
Citation: de Pedro, L.; París Murillo,

R.; López de Vergara, J.E.;

López-Buedo, S.; Gómez-Arribas, F.J.

VaR Estimation with Quantum

Computing Noise Correction Using

Neural Networks. Mathematics 2023,

11, 4355. https://doi.org/10.3390/

math11204355

Academic Editor: Jose L. Salmeron

Received: 7 September 2023

Revised: 17 October 2023

Accepted: 18 October 2023

Published: 20 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

VaR Estimation with Quantum Computing Noise Correction
Using Neural Networks
Luis de Pedro * , Raúl París Murillo, Jorge E. López de Vergara , Sergio López-Buedo
and Francisco J. Gómez-Arribas

Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
raul.paris.murillo@gmail.com (R.P.M.); jorge.lopez_vergara@uam.es (J.E.L.d.V.);
sergio.lopez-buedo@uam.es (S.L.-B.); francisco.gomez@uam.es (F.J.G.-A.)
* Correspondence: luis.depedro@uam.es; Tel.:+34-91-497-22-52

Abstract: In this paper, we present the development of a quantum computing method for calculating
the value at risk (VaR) for a portfolio of assets managed by a finance institution. We extend the con-
ventional Monte Carlo algorithm to calculate the VaR of an arbitrary number of assets by employing
random variable algebra and Taylor series approximation. The resulting algorithm is suitable to
be executed in real quantum computers. However, the noise affecting current quantum computers
renders them almost useless for the task. We present a methodology to mitigate the noise impact by
using neural networks to compensate for the noise effects. The system combines the output from a
real quantum computer with the neural network processing. The feedback is used to fine tune the
quantum circuits. The results show that this approach is useful for estimating the VaR in finance
institutions, particularly when dealing with a large number of assets. We demonstrate the validity of
the proposed method with up to 139 assets. The accuracy of the method is also proven. We achieved
an error of less than 1% in the empirical measurements with respect to the parametric model.

Keywords: neural network; qubit; quantum computing; Monte Carlo; value at risk (VaR)

MSC: 81P68

1. Introduction

International regulations compel financial institutions to allocate loss provisions for
the investments they made. The criterion for determining the budget allocated to loss
provisions is to estimate the investment risk so that the probability of loss remains below
a certain threshold. This threshold is usually determined by regulatory authorities, and
typically ranges from 1% to 5% [1–3]. For this purpose, value at risk (VaR) [4] is a widely
used metric for risk management, as it calculates the maximum potential loss within a
given probability range, typically set at 99%. For example, if an investment portfolio has a
1-day 99% VaR of USD one million, it means that there is a 1% probability that losses after
one day will be USD one million or more.

Monte Carlo simulation is one of the available algorithms and methods used in finance
to estimate investment risk metrics, particularly the VaR. A random number generator is
used to create several samples according to a given distribution. These samples are used
to calculate a possible result (gain/loss) scenario for a certain asset. Then, the process is
repeated with a new set of samples to calculate another result scenario. If these calculations
are repeated enough times, we can accurately estimate the distribution function of the
random variable that corresponds to the results of the investment.

Traditionally, log-normal, Pareto and other distributions have been used to model
financial markets. The log-normal distribution is also relatively easy to use, so it has been
extensively applied in recent years to VaR estimations [5]. Moreover, it has the advantage
of modeling long tails in the distributions. Once the distribution function for the result of a

Mathematics 2023, 11, 4355. https://doi.org/10.3390/math11204355 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11204355
https://doi.org/10.3390/math11204355
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4595-7370
https://orcid.org/0000-0002-4057-4688
https://orcid.org/0000-0002-0815-7921
https://orcid.org/0000-0001-5363-171X
https://doi.org/10.3390/math11204355
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11204355?type=check_update&version=1

Mathematics 2023, 11, 4355 2 of 19

certain asset has been approximated, the random variable corresponding to the result of
the whole investment portfolio can be modeled by accumulating the distributions of all
assets. The more samples generated for obtaining the distribution functions of the assets,
the more accurate the model of the investment result. However, this approach experiences
two challenges.

The first challenge is the growing number of samples needed when the number of
assets in the portfolio increases. The computation time limits the use of the Monte Carlo
method when the portfolio is large. Several solutions have been used to address this issue,
such as the use of high-performance computers, which is a common solution but expensive.
Another approach is to combine the asset distributions from the recorded results and
calculate the VaR by using the resulting theoretical distribution. This approach is called
parametric estimation, and it is explained in the following section. The problem is that
the complexity of financial markets makes this approach very rigid. Investors feel that the
resulting VaR is sometimes excessively conservative. This leads to the next challenge.

The second challenge, as mentioned, is the need for “real” random numbers to cap-
ture the somehow chaotic environment in which investments are conducted. Quantum
computing (QC) can help in this task, given its intrinsic randomness property. As it is
based on physical measurements of quantum states, there are no algorithms behind. It
is expected that a physical system can model the investment market much better than a
pseudo-random number generation algorithm. However, the use of quantum computing
to estimate risk, although promising, is affected by the noise inherent to current quantum
computers.

In fact, quantum computing is still at an early development stage. Preskill coined the
term noisy intermediate scale quantum (NISQ) [6] to describe the quantum computing
technology that is nowadays becoming available. That is, quantum computers featuring a
limited number of qubits (in the order of tens) and, more importantly, suffering severe noise
problems. Noise may jeopardize the usefulness of NISQ technology to solve real-world
problems. However, noise-mitigation techniques based on complex neural networks and,
more specifically, deep learning methods, have gained interest in recent years.

Addressing these challenges, the contributions of this paper are manifold:

1. We present a method to summarize market behavior with a single Gaussian distribu-
tion. This addresses the problem of many assets in a portfolio.

2. A comparison with present parametric and Monte Carlo estimations is discussed.
Therefore, the risk of a portfolio with an arbitrary number of assets can be afforded.

3. We show that, using the above-mentioned Gaussian and a Taylor series expansion,
VaR can be calculated using quantum computing.

4. We present a method to mitigate the noise effect in actual NISQ quantum computers
by using neural networks.

The rest of the paper is organized as follows. First, we present the current approach
to VaR estimation and Monte Carlo methods. Next, we develop the single Gaussian
estimation method, and we apply it to actual assets. Then, we propose to use quantum
computing to improve the randomness of the solution. After this, we use neural networks
to mitigate the noise in the quantum circuit, and discuss the obtained results. Later, we
provide a comparison of our approach with other works. Finally, we conclude the paper,
highlighting the main results and future works. Different values of VaR are used in the
examples along the paper to facilitate the visualization of each case.

2. Monte Carlo VaR Estimation

The Monte Carlo method for estimating the VaR is based on the generation of Gaus-
sian samples with zero median and unitary variance, which are then combined to generate
predictions of market values. This method has been extensively used in finance for estimat-
ing risks in investments [7]. The objective is to predict the risk for the following investment
cycle, usually one day, using historical data. For instance, you have the current values of the
assets and the history of previous values for the past months, and you want to predict the

Mathematics 2023, 11, 4355 3 of 19

values for tomorrow. Assets can include any type of investments (stock exchange, foreign
currencies, etc.). Regulatory authorities mandate financial institutions to estimate the risk
of investments and make corresponding provisions to minimize the risk that an unexpected
event causing severe investment loss compromises the stability of the financial system.
Better risk estimations allow financial institutions to minimize the money dedicated for
provisions, which can be used instead for other investments. In this paper, we assume that
the risk level is 1%. This means that the amount of money allocated for provisions is what
the finance institution may lose with a 1% probability. This amount of money is referred to
as the value at risk (VaR). Although all the developments in this paper have been made
for a 1% loss probability, any other (small) probability value can be used. For the sake of
simplicity, we will subsequently refer to the historical asset values as “the samples”.

2.1. Monte Carlo Method

The conventional approach is to consider that samples are not independent but rather
correlated [8]. To include such dependencies in the method, we calculate the day-to-day
variation of samples. Using these variations, the covariance matrix can be calculated.
Dependencies are actually included by using the Cholesky matrix [9] associated with the
covariance The so-called Cholesky decomposition consists of decomposing a Hermitian
positive-definite matrix into the product of a lower triangular matrix and its conjugate
transpose. It is a method frequently used because of its efficiency [10]. Once the Cholesky
matrix is calculated, random Gaussian (independent) samples are generated, one vector of
the samples at a time. By just multiplying the Cholesky matrix by the vector of indepen-
dent samples, a new vector of dependent random Gaussian variables is obtained. These
samples are then transformed into log-normal samples using the exponential function.
In summary, we generated Gaussian random samples, introduced historical dependence,
and transformed it into log-normal samples. This process is repeated to obtain numerous
samples. The components of every vector are added to obtain an estimation for the cumu-
lative win/loss, which is the key parameter. The probability distribution of these results
constitutes the estimated distribution of the win/loss for the assets in the next investment
cycle (in our case, the next day).

In this paper, we consider the gain/loss distribution. Negative numbers indicate loss,
so the 1% is calculated from the left of Figure 1. Other authors consider distributions where
the losses are in the positive axis, and therefore they consider the percentage from the right
(i.e., 99%). The detailed procedure is as follows:

1. Calculate the covariance matrix COV from the assets’ series increments.
2. Calculate the Cholesky matrix CHO from the COV matrix.
3. Repeat:

(a) Generate several N(0, 1) samples (Gaussian zero media µ = 0 and unitary
standard deviation σ = 1), one for each asset, to obtain the sample vector ~v.

(b) Calculate the scenario~e = CHO ·~vᵀ.
(c) Using the vector of market values ~m, calculate the log-normal result sample:

~r = exp(~e− 1) · ~m.
(d) Calculate total win/loss value by adding all n~r components:

s = ∑n
i=1 ri.

4. Estimate VaR by calculating 1% percentile in s (log-normal distribution).

To generate the distribution, the previous process is repeated numerous times (typi-
cally in the order of tens of millions), and the VaR percentile is estimated (in our case, 1%,
as mentioned above) from the resulting histogram.

As an example, we used a historical series of 80 days for the values of the three assets.
The covariance and Cholesky matrices, both of size 3× 3, are listed below for clarification:

COV =

 0.0001406 5.19894 · 10−5 7.75869 · 10−5

5.19894 · 10−5 0.0001299 0.0001114
7.75869 · 10−5 0.0001114 0.0002762

,

Mathematics 2023, 11, 4355 4 of 19

CHO =

0.011861013 0 0
0.004383214 0.010525491 0
0.006541336 0.007868523 0.01309934

.

An example of the market values ~m in USD is

~m =
[
18440 17520 13850

]
.

The results for the estimation of the VaR corresponding to the three assets, after one
thousand iterations, are shown in Figure 1.

00.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

−
17
97

−
15
72

−
13
47

−
11
22

−
89
6

−
67
1

−
44
6

−
22
1 5

23
0

45
5

68
0

90
6

11
31

13
56

15
81

USD

Figure 1. Monte Carlo VaR estimation histogram (blue), Gaussian fit (green) and CDF (red). The left
y-axis stands for PDF and the right y-axis for CDF.

The green line represents the PDF fit using a log-normal distribution. The red line
represents the CDF for the win/loss sample. The horizontal black line is the 1% threshold.
The intersection of both red and black lines indicates the estimated VaR = USD −1219.

2.2. Parametric Estimation

As the number of assets in an investment portfolio increases, it gets surprisingly
difficult to use the Monte Carlo method to calculate the VaR. Even for an apparently small
number of assets (in the order of tens), it is extremely difficult for the method to converge
to a reasonable estimation since the sample space grows exponentially with the number of
assets [7,11]. The alternative approach is to use a parametric estimation, which does not
leverage randomness.

To estimate the VaR using the parametric method, an approximation is assumed
between the input asset values and a normal distribution [12]. With this assumption,
the calculus process becomes relatively straightforward, as it only requires obtaining the
standard deviation of the historical series of samples.

The equation to obtain the parametric VaR for a single asset i is

VaR(raw)i = Vi · (exp(σi)− 1) · CDF−1(p), (1)

where V is the asset value for today, σ is the standard deviation of the historical series
of samples, CDF−1 is the inverse of the cumulative distribution for a N(0, 1) Gaussian
distribution, and p is the level of confidence (in our case p = 1− 1% = 99%). To include
the samples’ correlation, the VaR(raw)i values are arranged into a row vector. By using

Mathematics 2023, 11, 4355 5 of 19

the Cholesky matrix, calculated as in the Monte Carlo method, we can estimate the VaR by
calculating the vector ~w as follows:

~w = ~v · CORR ·~vᵀ, (2)

where CORR is the correlation matrix of the samples, and ~v is the row vector of the
VaR(raw)i components described in Equation (1). The VaR can be obtained as the square
root of the accumulating ~w components:

VaR =

√
n

∑
i=0

w2
i , (3)

where n is the number of assets. Using the previous example with n = 3, we estimate
VaR = USD −1213, quite similar to the one obtained with the Monte Carlo approach:
VaR = USD −1219 (see Section 2.1). However, as this is a “mechanical” approach, it might
overlook market fluctuations that are relevant for the investors (“black swans”, extremely
improbable but highly dangerous events). This is why it is crucial to find a method that
includes randomness to calculate the VaR for a huge number of assets.

Nevertheless, the parametric method is still interesting because it can be used to obtain
the VaR estimation even when the number of assets increases significantly. However, the
estimation is usually worse, which means allocating more money for provisions regarding
the Monte Carlo method. Other approaches have been proposed [13], some as the evolution
of traditional Monte Carlo methods [14–16], or better approaches to random number
generation [4,17].

3. Linear Approach to Monte Carlo Estimation

To address the computational challenge of generating numerous Gaussian random
numbers, we present an approach that reduces the number of samples needed to estimate
the VaR.

3.1. Taylor Series Approximation

Since fluctuations in asset values are typically small, one possible solution for adding
randomness to the VaR estimation is to “linearize” the calculation scenario described above
as shown in Equation (4), which is similar to a first-order Taylor series approximation [18]:

~r = exp(CHO ·~vᵀ − 1) · ~m ≈ (CHO ·~vᵀ) · ~mᵀ. (4)

Given that CHO and ~m are known data, we can write Equation (4) as a linear combi-
nation of the components of ~v, which are random variables with a N(0, 1) distribution as
shown in Equation (5):

s =
n

∑
i=0

ri =
n

∑
i=0

ai · vi. (5)

Actually, this is a sum of random variables with a N(0, 1) distribution. In statistical
theory, it is a well known [12] that the sum of a linear combination of these types of
random variables results in another Gaussian random variable N(0, σ), whose standard
deviation [11] is given by Equation (6):

σ =

√
n

∑
i=0

a2
i , (6)

where ai is obtained from Equation (5).
Therefore, the Monte Carlo method to estimate VaR can be modified to use this linear

approximation as follows:

1. Calculate the covariance matrix COV from the assets’ series.

Mathematics 2023, 11, 4355 6 of 19

2. Calculate Cholesky matrix CHO from the COV matrix.
3. Calculate~a using the market values vector ~m

~a = ~m · CHO.
4. Calculate the standard deviation for the N(0, σ):

σ =
√

∑n
i=0 a2

i .

5. Repeat:
Generate one N(0, σ) as a sample of the loss random variable s.

6. Estimate VaR by calculating 1% percentile in s (log-normal distribution).

Figure 2 shows the quasi-perfect fit of this approach for calculating loss samples. The
blue line represents the parametric estimation, while the red line represents the linear
approximation for five assets. Ten million samples were generated for the linear approach.
The distance between both simulations can be calculated as

Error =

∫ ∞
−∞ |PDFMonteCarlo − PDFlinearapproximation|∫ ∞

−∞ PDFMonteCarlo
. (7)

In our example, Error has a value of 1.5%, which we consider acceptable. We also
investigated the use of a second-order Taylor approximation, reducing the error to 0.22%.
However, the added complexity in calculations when using a second-order approximation
inclined us to consider only the first-order approximation.

5
· 10−4

4.5

4

3.5

52

U
O!
l
�
U
n
LL

>l!
S
u
a
a
 Al
!l!
q
e
q
o
」

d

3

2

1.5

1

0.5

。

−5000 。

Assets Gain/Loss Value (USO)

5000

Figure 2. Gain/Loss value PDF. Comparison between the classical Monte Carlo approach (red line)
and linear approximation (blue line).

While this excellent result suggests the viability of using the linear method to estimate
the VaR for a higher number of assets, there is unfortunately a major challenge when
applying this approach to hundreds of assets: Cholesky matrix calculations.

Mathematics 2023, 11, 4355 7 of 19

3.2. Cholesky Matrix Calculation

Both the Monte Carlo method and the linear approximation method begin with
the calculation of the Cholesky matrix from the covariance matrix. The algorithm for
computing the matrix components is based on an iterative process, where the covariance
matrix components are used to normalize partial results [19]. This process includes a
normalization step, where matrix components are used as a denominator in divisions. As
it can be seen in the covariance matrix sample shown above, in Section 2.1, some matrix
components can be very close to zero. If the covariance matrix is large, then division errors
accumulate rapidly, causing inaccuracies in the Cholesky partial calculations and therefore
turning the algorithm useless. Fortunately, this problem has already been addressed in
the literature. One proposed solution is to calculate the Cholesky matrix using the LDL
factorization [20], which effectively mitigates the arithmetic errors. In this paper, we used
for our calculations the modifications proposed by S. H. Cheng and N. J. Higham [21].

By combining the linear approximation method and the Cheng algorithm, we were able
to estimate the VaR for an investment portfolio consisting of 138 assets. Data were provided
by a financial institution, and correspond to investments in the financial market of Peru,
spanning six months. We tested the classic Monte Carlo, the parametric approximation,
and the linear approximation algorithms to estimate the VaR of the portfolio. Tests were
performed incrementally, choosing first a reduced number of assets and then incrementing
the number, one by one, until reaching the full set of assets. Figure 3 represents the VaR
calculations versus the number of assets included in the estimation. It can be seen that the
parametric calculations and our linear approximation method provide similar results.

0 20 40 60 80 100 120 140
Number of assets

−12,000

−10,000

−8000

−6000

−4000

−2000

0

Va
lu

e
at

 R
is

k
 (U

SD
)

Parametric
Linear

Figure 3. VaR evolution with number of assets.

4. Quantum Computing

As previously stated, finance institutions have concerns that random-based algorithms,
like Monte Carlo, might not be able to discover less obvious scenarios when estimating
the future of their investments, what they call “black swans”. Consequently, they are then
pushing quantum computer scientists to design and implement increasingly powerful
quantum systems, with the confidence that such devices can provide better risk estimations
for their business. The inherent randomness of quantum mechanics is a good argument

Mathematics 2023, 11, 4355 8 of 19

in favor of this approach. Based on this idea, in this section, we show how quantum
computing could be used to calculate the VaR.

Quantum computers can be defined as systems designed to manipulate single particles
(i.e., electrons) [22]. It is possible to program the system so that particles interact with each
other in a given way, specified by the programmer. The so-called quantum state of the
particles can be considered a random variable, which is measured at the end of the program
(which executes in about 200 µs). The program is executed multiple times (typically 1024),
and the measurements are accumulated in a histogram that is afterward sent back to the
user. The discipline of quantum computing consists of designing the interactions so that
the result (histogram) is relevant for a given problem. In the programming language of
quantum computers, the particles are represented as so-called qubits and the manipulations
and interactions as the so-called quantum gates. The representation of the program is called
a quantum circuit since it resembles the aspect of classic digital circuits, although the lines
do not represent wires but time.

We used the IBM Qiskit environment to develop and execute a program designed to
generate the samples of assets values. Qiskit provides libraries to facilitate the development
of quantum circuits.

4.1. Distribution Window Approach

For implementing the VaR calculations on a quantum computer, we used the IBM
quantum experience (QE) platform and the Qiskit framework [23] to design a circuit that
prepares the quantum state as described in Equation (8):∣∣0〉n 7→ ∣∣ψ〉 = ∑

i=0

√
pi
∣∣i〉n. (8)

In the literature, there are already methods to generate random samples of a distri-
bution using Qiskit libraries. One of the proposed methods approximates the distribution
function by straight segments. The number of such segments is related to the number of
qubits of the computer. The more qubits, the better the approximation. However, since the
number of qubits is very limited in current NISQ computers, we tried to “concentrate” the
calculations within the interval of the CDF, where the VaR value is most probably located.
Again, we are assuming that asset values do not have massive changes from one investment
cycle to the next. Therefore, to increase the precision, we restricted the calculation of the
probabilities to the window between low = −3σ and high = −2σ. As mentioned, samples
are focused on the part of the distribution where the VaR is most probably located. To
further restrict the span of calculations, we used the transformation shown in Equation (9):

{0, . . . , 2n − 1} 3 i 7→ high− low
2n − 1

· i + low ∈ [low, high]. (9)

Recall that the VaR with a given probability α is shown in Equation (10):

VaRα = in f {x : P[X ≤ x] ≥ α}. (10)

As we are only using a window of the Cumulative Distribution Function (CDF), we
need to scale the parameter α. The new parameter β, which we will use within the window,
is related to α as in Equation (11):

β = α− 1− CDF(0, 1, 3)
CDF(0, 1, 2)− CDF(0, 1, 3)

, (11)

where CDF(0, 1, x) is the N(0,1) CDF evaluated in x = n · σ.
Using Equation (6) for the Peru portfolio of 138 assets, we obtain a value of σ = 4165.26.

Given the probability of α = 1%, we can use Equation (11) to calculate β = 47.66%. This
transformation can be schematically seen in Figure 4.

Mathematics 2023, 11, 4355 9 of 19

1%47.66%
Figure 4. Window in the Gaussian distribution to focus calculations in the tail. Red line indicates the
same PDF.

4.2. Statevector Simulation

The circuit for calculating the VaR estimation can be generated using Qiskit libraries
(version 0.17.0). Qiskit uses the state preparation approach [24]. It is possible to generate
a quantum circuit from a given probability distribution so that output samples are ap-
proximations to such probability distribution [25]. Qiskit libraries also allow clipping the
distribution to a certain window [26]. For example, in the Peru assets, the VaR is estimated
to be within the interval [−3 · σ,−2 · σ]. The circuit for 4 qubits is shown in Figure 5, and it
includes a set of rotation and CNOT gates.

q0 : RY (1.911) RY (0.008719) RY (−5.374 · 10−5) RY (0.01744) RY (−0.0002154) RY (−4.644 · 10−6) RY (−0.0001076) RY (0.03489)

q1 : RY (2.211) RY (0.02951) RY (−0.001297) RY (0.05904) • • • •
q2 : RY (2.635) RY (0.07031) • • • •
q3 : RY (2.992) • • • • • •

meas : /
4

0

��
1

��
2

��
3

��

q0 : RY (1.911) RY (0.008719) RY (−5.374 · 10−5) RY (0.01744) RY (−0.0002154) RY (−4.644 · 10−6) RY (−0.0001076) RY (0.03489)

q1 : RY (2.211) RY (0.02951) RY (−0.001297) RY (0.05904) • • • •
q2 : RY (2.635) RY (0.07031) • • • •
q3 : RY (2.992) • • • • • •

meas : /
4

0

��
1

��
2

��
3

��

q0 : RY (1.911) RY (0.008719) RY (−5.374 · 10−5) RY (0.01744) RY (−0.0002154) RY (−4.644 · 10−6) RY (−0.0001076) RY (0.03489)

q1 : RY (2.211) RY (0.02951) RY (−0.001297) RY (0.05904) • • • •
q2 : RY (2.635) RY (0.07031) • • • •
q3 : RY (2.992) • • • • • •

meas : /
4

0

��
1

��
2

��
3

��

Figure 5. Sample generation circuit with 4 qubits.

By using the StatevectorSimulator (version 0.1.547), it is possible to generate samples
of the risk distribution, and then the VaR estimation can be made by processing the results.
In Figure 6, the output of the simulator is shown. As we have four qubits, the resolution
is limited. The result of the “1101” state should be scaled to obtain the estimation of the
VaR = −9111.50 USD. This value compares to the final estimation in Figure 3. With the
parametric estimation used in that figure, the value at risk is VaR = USD −9514.18.

Mathematics 2023, 11, 4355 10 of 19

Figure 6. Output of the quantum circuit executed in the simulator. Red line indicates the VaR
estimation.

The circuit can also be executed in a real quantum computer. The result obtained from
the IBM Lagos computer is shown in Figure 7. The effect of the noise in the quantum circuit
execution is clear. The histogram shape is very different from the desired Gaussian CDF
tail. Actually, the VaR, indicated as a red line, is displaced regarding the VaR estimated
with the simulation. This discrepancy highlights the challenges posed by the noise inherent
to current NISQ computers.

Figure 7. Output of the quantum circuit executed in the IBM Lagos quantum computer. Red line
indicates the VaR estimation.

Mathematics 2023, 11, 4355 11 of 19

5. Neural Networks

Neural networks are a promising tool to mitigate the noise problem that jeopardizes the
VaR estimation. As it is widely known, neural networks provide the perfect mechanisms
for solving tasks in an alternative way [27]. Neural networks can learn from the training
data to perform a specific task, and then, they can be tested with the validation data to check
whether they are performing properly or not. In our case, we have the VaR historical series,
represented in Figure 3. Therefore, we can compare the quantum computer estimation with
the “real data”.

In the circuit in Figure 5, the parameters that can be adjusted are the rotations. We
assume that the quantum gates and the topology are essentially correct. In this scenario,
fine-tuning the rotations could be enough to estimate VaR more precisely. Neural networks
can play a pivotal role in this optimization process by helping us find the optimal rotations
for a more precise VaR estimation in the presence of noise.

5.1. Cost Function

Neural networks learn by reducing the absolute value of the obtained cost at each
epoch. Usually, this task is solved by using a default loss function provided by the machine
learning library (in our case, Keras). However, in this special case, one of the main chal-
lenges is that we need to create our own cost function to establish the link between the
neural network and the quantum computer output.

As previously mentioned, the neural network was designed to learn how to calculate
the optimal qubit rotations to achieve the desired output. This modified design will be
later executed on the quantum computer, and the estimated VaR will be obtained from the
probability state histogram. At this point, we can return the VaR to the cost function to
calculate the cost for that epoch.

Obtaining the desired cost is not always an easy task because having an error value of
0 does not necessarily mean that the training has been perfect or that the neural network has
solved the task perfectly. The optimal scenario where the cost reaches 0 will only happen
when we have seen all possible inputs and outputs for the desired task. If that is the case,
training until cost is 0 would be the best decision because there will not be inputs that our
neural network has not seen before. Obviously, taking all possible inputs and outputs is
not the case for our task, so it would be a mistake trying to reduce the cost to exactly 0.

Anyway, even when the cost is not 0, the neural network could suffer major losses if
we push the training with an excessive number of epochs. This special case is well known
and referred to as overfitting, as it goes from being beneficial to a loss factor. Overfitting
occurs when we train the model more than we should, and starts “memorizing” the cases
instead of learning the task. Conversely, if we do not train the neural network model
for enough epochs, we will be limiting its learning capacities. Therefore, the number of
epochs during the training process must be a well-thought number, considering our task
and design.

5.2. Layer Activation

Layer activation specifies the possible values that a neural network neuron can take.
Thus, the process of choosing an appropriate layer activation plays a crucial part in the
design of the neural network model. In our specific case, the range should be restricted
because we are obtaining rotations for the qubits [24]. One suitable approach is to use
the “ReLU” layer activation from Keras, and configuring it to saturate at the π value.
Consequently, the range is precisely that of the rotation range, from −π to π. Additionally,
having a sigmoid activation layer at the output could be another approach, with the
minimum mapped to −π and the maximum mapped to π. Having a custom cost function
gives us the chance to create a customizable design.

If the layer activation is wrongly chosen, the entire design may fail because the value
range will not be correctly delimited, making it impossible for the neural network to learn
from its executions. Furthermore, if the “ReLU” layer activation is not bounded within the

Mathematics 2023, 11, 4355 12 of 19

desired range, it can confuse the neural network because of the redundant rotation values
occurring every 2π.

5.3. Architecture

The architecture of the implemented system was carefully designed to ensure that
experiments could be efficiently carried out for different values of key parameters, such as
the following:

• Qubits: The ability to change the number of qubits in the quantum circuit is an
important parameter. Changes in the number qubits can be caused by the specific
requirements of the assets or the preferences of the designer. While increasing the
number of qubits can improve the precision of the system, at the same time, it also
increases the computing cost. It is therefore needed to find a balance between cost
and precision, which is possible through testing and result analysis. For practical
reasons (mainly, quantum computer availability and calculation time), we limited the
number of qubits to 5 qubits, but the method presented in this paper is applicable to
any number.

• Backend: The flexibility of choosing a real quantum backend or a simulator without
needing to change the design of the program makes development much easier. Usually,
simulators are used for development, whereas the tests are typically performed in
real quantum computers. Consequently, the ability to seamlessly change the backend
makes the process much faster.

• Number of assets: When testing the developed design, we need to change the number of
assets to check if the model correctly works with different scenarios. If these changes
are made manually, human errors could happen, which can be avoided if we can
automatically change the number of assets depending on the provided data. For
training purposes, our dataset had five assets with a VaR of USD 1380, which was
calculated with parametric estimation for a 1% percentile.

• Grouped assets: The number of grouped assets can easily be changed according to
the preferences of the developer. While any arbitrary number can be used for this
parameter, the entire design may fail if the chosen value is not appropriate. For
example, if we have 100 values for each asset, it does not make sense to group them in
50 groups of 2 values because there is almost nothing to learn from each group. On
the other hand, if groups contain many assets, then the number of groups is reduced,
which is also not convenient for the training process. Therefore, it is important that this
parameter can be freely changed if we want to find the optimal number of grouped
assets for each dataset.

• Number of layers: The number of layers composing the model can be changed without
any difficulty since the entire model is designed as an independent function that can
be replaced at any moment. In this paper, we conducted different tests with two and
three dense layers to conclude that the configuration with three layers provides better
results.

• Number of neurons: Similar to the number of layers, the number of neurons in each
layer can also be easily changed according to the characteristics and volume of the
asset data. The number of neurons in each layer can be independently changed. In
our case, we used 500 neurons at each layer, which is an amount of neurons that is
high enough for learning but not too high, avoiding overfitting.

As stated above, our experiments show that using a neural network with three dense
hidden layers is a suitable approach for obtaining qubit rotations in a quantum computer
due to its ability to capture complex relationships and patterns in the data. Here are the
main reasons for this choice:

• Expressiveness and non-linearity: A neural network with three dense hidden layers
provides the flexibility to model complex, non-linear relationships between the input

Mathematics 2023, 11, 4355 13 of 19

data and the desired output (qubit rotations). This is crucial in capturing the intricate
quantum mechanics involved in qubit rotations.

• Hierarchy of features: Three hidden layers allow for the hierarchical extraction of fea-
tures from the input data. Each layer can learn increasingly abstract and higher-level
representations of the qubit states, aiding in better understanding and approximating
the necessary rotations.

• Generalization and prediction: A well-designed neural network with three dense hidden
layers can generalize well to unseen data, enabling accurate predictions of the rotations
needed for various output qubit configurations. This is crucial for the adaptability
and performance of the quantum computer.

In summary, a 3-layer dense neural network, such as that described in Table 1 and
shown in Figure 8, provides the right balance between expressiveness, parameter tuning,
generalization capabilities, and computational efficiency for effectively modeling and
predicting qubit rotations in a quantum computer. In the table, nAssets stands for the
number of assets, mGroup for the number of grouped assets, and kGates the number of
rotation quantum gates to adjust.

Table 1. Neural network layer architecture.

Layer Type Input Dense Dense Dense Output

Neurons nAssets ·mGroup 500 500 500 kGates

Figure 8. Neural network structure.

With these parameters in place, we developed a system that adapts to different sets of
assets, number of qubits or even to real executions on quantum computers. This flexibility
allows us to adjust parameter values and keep testing until we find the best possible
combination for our task. The methodology used for the neural network training is shown
in Figure 9.

At the top of the figure, it can be seen the first iteration of the initial epoch of the
design. The first step is to calculate the historical VaR of each of the grouped assets. Once
those groups are linked, we extract the VaR from the 1% percentile, which gives us the
historical VaR of each of the asset sets.

Once we have those values, we pass the provided data to the designed program. The
next step is to split the groups into training and validation. From the sets of training,
we calculate the minimum VaR and maximum VaR that will be used for the distribution
window range [minVaR, maxVaR]. The minVaR and maxVaR values correspond to the low
and high parameters of Equation (9). That range is applied to Equation (11), which gives a

Mathematics 2023, 11, 4355 14 of 19

value of β = 47.66%. During our tests, the decision of what percentage to use for training
or validation was clear, as we had a few values for each asset. We decided to use cross
validation with all values except one and try validation with the one left, as many neural
network learning systems do. After splitting the input data, we passed the first group to
the neural network. At that moment, the neural network had random values as it was the
first time it obtained the qubit rotations, so random values for the different qubit rotations
were obtained.

ASSETS PARAMETRIC VaR
ESTIMATION VaR

DATA SPLIT
TRAINING / VALIDATION NEURAL NETWORK

LIBRARES QUANTUM
CIRCUIT

QUANTUM
COMPUTER

VaR
ESTIMATION

(R1, R2, …)

<>

Figure 9. Execution flow of the implemented design.

With these random rotations, we edited the qubit rotations of a quantum circuit
obtained with Qiskit libraries. Once we had the edited quantum circuit, it executed at the
selected backend, which gave us the output histogram. With that obtained histogram, we
found the β percentile (as mentioned above, in Equation (11)). With that value, we find out,
on the axis that is built with the minVaR and maxVaR, the exact VaR.

After finding the estimated VaR of the quantum circuit and the historical VaR of each
group, the neural network starts the comparison between them, finding the associated cost.
This cost will be used to tell the neural network whether it is learning or not. Even more, if
there is a possibility to continue learning or not.

When the first group is finished the execution, it is the turn of the next group. The
system performs the same steps repeatedly until it finishes the first epoch. An epoch is
defined as an execution of all the different groups of inputs and outputs (x and y) provided
for the neural network. After an epoch finishes, the neural network learns and tries to
change the values of the different neurons to make an even better approach to the desired
task. This is achieved by trying to reduce the value of the cost; if the cost is decreasing, it
usually means that the system is learning correctly.

After all the epochs are completed, we can go and validate the system to check
whether the task is actually an accurate solver or not and adapt the different parameters to
improve it.

5.4. Execution in Real Quantum Computers

To execute the process in a real quantum computer, it is firstly needed to edit the
quantum circuit obtained from the Qiskit library (in this case, a 5-qubit circuit). Once the
qubit rotations are set, the circuit is sent to execution by the custom cost function (later
on, it will also collect the results from the job run). As quantum computers work at the
statistical level, with the possible states of the qubits, the circuit should be executed a high
number of times to have a valid result, for example, 1000 to 2000 times.

It is important to have in mind that the more qubits that are used, the more complexity
the circuit will have, and so the neural network would be harder to train with a low quantity
of data. Furthermore, a high number of qubits increases noise effects and slows down the

Mathematics 2023, 11, 4355 15 of 19

training process. It is true that more qubits should increase precision, but we found that the
benefits we obtained from using a limited number of qubits surpassed the disadvantages
of it.

The implementation of the proposed method in a real quantum computer proves its
utility to mitigate quantum noise. Figure 10 shows the obtained results. Due to the time
and resource limitations, we used 5 qubits and a series of 5 assets for the estimations, but
the results can be extrapolated to larger figures.

4.
08

9%

9.
55

8%

5.
06

6%

1.
66

0%

5.
94

5%

4.
99

3%

2.
02

6%

3.
61

3%

2.
56

3%

1.
78

2%

2.
47

8%

6.
22

6%

4.
10

2%

2.
45

4%

15
.3

20
%

5.
18

8%

2.
42

9% 4.
77

3%

3.
02

7%

1.
91

7%

0%

Computa�onal Basis States

minVaR

maxVaR

VaR 1376

2%

4%

6%

8%

10%

12%

14%

16%

18%

M
ea

su
re

m
en

t
P

ro
b

ab
ili

ty

00
00
0

00
00
1

00
01
0

00
01
1

00
10
0

00
10
1

00
11
0

00
11
1

01
00
0

01
00
1

01
10
0

10
00
0

10
00
1

10
01
0

10
01
1

10
10
0

10
10
1

10
11
0

10
11
1

11
01
0

Figure 10. Real VaR estimation (5 qubits).

Several points may be highlighted:

1. As we used 5 qubits, we should obtain samples out of 32 values. However, in Figure 10,
we only see 20. This is because Qiskit removes from the graphics the values with
lower occurrences.

2. The VaR value is USD 1376, very close to the actual value of USD 1380 used as the
target for the neural network, so the overall system seems to be well functioning.

3. The effect of the noise and the counter-effect of the rotations found by the neural
network can be seen in Figure 10. In the ideal case with no noise, the distribution
should be similar to the distribution tail shown in Figure 6. Although it resembles the
shape, the neural network clearly modifies it. The important point is that this strange
shape compensates for the noise effect.

5.5. Discussion

The results of the experiments indicate that the neural network can actually mitigate
the quantum noise in the NISQ computer. The VaR estimated is close enough to the
parametric estimation to consider it accurate enough. However, it is not exactly the desired
output because quantum calculations should include (hopefully) the financial market
random fluctuations. The objections to this statement are twofold. On the one hand,
extensive field tests have to be performed to really make sure the quantum fluctuations
somehow resemble the market complexity. The advantage of using neural networks is the
flexibility to adapt the quantum circuits to perform in this way.

On the other hand, the objective of regulatory authorities is to approve the provisions
made by investors. The current methodology is that the investing institution (banks) make
the calculations and send them to the authorities (Central Banks). Before approving, the
calculations are repeated (audited) and compared to reference calculations (for example,
parametric estimations). Quantum computing is, by its own random nature, impossible to
reproduce [22]. This means that, in case this approach is approved to calculate VaR, new
protocols should be developed. Anyway, this is not only the case for this approach but a
general issue with the applications of quantum computing to finance.

Mathematics 2023, 11, 4355 16 of 19

6. Related Work

Having presented our results, we can compare them with other works in the literature.
For instance, in [28], they provide a comprehensive review of the state of the art of quantum
computing for financial applications. They show that quantum algorithms are applicable
for financial problems, such as VaR computation. They conclude that quantum Monte
Carlo can speed up classical methods, but more work is required to reduce the amount of
quantum resources. In our solution, we follow a different approach and obtain a reasonable
result, using the resources currently available in quantum computers.

In [29], the authors present a quantum algorithm to compute risk more effectively than
the Monte Carlo simulations traditionally used in classical computers. They use quantum
amplitude estimation to evaluate risk measures, such as value at risk and conditional value
at risk on a gate-based quantum computer. Moreover, they show how to implement this
algorithm and the trade-off of the convergence rate of the algorithm and the circuit depth.
The shortest possible circuit depth leads to a convergence rate of O(M−2/3), where M is
the number of samples, based on the results of [30].

However, in another work [31], they calculate the number of required qubits for these
circuits, and find that they scale linearly with the number of assets, making it hard to
implement this algorithm in current quantum computers when the number of assets is
large. In contrast with these works, we keep using Monte Carlo simulations, focusing on
the part of the distribution that is needed to calculate the VaR and considering how actual
quantum computers behave when they use many qubits for this task. Thus, we use neural
networks to mitigate the noise in the quantum circuit and obtain results comparable to
those of parametric models but keeping the randomness provided by the Monte Carlo
simulation.

Regarding the VaR computing, in [32] quantum mechanics is applied for extreme
value prediction in a stock exchange. Although they do not apply quantum computing
for the calculations, this work can be useful to readers not familiar with the types of
distributions used to model risk prediction.

The mitigation of quantum noise is also studied in other works. In [33], they propose
a protocol to estimate the average output of a noisy quantum device and demonstrate
it in a 5-qubit quantum computer. In that work, they use matrix algebra to decompose
the average noise of a quantum circuit. In our case, we use neural networks to adjust the
rotation of the qubits and compensate for the quantum noise.

Regarding the use of neural networks, in [34], a deep quantum neural network is used
to enhance the fidelity of quantum convolutional codes. As in our work, they deal with the
quantum noise, although using a different approach for a different application (to enhance
the fidelity of quantum states). In our case, we use traditional neural networks that take
the noise data from a quantum computing, instead of the quantum neural networks they
apply. In this way, we obtain a feasible solution that can be applied in current quantum
computing infrastructures.

A closer work to ours is [35], where they also propose a classical artificial neural
network to infer the amount of probability adjustment to mitigate quantum error. Our
work differs in that we use the neural network to estimate the rotations that best compensate
for the quantum noise.

7. Conclusions and Future Work

We presented a novel approach to the problem of VaR estimation when the number
of assets is high. Monte Carlo methods are extremely difficult to apply in such cases, so
parametric estimation is used instead. Using a linear approximation to the distribution of
losses, we can reduce the problem to a single (or a few) random variable, which can be
generated using quantum computers to consider “black swans”. We presented a simulation
where all the data are “compressed” in just one distribution, but it need not be the case.
A VaR estimation problem could be divided into parts and simulated partially by real
quantum computers. The results could be combined afterward to obtain the estimation.

Mathematics 2023, 11, 4355 17 of 19

Neural networks can be used to mitigate the noise effect in real quantum computers. Actual
data were used to show that the method is feasible, and the results are close to those
currently used in finance.

The validity of the fixed rotations is an open question. We proved that the neural
network compensated for the noise effect in a real quantum computer, but further investiga-
tion is needed to understand the timeframe of that correction. Anyway, VaR predictions are
made usually on a daily basis, so it is feasible to calculate the rotations every day. Another
point is the comparison between different computers and topologies. Finally, it can be
interesting to apply explainable artificial intelligence (XAI) [36] to understand how the
neural network is calculating the qubit rotations to mitigate the noise, to find a simpler
algorithm to compute them. The increasing size of current quantum computers makes it
easier to use more and more qubits in the calculations. Nevertheless, more qubits mean
more noise and further corrections. There will probably be a balance that achieves an
optimum in the estimations.

Finally, as mentioned in the discussion, extensive testing with data from the field has
to be performed to make sure that the application of quantum computers makes sense
to predict VaR accurately. Our results suggest the accuracy of the proposed method, but
much more real data are needed. The dependence of local finance markets may also be
relevant for the adjustment. This topic should be addressed in future work.

Author Contributions: Conceptualization, L.d.P.; methodology, F.J.G.-A.; software, R.P.M.; valida-
tion, J.E.L.d.V.; formal analysis, L.d.P.; investigation, R.P.M.; resources, S.L.-B.; writing—original draft
preparation, L.d.P., R.P.M. and F.J.G.-A.; writing—review and editing, J.E.L.d.V. and S.L.-B.; visual-
ization, L.d.P. and R.P.M.; supervision, F.J.G.-A.; project administration, S.L.-B.; funding acquisition,
S.L.-B. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Spanish Research Agency under the project
AGILEMON (AEI PID2019-104451RB-C21).

Data Availability Statement: Restrictions apply to the availability of these data. Data have been
provided from real assets records by one of the largest Spanish bank.

Acknowledgments: This work has been partially supported by the Universidad Autónoma de
Madrid together with the Consejo Superior de Investigaciones Científicas, which have provided the
access to the IBM QE quantum computing environment.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CDF Cumulative Distribution Function
CNOT Controlled-NOT
COV Covariance matrix
CHO Cholesky matrix
IBM International Business Machines
LDL Lower triangular matrix, Diagonal matrix, Lower triagunal matrix transposed
NISQ Noisy Intermediate Scale Quantum computing
PDF Probability Density Function
QC Quantum Computing
QE Quantum Experience
ReLU Rectified Linear Unit
USD United States Dollar
VaR Value at Risk
XAI eXplainable Artificial Intelligence

Mathematics 2023, 11, 4355 18 of 19

References
1. Glasserman, P. Monte Carlo Methods in Financial Engineering; Springer: New York, NY, USA, 2004.
2. McCrary, S. Implementing a Monte Carlo Simulation: Correlation, Skew, and Kurtosis; Berkeley Research Group White Paper; Berkeley

Research Group: Tokyo, Japan, 2015.
3. Pagès, G. Numerical Probability: An Introduction with Applications to Finance; Springer: Paris, France, 2018.
4. Wilson, T. Value at risk. In Risk Management and Analysis, Volume 1: Measuring and Modelling Financial Risk; Alexander, C., Ed.;

John Wiley & Sons: Hoboken, NJ, USA, 1998.
5. Arunraj, N.; Mandal, S.; Maiti, J. Modeling uncertainty in risk assessment: An integrated approach with fuzzy set theory and

Monte Carlo simulation. Accid. Anal. Prev. 2013, 55, 242–255. [CrossRef] [PubMed]
6. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2018, 2, 79. [CrossRef]
7. Chen, N.; Hong, L.J. Monte Carlo simulation in financial engineering. In Proceedings of the 2007 Winter Simulation Conference,

Washington, DC, USA, 9–12 December 2007; pp. 919–931.
8. Staum, J. Simulation in financial engineering. In Proceedings of the Winter Simulation Conference, Arlington, VA, USA, 9–12

December 2002; Volume 2, pp. 1481–1492.
9. Hazewinkel, M. Cholesky factorization. In Encyclopedia of Mathematics; Springer: Berlin/Heidelberg, Germany, 2001.
10. Benoit, C. Note sur une méthode de résolution des équations normales provenant de l’application de la méthode des moindres

carrés à un système d’équations linéaires en nombre inférieur à celui des inconnues (Procédé du Commandant Cholesky). Bull.
Géodésique 1924, 2, 66–67.

11. Springer, M.D. The Algebra of Random Variables; John Wiley and Sons: Hoboken, NJ, USA, 1979.
12. Ahsanullah, M.; Kibria, B.G.; Shakil, M. Normal and student’s t distributions and their applications. In Atlantis Studies in

Probability and Statistics; Springer: Berlin/Heidelberg, Germany, 2014; Volume 4.
13. Kreinovich, V.; Thach, N.N.; Trung, N.D.; Van Thanh, D. Beyond traditional probabilistic methods in economics. In Studies in

Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2019; Volume 809.
14. Silva, M.E.d.; Barbe, T. Quasi-Monte Carlo in finance: Extending for problems of high effective dimension. Econ. Apl. 2005,

9, 577–594. [CrossRef]
15. Joe, S.; Kuo, F.Y. Constructing Sobol sequences with better two-dimensional projections. SIAM J. Sci. Comput. 2008, 30, 2635–2654.

[CrossRef]
16. Joe, S.; Kuo, F.Y. Notes on generating Sobol sequences. ACM Trans. Math. Softw. 2008, 29, 49–57. [CrossRef]
17. Sobol’, I.M.; Asotsky, D.; Kreinin, A.; Kucherenko, S. Construction and comparison of high-dimensional Sobol’generators. Wilmott

2011, 2011, 64–79. [CrossRef]
18. Deadman, E.; Relton, S.D. Taylor’s theorem for matrix functions with applications to condition number estimation. Linear Algebra

Its Appl. 2016, 504, 354–371. [CrossRef]
19. Schurman, G. The Cholesky Decomposition-Part I. 2012. Available online: http://www.appliedbusinesseconomics.com/

(accessed on 27 November 2020).
20. Golub, G.; Van Loan, C.F. Matrix Computations; The Johns Hopkins Univ. Press: Baltimore, ML, USA, 1996.
21. Cheng, S.H.; Higham, N.J. A modified Cholesky algorithm based on a symmetric indefinite factorization. SIAM J. Matrix Anal.

Appl. 1998, 19, 1097–1110. [CrossRef]
22. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010.
23. Norlén, H. Quantum Computing in Practice with Qiskit® and IBM Quantum Experience®: Practical Recipes for Quantum Computer

Coding at the Gate and Algorithm Level with Python; Packt Publishing Ltd.: Birmingham, UK, 2020.
24. Mottonen, M.; Vartiainen, J.J.; Bergholm, V.; Salomaa, M.M. Transformation of quantum states using uniformly controlled

rotations. arXiv 2004, arXiv:quant-ph/0407010.
25. Grover, L.; Rudolph, T. Creating superpositions that correspond to efficiently integrable probability distributions. arXiv 2002,

arXiv:quant-ph/0208112.
26. Koch, D.; Wessing, L.; Alsing, P.M. Introduction to Coding Quantum Algorithms: A Tutorial Series Using Qiskit. arXiv 2019,

arXiv:1903.04359.
27. Anthony, M.; Bartlett, P.L. Neural Network Learning: Theoretical Foundations; Cambridge University Press: Cambridge, UK, 1999.
28. Herman, D.; Googin, C.; Liu, X.; Sun, Y.; Galda, A.; Safro, I.; Pistoia, M.; Alexeev, Y. Quantum computing for finance. Nat. Rev.

Phys. 2023, 5, 450–465. [CrossRef]
29. Woerner, S.; Egger, D.J. Quantum risk analysis. NPJ Quantum Inf. 2019, 5, 15. [CrossRef]
30. Montanaro, A. Quantum speedup of Monte Carlo methods. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 20150301. [CrossRef]
31. Egger, D.J.; García Gutiérrez, R.; Mestre, J.C.; Woerner, S. Credit Risk Analysis Using Quantum Computers. IEEE Trans. Comput.

2021, 70, 2136–2145. [CrossRef]
32. Chaiboonsri, C.; Wannapan, S. Applying quantum mechanics for extreme value prediction of VaR and ES in the ASEAN stock

exchange. Economies 2021, 9, 13. [CrossRef]
33. Shaib, A.; Naim, M.H.; Fouda, M.E.; Kanj, R.; Kurdahi, F. Efficient noise mitigation technique for quantum computing. Sci. Rep.

2023, 13, 3912. [CrossRef]
34. Xiao, H.; Chen, X.; Xu, J. Using a Deep Quantum Neural Network to Enhance the Fidelity of Quantum Convolutional Codes.

Appl. Sci. 2022, 12, 5662. [CrossRef]

http://doi.org/10.1016/j.aap.2013.03.007
http://www.ncbi.nlm.nih.gov/pubmed/23567215
http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.1590/S1413-80502005000400004
http://dx.doi.org/10.1137/070709359
http://dx.doi.org/10.1145/641876.641879
http://dx.doi.org/10.1002/wilm.10056
http://dx.doi.org/10.1016/j.laa.2016.04.010
http://www.appliedbusinesseconomics.com/
http://dx.doi.org/10.1137/S0895479896302898
http://dx.doi.org/10.1038/s42254-023-00603-1
http://dx.doi.org/10.1038/s41534-019-0130-6
http://dx.doi.org/10.1098/rspa.2015.0301
http://dx.doi.org/10.1109/TC.2020.3038063
http://dx.doi.org/10.3390/economies9010013
http://dx.doi.org/10.1038/s41598-023-30510-5
http://dx.doi.org/10.3390/app12115662

Mathematics 2023, 11, 4355 19 of 19

35. Kim, C.; Park, K.D.; Rhee, J.K. Quantum error mitigation with artificial neural network. IEEE Access 2020, 8, 188853–188860.
[CrossRef]

36. Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins,
R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf.
Fusion 2020, 58, 82–115. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2020.3031607
http://dx.doi.org/10.1016/j.inffus.2019.12.012

	Introduction
	Monte Carlo VaR Estimation
	Monte Carlo Method
	Parametric Estimation

	Linear Approach to Monte Carlo Estimation
	Taylor Series Approximation
	Cholesky Matrix Calculation

	Quantum Computing
	Distribution Window Approach
	Statevector Simulation

	Neural Networks
	Cost Function
	Layer Activation
	Architecture
	Execution in Real Quantum Computers
	Discussion

	Related Work
	Conclusions and Future Work
	References

