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Abstract: With the increasing complexity and dimensionality of datasets in statistical research,
traditional methods of identifying interactions are often more challenging to apply due to the
limitations of model assumptions. Logic regression has emerged as an effective tool, leveraging
Boolean combinations of binary explanatory variables. However, the prevalent simulated annealing
approach in logic regression sometimes faces stability issues. This study introduces the BLogic
algorithm, a novel approach that amalgamates multiple runs of simulated annealing on a dataset
and synthesizes the results via the Bayesian model combination technique. This algorithm not
only facilitates predicting response variables using binary explanatory ones but also offers a score
computation for prime implicants, elucidating key variables and their interactions within the data. In
simulations with identical parameters, conventional logic regression, when executed with a single
instance of simulated annealing, exhibits reduced predictive and interpretative capabilities as soon
as the ratio of explanatory variables to sample size surpasses 10. In contrast, the BLogic algorithm
maintains its effectiveness until this ratio approaches 50. This underscores its heightened resilience
against challenges in high-dimensional settings, especially the large p, small n problem. Moreover,
employing real-world data from the UK10K Project, we also showcase the practical performance of
the BLogic algorithm.

Keywords: Bayesian model combination; ensemble learning; logic tree; logic regression; machine
learning; simulated annealing; UK10K project; variable interactions
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1. Introduction

The development of mathematical and computational models is fundamental in
dissecting the intricate nature of relationships within sets of data. Constructing models
that describe the relationship between explanatory variables (denoted as X, also called an
independent variable, predictor variable, feature, or input) and response variables (denoted
as Y, also called a dependent variable, label, or output) has been a continuously evolving
topic in the field of mathematics and data science. Whether delving into traditional
statistical models, which have been the bedrock of quantitative analysis for centuries,
or navigating the waters of the rapidly growing domain of modern machine learning
algorithms, researchers and practitioners constantly seek robust methodologies. Many
studies, spanning decades and even centuries, aim to establish the relationship between
explanatory and response variables based on various theoretical concepts. These models,
underpinned by a rich tapestry of mathematical theories, are widely used in many practical
fields, from economics to biology, and from physics to social sciences.

The value of these models lies in their versatility. They can be tailored to answer
specific questions pertinent to the field of study. For instance, an economist might use
such models to gauge the impact of fiscal policy changes on GDP, while a biologist could
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employ similar methodologies to explore the relationship between genetic markers and
susceptibility to certain diseases [1].

These models, which diligently work to describe the relationship between X and Y,
pivot around two core facets: predictability and interpretability. Predictability signifies the
model’s ability to accurately forecast the response variable given explanatory variables.
This capacity to anticipate is not just a theoretical endeavor but is rooted in practical
needs. For instance, forecasting stock prices or predicting weather patterns can have
tangible economic impacts. Making accurate predictions can lead to saving resources, both
monetary and human, and in some cases, such as medical diagnoses, can even save lives.

On the flip side, interpretability delves deeper, seeking to unearth the underlying
dynamics, mechanisms, and intricacies that bind the explanatory variable to the response
variable. This is not merely about drawing a line of best fit but rather understanding the
forces and factors that sculpt this relationship. Understanding the ‘why’ and ‘how’ is pivotal.
For instance, in a clinical setting, knowing a drug works is essential, but understanding
how it works can pave the way for refining its efficacy or reducing side effects [2].

Many modern machine learning models, with their intricate architectures and algo-
rithms, prioritize predictability. They voraciously consume data, sifting through it and
teasing out patterns that might elude the human eye. By adopting data-driven approaches,
these models can often achieve breathtaking accuracy in their predictions. However, this
comes at a cost. The sheer complexity of some of these models, often labeled as “black
boxes”, can shroud their inner workings, making decisions opaque. This opacity can be a
significant impediment, especially in fields such as biomedical research, where understand-
ing the correlation between disease risk factors and the incidence of disease is paramount.
Not just predicting, but understanding these correlations can lead to better preventative
strategies.

In contrast, traditional statistical models offer a more transparent lens into these re-
lationships. By allowing users to specify relationships and then rigorously testing these
assumptions, these models lend themselves to greater scrutiny. The interplay of estimation
and hypothesis testing serves as a robust mechanism to assess the significance of each
explanatory variable. Some models, particularly tree-based and rule-based ones, are specif-
ically architected to emulate human decision-making processes [3,4]. They set discernible
rules for explanatory variables to predict the response variable. While occasionally their
predictive accuracy might be eclipsed by machine learning models, their transparency and
elucidative prowess often render them more suitable for specific research undertakings.

Recognizing interactions among explanatory variables is pivotal. In the digital age,
the ubiquity of big data has transformed the landscape of research. Data sets have bal-
looned in size, often housing a plethora of explanatory variables. These variables, far from
existing in isolation, often entwine in a complex choreography of interactions. Recognizing
and understanding these interactions is no longer a luxury but a necessity. Furthermore,
fields such as genomic epidemiology stand as a testament to this complexity [1]. Research
highlights that certain genetic variations exert substantial influence on disease individu-
ally. Conversely, while some variations might not present significant main effects when
considered in isolation, their interactive synergy can significantly alter disease outcomes.

In practical decision-making frameworks, there is a prevalent tendency to translate
explanatory variables into a binary schema. This approach augments the clarity of discern-
ing how these variables and their synergistic interactions influence the response variable.
Illustrative transformations encompass binary explanatory variables (such as smoking
status), categorical explanatory variables (for instance, single-nucleotide polymorphism
genotypes coded as either dominant or recessive), and continuous explanatory variables
(such as determining whether blood pressure exceeds a designated threshold).

In the pursuit of modeling these interaction effects, statistical approaches, with their
precision and rigor, offer critical insights. However, these methods frequently demand
predefined models, a requirement that becomes daunting when navigating the complex
landscape of high-dimensional data. Logic regression (LR) emerges as an invaluable
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alternative in such scenarios. Through its use of Boolean combinations of binary explanatory
variables, known as a logic tree, LR circumvents the need for presetting interaction types.
This nimbleness enhances its interpretability, making it a valuable tool in a researcher’s
arsenal. Consequently, LR, along with methods derived from its foundational model, has
been widely applied to areas emphasizing interpretability, such as medical and genomic
topics [5–7], public health and social sciences [8], network systems [9], and robot grasping
systems [10]. Beyond its commendable interpretability, it has also been proven to possess
exemplary predictive capabilities [11].

However, its reliance on simulated annealing (SA) as an optimization strategy has
raised concerns, primarily owing to perceived stability issues. This instability is not just
a theoretical concern; it has practical ramifications. Some studies attempt to avoid the
instability of SA by using alternative complex solution approaches, while others have
pivoted towards ensemble learning methods. Yet, the core issue, the shaky foundation of
SA, often remains unaddressed.

Given the aforementioned context, this study is primarily motivated by the neces-
sity of addressing the instability found in simulated annealing within the realm of logic
regression. Such instability presents noteworthy challenges, especially considering the
crucial role of logic regression in identifying significant interactions among explanatory
variables and providing valuable predictive insights. With this understanding, our study
pursues two main objectives. Firstly, we aim to illuminate the factors contributing to the
instability of simulated annealing within logic regression by leveraging simulation studies.
Secondly, we introduce the BLogic algorithm, which incorporates the principles of Bayesian
model combination (BMC) to aggregate results from multiple iterations of SA-based logic
regression models. This integration aims to mitigate the concerns associated with SA’s
instability, aspiring to enhance the predictability of a single SA run in logic regression while
maintaining the model’s prized interpretability.

Subsequent sections of this manuscript have been methodically organized to shepherd
readers through our investigation. Section 2 explains the fundamentals of logic regression,
describes the logic tree structure, and discusses the use of simulated annealing for opti-
mization. Additionally, we discuss the Bayesian model combination, an ensemble method
for integrating multiple models. Section 3 introduces the BLogic algorithm conceived in
this study, elucidating its theoretical foundation, detailing its forecasting methods, and
showcasing the important scores of interactions. Section 4, supported by simulation studies
and experimental data analysis, examines our research objectives, comparing results from
individual SA analyses with the combined results of multiple SA iterations merged using
the BLogic algorithm. Finally, Section 5 summarizes our findings and suggests possible
directions for future research.

2. Preliminaries

In this study, we aim to delve into the potential instability of logic regression when
simulated annealing (SA) is used to find the optimal solution. Furthermore, we aspire to
strategically employ the concept of Bayesian model combination (BMC) to consolidate the
outcomes from numerous logic regression models generated through repeated SA execu-
tions, seeking a more steadfast model. Accordingly, the Preliminaries section will expound
upon the two central models anchoring our research: logic regression and Bayesian model
combination.

2.1. Logic Regression

Logic regression (LR) is a statistical method tailored for analyzing situations where a
response variable (Y) is modulated by specific Boolean combinations of binary explanatory
variables, denoted as {X1, X2, . . . Xp}, each taking values of either 0 or 1.

The mathematical formulation characterizing the relationship between the response
variable and its predictors is given by g(E(Y)) = β0 + ∑K

k=1 βkTk. Within this framework,
the primary objective of LR is to identify a specific Boolean function, also referred to as a
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‘logic tree’, denoted as Tk for k = 1, . . ., K. These functions encapsulate logical conjunctions of
the predictors using operations such as AND, OR, and NOT. For example, a logic tree might
be interpreted as (the conjugate of X5 OR X3) AND X1, which denoted as

(
Xc

5 ∨ X3
)
∧ X1.

However, these logic trees can be represented in different forms. For uniform representation,
Boolean expressions are typically articulated in the Disjunctive Normal Form (DNF) [12].
DNF is fundamentally a series of prime implicants (PIs) connected by OR operations.
PIs are either a single explanatory variable or multiple explanatory variables and their
conjugates linked through AND operations. The transformation mentioned above is the
DNF of a given tree, where both subsets are PIs. For example,

(
Xc

5 ∧ X1
)
∨ (X3 ∧ X1) is the

DNF for the tree
(
Xc

5 ∨ X3
)
∧ X1, and the subset of the DNF

(
Xc

5 ∧ X1
)

and (X3 ∧ X1) are
PIs. This transformation into PIs offers insight into the complex interactions among specific
sets of explanatory variables.

LR is versatile, accommodating a wide range of response variable types, such as continu-
ous, categorical, and even survival outcomes. The bridge between the systematic component
and the response is forged through an aptly chosen link function, g(.). Notably, when Y is
binary, logic regression can be simplified to a single logic tree T, denoted as E(Y) = T. In this
study, we initially adopt this more streamlined model, ensuring both clarity and depth in
our analyses. We believe that the findings and conclusions drawn from this research can be
extrapolated to a broader range of logic regression models.

The process of estimating the regression structure leans heavily on optimization tech-
niques. Specifically, simulated annealing often serves to explore the solution space [13,14],
optimizing the configurations of logic trees in LR. SA, derived from the Metropolis–
Hastings algorithm, employs a Monte Carlo method. When transitioning between a
current solution and a neighboring solution, the decision hinges on their objective value
differences and a parameter reminiscent of temperature. If the neighboring solution is
superior to the current one, the algorithm shifts to the neighboring solution. Otherwise, a
transition probability is set, allowing a potential shift. Initially, a high temperature value is
adopted, allowing acceptance of subpar solutions. Over time, as the temperature decreases,
the algorithm becomes more stringent, leading to convergence. In LR’s landscape, SA
assists in navigating the vast potential logic tree configurations. Starting with an initial
logic tree, SA refines the combinations, highlighting pivotal predictors and their optimal
logical relationships. The gamut of moves employed in this context is well documented in
relevant LR literature [15,16].

However, using SA in logic regression presents certain challenges. Studies have
shown that SA can sometimes stagnate at local optima within the vast space of logical
combinations [15,16]. This convergence can yield suboptimal logic models, potentially
misrepresenting underlying data patterns. The intricacies of SA’s occasional erratic be-
havior, particularly when interpreting complex predictor variable interactions such as in
single nucleotide polymorphism (SNP) datasets, are further underscored [17]. Additionally,
when logic regression models, disrupted by SA’s occasional inconsistencies, are integrated
into ensemble frameworks such as Logic Forest [18] and LogicFS [19], the overall classi-
fier’s performance may decline. While some research, such as MCLR [20], FBLR [17], and
GMJMCMC [21], has discussed the instability of SA, suggesting the adoption of Markov
chain Monte Carlo methods in lieu of the traditionally used SA, there are challenges. These
MCMC-based models are quite intricate, necessitating the setting of parameters to simplify
the model upfront. This in turn limits the dimensionality of interactions. Moreover, some
models only display results from each iteration during the Monte Carlo process without
synthesizing all findings, posing difficulties for practical uses in both prediction and in-
terpretation. Consequently, SA remains the preferred solution for logic regression and its
related models.

These insights emphasize the inherent uncertainties in employing SA in logic regres-
sion, necessitating thorough exploration and careful management. This understanding
is vital as it significantly impacts the predictive and interpretative capacities of models
associated with or built upon logic regression.
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2.2. Bayesian Model Combination

The paradigm of ensemble learning has significantly shaped the way we approach
machine learning problems [22]. Ensemble methods, by definition, aim to consolidate
predictions from multiple models to produce a final output that is often more robust and
accurate than a prediction from any individual model. Various strategies have been devel-
oped to achieve this confluence, broadly categorized under different ensemble learning
techniques such as bagging, boosting, and the Bayesian perspective.

Bagging, or bootstrap aggregating, involves generating multiple versions of a predictor
by training on subsets of the data [23]. It is based on the principle of leveraging the variance
among these different models to produce an aggregated result. Boosting, on the other
hand, is an iterative technique that adjusts the weight of an observation based on the
last classification [24]. It aims to convert weak individual learners into strong combined
learners. Both methods, though distinct, come with their own strengths and challenges.

Contrastingly, Bayesian approaches to model combination, such as Bayesian model
averaging (BMA) and Bayesian model combination (BMC), utilize the complete dataset
instead of subsets. The Bayesian framework offers a probabilistic mechanism that facilitates
the merging of prior knowledge with observed data. In BMA, despite its name suggesting
an averaging technique, it behaves more like model selection, emphasizing the identification
of the ‘best’ model [25–27]. BMC, however, truly embodies the essence of model averaging,
where each model is weighted based on different strategic considerations [25]. Our research
pinpoints a peculiar behavior when simulated annealing is used in logic regression. Due to
its inherent stochastic nature, the results of simulated annealing in logic regression manifest
instability. Such instability resonates with the notion that relying solely on BMA to discern
a single ‘optimal’ model might not be judicious. Instead, a combination of models through
BMC presents a more robust approach.

Delving further into Bayesian model combination, the methodology is anchored
on the understanding that it is often more advantageous to amalgamate several models
rather than pinpointing the singular best one. Suppose B models have been constructed,
denoted as H = {h1, . . ., hB}. Let E = {e1, . . ., eJ} represent a spectrum of potential model
combinations, wherein an element ej is perceived as a weight vector for the B models, that
is, ej = (wj1, . . .,wjB) for j = 1, . . ., J. The combination can then be articulated as:

p(yi|xi, D, H, E) = ∑J
j=1 p

(
yi
∣∣xi, H, ej

)
p
(
ej
∣∣D)

∝ ∑J
j=1 p

(
yi
∣∣xi, H, ej

)
p
(
ej
)

p
(

D
∣∣ej

)
(1)

Here, p(yi|xi, D, H, E) represents the probability of predicting Y for the ith individual,
conditioned on its corresponding explanatory variable xi= (xi1, . . .,xip), the entire training
dataset D, the suite of formulated models H, and the diverse combination strategies encap-
sulated in E. In cases where the response variable is binary, the category that maximizes
this probability is designated.

The predictive probability comprises an ensemble across J combination strategies. For
each distinct combination strategy ej, the predictive probability is essentially the weighted
average of the results from the B models, steered by the weight vector (wj1, . . ., wjB)
corresponding to ej. Crucially, the posterior probability of ej is in direct proportion to
the multiplication of its prior p

(
ej
)

and its likelihood p
(

D
∣∣ej

)
. The formulation of this

likelihood function can be predicated upon the predictive accuracy under the guidance of
the combination strategy ej.

The advantages of Bayesian model combinations are numerous. Primarily, it allevi-
ates the instability inherent in individual models. Given that each model might have its
own set of strengths and weaknesses, a combination approach ensures that the collective
strength is leveraged while minimizing individual model vulnerabilities. Notably, litera-
ture substantiates that even rudimentary Bayesian model combination strategies surpass
conventional bagging and boosting methodologies and also outperform Bayesian model
averaging [25]. Additionally, it furnishes a structured resolution to the conundrum of
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model selection, an aspect critically pivotal in instances demanding the utmost model
stability and trustworthiness.

Synthesizing the above exposition, the Bayesian model combination paradigm emerges
as a robust structure, particularly apt for circumstances marked by model volatility, such as
when implementing simulated annealing in logic regression. Thus, subsequent sections of
this research not only delve into the latent instabilities associated with the use of simulated
annealing in logic regression but also construct a methodology BLogic, inspired by the
BMC ethos, to amalgamate multiple logic regression models discovered through multiple
runs of simulated annealing, addressing the challenges posed by its inherent instability.

3. Methods

From the aforementioned introduction, it is evident that numerous studies have ob-
served that when simulated annealing (SA) is employed to ascertain optimal solutions for
logic regression, instability issues arise. This stands in stark contrast to many methods
derived from logic regression, which simply acknowledge this instability without delv-
ing into its root causes or attempting to rectify them. To address this gap, our research
directly confronts the inherent instability encountered when using SA for logic regression.
In response to this challenge, our study adopts the Bayesian model combination (BMC)
approach, merging multiple logic regression models that arise from repeated SA methods.
The algorithm we have developed, termed BLogic, is anticipated to effectively mitigate
the detrimental effects of SA instability on both predictability and interpretability. Fur-
thermore, by amalgamating the recognized significant interactions from each SA-driven
logic regression model through BMC, we enhance our ability to pinpoint the most salient
explanatory variable interactions in the comprehensive model.

3.1. The BLogic Model Structure

For the sake of simplicity and clarity in this exposition, we primarily use the most
elementary architecture of logic regression as an exemplar. This encompasses a binary
response variable Y with only a single logic tree T encapsulated within the model, signified
by E(Y) = T. We posit that the techniques introduced herein can be extended to standard
logic regression formats and other response variable types.

Given a dataset of sample size n, each observation contains p binary explanatory
variables xi = (xi1, . . ., xip) and one unique response variable yi for i = 1, 2, . . ., n. Each
observation can be represented as (xi, yi). The entire training dataset can be defined as the
set D = {(xi, yi): i = 1, 2, . . ., n}. When constructing logic regression using SA, let us assume
we repetitively formulate B models, H = {h1, . . ., hB}. As each model in this context only
includes one logic tree, H can be written as H = {h1 = T1, . . ., hB = TB}.

Expanding upon the foundation of these B logic trees (or equivalently, the B models),
the BLogic model is constructed by leveraging the concepts of BMC. Analyzing Equation (1),
it becomes evident that it is directly tied to the summation across the J combination
strategies, namely, p(yi|xi, D, H, E). Given the assumption that each combination strategy
ej has a uniform prior, our focus narrows down to determining two primary components
within the equation: p(yi|xi, H, ej) and p(D|ej). Moving forward, we interpret the jth
combination strategy ej as a weight vector designated for the B models, denoted as ej = (wj1,
. . ., wjB). Subsequent sections will elucidate the systematic configuration of the combination
strategy.

The term p(yi|xi, H, ej) represents the predicted probability of the ith data point yi,
given the collection H of B logic trees generated from training data and the jth weight
combination ej = (wj1, . . ., wjB). As the model used here solely contains one logic tree, each
model predicts Y based on the Boolean expressions of its explanatory variables, giving an
outcome of either 0 or 1. Hence, p(yi|xi, H, ej) is defined as wj1ŷi1 + wj2ŷi2 + . . . + wjBŷiB,
where ŷib is the predicted outcome for model b. In more generic logic regression scenarios,
p(yi|xi, H, ej) can be the weighted average of the predicted probabilities from each model.
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Additionally, p(D|ej) represents the likelihood function of the training data given the
jth combination strategy D. Here, we adopt the commonly assumed “uniform class noise
model” in Bayesian model combination strategies [26]. This implies that each instance of
training data is independent, and under the combination of ej, the predictive error rate

remains constant at εj. Consequently, p
(

D
∣∣ej

)
= ∏n

i=1 p(xi, yi
∣∣ej) = ε

n−rj
j

(
1− ε j

)rj , where
rj signifies the number of correctly predicted samples within the training data under the
specific combination strategy ej.

In addition to the two components previously discussed, the systematic configuration
of combination strategies E = {e1, . . ., eJ} must be considered. The method outlined in the
original BMC literature [25] was adopted as the default method to set the combination
strategies for the BLogic algorithm. Moreover, the present study offers a clearer explanation
of the weight-sampling technique than what is provided in the original literature, incorpo-
rating minor adjustments to the sampling method for improved clarity and understanding.
It is important to note, however, that the combination strategy methodologies within the
algorithm still maintain an open framework. This structure allows users the flexibility to
define strategies at their discretion.

The weights for the first q combinations, such as e1 = (w11, . . ., w1B), e2 = (w21, . . ., w2B),
and so forth up to eq = (wq1, . . ., wqB), are generated randomly from the Dirichlet distribution
with parameters (α1, . . ., αB). We have meticulously set each αb based on the accuracy of
the training data for the bth model, added by one. This ensures that the data’s fit to the
model is encapsulated in the weight extraction, providing a more rational approach to
weight configuration. Subsequently, strategies derived from these q weight combinations
are considered.

Following the consideration of strategies derived from the first q weight combinations,
we compute the posterior probability of each combination strategy given the data. How-
ever, since we assume equal priors for all combination strategies, the posterior probability
will be exclusively influenced by the likelihood function discussed in the preceding section.
Consequently, we compute the likelihoods p(D|ej), p(D|e2), . . ., p(D|eq) and identify the
combination strategy that maximizes the likelihood function, denoted as ej* = (wj*1, . . ., wj*B).

The weight configurations for the subsequent q combination strategies, i.e., (eq+1,
eq+2, . . ., e2q), are then randomly drawn from a Dirichlet distribution characterized by
parameters (wj*1+1, . . ., wj*B+1). The generation of new combination strategies ceases either
when the likelihood functions calculated across Q consecutive iterations are identical or
when a predefined maximum number of iterations is reached. This results in a total of
J combination strategies, collectively denoted as E = {e1, . . ., eJ}. After generating these
J combination strategies and their respective posterior probabilities, it is imperative to
normalize the posterior probabilities. This ensures that the sum of posterior probabilities
across the J combination strategies equates to 1.

After establishing all the essential components, Equation (1) can be employed to
compute the probability p(yi|xi, D, H, E) for an individual data point. In scenarios where
the response variable is binary, if this probability equates to or exceeds 0.5, the predicted
value of the data point y is assigned as 1, otherwise, it is set to 0. Figure 1 displays a
diagram of the algorithm’s structure.

3.2. Determining the PI Importance Score within BLogic

Beyond the intricate construction of the BLogic model for response variable prediction,
the essence of logic regression is retained, describing the importance of explanatory vari-
ables and their interactions. Thus, we introduce the computation of the prime implicant
(PI) importance score, enhancing the interpretability of our ensemble model. Here, PI refers
to Boolean expressions of the logic tree transmuted into the disjunctive normal form. PIs
connote the interactions between features, symbolized by AND operations.
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Figure 1. The workflow for the BLogic algorithm.

Suppose a specific PIl is incorporated into the bth model, also known as the logic tree.
In this tree, the importance score of PIl is denoted as VIMPb(PIl). This score is calculated
using a permutation-based importance measure. Essentially, all explanatory variables
within this PIl are randomly permuted in the dataset. The difference in accuracy before and
after this random permutation signifies the importance score of PIl. A larger discrepancy in
accuracy between pre-permutation and post-permutation implies a higher importance of
the PIl.

Integrating results from B trees and J combination strategies, the importance score for
a specific PIl in BLogic is formulated using the predetermined J combination strategies,
alongside their normalized posterior probabilities. This is mathematically represented as:

VIMP.BLogic(PIl) =
J

∑
j=1

∑
b:PIl∈b

VIMPb(PIl)× wjb × p
(
ej
∣∣D)

(2)

After determining the importance scores for all PIs included in the BLogic model, a
comprehensive bar chart can be generated. This visual representation effectively highlights
the critical interactions.

4. Results
4.1. Simulation

In this analysis, we employ simulated data as a foundation to illuminate the potential
instabilities of logic regression when using the simulated annealing (SA) method. Fur-
thermore, we highlight the efficacy of our BLogic algorithm. This approach consolidates
multiple logic regression models generated via SA, underscoring its prowess in both pre-
dictive and explanatory capacities. Consequently, our benchmarking primarily juxtaposes
foundational logic regression with our novel BLogic.

Although numerous established methods have evolved from logic regression, we
specifically chose not to compare them in our study, focusing instead only on the funda-
mental and original logic regression. One primary reason is that MCMC-based approaches
do not employ SA, and the instability of SA is one of the main issues we aim to address.
Additionally, due to the complexity of these methods, there is a need to preset parameters
to simplify the model, creating a different comparison baseline. Most importantly, some
of these methods only provide the outcomes of each MCMC iteration and lack a compre-
hensive strategy to amalgamate these results for practical prediction and vital interaction
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interpretation. Consequently, comparing them with our method in terms of predictability
and interpretability becomes problematic.

Furthermore, certain methodologies, such as LogicFS and Logic Forest, blend ensem-
ble learning with logic regression. These techniques leverage the bootstrap aggregation
(bagging) method to amalgamate several logic regression models. However, their modeling
is grounded in bootstrap samples, not the complete dataset. Moreover, they recognize
the instability inherent in SA without addressing or amending it. Their primary goals do
not align with ours. Given that models born from the bagging process usually employ
in-bag and out-of-bag validation methods, and considering our study does not harness the
bagging approach, our evaluation criteria differ. Hence, these methods were set aside in
our benchmarking.

The subsequent subsections are structured as follows: Section 4.1.1 provides details on
the parameter configurations for the simulated data. Section 4.1.2 explores potential factors
leading to instability in the SA technique when applied to logic regression. Section 4.1.3
delves into the BLogic algorithm’s method of amalgamating multiple logic regression mod-
els derived from SA, emphasizing its proficiency in both predictability and interpretability.

4.1.1. Parameter Settings for Simulated Data

To investigate the impact of data composition characteristics on model performance,
design parameters for simulations were set. Two total sample sizes, n, of 200 and 1000
were considered. For both sizes, samples included individuals designated as y = 1 (cases)
and y = 0 (controls). A case-to-control ratio in two configurations for each sample size was
established: 1:1 and 1:2. Recognizing the vital interplay between the number of predictors
and the sample size, the number of predictors, p, was set at eleven relative levels relative to
n: 0.1n, 0.25n, 0.5n, 1n, 2.5n, 5n, 10n, 25n, 50n, 100n, and 250n.

In alignment with the literature [18], explanatory variables and their corresponding
response variables were generated for every scenario. It is important to mention that each
dataset was designed to contain a single true prime implicant (PI) that represented the
interaction affecting the response variable. These PIs ranged from two-way to eight-way
interactions among the explanatory variables, with the response variable being determined
through a Boolean operation on the PI. Each explanatory variable was distributed inde-
pendently and identically, adhering to a Bernoulli distribution. The parameters for this
distribution were determined based on the given n, p, and PI setups. For a thorough
subsequent analysis, we generated 100 training datasets and an independent testing dataset
for each parameter combination.

For illustration, let us consider a scenario where there is a true two-way interaction
serving as the PI. In this case, X1 and X2, which constitute the true PI, are independently
generated through a Bernoulli distribution with identical parameter values. The process
of generation produces a number of samples that surpasses the initially set sample size.
From this extended pool, samples for case and control groups are selected based on the
predetermined size and case-to-control ratio requirements. Samples in which (X1 AND X2)
equal 1 are randomly selected until the count meets the number previously established
for the case group (y = 1). In a similar fashion, samples where (X1 AND X2) equal 0
are randomly chosen to reach the predetermined count for the control group (y = 0).
After this careful selection, values of X1 and X2 for the necessary samples are ascertained.
Subsequently, additional explanatory variables, such as X3, X4, . . ., Xp, which are not part
of the PI, are generated for each sample. These additional variables are independently
drawn from a Bernoulli distribution with a parameter of 0.5, ensuring alignment with the
parameters for n, p, and PI previously specified for the ensuing analysis.

4.1.2. Instabilities in Logic Regression via Simulated Annealing

This subsection focuses on exploring the intrinsic data attributes that might lead to
simulated annealing instabilities in logic regression. We bypass discussions on SA hyper-
parameters, including the initial temperature (Tempstart), the final temperature (Tempend),
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and the iteration count (iterSA). It should be noted, however, that we posit that the choice of
these hyperparameters in SA could, to some degree, impact the stability of logic regression.
Still, compared to the properties of the dataset, this is likely a minor effect. Moreover, gen-
eral users often adhere to the default settings provided by the package, making repeated
adjustments to hyperparameters and re-executing SA impractical. For our analysis, the SA
hyperparameters were Tempstart = 100, Tempend = 0.1, and iterSA = 50,000 [28]. Moreover,
we set an upper limit of leaves = 8 for the number of leaves in the logic tree, in line with the
original recommendations for logic regression [15].

In examining SA’s potential instabilities, each of the 100 training datasets underwent
100 iterations of SA-based logic regression, with the mean performance across iterations
subsequently evaluated. Though initial simulations considered both n = 200 and 1000,
analogous trends appeared for both. As would be expected, the results for larger samples
(n = 1000) were predictably more stable, making it challenging to clearly investigate the
instability trends associated with simulated annealing. Therefore, we limit our presentation
to the results for n = 200. Additionally, both 1:1 and 1:2 case-to-control ratios were explored.
The observations indicate analogous trends, though the 1:2 ratio slightly underperformed.
We thus center our discussion on the equal-proportion scenario. Initially, both two-ways to
eight-ways true interactions were considered. As anticipated, the performance for lower-
ways surpassed that of higher-ways. Therefore, we present the two-ways results in the
manuscript.

Regarding predictive performance, Figure 2a,b depict training and testing dataset
accuracy for logic regression, represented by gray dots and lines, respectively. These figures
illustrate that both training and testing performances decline and become notably more
varied as the number of explanatory variables increases, particularly when surpassing the
sample size n. Given that logic regression is a subset of statistical regression techniques,
regression methods might lack unique solutions or struggle to find optimal ones when
the number of explanatory variables (or parameters to estimate) exceeds the sample size.
This challenge could contribute to inconsistent model outcomes and reduced predictive
capabilities with SA. Notably, when the number of explanatory variables substantially
exceeds the sample size, the accuracy for the training dataset can outperform the testing
dataset by 10–20%. This potential overfitting aligns with documented challenges when
using logic regression for prediction in certain contexts [16]. The F1-scores for the training
and testing datasets follow trends akin to the accuracy measures and as such have been
omitted from the figures to maintain focus and conciseness in the presentation of results.

In the context of model interpretability, Figure 3a scrutinizes the capability of the
model to correctly identify true PIs through 100 repeated iterations of simulated annealing
in logic regression. Our analysis reveals that when the count of explanatory variables is
either equal to or less than the sample size, a substantial majority—exceeding 90%—of the
models generated via these 100 SA iterations are successful in pinpointing the true PIs.
However, this rate of successful identification undergoes a steep decline as the number
of explanatory variables starts to outnumber the sample size. For instance, when the
number of explanatory variables is tenfold of the sample size, the mean detection rate
drops precipitously to 48.13%. Moreover, when the ratio of explanatory variables to sample
size scales between 100 and 250, discerning genuine interactions becomes exceptionally
difficult.
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Figure 2. Predictability assessment of logic regression (represented by gray dots and lines) and
BLogic algorithm (represented by red dots and lines). The X-axis of each panel displays the number
of explanatory variables on a logarithmic scale. Each bar displays the mean ± 1 standard deviation.
(a) Training accuracy; (b) Testing accuracy.

Figure 3. Analysis of instability in logic regression via repeated simulated annealing. The X-axis of each
panel displays the number of explanatory variables on a logarithmic scale. Each bar displays the mean
± 1 standard deviation. (a) Frequency of the true PI detection; (b) Number of false discovery PIs.

These observations highlight the inherent limitations of individual SA runs in uncover-
ing true PIs, especially in cases where the predictor variables vastly outnumber the samples.
They also shed light on the potential shortcomings of more complex ensemble techniques,
such as Logic Forest. Despite its aggregation of multiple models generated from bootstrap
samples, Logic Forest might still face challenges in identifying true interactions due to the
constraints of individual SA implementations within each model.

Furthermore, Figure 3b denotes the number of detected PIs during the 100 SA iter-
ations, excluding the true PI. These additional PIs can be regarded as false discoveries.
The graph reveals that as the number of explanatory variables significantly surpasses the
sample size, each SA iteration might detect varying PIs. This variability reaffirms the
instability of SA executions.
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From a computational standpoint, our analyses were conducted on the Taiwania
1 supercomputer, hosted by the National Center for High-performance Computing within
the National Applied Research Laboratories in Taiwan. The machine is equipped with
dual Intel Xeon Gold 6148 2.40 GHz CPUs and offers configurations of either 192 GB or
384 GB of memory. We noted a discernible increase in computational time as the number
of explanatory variables expanded. When the number of explanatory variables reached
the size of the sample, the average time required was approximately 0.19 s. As the number
of explanatory variables ranged from 2.5 to 25 times the sample size, computation times
varied between 0.22 and 0.5 s. When the number of explanatory variables reached 50
and 100 times the sample size, the average time rose to around one second. This climbed
sharply to an average of approximately 5.08 s when the number of explanatory variables
was 250 times the sample size.

In conclusion, the ratio of explanatory variables to samples is a decisive factor impact-
ing the efficacy of SA in identifying optimal logic regression solutions. The performance
degrades rapidly when the number of explanatory variables surpasses the sample size, in-
fluencing predictability, interpretability, and computation times. While other factors might
subtly impact performance, such as the complexity of the explanatory variable structure
influencing response variables, the overall results are consistently poorer in more intricate
scenarios.

4.1.3. Performance of BLogic Algorithm

From the previous subsection, it was established that the performance of logic regres-
sion constructed by simulated annealing can be unstable under certain data characteristics,
leading to unsatisfactory predictive and interpretative outcomes. In this section, we delve
into simulated data with the same settings to examine how the BLogic algorithm, by merg-
ing multiple logic regression models obtained through repeated simulated annealing via a
Bayesian model combination (BMC) approach, can enhance the performance of a single
logic regression constructed by SA both in prediction and interpretation.

In the BLogic algorithm, each data point undergoes repeated simulated annealing to
obtain 100 logic tree models (i.e., B = 100). Throughout the iterations where a Dirichlet
distribution sampling determines the weights of combination strategies, ten combination
strategies are sampled in each iteration (i.e., q = 10). If the maximum prediction accuracy
remains consistent over three consecutive iterations or when the iteration count reaches its
threshold (Q = 10,000), the algorithm halts its generation of further combination strategies.
The final ensemble consists of 100 models pinpointed by SA, integrated with the sampled
combination strategies by the BLogic algorithm for predicting and pinpointing vital PI.

Regarding predictive performance, the red dots and lines in Figure 2a demonstrate
that BLogic delivers remarkable results in terms of the accuracy of the training dataset,
regardless of the ratio of samples to explanatory variables. This performance might be
attributed to the fact that BLogic’s design integrates the training dataset’s performance over
a range of combination strategies, thus shaping a likelihood function and, furthermore, the
posterior probability. For the testing dataset, BLogic sustains commendable performance
even when the number of explanatory variables exceeds the sample size. This distinction is
particularly evident when comparing the red dots and lines representing BLogic in Figure 2b
to the gray dots and lines representing logic regression. With the explanatory variables
being ten times the number of samples, BLogic’s testing accuracy almost invariably nears
a remarkable 100%. Such prowess markedly surpasses a solitary instance of SA logic
regression, which averages around 90%. Furthermore, as the tally of explanatory variables
skyrockets to a staggering 250 times the sample size, BLogic achieves a testing accuracy of
84.97%, dramatically outperforming the 58.60% mean accuracy garnered from a standalone
SA-based logic regression. The F1-scores for the training and testing sets still show similar
trends to accuracy metrics, so we have left them out of the figures for clarity and brevity.

For interpretability, our examination utilizes two metrics. The first metric is the
“Ranking of the true PI detected by BLogic”. Considering that each dataset contains
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only a single true PI, an average rank close to 1 indicates the true PI’s correct detection.
Insights from Figure 4a delineate that the true PI’s consistent detection and its crowning
rank as the most paramount are evident when the number of explanatory variables is
equal to or less than 25 times the sample size. However, as this ratio escalates to 50, 100,
or even 250, the true PI’s importance ranking may experience fluctuations, occasionally
missing the top berth but on average landing within the top two or three positions. Hence,
when the number of explanatory variables significantly outnumbers the sample size, it is
recommended to observe multiple top-ranked PIs based on their importance scores.

Figure 4. Interpretability assessment of the BLogic algorithm. The X-axis of each panel represents the
number of explanatory variables on a logarithmic scale. Each bar displays the mean ± 1 standard
deviation. (a) Ranking of the true PI; (b) Count of true PI elements in premier PI.

On the other hand, since we have only set a single true PI, if the model boasts great
interpretability, the premier PI detected by BLogic should ideally be the true PI. Yet,
in scenarios where there is an abundance of explanatory variables or when the true PI
encompasses complex higher-way interactions, it may become challenging for the premier
PI to fully capture all the variables within the true PI. Nonetheless, it remains imperative
that the detected premier PI at least embodies elements of the true PI instead of being
entirely disparate. To quantify this nuance, we introduced a metric termed the “count
of true PI elements in premier PI detected by BLogic.” For illustration, if the true PI was
a two-way interaction (X1 ∧ X3), and BLogic’s premier PI embraces both X1 & X3, the
metric equals 2. If it contains only one of them, the value is 1, and if neither, the value is 0.
Observations from Figure 4b indicate that when the number of explanatory variables is less
than or up to roughly 25 times the sample size, BLogic’s premier PI always encompasses
elements of the true PI. However, as this ratio increases, the detected premier PI may begin
to incorporate other non-critical explanatory variables. When the count of explanatory
variables hits 250 times the sample size, the premier PI might only contain one element
of the true PI. The recommendations based on Figure 4 indicate that when the number
of explanatory variables significantly outweighs the sample size, the premier PI may
comprise some elements of the true PI but may not entirely represent it. Observing multiple
top-ranked PIs based on their importance scores is suggested.

4.2. Experimental Data

To assess the capabilities of our developed BLogic algorithm, we drew upon next-
generation sequencing data from the UK10K Project [29], housed within the European
Genome-Phenome Archive. These data encompass both patients with specific diseases and
healthy control samples, allowing us to employ a case-control study approach. From the
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provided sequencing data, we underwent a series of preprocessing steps to extract SNPs,
which then served as explanatory variables for our model. The following subsections delve
into the specifics of the data and preprocessing techniques and showcase the comparative
analytical outcomes between the BLogic algorithm and logic regression.

4.2.1. Data Overview and Preprocessing

To evaluate the model, data from the UK10K Project was curated and organized into a
case-control study design, with cases and controls delineated as binary response variables.
Ninety-seven individuals diagnosed with severe insulin resistance (SIR), a rare condition,
were chosen as the case group. To balance data between the case and control cohorts,
100 control samples were drawn from the TwinsUK subset within the UK10K Project,
considering factors such as dizygotic twinning, sequencing quality, and depth.

All selected samples underwent preprocessing to identify uniform genomic variations
as explanatory variables. Since the UK10K Project utilized whole-genome sequencing for
controls and exome sequencing for cases, the analysis focused on target regions defined by
exome sequencing. Following preprocessing guidelines set by tools such as Samtools [30]
and the Genome Analysis Toolkit (GATK) [31], SNPs were extracted for consideration.
Due to model constraints limiting the number of explanatory variables, only SNPs from
a single chromosome were used for subsequent analysis. Specifically, 28,144 SNPs from
chromosome 19 were chosen, as this chromosome is recognized for containing genes
associated with the genomic mechanisms of SIR, as evidenced by scientific research [32–40].

Furthermore, based on typical data selection criteria in genome-wide association
studies [41], we chose the final samples and SNPs for the model. These criteria included
a minor allele frequency of ≥0.01, passing the Hardy–Weinberg Equilibrium test with
a p-value > 5.7 × 10−7, and an identical-by-state value of less than 86%. Population
stratification issues were overlooked as all samples were from the UK population. After
exclusions, the dataset comprised 86 SIR patients and 100 control samples. Each SNP was
converted into two binary dummy variables, signifying dominant and recessive effects.
After removing non-informative features, 21,387 features were left for further analysis.

4.2.2. Analysis Results

To thoroughly assess the predictive performance of our proposed BLogic algorithm in
comparison to logic regression with single simulated annealing, we employed a repeated
10-fold cross-validation, conducted 50 times. Common hyperparameters for both BLogic
and logic regression were uniformly set, encompassing SA parameters (Tempstart = 100,
Tempend = 0.1, and iterSA = 50,000) and a maximum of 8 leaves for the logic tree. For
BLogic-specific hyperparameters, each data batch was configured to undergo SA 100 times
(B = 100), sampling ten combination strategies (q = 10) during each cycle. The algorithm
ceases operation either when maximum prediction accuracy remains stable across three
successive iterations or upon reaching its predetermined threshold (Q = 10,000).

After obtaining the accuracy and F1-score for each of the 10-fold cross-validations,
the results from the fifty repetitions were averaged to compute the mean and standard
deviation (sd) to gauge the predictive performance of the BLogic algorithm against the
single SA in logic regression. These outcomes are detailed in Table 1. The BLogic algorithm
substantially surpasses logic regression in both mean accuracy and F1-score. Additionally,
the standard deviations underscore the enhanced stability of BLogic, further distinguishing
it from logic regression in terms of consistency in performance. With regards to the training
set, although the mean accuracy and F1-score of BLogic are only marginally superior to
those of logic regression, this subtle edge might be due to the effective fitting of the logic
regression model to the training data. However, a closer examination of the standard
deviation for both metrics unequivocally demonstrates that BLogic consistently maintains
a higher level of stability compared to its counterpart. These predictive results align with
the findings from the simulation
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Table 1. Prediction performance on experimental data.

Training Set Testing Set
(%) Accuracy F1-Score Accuracy F1-Score

BLogic mean 100 100 99.88 99.85
(sd) (0) (0) (0.22) (0.32)

logic regression mean 99.84 99.82 95.17 94.36
(sd) (0.10) (0.11) (0.60) (0.89)

On the interpretive front, to illustrate the crucial SNPs and their interactions identified
by BLogic within this dataset, the unpartitioned data was processed again using the
BLogic algorithm, keeping the hyperparameter settings consistent with those previously
mentioned. This process culminated in the generation of 30 combination strategies, with
iterations ceasing when no further enhancements in predictive accuracy were observed.
Additionally, we calculated the PI importance scores, as mentioned earlier, and highlighted
the most significant PIs in descending order based on these scores. It is worth noting that
the results of the PIs detected during individual runs of SA in logic regression are not
provided here. This decision was made due to the inconsistent PI outcomes from each
individual SA run in logic regression, deeming them unsuitable for presentation.

Figure 5 displays the top 10 PIs obtained from the BLogic algorithm. In the PI notation,
an ‘!’ prefix to the SNP rs number signifies a complement set, while the suffixes ‘_1’ and ‘_2’
indicate dominant and recessive coding, respectively. The top-ranking PIs often involve
interactions between two or three SNPs. A search using the Genome Data Viewer at the
National Center for Biotechnology Information revealed that all SNPs included in the top
10 PIs are located within the genomic bands of 19p13 and 19q13. Numerous studies have
pinpointed gene mutations within the 19p13 region that influence the insulin receptor,
subsequently leading to insulin resistance [32–36]. Additionally, some research confirms
that genetic variants on 19q13 can cause severe insulin resistance [37,38], as well as Type 2
diabetes mellitus associated with insulin abnormalities [39,40]. The PI with the highest
importance score identified by BLogic, which has a score notably higher than other PIs,
involves an interaction between the SNPs rs162124 (located at 19q13.41) and rs11085209
(located at 19p13.2). Experts are thus recommended to not only examine the regions of
19p13 and 19q13 independently but also to further probe into the potential impacts on the
SIR mechanism pathway resulting from mutations within these regions. Moreover, within
the top 10 PIs, the SNPs rs11085209 (located at 19p13.2) and rs10415889 (located at 19p13.11)
frequently interact with other SNPs. Hence, this outcome suggests that experts might
consider a more in-depth investigation of the genetic variants within the 19p13 sub-bands,
particularly 19p13.2 and 19p13.11, and their impact on the SIR mechanism.
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Figure 5. Top 10 prime implicants by BLogic from the UK10K project on severe insulin resistance.

5. Conclusions and Discussions

Logic regression presents a unified model that utilizes Boolean combinations of binary
explanatory variables to predict response variables. This structure inherently identifies
crucial interactions among the explanatory variables. It is in stark contrast to conven-
tional statistical methods, which necessitate predefined interaction categories. Thus, it is
particularly advantageous when seeking to uncover significant interactions among many
explanatory variables.

Simulated annealing (SA) is commonly adopted to find the optimal solution in logic
regression. Numerous studies have acknowledged the instability of SA in this context, but
the underlying causes of this instability remain largely unexplored. In our research, we
specifically employed simulated data to probe the characteristics underlying the instability
of SA in logic regression. In our simulation studies, when only one two-way interaction
PI is set in the data, we found that the challenges arising from SA’s instability begin to
manifest when the number of explanatory variables is more than ten times the sample
size. Furthermore, when the quantity of explanatory variables greatly exceeds the sample
size, the instability in SA becomes profoundly evident. This results in a significant drop in
predictive precision and a failure to pinpoint vital interactions. We believe that when the
data contain more complex interactions, the performance of the model might be adversely
affected by SA’s instability, even when the number of explanatory variables does not
greatly exceed the sample size. Such instability undermines the unique advantage of logic
regression: its inherent capability to autonomously detect interactions.

To address this issue, our study proposed the BLogic algorithm. This method relies
on repeatedly employing SA to construct various logic regression models on the same
dataset. The Bayesian model combination (BMC) approach, suitable for assimilating mul-
tiple unstable models, is then employed to combine each logic regression using different
combination strategies. This methodology has demonstrated superiority in prediction
accuracy compared to relying solely on a single unstable result from SA in logic regres-
sion. Furthermore, through this theoretical method, we can systematically consolidate
all interactions identified by multiple SAs and evaluate the relative importance of each
interaction. Moreover, the influence of the ratio between explanatory variables and sample
size is attenuated in this approach. In the setting of our simulation study, it is only when
the number of explanatory variables exceeds 50 times the sample size that prediction and
interpretability begin to show some minor effects.

Based on our research findings, there is substantial scope for further investigation.
One noteworthy area of interest is determining the optimal number of logic regression
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models to be constructed within BLogic, specifically deciding on the appropriate setting
for the hyperparameter B. While we highlighted findings with B = 100 in our simulations,
additional tests with B = 200, 300, 400, and 500 (n = 200, case-to-control ratios 1:1, and two-
way true interactions) have also been conducted. The results are presented in Tables 2 and 3,
focusing on predictability and interpretability, respectively. Even though the patterns in
predictability and interpretability remained relatively stable across varying B values, larger
B values seemed to slightly better mitigate the issues arising from a high ratio of explanatory
variables to sample size. While there was no significant difference in performance across
our chosen B values ranging from 100 to 500, the selection of B still might influence the
analysis results. Opting for a smaller B might not fully capture the breadth of potential SA
outcomes, potentially making the merging of unstable SA instances ineffective. Conversely,
a larger B, while encompassing varied SA results, would demand more computational
resources due to repeated SA runs and the necessity to determine weights for each model
within the BLogic algorithm. Additionally, in scenarios where the sample size significantly
outnumbers the explanatory variables, as demonstrated in our simulations, SA often
generates nearly identical logic tree outputs. As a result, executing SA numerous times
might be inefficient. For the time being, we have set a default value, drawing inspiration
from the commonly used default value of 100 in random forests [42]. Future work might
consider adjusting the value of B based on factors such as the total number of explanatory
variables in the data, the number of leaves in each logic tree, the number of potential key
explanatory variables, and the order of interactions. Subsequent investigations could seek
to methodically understand the interconnectedness of these considerations. As an example,
with a predetermined number of explanatory variables, pinpointing the lowest B value
essential to identifying a specific sequence of PI might be of interest. Employing simulation
studies could also be valuable in analyzing the patterns and relations of these parameters.

Table 2. Impact of hyperparameter B on the predictability of the BLogic algorithm.

B
Number of Explanatory Variables

0.1n 0.25n 0.5n 1n 2.5n 5n 10n 25n 50n 100n 250n

Training
accuracy

(%)

100
Mean 100 100 100 100 100 100 100 99.89 99.98 99.99 100
(sd) (0) (0) (0) (0) (0) (0) (0) (1.15) (0.21) (0.05) (0)

200
Mean 100 100 100 100 100 100 100 99.87 99.99 100 100
(sd) (0) (0) (0) (0) (0) (0) (0) (1.20) (0.07) (0) (0)

300
Mean 100 100 100 100 100 100 100 99.70 99.96 100 100
(sd) (0) (0) (0) (0) (0) (0) (0) (1.79) (0.31) (0) (0)

400
Mean 100 100 100 100 100 100 100 99.65 99.995 100 100
(sd) (0) (0) (0) (0) (0) (0) (0) (1.88) (0.05) (0) (0)

500
Mean 100 100 100 100 100 100 100 99.38 100 100 100
(sd) (0) (0) (0) (0) (0) (0) (0) (2.61) (0.05) (0) (0)

Testing
accuracy

(%)

100
Mean 100 100 100 100 100 100 99.995 98.81 93.80 89.91 84.97
(sd) (0) (0) (0) (0) (0) (0) (0.05) (3.01) (6.26) (5.78) (3.46)

200
Mean 100 100 100 100 100 100 100 96.64 90.54 89.61 86.14
(sd) (0) (0) (0) (0) (0) (0) (0) (5.24) (8.32) (7.19) (3.33)

300
Mean 100 100 100 100 100 100 100 95.20 90.69 89.55 86.96
(sd) (0) (0) (0) (0) (0) (0) (0) (6.73) (9.45) (7.64) (3.34)

400
Mean 100 100 100 100 100 100 100 93.88 89.71 89.15 86.99
(sd) (0) (0) (0) (0) (0) (0) (0) (8.07) (9.71) (7.95) (3.49)

500
Mean 100 100 100 100 100 100 100 93.57 89.74 89.14 87.12
(sd) (0) (0) (0) (0) (0) (0) (0) (8.48) (9.82) (7.62) (3.65)



Mathematics 2023, 11, 4353 18 of 21

Table 3. Impact of hyperparameter B on the interpretability of the BLogic algorithm.

B
Number of Explanatory Variables

0.1n 0.25n 0.5n 1n 2.5n 5n 10n 25n 50n 100n 250n

Ranking of
the true PI
detected by

BLogic

100
Mean 1 1 1 1 1 1 1 1.01 1.20 2.27 2.69
(sd) (0) (0) (0) (0) (0) (0) (0) (0.10) (0.40) (1.58) (1.23)

200
Mean 1 1 1 1 1 1 1 1.01 1.28 1.87 3.00
(sd) (0) (0) (0) (0) (0) (0) (0) (0.10) (0.45) (0.56) (1.76)

300
Mean 1 1 1 1 1 1 1 1 1.29 1.96 2.99
(sd) (0) (0) (0) (0) (0) (0) (0) (0) (0.46) (0.55) (1.93)

400
Mean 1 1 1 1 1 1 1 1.01 1.22 1.98 2.85
(sd) (0) (0) (0) (0) (0) (0) (0) (0.10) (0.42) (0.51) (1.22)

500
Mean 1 1 1 1 1 1 1 1.02 1.25 1.99 3.34
(sd) (0) (0) (0) (0) (0) (0) (0) (0.14) (0.43) (0.48) (2.68)

Count of
true PI

elements in
premier PI
detected by

BLogic

100
Mean 2 2 2 2 2 2 2 1.99 1.80 1.22 1.07
(sd) (0) (0) (0) (0) (0) (0) (0) (0.10) (0.40) (0.42) (0.26)

200
Mean 2 2 2 2 2 2 2 1.99 1.72 1.23 1.03
(sd) (0) (0) (0) (0) (0) (0) (0) (0.10) (0.45) (0.42) (0.17)

300
Mean 2 2 2 2 2 2 2 2 1.71 1.17 1.01
(sd) (0) (0) (0) (0) (0) (0) (0) (0) (0.46) (0.38) (0.10)

400
Mean 2 2 2 2 2 2 2 1.99 1.78 1.14 1.01
(sd) (0) (0) (0) (0) (0) (0) (0) (0.10) (0.42) (0.35) (0.10)

500
Mean 2 2 2 2 2 2 2 1.98 1.75 1.12 1.01
(sd) (0) (0) (0) (0) (0) (0) (0) (0.14) (0.44) (0.33) (0.10)

Secondly, overfitting remains a concern. Previous literature, along with the gray
lines and dots in Figure 2, suggests that a single logic regression model can overfit under
certain data conditions. The red lines and dots in the figure indicate that while BLogic
has marginally better training accuracy than testing, it does not amplify the overfitting
problem. This discrepancy in BLogic’s training and testing accuracy may arise from the
inherent instability of a logic regression run with a single SA. A potential solution for future
research might involve the application of cross-validation, segmenting the full dataset into
training and validation sets. The training set could be used to develop the logic regression
model with SA, and the validation set could help determine the likelihood function and
subsequent posterior probabilities for each combination strategy. This approach might
mitigate overfitting by decreasing the contribution of the training set. However, such a
modification would necessitate a thorough re-evaluation of the theoretical framework of
the BMC model due to the dataset division.

Thirdly, the BLogic algorithm adopts the method outlined in the original BMC liter-
ature as the default approach for configuring combination strategies within BMC. This
method uses the performance of individual combination strategies as a basis to update
the parameters within the Dirichlet distribution, continually iterating to generate a series
of combination strategies. While theoretically plausible, there are reservations cautiously
acknowledged regarding its consistent ability to yield optimal combination strategies. The
effectiveness of this method might vary due to differences in data or potential correlations
with other hyperparameters within the model. The optimal strategies of model combination
for BLogic remain an open area of research and require further study.

A straightforward comparison is presented with a naive approach, which assigns equal
weights to each logic regression model obtained from a single SA run and the combination
strategies deployed by the BLogic algorithm. This comparison, generated with true two-
way PIs, a sample size of 200, and a 1:1 case-to-control ratio, deliberately selects a scenario
with a reduced number of SA runs, namely 50, to spotlight the effective performance of
the BMC technique. To keep the article’s focus sharp, Figure 6a represents predictability
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solely through testing accuracy, while Figure 6b illustrates the ranking of true PI, shedding
light on their interpretability. In most scenarios, the combination method of BLogic’s model
(denoted by red dots and lines) not only consistently secures higher accuracy but also
assigns the highest importance scores to the true PI, thereby correctly identifying it as a
priority, compared to the equal weight approach (signified by gray dots and lines). This
illustration emphasizes the effectiveness of employing the BMC technique for combinations.
However, it is crucial to acknowledge that alternative combination strategies necessitate
further and more detailed exploration.

Figure 6. Performance assessment of equal weight combination (represented by gray dots and lines)
and BLogic via BMC default combination strategy (represented by red dots and lines). The X-axis of
each panel displays the number of explanatory variables on a logarithmic scale. Each bar displays
the mean ± 1 standard deviation. (a) Testing accuracy; (b) Ranking of the true PI.

Lastly, a significant contribution of our research lies in the revelation through simulated
studies that SA outcomes become notably unstable when the number of explanatory
variables greatly exceeds the sample size. This “large p small n” dilemma, common
in datasets generated through bioinformatics techniques such as microarrays or next-
generation sequencing, poses challenges [43]. For instance, while genomic variations can
run into tens of thousands, sample sizes remain relatively smaller. Though our study
demonstrates that using BLogic, by repeatedly applying SA and then combining the results
using BMC, can address this, the sheer volume of explanatory variables still presents a
hurdle. When the genuine key explanatory variables are substantially fewer than the
total variables, directly applying SA might fail to find the true solution. Therefore, when
confronted with datasets abundant in explanatory variables, various methods of integrating
or transforming variable information become worth considering. Techniques such as feature
selection [44,45], feature extraction [46,47], weighting variables [48,49], regularization [50],
and split-and-merge [51] approaches can be integrated. Incorporating these into the our
proposed BLogic algorithm may set the stage for a more streamlined inclusion of genuinely
pivotal explanatory variables into the logic regression model, concluding our quest for
enhanced predictability and interpretability in this field.
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