using Lyapunov
functions and the Razumikhin technique, the authors proposed some extended exponential
and weakly exponential stability results. Ref. [53] also discussed the case that random
variables τk are independent exponentially distributed random variables, and gave some
sufficient conditions for p-moment exponential stability. In [54], random variables τk are
assumed to follow Erlang distribution. By using the contraction mapping principle, several
Hyers-Ulam-Rassias stability and exponential stability theorems were obtained. In [55],
the random impulsive intensity is determined by an arbitrary random sequence or an
irreducible aperiodic Markov chain. By using the (mode-dependent) average impulsive
interval method, the authors put forward some criteria on global asymptotic stability in
probability and exponential stability in the mth moment.

3. Stability of Stochastic Impulsive Differential Systems

In this section, we will review some research work on the stability of stochastic im-
pulsive differential systems; the section is divided into three parts: Stability of Stochastic
Impulsive Functional Differential Systems (SIFDS), Stability of Stochastic Impulsive Delay Differ-
ential Systems (SIDDS) and Stability of Stochastic Impulsive Differential Systems with Markovian
switching (SIDSM). Furthermore, a brief remark on the stability of stochastic impulsive
differential systems with random impulses is given.

3.1. Stability of Stochastic Impulsive Functional Differential Systems

As we all know, stochastic impulsive functional differential systems have been widely
studied, and we briefly discuss two general classes of SIFDS below.

Consider stochastic impulsive functional differential systems of the following form:{
dx(t) = f (t, xt)dt + g(t, xt)dw(t), t 6= tk

x(tk) = Ik(tk, x(t−k )), k ∈ N
(7)

where f : R+ × PCb
F0
([−τ, 0], Rn) → Rn, g : R+ × PCb

F0
([−τ, 0], Rn) → Rn×m, f (t, 0) ≡ 0,

g(t, 0) ≡ 0, Ik : R+ × Rn → Rn and satisfying Ik(t, 0) ≡ 0, ∆x(tk) = x(tk) − x(t−k ),
xt(s) = x(t + s), −τ ≤ s ≤ 0, the fixed impulsive points {tk}∞

k=1 satisfying 0 ≤ t0 < t1 <
· · · < tk < · · · , and lim

k→∞
tk = ∞.

SIFDS in the form (7) has attracted extensive attention. Many methods have been
proposed and improved to analyze the stability problems, such as Lyapunov functions,
vector Lyapunov functions, Razumikhin technique, the average dwell time method and so
on. For instance, in [56,57], based on the Razumikhin techniques and Lyapunov functions,
the authors proposed some criteria on pth moment uniformly asymptotic stability, global
exponential stability and instability of SIFDS (7), respectively. And the results showed
that the impulses do make a contribution to the stability of SIFDS, even if the systems
are unstable. In [58], both destabilizing impulses and stabilizing impulses are considered
in SIFDS (7), by using the average impulsive interval method, the lower/upper bound
of average impulsive interval can be derived, and some pth moment and almost sure
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exponential stability criteria were obtained. In [3], based on the vector Lyapunov function,
combining Razumikhin techniques and the average dwell-time method, several pth moment
exponential stability criteria of SIFDS (7) are obtained.

Obviously, the Razumikhin technique is a very important and widely used method in
the study of SIFDS, but the conditions in Razumikhin theorems are relatively restrictive,
e.g., the time-derivatives of Razumikhin functions always need to be negative definite for
all t. This problem has attracted the attention of many researchers, and some results have
been obtained in improving the traditional Ruzumikhin method/theorems. In [59], based
on the stochastic analysis theory, the authors proposed several improved Razumikhin
stability criteria by means of Razumikhin and average dwell time method, where the
time-derivatives of Razumikhin functions are allowed to be indefinite.

Definition 3 ([59]). The function V(t, x) : R+×Rn → R+ belongs to class Ψ if it is continuously
twice differentiable with respect to x and once differentiable with respect to t.

Define an operator LV, see [59], as follows:

LV(t, ϕ) = Vt(t, ϕ(0)) + Vx(t, ϕ(0)) f (t, ϕ) +
1
2

trace[gT(t, ϕ)Vxx(t, ϕ(0))g(t, ϕ)].

Theorem 4 ([59]). Let p, c1, c2, η, τ, q > 1 all be positive numbers. If there exists a function
V ∈ Ψ and constants ρ, β ∈ (0, 1) such that the following conditions hold:

(i) For all x ∈ Rn, c1‖x‖p ≤ V(t, x) ≤ c2‖x‖p.
(ii) For all t ≥ t0 and t 6= tk, k ∈ N, ELV(t, xt) ≤ µ(t)EV(t, x(t)) if EV(t + θ, x(t +

θ)) ≤ qEV(t, x(t)) for all θ ∈ [−τ, 0].
(iii) EV(tk, x(tk)) ≤ βEV(t−k , x(t−k )).
(iv) The function µ(·) satisfies: (β ∨ q−1)eϕµ ≤ ρ, where β ∨ q−1 = max (β, q−1).
Then, SIFDS (7) is pth moment exponentially stable.

Next, consider stochastic impulsive functional differential systems as below:{
dx(t) = f (t, x(t), xt)dt + g(t, x(t), xt)dw(t), t 6= tk

∆x(tk) = Ik(tk, x(t−k )), k ∈ N
(8)

where f : R+ × Rn × PCb
F0
([−τ, 0], Rn) → Rn, g : R+ × Rn × PCb

F0
([−τ, 0], Rn) → Rn×m,

f (t, 0, 0) ≡ 0, g(t, 0, 0) ≡ 0, ∆x(tk) = x(t+k ) − x(t−k ), xt(s) = x(t + s), −τ ≤ s ≤ 0,
Ik : R+ × Rn → Rn and satisfying Ik(t, 0) ≡ 0, the fixed impulsive points {tk}∞

k=1 satisfying
0 ≤ t0 < t1 < · · · < tk < · · · , and lim

k→∞
tk = ∞.

So far, although the complexity of the system has brought some difficulties to the re-
search, a lot of results have been obtained regarding SIFDS. In [60], by using the Lyapunov
method and inequality techniques, the authors obtained some results on pth exponential
stability and almost sure exponential stability of SIFDS (8). In [61], by combining the pa-
rameters of the variation formula and the comparison principle, the authors obtained some
sufficient Lyapunov-type conditions for the pth stability of SIFDS (8). These conditions
depend on the integral average value of the time-varying coefficients and the average
impulsive interval, which are quite different from most existing results. In [62], based on
the Lyapunov direct method and the comparison principle, combined with the Razumikhin-
type conditions and the discussion of the properties of the corresponding non-impulsive
systems, the sufficient conditions for global pth moment exponentially ultimate bounded-
ness and the global pth moment exponential stability are given. The results showed that
the unbounded or unstable SIFDS (8) can become bounded or stable by adding appropriate
impulsive perturbations. Based on stochastic analysis theory, the authors in [63] obtained
several fixed-time stability theorems of SIFD by using the Lyapunov method.
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3.2. Stability of Stochastic Impulsive Delay Differential Systems

Due to the needs of practical applications or theoretical research, there are many kinds
of SIDDS, and a large number of research results have been reported, see [4,5,30,31,63–66]
and references therein. In this part, the work of several types of systems will be discussed;
for more information please refer to the original papers.

It is well known that Itô′s formula is effective and extensive in the study of stochastic
differential systems, and many results have been obtained based on it. However, Itô’s for-
mula cannot be directly extended to the study of stochastic impulsive differential systems,
because it is difficult to deal with integral intervals containing impulsive points. In order to
solve this problem, refs. [4,30,31] developed the ‘equivalent method’ in [29], established
the relationship between SIDDS and a corresponding non-impulsive stochastic delay differ-
ential system, and obtained some stability results. Moreover, the ‘equivalent method’ has
also been effectively applied to the stability of numerical solutions, such as [5,26–28].

The following SIDDS is established in [5]:{
dx(t) = f1(t, x(t), x(t− δ))dt + g1(t, x(t), x(t− δ))dw(t), t 6= δr, t ≥ 0
∆x(δr) = Jr(t, x(δ−r )), r = 0, 1, 2 · · ·

(9)

where the constant time delay δ > 0, δr = rδ, r = 0, 1, 2, · · · , 0 ≤ δ0 < δ1 < · · · < δr < · · · ,
and lim

r→∞
δr = ∞. f1, g1 : R+ × R × R → R are continuous, ∆x(δr) = x(δr) − x(δ−r ).

Jr : [−δ, ∞)× R→ R is continuous bounded function and satisfying Jr(t, x(δ−r )) 6= −x(δ−r )
when x(δ−r ) 6= 0, Jr(t, 0) = 0.

A corresponding non-impulsive stochastic delay differential system (SDDS) is pro-
posed as follows:

dz(t) =
(

z(t)
v′r(t)
vr(t)

+ vr(t) f1

(
t,

z(t)
vr(t)

,
z(t− δ)

vr(t)

))
dt + vr(t)g1

(
t,

z(t)
vr(t)

,
z(t− δ)

vr(t)

)
dw(t), t ≥ 0 (10)

where vr(t) : [−δ, ∞)→ R is defined by vr(t) = 1 + Jr(t,x(rδ−))
x(rδ−) , r = 0, 1, 2, · · · .

In [5], by using the Modified Runge-Kutta-Maruyama (MRKM) method, the authors
put forward the numerical approximation for SDDS (10), which is suitably applied for
SIDDS (9) too. Briefly, they defined the four-stage RKM method for the approximate
solution of SDDS (10) as:

Zn+1 = Zn + h
4

∑
i=1

γi f2(t,Z i
n, Z̄ i

n) +
4

∑
i=1

δig2(t,Z i
n, Z̄ i

n)∆Wn,

then the numerical approximation of the solution of the SIDDS (9) can be defined by

Xn =
Zn

vr(nh)
, n = 0, 1, 2, · · · .

For information about the symbols, please refer to [5].
A class of general SIDDS with infinite delays is studied in [66]:{

dx(t) = f (t, x(t), x(t− τ(t)))dt + g(t, x(t), x(t− τ(t)))dw(t), t 6= tk

∆x(tk) = Ik(tk, x(t−k )), k ∈ N

where τ : R+ → R+ is the infinite delay satisfying lim
t→∞

t− τ(t) = ∞. Due to the variability

and unboundedness, some methods and results of finite delay may no longer be applicable
to the problem of SIDDS with infinite delay, which also exists in the use of the Razumikhin
method. To overcome this difficulty, the authors in [66] constructed a positive function
q(t) determined by the infinite delay, in which the operator of the Lyapunov function is
controlled by a time-varying sign-changing function rather than a constant, and then a
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Razumikhin-type theorem different from the traditional stability of SIDDS with infinite
delay is established.

3.3. Stability of Stochastic Impulsive Differential Systems with Markovian Switching

In recent years, a typical class of stochastic systems—Markovian switched systems—
has attracted more and more attention, and many stability results have been reported,
such as [67–73] and references therein. A Markovian switched system is governed by a
Markovian process.

In [67], a general stochastic impulsive differential system with Markovian switching is
described as: {

dx(t) = f (xt, t, r(t))dt + g(xt, t, r(t))dw(t), t 6= tk

∆x(tk) = Ik(x(tk), xtk , tk, r(tk)), k ∈ N
(11)

where f : PC([−τ, 0], Rn) × R+ × S → Rn, g : PC([−τ, 0], Rn) × R+ × S → Rn×m,
Ik : Rn × PC([−τ, 0], Rn)× R+ × S → Rn, and f (0, t, i) ≡ 0, g(0, t, i) ≡ 0, Ik(0, 0, t, i) ≡ 0,
k = 1, 2, · · · . ∆x(tk) = x(t+k ) − x(tk). The fixed impulsive points {tk}∞

k=1 satisfying
0 ≤ t0 < t1 < · · · < tk < · · · , and lim

k→∞
tk = ∞. The r(t) (t > 0) is a right-continuous Marko-

vian chain on the probability space taking values in a finite state space S = {1, 2, , · · · , N}
with generator Γ = (γij)N×N given by:

P{r(t + ∆) = j|r(t) = i} =
{

γij∆ + o(∆), if i 6= j
1 + γij∆ + o(∆), if i = j

where ∆ > 0, γij ≥ 0 is the transition rate from i to j while γii = − ∑
i 6=j

γij. Assume that the

Markovian chain r(t) is independent of the Brownian motion w(t). In [67], by using the
Razumikhin-type technique, the authors presented some pth moment exponential stability
results of SIDSM (11). Furthermore, the obtained results are applied to a class of linear
systems by using the M-matrix method and Lyapunov functions.

The research on SIDSM is usually carried out around different impulsive effects,
and accordingly, the impulsive effects can be expressed in different forms. Taking SIDSM
(11) as an example, under the condition that the expression of the differential equation
is unchanged, the authors of [68] investigated it with the impulsive effects ∆x(tk) =
Ik(x(t−k ), tk). By using the Lyapunov second method and Razumikhin techniques, some
sufficient conditions on pth moment exponential stability, almost exponential stability
and instability were obtaied. Ref. [69] investigated it with the impulsive effects ∆x(tk) =
Ik(tk, x(t−k ), r(tk)) + Jk(tk, x(t−k ), r(tk)). By means of the average impulsive interval and
Lyapunov function method, the authors obtained some exponential stability theorems,
which are more convenient to apply than the Razumikhin-type conditions in the pre-
vious results. Furthermore, the authors demonstrated that appropriate impulses can
stabilize some unstable hybrid systems. Ref. [70] investigated it with delayed impulses
x(tk) = hk(tk, x(t−k ), x((tk − dk)

−), r(tk)). By using the Razumikhin technique and Lya-
punov functions, some pth moment exponential stability criteria are established, and the
impulsive controller is designed to stabilize the given systems. It is worth noting that
the results show that the delay part of the impulses can contribute to the stability of the
system. Refs. [71,72] focused on the generalized SIDSM, where

dx(t) = f (x(t), xt, t, r(t))dt + g(x(t), xt, t, r(t))dw(t), t 6= tk.

When t = tk, t ∈ N, the impulsive effects are expressed in ∆x(tk) = Ik(x(t−k ), tk) and
x(tk) = Ik(x(t−k ), x((tk − dk)

−), t−k , r(tk)), respectively. Based on stochastic theory, Lya-
punov functional method and Razumikhin technique, some stability theorems are derived.

Similar to impulsive differential systems, stochastic impulsive differential systems
with random impulses have also been considered by some scholars. However, the results
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are still relatively few at present since the structure of stochastic systems is more complex,
and the randomness of impulsive time brings great difficulties to deal with the systems.

Remark 2. Stochastic impulsive differential systems with random impulses.
As far as we know, up to now, there have been only a few research results of stochastic impulsive

differential systems with random impulses. Among these research papers, an important type denotes
{τi}∞

i=1 to be a sequence of independent exponentially distributed random variables, where {τi}∞
i=1

are called impulsive waiting times, see [74–76]. Based on stochastic processes theory and stochastic
analysis theory, by using the Lyaponov method and Razumikhin techniques, some stability theorems
have been proposed.

4. Stability of Differential Systems with Several Specific Impulses

According to the characteristics of the impulses, this section is divided into four parts:
Stability of Differential Systems with Non-Instantaneous Impulses (DS-NI), Stability of Differential
Systems with Delayed Impulses (DS-DI), Stability of Differential Systems with Impulses Suffered
by Logic Choice (DS-IL), Stability of Differential Systems with Impulse Time Windows (DS-ITW).

4.1. Stability of Differential Systems with Non-Instantaneous Impulses

Generally, the characteristic of instantaneous impulses is that the sudden change in
the state variables is very short, and this time can be regarded as instantaneous compared
with the development process of the whole system. Non-instantaneous impulse refers to a
generalization of instantaneous impulse, which is characterized by the fact that the time of
sudden change in state variables is not negligible in the development process of the whole
system, and it needs to be described as the changing behavior on finite time intervals.

The concept of ’non-instantaneous impulses’ was first introduced in [77], where
the authors proposed a class of DS-NI in the following form:{

x′(t) = Ax(t) + f (t, x(t)), t ∈ (si, ti+1], i = 0, 1, · · · , m
x(t) = gi(t, x(t)), t ∈ (ti, si], i = 1, · · · , m

(12)

where 0 = t0 = s0 < t1 ≤ s1 ≤ t2 < · · · < tm ≤ sm ≤ tm+1 = T are pre-fixed
numbers, f : [0, T]× R→ R is a suitable function, gi : (ti, si]× R→ R is continuous for all
i = 1, · · · , m.

After giving the concepts of the solution for DS-NI (12), the authors discussed the
existence of mild and classical solutions in [77]. Subsequently, a large number of researchers
have carried out research on the non-instantaneous impulsive systems. In [78], the authors
developed the results in [77] and discussed existence problems in a fractional power space.
In addition to the existence and uniqueness of solutions, stability is still an important
problem in the qualitative study of non-instantaneous impulsive systems.

In [79–81], the following DS-NI is considered:{
x′(t) = f (t, x(t)), t ∈ (si, ti+1], i = 0, 1, · · · , m
x(t) = gi(t, x(t)), t ∈ (ti, si], i = 1, · · · , m

(13)

where 0 = t0 = s0 < t1 ≤ s1 ≤ t2 < · · · < tm ≤ sm ≤ tm+1 = T are pre-fixed
numbers, f : [0, T]× R → R is continuous, and gi : (ti, si]× R → R (i = 1, · · · , m) is a
suitable function.

In [79], the authors discussed the existence and uniqueness of the solution of DS-NI
(13), introduced the definition of generalized Ulam-Hyers-Rassias stability and obtained
some results. In [80], by using piecewise Lyapunov functions, both uniform stability and
uniform asymptotic stability criteria of DS-NI (13) are established. In [81], more research
methods have been comprehensively utilized: the perturbation technique, monotone
iterative method and a new estimation technique of the measure of noncompactness are
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all employed to discuss the existence, uniqueness and Ulam–Hyers–Rassias stability of
DS-NI (13).

With the passage of time, non-instantaneous impulsive systems are gradually devel-
oping. In [82], the authors considered a class of DS-NI as below:{

x′(t) = f (t, xt), t ∈ (tk, sk+1], k = 0, 1, · · ·
x(t) = Φk(t, x(t), x(sk − 0)), t ∈ (sk, tk], k = 1, 2, · · ·

(14)

where 0 = s0 < si ≤ ti < si+1, i = 1, 2, · · · , are given and lim
k→∞

sk = ∞. f : R×Rn → Rn and

Φi : [ti, si]× Rn × Rn → Rn (i = 1, · · · , m) are suitable functions, xt = x(t + s), s ∈ [−r, 0].
In [82], based on Lyapunov-like functions and the Razumikhin technique, the stability,

uniform stability and asymptotic uniform stability results of DS-NI (14) were obtained
by using the comparison principle, where the comparison equations are nonlinear non-
instantaneous impulsive differential equations without any delay.

In [83], the authors introduced the following DS-NI systems:
x′(t) = Ax(t) + g(t, x(t)), t ∈ (si, ti+1], i = 0, 1, · · ·
x(t+i ) = Bx(t−i ) + bi, i = 1, 2, · · ·
x(t) = Bx(t−i ) + bi, t ∈ (ti, si], i = 1, 2, · · ·
x(s+i ) = x(s−i ), i = 1, 2, · · ·

(15)

where 0 = t0 = s0 < t1 < s1 < t2 < · · · < tm < sm < tm+1 < · · · , ti → ∞ (i → ∞),
bi ∈ Rn, A, B are n× n constant matrixes and satisfying AB = BA, g : R+ × Rn → Rn

is continuous.
In [83], based on the concept of non-instantaneous impulsive Cauchy matrix intro-

duced by the authors, some useful criteria for asymptotic stability of linear DS-NI are
derived. Furthermore, the existence, uniqueness and Ulam–Hyers–Rassias stability of
nonlinear DS-NI (15) are discussed. In [84], the authors considered DS-NI that are similar
to DS-NI (15) but more general. Based on the concept of non-instantaneous impulsive
evolution operator introduced by the authors, sufficient conditions for the asymptotic
stability of linear and semilinear systems are obtained.

4.2. Stability of Differential Systems with Delayed Impulses

Delayed impulses have very important theoretical significance and application value,
so they have received a lot of attention and achieved many results. In this part, we discuss
the stability of DS-DI from the perspective of the types of delayed impulses.

Case A. The delayed impulses are assumed containing the following term:

x(t−k − dk) or x((tk − dk)
−), k ∈ N.

where dk ≥ 0, k ∈ N are the impulse delays and satisfying d = max
k∈N
{dk} < ∞.

In [85], the delayed impulses are assumed to take the form of x(tk) = Ik(x(t−k )) +
Jk(x(t−k − τ)) (τ > 0). By using Lyapunov functions and Razumikhin techniques, the au-
thors provided some criteria on stability, asymptotic stability and practical stability of
impulsive functional DS-DI, respectively. In [86], the delayed impulses are assumed
to take in the form of x(tk) = Ik(tk, x(t−k ), x((tk − dk)

−)). By using comparison princi-
ple and impulsive delay differential inequality techniques, some sufficient conditions
ensuring the exponential stability and asymptotical stability criteria of stochastic func-
tional DS-DI are derived. In [87], the delayed impulses are assumed to take the form of
x(tk) = Ckx(t−k ) + Jk(x(t−k − dk)) and tk is not a fixed point. Based on Lyapunov theory,
by using the comparison principle and inequality techniques, several quasi-uniformly
asymptotic stability and quasi-exponential stability criteria of DS-DI are obtained.
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Case B. The delayed impulses are assumed containing the following term:

Ik(xt−k
) or Ik(tk, xt−k

), k ∈ N.

where xt− = x(t− + s), −τ ≤ s ≤ 0.
In [88,89], the delayed impulses are assumed to take the form of ∆x(tk) = Ik(x(t−k ))

+Jk(xt−k
) and ∆x(tk) = Ik(xt−k

), respectively. Consequently, using Lyapunov functions and
Razumikhin techniques, some global exponential stability results were obtained.

In [90–92], the following general impulsive functional differential systems with de-
layed impulses (IFDS-DI) are considered:{

ẋ(t) = f (t, xt), t 6= tk

∆x(tk) = Ik(tk, xt−k
), k ∈ N

(16)

By using Lyapunov functions and Razumikhin techniques, ref. [90] put forward several
criteria on the uniform asymptotic stability and [91] obtained several global exponential
stability criteria of IFDS-DI (16), respectively. Ref. [92] is a relatively comprehensive review
of recent work on delayed impulses, including the concepts of stability, the effects of
impulses and some stability results, etc. The authors of [93] investigated a generalized
IFDS-DI (16), in which ∆x(tk) = Ik(tk, x(t−k )) + Jk(tk, xt−k

), some sufficient conditions
ensuring the global exponential stability are given in terms of Lyapunov functions and
Razumikhin techniques too.

In [94–97], the following general stochastic impulsive functional differential systems
with delayed impulses (SIFDS-DI) are considered:{

dx(t) = f (t, xt)dt + g(t, xt)dw(t), t 6= tk

∆x(tk) = Ik(tk, xt−k
), k ∈ N

(17)

The Lyapunov–Razumikhin method still plays an important role in the stability study
of SIFDS-DI, and many results have been obtained by applying this method. For instance,
in [94], several moment and almost sure exponential stability criteria of SIFDS-DI (17)
are given, which can be applied to the cases of systems with arbitrary large time delays.
Moreover, it is verified that an unstable stochastic delay system can be stabilized by
impulses. In [95], the authors proposed several criteria on pth moment and almost sure
exponential stability of SIFDS-DI (17). In [96], several criteria on the exponential stability
and uniform stability of SIFDS-DI (17) in terms of two measures are derived. In [97],
the authors proposed some exponential stability criteria of SIFDS-DI (17). The results
showed that, if the frequency and amplitude of impulses are appropriately related to the
increase/decrease in continuous flow, the concerned system can be stable.

Case C. State-dependent delayed impulses.
Take the following two articles as examples to illustrate the state-dependent de-

layed impulses.
In [98], the following impulsive differential system with state-dependent delayed

impulses is considered:{
ẋ(t) = f (t, x(t)), t ≥ t0, t 6= tk

x(tk) = Ik(t−k − τ, x(t−k − τ)), τ = τ(tk, x(t−k )), k ∈ N
(18)

In [99], the following stochastic impulsive differential system with state-dependent
delayed impulses is considered:{

du(t) = f (t, u(t), ut)dt + g(t, u(t), ut)dw(t), t ≥ t0, t 6= tk

u(t+k ) = Ik(t−k , u(t−k ), u(t−k − τk)), τk = τ(tk, u(t−k )), k ∈ N
(19)
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It can be clearly seen that the time-delay which is state-dependent, does exist in the
impulses of systems (18) and (19). To our knowledge, some classical stability analysis
methods for time-delay systems, such as delay decomposition method and free-weighting
matrix method, cannot be effectively applied to differential systems with state-dependent
delays. Even the widely used Lyapunov-Razumikhin method and Lyapunov-Krasovskii
method have difficulties in dealing with state-dependent delay differential systems too.
In [98], based on impulsive control theory and some comparison results, an estimate of
Lyapunov functions coupled with the effect of state delay is given, then some uniform
stability, uniform asymptotic stability and exponential stability criteria are established.
In [99], based on impulsive control theory and stochastic analysis theory, by using the
classical Itô’s formula, combined with the average impulsive interval and comparison
properties, some effective conditions ensuring stability of system (19) are derived.

4.3. Stability of Differential Systems with Impulses Suffered by Logic Choice

There are various logical phenomena in the real world. However, due to the lack
of mathematical tools that can effectively analyze logical functions, early research on
logical systems mainly focused on topological structures, and qualitative analysis was very
rare. This situation changed after the semi-tensor product method was proposed in [100],
which can transform logical functions into equivalent algebraic expressions. Against this
background, the differential systems with impulses suffered by logic choice have attracted
the attention of some researchers in recent years, see [101–109].

Let δi
n denote the ith column of the identity matrix In, i = 1, 2, · · · , n, and ∆n = {δi

n|i =
1, 2, · · · , n}. A matrix L ∈ Rn×m is called logical matrix, if Col(L) ⊂ ∆n. Moreover, we
identify logical values with equivalent vectors as: T = 1 ∼ δ1

2 , F = 0 ∼ δ2
2 .

Definition 4 ([100]). For two matrices A ∈ Rn×m and B ∈ Rp×q, the semi-tensor product of A
and B is:

A n B = (A⊗ Iα/m)(B⊗ Iα/p),

where α = lcm(m, p) denotes the least common multiple of m and p, ⊗ represents the Kronecker
product of matrices.

Lemma 1 ([100]). Given a logical function f (p1, p2, · · · , pr) ∈ ∆2 with logical variables p1, · · · ,
pr ∈ ∆2, there exists a unique 2× 2r logical matrix M f called the structure matrix of f , such that

f (p1, p2, · · · , pr) = M f n p1 n p2 n · · ·n pr = M f nr
i=1 pi

Moreover, Col(M f ) ⊂ ∆2. We note that nr
i=1 pi ∈ ∆2r .

‘Impulses suffered by logic choice’ was first introduced in [101], where the authors
proposed a class of DS-IL as follows:{

ẋ(t) = f (t, x(t)), t 6= tk

∆x(tk) = Φk(x(tk)), k ∈ N
(20)

where f : R+ × Rn → Rn is continuous and f (t, 0) ≡ 0, ∆x(t) = (∆x1(t), · · · , ∆xn(t))T , the
fixed impulsive points {tk}∞

k=1 satisfying 0 ≤ t0 < t1 < · · · < tk < · · · , and lim
k→∞

tk = ∞.

The impulses Φk(x(tk)) are affected by the logical relationship between xi(tk),
i = 1, 2, · · · n, k = 1, 2, 3 · · · , and can be described as:

∆xi(tk) = xi(t+k )− xi(tk)

= ui(p1(x1(tk)), · · · , pn(xn(tk)))Ik(xi(tk)) + ui(p1(x1(tk)), · · · , pn(xn(tk)))Jk(xi(tk)).
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where ui : {δ1
2 , δ2

2}n → {0, 1} is a logical function and ūi denotes the negation logical
function of ui. For ∀k ∈ N, Ik and Jk are continuous and satisfying Ik(0) = Jk(0) = 0.
Define the piecewise function pi : R→ {0, 1} as follows:

pi(s) =
{

δ2
2 ∼ 0, |s| ≥ ci

δ1
2 ∼ 1, |s| < ci

where ci > 0 is the threshold.
Obviously, the impulses in DS-IL (20) are affected by logic effects, and the changes in

state variables at the impulsive times will be selected from Ik and Jk under the influence of
logic functions.

Based on the concepts of semi-tensor product and the structure matrix of logical
function, the impulses of DS-IL (20) can be transformed into the following equivalent
algebraic expression:

∆x(tk) =

 Ik(x1(tk)) Jk(x1(tk))
. . .

Ik(xn(tk)) Jk(xn(tk))

Mp(x(tk)).

where p(x(tk)) = nn
i=1 pi(xi(tk)) is the semi-tensor product of pi(xi(tk), i = 1, 2, · · · , n.

M = (MT
1 , MT

2 , · · · , MT
n )

T ∈ R2n×2n
, Mi is the unique 2× 2n structural matrix of logical

functions ui and ūi.
After the impulses suffered by logic choice are successfully transformed into the

algebraic form, some classical differential equation research methods can be applied to
the systems with impulses suffered by logic choice. For instance, ref. [101] proposed the
following asymptotic stability theorem by means of Lyapunov functions.

Theorem 5 (see [101]). Assume that
(i) f (t, x) satisfies the QUAD condition and λmax(Q− εP−1) < 0.
QUAD condition: for some ε > 0, ∀x, y ∈ Rn, x 6= y, ∃ a positive definite diagonal matrix P

and a diagonal matrix Q 3 (x− y)T P{[ f (t, x)− f (t, y)]−Q(x− y)} ≤ −ε(x− y)T(x− y).
(ii) ∃ two functions φ1k, φ2k ∈K such that |Ik(xi)| ≤ φ1k(|xi|), |Jk(xi)| ≤ φ2k(|xi|).
(iii) ∃ d > 0 such that for z ∈ (0, d), λmax(Q− εP−1)(tk − tk−1) + ln(ψk(z)/z) ≤ −γk,

where γk ≥ 0, ∑∞
k=1 γk = ∞.

Then the trivial solution of DS-IL (20) is asymptotically stable.

Inspired by [101], some researchers have carried out qualitative research on impulsive
systems with logical effects, especially on impulses suffered by logic choice, and obtained
some stability results. In [102], the authors proposed several criteria on finite-time stability
of a class of nonlinear DS-IL. The authors in [103] extended the method in [101] to a discrete
system and obtained some stability results. In [104], the author presented some exponential
stability criteria of linear delay DS-IL, and the results showed that the constraint of the
coefficient functions can be reduced by logic impulsive control. Ref. [105] focused on the
stability analysis of a general DS-IL; some stability results are given by using the ‘equivalent
method’. Furthermore, refs. [106,107] extended the research work of the impulses suffered
by logic choice to stochastic systems, and the sufficient conditions for stability in [107] are
relatively easy to verify because they do not contain Lyapunov functions.

4.4. Stability of Differential Systems with Impulse Time Windows

The occurrence time τk of impulses may occur at a little range of time [τl
k, τr

k ), which can
be considered as the time error of impulsive control (see [110,111]). That is, the impulsive
times τk can stochastically occur in a small time interval [τl

k, τr
k ), which is called the impulse

time windows. The concept of ‘impulse time window’ was firstly introduced in [112].
In practical applications, impulsive control with impulse time windows may be more
effective than impulsive control with fixed times. Until now, stability research on systems
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with impulse time windows has yielded some results, see [109–116]. For illustration, we
cite the following result from [114].

In [114], the following linear DF-ITW is considered:{
ẋ(t) = Ax(t) + Bx(t− τ), t ≥ θ, t 6= τk, τk ∈ [τl

k, τr
k )

∆x(t) = x(t)− x(t−) = Cx(t−), t = τk, K ∈ N
(21)

where x ∈ Rn, A, B, C ∈ Rn×n, τ=const.> 0, θ ≥ t0, {τl
k}

∞
k=1 and {τr

k}
∞
k=1 are fixed points,

0 ≤ t0 = τl
0 = τ0 = τr

0 ≤ τl
1 < τr

1 ≤ τl
2 < τr

2 ≤ · · · ≤ τl
k < τr

k ≤ · · · , lim
k→∞

τr
k = ∞,

the impulse time τk is any value of [τl
k, τr

k ).
Because the impulses can take any value in the impulse time windows, they are still

more difficult to deal with than the fixed impulsive points system. Based on Lyapunov func-
tions and Razumikhin technique, by classifying the values of impulse time τk, the following
uniform stability theorem was obtained in [114].

Theorem 6 (see [114]). Let λ1, λ2 > 0 be the smallest and the largest eigenvalues of symmetric
and positive matrix P, respectively, λ3 and λ4 be the largest eigenvalues of P−1(AT P + PA + PP)
and P−1BT B, respectively, 0 < λ5 < 1 be the largest eigenvalues of P−1[(I + C)T P(I + C)],

where I is the identity matrix. Then, if (λ3 +
λ4

λ5
)(τr

k − τr
k−1) < − ln λ5, the trivial solution of

DF-ITW (21) is uniformly stable.

In [112], the research method in [114] is extended to a class of general impulsive delay
functional differential systems with impulse time windows, and some sufficient conditions
for the global exponential stability were obtained. Different from [112,114], the authors
in [110] obtained some stable and asymptotically stable comparison theorems by employing
the comparison principle rather than the Lyapunov-Razumikhin method. Recently, a class
of uncertain sandwich control system with impulse time windows was proposed in [111],
and several exponential stability criteria were obtained in terms of linear matrix inequalities
and inequality techniques. In [109], the authors proposed a class of linear (uncertain) delay
impulsive differential systems with impulse time windows and logic choice. By using the
semi-tensor product method and Lyapunov-Razumikhin technique, some uniform stability
criteria were obtained.

5. Applications in Neural Networks

The impulsive system can simulate the working process of biological neurons more
accurately, so as to improve the effect of the neural network in practical applications, such
as for robot control and biomedical engineering. Therefore, it is of great significance to
study the application of impulsive systems in neural networks, which has received a lot
of attention. Based on the structure of impulsive neural networks, we review some recent
work on stability below.

Consider the following impulsive neural networks:{
ẋi(t) = −cixi(t) + ∑n

j=1 aij f j(xj(t)) + ∑n
j=1 bijgj(xj(t− τij(t))) + Ii, t 6= τk

∆xi(t) = Hik(·), t = tk
(22)

where f j, gj are the activation functions of the neurons, ci > 0 denotes the decay rate, aij, bij
denote the weights of the neuron interconnections, τij denotes the transmission delay and
Ii is the external bias.

In [117–121], the authors investigated the stability of neural networks in the form
of system (22) or similar. For more information about the functions in system (22), refer
to [117–121], respectively. In order to better study the neural network system, various
techniques and methods have been constantly proposed or developed. In [117], the impul-
sive term in system (22) is described as x(tk) = hk(x(t−k )) + wk(x((tk − τ(tk))

−)) (k ∈ N),
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based on the properties of M-cone and eigenspace of the spectral radius of nonnegative
matrices, the authors established a differential inequality which overcomes the difficulty in
application of (generalized) Halanay inequality, and several global exponential stability
criteria were provided. In [118], in terms of nonsmooth analysis, some globally asymptoti-
cally stability results of a class of impulsive delay differential equations were proposed,
which can be applied to a class of neural network like (22), where cixi(t) is replaced by
ci(xi(t)). In [119], system (22) with uncertainty is considered, that is, A, B, C is replaced
by A + ∆A, B + ∆B, C + ∆C, respectively. By employing Lyapunov-Razumikhin functions
together with differential inequalities, some sufficient conditions of robust exponential
stability were obtained. In [120], proportional delay is considered in neural networks, to put
it simply, x(t− τ(t)) is replaced by x(qt), where q ∈ (0, 1) is proportional delay factor and
qt = t− (1− q)t, in which (1− q)t corresponds to the time delay required in processing
and transmitting a signal from the jth cell to the ith cell. By using the improved Lyapunov-
Razumikhin method, some sufficient conditions ensuring the existence, uniqueness and
globally asymptotic stability of the concerned neural networks are presented. In [121],
the authors considered the neural networks with state-dependent impulsive effects, where
the state jump ∆x|t=ξk satisfying ξk = θk + τk(x(ξk)). By using B-equivalence method
(reduce a state-dependent impulsive system to a fixed-time impulsive system), a com-
parison principle can be applied and some exponential stability results were established.
In addition, unbounded continuously distributed delays are also considered in neural
networks, and some stability results were obtained, such as [122,123].

Based on the nonlinear dynamic characteristics and stochastic properties of neu-
rons, scholars have constructed a variety of stochastic impulsive neural network models
(see [124–128] and references therein). While providing important tools for us to better
understand the way neurons operate, it also provides us with more efficient methods in the
fields of pattern recognition, data classification, and control systems, etc.

In [124], the authors considered stochastic impulsive Hopfield neural networks as follows:


dxi(t) = [−cix(t) + ∑n

j=1 aij f j(xj(t)) + ∑N
l=1 ∑n

j=1 b(l)ij gj(xj(t− ρl(t)))]dt

+∑m
s=1 σis(t, xi(t), xi(t− ρ1(t)), · · · , xi(t− ρN(t)))dws(t), t 6= τk

∆xi(tk) = Hik(xi(t−k )), K ∈ N

(23)

where σis denotes the diffusion-coefficient of stochastic effects. By employing the extended
Razumikhin method and Lyapunov functions, some pth moment exponential stability
theorems of stochastic impulsive Hopfield neural networks (23) are presented. In [125],
the authors investigated stochastic neural networks with mixed delays and hybrid impulses,
some sufficient conditions of input-to-state stability were obtained in terms of average
impulsive interval approach. Bidirectional associative memory (BAM) neural networks
have also attracted the interest of many researchers, and some stability results of stochastic
impulsive BAM neural networks have been reported. For instance, in [126], the authors
investigated the pth asymptotical/exponential input-to-state stability of a class of stochastic
impulsive BAM neural networks and presented some criteria by establishing integral-
differential inequalities with time-varying inputs. Meanwhile, Cohen-Grossberg neural
networks are another active research topic. In [127], by using the ’equivalent method’, some
sufficient conditions ensuring the exponential p-stability of a class of stochastic impulsive
reaction-diffusion Cohen-Grossberg neural networks are derived.

In view of the needs of scientific research and practical work, in addition to the above-
mentioned impulsive neural network systems, more and more types of impulsive neural
network systems have been established, classical research methods have been continuously
improved, and new research methods have been continuously proposed. In [129], a novel
concept of finite-time stable function pair is proposed to investigate the finite-time stability
of impulsive differential inclusion, and the results are applied to study discontinuous
impulsive neural networks. In [128], a new concept of average stochastic impulsive gain is
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proposed. By using Dupire Itô′s formula and the Lyapunov method, some criteria on the
mean-square exponential stability of multi-linked stochastic delayed complex networks
with stochastic hybrid impulses are derived. In [130], an impulsive disturbed neural
network model with delays is constructed in quaternion space, and the exponential stability
conditions of the delayed system are derived by utilizing generalized norms. In [131,132],
impulsive reaction–diffusion neural networks are considered, a new analysis method and a
novel vector inequality are developed, respectively, and some stability results are obtained.

6. Discussion

In recent years, differential systems with impulsive effects have attracted much atten-
tion due to their important role in theoretical research and engineering practice. A tradi-
tional and important problem is to study the stability of differential systems with impulsive
effects. In this paper, a large number of studies have been reviewed. We present a survey on
the stability of differential systems with impulsive effects, and focus on the following topics:

(i) Stability of impulsive differential systems (IDS, IDDS, IFDS).
We present three general impulsive differential systems (Systems (1), (2) and (5))

with emphasis on the application of classical stability methods, such as the comparison
method (Theorem 1 [13]) and the Lyapunov-Razumikhin techniques (Theorem 3 [36]), etc.
In addition, the research on the stability of differential systems with uncertain impulsive
moments is combed.

(ii) Stability of stochastic impulsive differential systems (SIFDS, SIDDS, SIDSM).
We present three general stochastic impulsive differential systems (Systems (7), (8)

and (11)) with emphasis on the improvement of classical methods and the introduction
of new methods. For example, the time-derivatives of Razumikhin functions are allowed
to be indefinite (Theorem 4 [59]), and the MRKM method is introduced for the numerical
approximation ([5]). In addition, a brief remark on the stability of stochastic impulsive
differential systems with random impulses is given.

(iii) Stability of differential systems with specific impulses (DS-NI, DS-DI, DS-IL,
DS-ITW).

For these four types of systems, we describe their main characteristics and develop-
ment process, analyze their stability studies, and give some examples and stability results
for illustration.

From this survey, we can see that the stability of differential systems with impulsive
effects has been well studied. Furthermore, many studies have demonstrated that unstable
systems can become stable under impulsive control and the design laws of impulsive
control are given. However, at the same time, we can also see that the structure of the
differential system with impulsive effects is very complex, and the coupling, mixing and
synthesis of various variables bring challenges to the research work.
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