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Abstract: The exact solutions of the nonlinear Schrödinger equation (NLSE) predict consistent novel
applicable existences such as solitonic localized structures, rouge forms, and shocks that rely on
physical phenomena to propagate. Theoretical explanations of randomly nonlinear new extension
NLSE structure solutions have undergone stochastic mode examination. This equation enables
accurate and efficient solutions capable of simulating developed solitonic structures with dynamic
features. The generated random waves are a dynamically regulated system that are influenced by
random water currents behaviour. It has been noticed that the stochastic parameter modulates the
wave force and supplies the wave collapsing energy with related medium turbulence. It has been
observed that noise effects can alter wave characteristics, which may lead to innovative astrophysics,
physical density, and ocean waves.
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1. Introduction

The investigation of nonlinear stochastic partial differential equations (NSPDEs) is a
vital topic that is employed in a variety of applications, such as new physics, biology, super-
fluids, image processing, optical fiber communications, plasma physics, and finance [1–5].
As a result, addressing NSPDEs is a exciting and current area of research. A common
stochastic process that is both a martingale and a Markov process is the Wiener process,
also known as Brownian motion [6]. The Wiener process is the foundation of stochastic
calculus and, as such, is essential for modelling stochastic processes. It is a continuous pro-
cess, the increments of which are chosen from a normal distribution for any time scale. The
Wiener process is a frequently used stochastic process in dispersive situations [7,8]. Further,
there is a crucial link between PDEs and stochastic processes. On the other hand, fractional
Brownian dynamics via the stochastic anomalous diffusion methods play an important
role in describing the considerable experimental observations of non-Brownian nonlinear
diffusion for various length and time scales, from nano to interstellar spaces [9–11]. Using
fractional Gaussian noise, Cherstvy et al. reported that the behaviors of ergodicity breaking
for underdamped massive Brownian fractional motion for changing particle mass and
trace length are in perfect accordance with the findings of stochastic computer simulations.
The experimental community, that are using different single-particle tracking techniques
and attempting to determine the level of nonergodicity for the recorded time series, may
find the present results of interest [12].
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The nonlinear models that are used the most frequently in the field of applied sci-
ence are the nonlinear Schrodinger’s equations (NLSEs), due to their extensive range of
applications [13–16]. An investigation of their soliton solutions is critical in nonlinear
science studies because they aid in describing the physical mechanism of a complicated
natural phenomenon, and this subject has become one of the most intriguing and incredibly
active areas of research [17–20]. Recently, various new types of solitary solutions were
produced through innovative applications of nonlinear equation models [21–26]. Studies
on N-soliton solutions, which may result in lump and rogue wave solutions, have been
conducted for modified Korteweg–De-Vries-type integrable equations and reduced inte-
grable nonlinear Schrödinger-type equations. The appearance of NLSEs in optical solitons
with nonlinearities might be considered a growing subject of research in nonlinear pho-
tonics [27,28]. In recent years, several different types of nonlinearities have been studied,
including parabolic law, Kerr law, power law, polynomial law, and saturable law [29].
Islam et al. explain the parameters of wave dispersion and nonlinearity impacts on the
solitonic KMNE properties. It was noted that the optical wave propagations are expressed
by the bell, bright, dark, periodic, kink, and singular with dynamical features depending
on the dispersion parameters [30]. The important solitonic applications of a GP equation in
water wave and plasma physics, as a nonlinear unidirectional propagating wave model,
have been theoretically investigated [31]. It was reported that the soliton nature is affected
by free parameter and dispersion coefficients.

The paper will provide an overview of recent advances in statistical models based
on NSPDEs. In terms of the Wiener process, we will pay particular attention to the new
extension NLSE and discuss when and why such models are helpful. As motivating
applications, the effect of the noise term on the behaviour of the solution will be considered.
The proposed deterministic model is given in references [32–35] and we presented the
stochastic form as follows:

i(φt − δ φ(x, t) Γt) + a φxy + i b φ(φ φ∗x − φ∗ φx) = 0 , i =
√
−1, (1)

φ(x, y, t) symbolizes the nonlinear wave envelope, and ∗ represents complex conjugate. The
first and second terms symbolize the temporal evolution of the wave and the disturbance
of the dispersion that is given by the coefficient of a. The parameter b is distinct from the
conventional Kerr law nonlinearity. The noise Γt is a Brownian times derivative of Γ(t)
and δ identifies noise amplitude [36]. Equation (1) depicts the bending of light beams, hole
waves, oceanic rogue waves, and erbium atoms [34,35].

This research analyzes many aspects of noise’s influence on the new extension NLSE
using Itô sense via the Wiener process. This is a vast and fascinating field, with active
research in a variety of approaches. One of the topic’s fascinating features is its capacity to
combine techniques from both classical and stochastic analysis [37]. We apply the unified
technique [38] to produce some new stochastic solutions for the new extension NLSE.
Compared to most existing methods, the recommended strategy has a number of benefits,
including the avoidance of tedious computations and the generation of vital families of
solutions. It is straightforward, dependable, and efficient. The proposed technique can be
used as a box-solver for a number of natural science systems. Also, this method contains the
rational solution which is important to describe the wave at critical points. The presented
stochastic solutions for Equation (1) show a variety of crucial physical aspects, including
erbium atoms, fiber communications, oceanic rogue waves, and the bending of light beams.

This work is arranged as follows. Section 2 gives the new extension NLSE via the
Wiener process and its corresponding potential. Section 3 introduces the stochastic solutions
utilizing a robust technique. The physical interpretation of the new extension NLSE
equation’s solutions is provided in Section 4. The findings are then presented in Section 5.
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2. Mathematical Analysis

Using the traveling wave solution [34]:

φ(x, y, t) = ei(−r1x−r2y+Ω t+ϑ)+δΓ(t)−δ2tU(ζ), ζ = p1 x + p2 y− v t. (2)

Here, r1 and r2 represent the wave numbers in x and y directions, ϑ is phase constant of
soliton, δ represents the noise amplitude, and Ω identifies wave speed, whereas p1 and
p2 denote the inverse width of the soliton along the x- and y-directions and v denotes the
soliton velocity. Equation (1) becomes

−ar1r2U(ζ)− 2br1U3(ζ)e2δΓ(t)−2δ2t + a p1 p2U′′(ζ)−ΩU(ζ) = 0 (3)

from the real part. Taking expectations on both sides gives

−a r1r2U(ζ)− 2b r1U3(ζ)e−2δ2tE(e2δΓ(t)) + ap1 p2U′′(ζ)−ΩU(ζ) = 0. (4)

Indeed, E(e2δΓ(t)) = e2δ2t, then Equation (4) becomes

ap1 p2U′′(ζ)− 2br1U3(ζ)− (ar1r2 + Ω)U(ζ) = 0. (5)

On the other hand, the imaginary part gives

ar2 p1U′(ζ) + ar1 p2U′(ζ) + vU′(ζ) + δ2U(ζ) = 0, (6)

with a dispersion constraint

−r1

(
ar2 + 2be

2δ2ζ
ar2 p1+ar1 p2+v

)
+

aδ4 p1 p2

(ar2 p1 + ar1 p2 + v)2 −Ω = 0. (7)

Equation (5) depicts an energy equation with potential

V = − 1
2ap1 p2

ar1r2U2(ζ)− 1
2ap1 p2

br1U4(ζ)− 1
2ap1 p2

ΩU2(ζ). (8)

The model has an exact solution

U(ζ) =
2(ar1r2 + Ω)e

ζ
√

ar1r2+Ω√
a√p1

√p2√
−br1(ar1r2 + Ω)

(
e

2ζ
√

ar1r2+Ω√
a√p1

√p2 + 1

) ,

φ(x, y, t) =
2(ar1r2 + Ω)e

√
ar1r2+Ω (p1 x+p2 y−v t)√

a√p1
√p2 ei(−r1x−r2y+Ω t+ϑ)+δΓ(t)−δ2t√

−bb1(ar1r2 + Ω)

(
e

2
√

ar1r2+Ω (p1 x+p2 y−v t)√
a√p1

√p2 + 1

) . (9)

3. The New Stochastic Solutions

We produce new stochastic solutions to Equation (1). According to the unified tech-
nique [38], the stochastic solutions of Equation (1) are as follows:

Family I:

U1,2(ζ) =

(
∓
√

2br1

2ap1 p2
(ζ + ς)

)−1

. (10)
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Thus, the solutions for Equation (1) are

φ1,2(x, y, t) =

(
∓
√

2br1

2ap1 p2
(p1 x + p2 y− v t + ς)

)−1

ei(−r1x−r2y+Ω t+ϑ)+δΓ(t)−δ2t, (11)

where ς is an arbitrary constant.

Family II:

U3,4(ζ) = ±

√
ar1r2 + Ω

2br1
tan

(√
ar1r2 + Ω

2ap1 p2
(ζ + ς)

)
(12)

and

U5,6(ζ) = ±

√
ar1r2 + Ω

2br1
cot

(√
ar1r2 + Ω

2ap1 p2
(ζ + ς)

)
. (13)

Thus, the solutions for Equation (1) are

φ3,4(x, y, t) = ±

√
ar1r2 + Ω

2br1
ei(−r1x−r2y+Ω t+ϑ)+δΓ(t)−δ2t tan

(√
ar1r2 + Ω

2ap1 p2
(p1 x + p2 y− v t + ς)

)
(14)

and

φ5,6(x, y, t) = ±

√
ar1r2 + Ω

2br1
ei(−r1x−r2y+Ω t+ϑ)+δΓ(t)−δ2t cot

(√
ar1r2 + Ω

2ap1 p2
(p1 x + p2 y− v t + ς)

)
. (15)

Family III:

U7,8(ζ) = ±

√
−(ar1r2 + Ω)

2br1
tanh

(√
−(ar1r2 + Ω)

2ap1 p2
(ζ + ς)

)
(16)

and

U9,10(ζ) = ±

√
−(ar1r2 + Ω)

2br1
coth

(√
−(ar1r2 + Ω)

2ap1 p2
(ζ + ς)

)
. (17)

Thus the solutions for Equation (1) are

φ7,8(x, y, t)=±

√
−(ar1r2+Ω)

2br1
ei(−r1x−r2y+Ωt+ϑ)+δΓ(t)−δ2ttanh

(√
−(ar1r2+Ω)

2ap1 p2
(p1x+p2y−vt+ς)

)
(18)

and

φ9,10(x, y, t)=±

√
−(ar1r2+Ω)

2br1
ei(−r1x−r2y+Ωt+ϑ)+δΓ(t)−δ2tcoth

(√
−(ar1r2+Ω)

2ap1 p2
(p1x+p2y−vt+ς)

)
. (19)

4. Physical Interpretation

Here we present the mathematical analysis of our model (1), which characterized
oceanic and hole waves, and produced accurate solitons, oscillatory disturbances, super
solitons, and breathers formations. The model under investigation reduced to Equation (5).
The expectations of (3) by E(e2δΓ(t)) = e2δ2t transforms the model into a differential
equation which was solved using a mathematical solver to give many important soli-
tary solutions. We introduce some 2D and 3D graphs for some chosen solutions of
Equation (1) for suitable parametric choices using Matlab release 18 and Mathematica
release 13. Equation (9) represents a group of randomly generated solitons, as seen
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in Figures 1–3. The mathematical method produces different effective solitary wave gener-
ations as Equations (11), (14), (15), (18), and (19). Equation (11) is a rational growing rapid
explosive wave. Solutions (14) and (15) are periodic blow-up structures. Furthermore,
solutions (18) and (19) are dissipative shock wave formations.

Figure 1. Trajectory of φ(x, t) for r1 = 0.5, r2 = 0.5, p1 = 0.5, p2 = 0.5, Ω = 1.5, δ = 0, ϑ = 0.05, a = 2,
b = −1.7.

Figure 2. Trajectory of φ(x, t) for r1 = 0.5, r2 = 0.5, p1 = 0.5, p2 = 0.5, Ω = 1.5, δ = 1, ϑ = 0.05, a = 2,
b = −1.7.
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Figure 3. Plot of φ(x, t) with x, δ for r1 = 0.5, r2 = 0.5, p1 = 0.5, p2 = 0.5, Ω = 1.5, ϑ = 0.05, a = 2,
b = −1.7.

The rigorous randomness factor influences on structure, amplitude, band width,
and soliton energy are given in Figures 1 and 2. The ability of the abrupt wave collapse,
which depends mainly on the impact of randomness, grows with increasing time t, as seen
in Figure 2. At time t = 4, it was determined that the system almost totally collapses.
When δ increases, we observe that the wave’s amplitude and width both shrink, and the
wave starts to collapse, which is complete at δ = 1, as shown in Figure 3. Also, the dark
solution (18), which performs the dissipative pictures, was identified to be impacted by
time t and the random variable δ, as illustrated in Figures 4–6. The rate of collapse of the
dissipative wave rises when t is increased, as shown in Figure 5. Additionally, as seen
in Figure 6, the parameter δ induces the wave to collapse and convert into a distorted
waveform with a limited amplitude.

Figure 4. Trajectory of φ7(x, t) for r1 = 0.5, r2 = 0.5, p1 = 0.5, p2 = 0.5, Ω = 1.5, δ = 0, ϑ = 0.05, a = −2,
b = 1.7.



Mathematics 2023, 11, 4330 7 of 12

Figure 5. Trajectory of φ7(x, t) for r1 = 0.5, r2 = 0.5, p1 = 0.5, p2 = 0.5, Ω = 1.5, δ = 1, ϑ = 0.05, a = −2,
b = 1.7.

Figure 6. Plot of φ7(x, t) with x, δ for r1 = 0.5, r2 = 0.5, p1 = 0.5, p2 = 0.5, Ω = 1.5, ϑ = 0.05, a = −2,
b = 1.7.

In being devoid of random impacts, the enormous significance of the numerous solitary
properties of the investigated solutions must be examined. For example, Equation (9) pro-
vides breathers structures, and stationary and super solitons, as shown in Figures 7 and 8.
The solution (11) produces two wave structure types; the first type is a bright explosive en-
velope wave and the second is an explosive solitonic form, as depicted in Figures 9 and 10.



Mathematics 2023, 11, 4330 8 of 12

Figure 7. Plot of φ(x, t) with x, t for r1 = 0.5, r2 = 0.5, p1 = 0.5, p2 = 0.5, Ω = 1.5, δ = 0, ϑ = 0.05, a = 2,
b = −1.7.

Figure 8. Plot of |φ(x, t)| with x, y for r1 = 0.5, r2 = 0.5, p1 = 0.5, p2 = 0.5, Ω = 1.5, δ = 0, ϑ = 0.05, a = 2,
b = −1.7.

Figure 9. Plot of φ1(x, t) with x, y for r1 = 0.5, r2 = 0.5, p1 = 0.5, p2 = 0.5, Ω = 1.5, δ = 0, ϑ = 0.05, a = 2,
b = 1.7.
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Figure 10. Plot of Reφ2(x, t) with x, t for r1 = 0.5,r2 = 0.5, p1 = 0.5, p2 = 0.5, Ω = 1.5, δ = 0, ϑ = 0.05,
a = 2, b = 1.7.

In contrast, the form (15) is regarded as one of the important physical aspects in the in-
vestigation of super-explosive forms and dissipative blow-up structures. Figures 11 and 12
demonstrate the generation of the dissipative blow-up waveforms and rational super-
explosive structures. Finally, Figure 13 describes the explosive envelopes of Equation (18)
in x and t directions.

In summary, the characteristics of the stochastic nonlinear solitonic structures of the
studied model with a stochastic noise term provoked the dynamical energy advantages of
the obtained solitary envelopes and dissipative–dispersive waves.

Figure 11. Plot of Imφ5(x, t) with x, t for ϑ = 0.1, r1 = 0.5, r2 = 0.5, p1 = 0.5, p2 = 0.5, Ω = 1.5, δ = 0,
ϑ = 0.05, a = 2, b = 1.7.
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Figure 12. Plot of Reφ6(x, t) with x, t for r1 = 0.5, r2 = 0.5, p1 = 0.5, p2 = 0.5, Ω = 1.5, δ = 0, ϑ = 0.05,
a = 2, b = 1.7.

Figure 13. Plot of |φ10(x, t)| with x, t for r1 = 0.5, r2 = 0.5, p1 = 0.5, p2 = 0.5, Ω = 1.5, δ = 0, ϑ = 0.05,
a = −2, b = 1.7.

5. Conclusions

The new extension NLSE model has been used to analyze the fundamental wave
properties for exact stochastic solitary, blow-up dispersive–dissipative and super explosive
shocks, and breather and explosive super structures. The Kerr nonlinearity coefficient
affected the characteristic properties of the obtained solitary structures. The alterations of
the stochastic noise in the obtained waveform amplitudes and energies have been examined.
It was reported that the random influences can be demonstrated by some modulations
in collapsing dissipative and dispersive explosive water structures. The noise stochastic
parameter modulates and fluctuates the resulting wave, producing collapsing solitonic
tails. The applications of these mathematical discussions might be utilized in sea-ocean
wave applications.
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