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Abstract: The role played by explicit formulas for solving boundary value problems for elliptic
equations and systems is well known. In this paper, explicit formulas for a general solution of the
Dirichlet problem for second-order elliptic systems in the unit disk are given. In addition, an iterative
method for solving this problem for systems with respect to two unknown functions is described,
and an integral representation of the Poisson type is obtained by applying this method.
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1. Introduction

The classical method of studying boundary value problems for elliptic equations and
systems on a plane is based on representing the solutions of elliptic equations in terms of
analytic functions, which allows one to reduce the matter to the study of the boundary
value problems of function theory. For elliptic systems with constant leading coefficients, a
method was developed by A. V. Bitsadze [1] (see also [2,3]). In the Bitsadze representation
of solutions to elliptic systems, along with analytical functions, its derivatives up to a certain
order are also involved. This representation is significantly simplified [4,5] if the analytical
functions are replaced by the solutions of canonical elliptic systems of the first order:

∂φ

∂y
− J

∂φ

∂x
= 0

where J is a constant l × l−matrix with the eigenvalues ν located in the upper half-plane
Imz > 0. As was shown by A. Douglis [6], all of the elements of the theory of analytic
functions extend to solutions of the last system, which, following G. Hile [7], we call
J-analytic functions. They are studied in more detail in [8].

In the case where l = 2, the theory of the first-order elliptic systems was constructed
in the works by I. N. Vekua [9] and L. Bers [10] and is known as the theory of generalized
analytic functions. This theory was later extended to the case where l > 2 in the works by
B.V. Boyarskiy [11], R. Gilbert [12], R. Gilbert, G. Hile [13], and others.

The important results for general elliptic problems on a plane were obtained by A.I.
Volpert [14] and M.M. Sirazhudinov [15] using methods that are analogous to the ones of
function theory.

In this paper, within the framework of the general functional-theoretic approach
developed in [16], necessary and sufficient conditions for the unique solvability of the
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Dirichlet problem for a second-order elliptic system with constant leading coefficients
in the unit disk are given. In addition, an iterative method for solving this problem for
systems with respect to two unknown functions is described. In addition, the integral
representation of the Poisson type is obtained by virtue of the specified method application.

2. Main Results

Criterion for unique solvability: Let us consider the elliptic system of the second
order

a0
∂2u
∂x2 + a1

∂2u
∂x∂y

+ a2
∂2u
∂y2 = 0 (1)

on a plane with constant coefficients aj ∈ Rl×l . As it is known, the ellipticity condition can
be described as follows: the matrix a2 is invertible, and the characteristic polynomial

χ(z) = det p(z), p(z) = a0 + a1z + a2z2, (2)

does not have real roots.
Let D be a simply connected domain on a plane bounded by the Lyapunov contour Γ.

Let us consider the Dirichlet problem

u
∣∣
Γ = f (3)

for the system (1) within the class C(D) ∩ C2(D).
In 1948, A.V. Bitsadze [17] constructed an example of an elliptic 2 × 2 system

with the coefficients

a0 = −a2 = 1, a1 = ±
(

0 2
−2 0

)
,

for which the homogeneous Dirichlet problem in the unit disk has an infinite number of
linearly independent solutions.

After the appearance of this example, the question arose as to how to describe systems
for which the Dirichlet problem is well-posed. A class of such systems was introduced by
M.I. Vishik [18], who called them strongly elliptic. They are determined by the positive
definiteness condition for the matrix p(t) given in (2) for an arbitrary t ∈ R. Note that this
condition is equivalent [19] to

det(a0α + 2a1β + a2γ) 6= 0 for β2 − αγ < 0. (4)

Later, A.V. Bitsadze [1] described a class of elliptic systems, called weakly connected,
for which the Dirichlet problem is Fredholm. This class can be defined [20] as follows.
Using the coefficients ai of the system (1), we compose the block 2l × 2l matrix

A =

(
0 1

−a−1
2 a0 −a−1

2 a1

)
,

with the eigenvalues being coincided with the roots of the characteristic polynomial (2). It
reduces to the Jordan form

B−1 AB = J̃, J̃ =
(

J 0
0 J

)
,

where J consists of Jordan cells with eigenvalues belonging to the upper half-plane. More-
over, the matrix B can be chosen of the block form

B =

(
b b
bJ bJ

)
. (5)



Mathematics 2023, 11, 4360 3 of 9

The equivalent construction is that the matrix b ∈ Cl×l satisfies the matrix relation
a0b + a1bJ + a2bJ2 = 0, and the block matrix B must be invertible. Moreover, any two
matrices b and b1 are related by b1 = bd to some invertible matrix d commuting with J.

In this notation, the class of weakly connected systems is defined by the condition
det b 6= 0, which does not depend on the choice of the matrix b.

From the point of view of the general elliptic theory [21] the Fredholm property of
the problem (1), (3) is described by the complementarity condition. It can be shown [20]
that it is equivalent to the weak connection of the system (1). In the paper [22], the author
also states that, in the notation of (2), this condition is equivalent to the invertibility of
the matrix

∆ =
∫
R

p−1(t)dt.

The Fredholm property of the Dirichlet problem in the class of functions satisfying
the Hölder condition in the closed domain D was established by A.V. Bitsadze [1] and
N.E. Tovmasyan [23]. Note that M.I. Vishik showed [18] that the Dirichlet problem is
uniquely solvable for a strongly elliptic system (1). The paper [20] introduces the notion
of a generalized double layer potential, which makes it possible to reduce the Dirichlet
problem to the equivalent Fredholm equation on the boundary contour Γ. Firstly, let
us illustrate this approach on the classical potential of the double layer for the Laplace
equation, which can be defined by the equality

(P0 ϕ)(z) =
1
π

∫
Γ

p(t, t− z)ϕ(t)d1t, p(t, ξ) =
n1(t)ξ1 + n2(t)ξ2

|ξ|2 , (6)

where d1t is the arc length differential, z = x + iy, and n(t) = n1(t) + in2t) is the unit
outward normal. It is a well-known fact that the operator P0 is bounded C(Γ)→ C(D), and
the boundary value u+ on Γ satisfies the formula (P0 ϕ)+ = ϕ + K0 ϕ, where the operator
K0 is defined similarly to (6) by replacing z ∈ D with t0 ∈ Γ in the corresponding kernel
p(t, t− t0). Since Γ is a Lyapunov contour, this kernel has a weak singularity, which means
that the operator K0 is compact in the space C(Γ). The procedure for studying the Dirichlet
problem with the help of these potentials is described in the classical monographs [24] on
mathematical physics. It is based on the involvement of the Dirichlet problem in the outer
domain and can be replaced with the following property. Any harmonic function u ∈ C(D)
in the simply connected domain D can be uniquely represented in the form u = P0 ϕ with
some real density ϕ ∈ C(Γ). This immediately implies that the Dirichlet problem (3) for the
Laplace equation is reduced to the equivalent Fredholm equation ϕ + K0 ϕ = f .

Exactly the same procedure holds for the weakly coupled elliptic system (1) with
respect to the integral (6)

(Pϕ)(z) =
1
π

∫
Γ

p(t, t− z)H(t− z)ϕ(t)d1t, (7)

where a vector function is defined as ϕ = (ϕ1, ϕ2) ∈ C(Γ), and

H(ξ) = Im[b(ξ11 + ξ2 J)−1(−ξ21 + ξ1 J)b−1],

is the homogeneous matrix function of degree zero. Recall that the complex l × l−matrices
b, J appear in (5), and one is the identity matrix. This integral in the domain D defines
solution of the system (1), and the operator P is bounded C(Γ) → C(D). As above, the
boundary value of the function u = Pϕ satisfies the formula u+ = ϕ+Kϕ with the operator
K acting similarly to (7) with the replacement z ∈ D to t0 ∈ Γ. As in the classical situation,
the kernel of this operator has a weak singularity, which means that it is compact in the
space C(Γ) of vector functions ϕ = (ϕ1, ϕ2). The main result established in [20] (in the
more general situation of multiplying connected domains) is that in the considered case
of a simply connected domain, any solution of Equation (1) in the domain D from class
u ∈ C(D) can be uniquely represented in the form given by (7) with some real density
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ϕ = (ϕ1, ϕ2) ∈ C(Γ). This immediately implies that the Dirichlet problem (3) is reduced to
the equivalent Fredholm equation ϕ + Kϕ = f .

In this paper, we consider the Dirichlet problem for the Equation (1) in the unit circle
D = {|z| < 1}, and its boundary circle will be denoted by T. It is convenient to use the
notation ϕ ∈ C(T) for 2π− periodic functions ϕ(θ) = ϕ(eiθ). Using Fourier coefficients

ϕ̂n =
1

2π

∫ 2π

0
ϕ(θ)e−inθdθ

this function is restored by the formula

ϕ(θ) = ϕ̂0 + 2Re ∑∞
n=1 ϕ̂neinθ .

As the function

H(θ) = Im[b(1 cos θ + J sin θ)−1(−1 sin θ + J cos θ)b−1] ∈ C∞

is π− periodic, the equality
k(θ) = H(θ/2) (9)

defines a 2π-periodic matrix function; thus,

k̂n =
1
π

∫ π/2

−π/2
H(θ)e−2inθdθ.

Let us suppose that
det(1 + k̂n) 6= 0, n = 0, 1, . . . . (10)

Under this assumption, the subsequence

r̂n = (1 + k̂n)
−1 − 1→ 0 (11)

is faster than any power of n and serves to provide the Fourier coefficients of the corre-
sponding matrix function r(θ) ∈ C∞.

The above considerations make it possible to explicitly solve the question of the
solvability of the Dirichlet problem in the unit disk.

Theorem 1. The Dirichlet problem for a weakly connected system (1) is uniquely solvable in the
unit disk if and only if condition (10) is satisfied. Under this assumption, a solution to the problem
is given by the formula

u = P(1 + R) f , (12)

where the operator R acts in the class of 2π-periodic functions according to the rule

(R f )(θ0) =
1

2π

∫ 2π

0
r(θ − θ0)ϕ(θ)dθ (13)

with the matrix-value function r(θ) defined above.

Proof. The unit normal is n(t) = t on T, and, for the points t = eiθ , t0 = eiθ0 , we have
the expressions

p(t, t− t0) = Re
(

t
t− t0

)
=

1
2

, t− t0 = 2 sin
(

θ + θ0

2

)
ei(θ−θ0)/2.

Therefore, the operator

(Kϕ)(t0) =
1
π

∫
Γ

p(t, t− t0)H(t− t0)ϕ(t)d1t, t0 ∈ T,
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acts according to Formula (13), where the role of r is played by function (9). Thus,

(Kϕ)∧n = k̂−n ϕ̂n,

which means condition (10) is necessary for the invertibility of the operator 1 + K and,
consequently, for the solvability of the Dirichlet problem. Let it be done. It is easy to see
that the operator S = RK acts similarly to (13) with respect to the function

s(θ0) =
1

2π

∫ 2π

0
r(θ0 − θ)k(θ)dθ.

Taking into account (11) and defining ψ = (1 + R)(1 + K)ϕ, we have

ψ̂n = (1 + r̂−n + k̂−n + r̂−n k̂−n)ϕ̂n = ϕ̂n.

Consequently, the operator 1 + K is invertible, and (1 + K)−1 = 1 + R, which leads to
formula (12) for solving the Dirichlet problem.

Let us make sure that, in the case of the Laplace equation, this formula goes over into
the Poisson integral. To this end, note that, according to (6),

p(t, t− z) = Re
(

t
t− z

)
and, therefore,

(P0 ϕ)(z) = Re
[

1
πi

∫
T

ϕ(t)dt
t− z

]
, (14)

where it is taken into account that the complex differential dt = itd1t.
For the Laplace equation in expression (5), we can set b = 1 and J = i so that the

function k in (9) is identically equal to one. Accordingly, the operator K0 transforms the
function ϕ into a constant

ϕ̂0 =
1

2π

∫ 2π

0
ϕ(θ)dθ =

1
2πi

∫
T

ϕ(t)dt
t

.

Therefore, the equation ϕ + K0 ϕ = f is uniquely solvable with ϕ = f − f̂0/2. Accordingly,
(12) becomes equal to

u = P0[ f − f̂0/2].

Expression (14) shows that P01 = 2, and, hence, P0[ f − f̂0/2] = P0 f − f̂0, which in its
expanded form is

u(z) = Re
[

1
πi

∫
T

ϕ(t)dt
t− z

− 1
2πi

∫
T

ϕ(t)dt
t

]
=

1
2π

∫
T

Re
[

t + z
t− z

]
ϕ(t)d1t.

As a result, we arrive at the Poisson formula

u(z) =
1

2π

∫
T

1− |z|2
|t− z|2 ϕ(t)d1t.

For this reason, in the general case, equality (12) is naturally called the generalized
Poisson formula. It gives a solution to the problem (3) for weakly connected elliptic system
(1) in the unit disk.

Iterative method of solution. Consider a strongly elliptic system of the form (1) with
dimension l = 2, which is defined with respect to the vector function u = (u1, u2) of the
two real variables x and y. It is convenient to introduce a complex variable z = x + iy
and a complex-valued function, which will be denoted u = u1 + iu2. With the help of
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suitable linear transformations of variables (x, y) and of unknowns (u1, u2) this system can
be reduced to the form

Lτ,σu(z) = (∂∂ + τ∂2)u(z) + σ(τ∂∂ + ∂2)u(z) = 0 (15)

with just two parameters τ, σ ∈ [0, 1); see [25,26]. Here, the symbols ∂ and ∂ denote
Cauchy–Riemann operators in the new variable z, and the bar over u(z) means, as usual,
complex conjugation.

Let us list some well-known particular cases of Equation (15). First of all, for τ = σ = 0,
we have the complex Laplace equation ∆u = 4∂∂u = 0. Furthermore, for τ = 0 and
σ 6= 0, we have the isotropic Lame equation from the plane theory of elasticity [27], and
the parameter σ is related to the Poisson’s ratio p of the elastic body, σ = 1/(3− 4p);
since p ∈ (0, 1/2) is known, then σ ∈ (1/3, 1). If σ = 0 and τ 6= 0, then we have a
skew-symmetric system that can be written as the equation auxx + 2buxy + cuyy = 0 with
complex coefficients a, b, and c. Finally, for σ > τ, we obtain an anisotropic Lame equation.

Let us arrange one more transformation over Equation (15), having previously rewrit-
ten it in the form

∂∂(T1,στu) + ∂2(Tτ,σu) = 0,

where
Tα,βw = αw + βw, α, β ∈ C, |α| 6= |β|,

is the operator of a nondegenerate affine transformation of a plane of the complex variable
w that preserves the origin. Now, let us replace the function u on

v = T1,στu; (16)

then,
∂∂v + ∂2(Tv) = 0,

where

Tw = Tτ,σT −1
1,στw = α0w + β0w, α0 =

τ(1− σ2)

1− σ2τ2 , β0 =
σ(1− τ2)

1− σ2τ2 ,

and the operator C→ C has the norm

|T| = α0 + β0 =
τ + σ

1 + στ
< 1.

The resulting equation can be rewritten as

∂∂v + |T|∂2(T0v) = 0, (17)

where the operator T0 = |T|−1T has a unit norm.
The solution of the Dirichlet problem for the complex Equation (17) in the unit disk D

with boundary data v|T = ϕ ∈ C(T) will be sought in the form of a functional series

v(z) =
∞

∑
n=0
|T|nvn(z) (18)

in powers of a small parameter |T| < 1. Substitute (18) into (17), and set the factors equal to
zero for all powers of |T|; moreover, we set v0 = ϕ and vn = 0 for n > 1 on the boundary T
of the disk D. As a result, we obtain the following sequence of Dirichlet problems for the
Laplace equation

∂∂v0 = 0 on D, v0|T = ϕ
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and the Poisson equation

∂∂vn = −∂2(T0vn−1) on D, vn|T = 0, n > 1.

Let the boundary function of the Dirichlet problem for Equation (17) in the unit disk
D have the Fourier expansion

f (z) =
∞

∑
m=0

amzm +
∞

∑
m=1

bmzm,

which means that

am =
1

2π

∫
T

f (ζ)ζmd1ζ, bm =
1

2π

∫
T

f (ζ)ζmd1ζ.

Using the linearity of Equation (17), one can search for the solution to the Dirichlet
problem for it as a sum of solutions to the Dirichlet problems for the functions amzm and
bmzm. Each such problem can be solved using the described iterative method. To satisfy
the boundary conditions on the function vn(z), we use the fact that zz = 1 for z ∈ T.

Thus, for the boundary function f (z) = amzm, m > 2, we have

v0(z) = amzm, v1(z) = −α0mamzzm−1 + α0mamzm−2, . . . ,

and for f (z) = bmzm, m > 2, we find

v0(z) = bmzm, v1(z) = −β0mbmzzm−1 + β0mbmzm−2, . . .

The summation of the solutions leads to a Poisson-type integral representation, which
we present (see also [25,28,29]) for the solution u(z) of Equation (15), which is related to
the solution v(z) of Equation (17) by way of relation (16).

Theorem 2. Let u ∈ C(D) and Lτ,σu = 0, with τ, σ ∈ [0, 1) in the unit disk D. Then, for z ∈ D,
there is a Poisson-type integral representation

u(z) =
1

2π

∫
T

1− |z|2
|ζ − z|2 ϕ(ζ)d1ζ+

+
1

2π

∫
T
(1− |z|2)

∞

∑
m=0

(
σ2mτ2m(2ζ − τ2mzτ)(τϕ(ζ) + σϕ(ζ))

(ζτ4m+1 − τ2mzτ)(ζ − τ2mz)(ζ + τ2m+1z)
−

− σ2m+1τ2m+1(2ζ + τ2mzτ)(τϕ(ζ) + σϕ(ζ))

(ζτ4m+2 + τ2m+1zτ)(ζ + τ2m+1z)(ζ − τ2m+2z)

)
d1ζ, (19)

where zτ = z− τz.

Note that this Poisson-type formula becomes much simpler when one of the parame-
ters τ or σ vanishes. In these cases, we have

u(z) =
1

2π

∫
T

1− |z|2
|ζ − z|2 ϕ(ζ)d1ζ +

σ

2π

∫
T

1− |z|2
(ζ − z)2 (2− ζz)ϕ(ζ)d1ζ

for τ = 0 (isotropic Lame equation) and

u(z) =
1

2π

∫
T

(1− |z|2)(ζ + τζ)ϕ(ζ)d1ζ

(ζ − z)τ(ζ − z)(ζ + τz)

for σ = 0 (skew-symmetric system).
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3. Conclusions

We emphasize that in this paper the main attention has been paid to explicit formulas
for a general solution of the Dirichlet problem for second-order elliptic systems on the
unit disk (especially for systems of two equations). Thus, we have equality (12), which
is naturally called the generalized Poisson formula. It gives a solution to the problem (3)
for a weakly connected elliptic system (1) in the unit disk. Another formula (19) is the
generalized Poisson formula for a strongly elliptic system in the particular case where l = 2.
As for the general questions of the solvability of this problem, numerous studies have been
devoted to them. See, for example, A.H. Babayan [30–32], V.P. Burskii [33], etc.
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