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Abstract: In this paper, we study the solution of a singularly perturbed inhomogeneous mixed
problem on the half-axis for the Schrödinger equation in the presence of a “strong” turning point
for the limit operator on time interval that do not contain focal points. Based on the ideas of the
regularization method for asymptotic integration of problems with an unstable spectrum, it is shown
how regularizing functions should be constructed for this type of singularity. The paper describes in
detail the formalism of the regularization method, justifies the algorithm, constructs an asymptotic
solution of any order in a small parameter, and proves a theorem on the asymptotic convergence of
the resulting series.
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1. Introduction

At present, a huge number of works are devoted to various methods of asymptotic
integration of singularly perturbed problems. There are so many of them that it is not
possible to give a complete review in a paper of limited volume. We refer the reader to the
monographs [1,2], where detailed bibliographies on existing approaches in the theory of
singular perturbations are given, and a review is made of the current state of the S.A. Lomov
regularization method, the main principles of which, according to the author himself, are
in the monograph [1], and were laid down in the late fifties and early sixties of the last
century in the series [3–8]. The main problem that the researcher faces when applying the
regularization method is related to the search and description of regularizing functions
that contain a non-uniform singular dependence of the solution of the desired problem,
highlighting that you can search for the rest of the solution in the form of power series in a
small parameter. The development of the regularization method led to the understanding
that this search is closely related to the spectral characteristics of the limit operator. In par-
ticular, it is established how the singular dependence of the asymptotic solution on a small
parameter should be described under the condition that the spectrum is stable (see [1]).
When stability conditions are violated, things are much more complicated. Moreover, there
is still no complete mathematical theory for singularly perturbed problems with an unstable
spectrum, although they began to be studied from a general mathematical standpoint about
50 years ago. Of particular interest among such problems are those in which the spectral
features are expressed in the form of point instability (see, for example, [9–12]). In works
devoted to singularly perturbed problems, some of the features of this type are called
turning points, and their classification is as follows:
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(1) Simple turning point: the eigenvalues of the limit operator are isolated from each
other and one eigenvalue vanishes at separate points;

(2) Weak turning point: at least a pair of eigenvalues intersect at separate points, but the
limit operator retains the diagonal structure up to the intersection points, and the
basis of eigenvectors retains smoothness;

(3) Strong turning point: at least a pair of eigenvalues intersect at separate points, but in
this case, the limit operator changes the diagonal structure to Jordan at the intersection
points, and the basis of eigenvectors loses smoothness.

Here, we give links to several recent studies in the framework of the method of
regularization of singularly perturbed problems with singularities in the spectrum of the
limit operator of the indicated form: for a simple turning point, see papers [9,10], for a
weak turning point, see [11], and for a strong turning point, see [12,13].

Typical physical examples of singularly perturbed problems are the Navier–Stokes
equation with low viscosity and the Schrödinger equation, if the Planck constant h̄ is con-
sidered a small quantity. Strictly speaking, the Planck constant h̄ is a dimensional quantity
and has a very specific value, and the assertion that h̄ is small should be understood in the
sense that it is always possible to single out a dimensionless combination of parameters
that contains h̄ to some extent, which is small compared to other dimensionless parameters
that do not contain h̄. The formal passage to the limit h̄ → 0 in the relations of quantum
theory makes the transition from quantum to classical mechanics (see, for example, [14], §6);
therefore, in cases where it is expedient to look for h̄ solutions of the Schrödinger equation,
speak of a semiclassical approximation (see [14], Chap. 7). The described semiclassical
transition in the nonstationary Schrödinger equation in the coordinate representation on the
semiaxis with the Hamiltonian Ĥ(p, x) = p̂2 + x̂2 generates a singularly perturbed problem
whose asymptotic integration dedicated to the present work. It should be immediately
noted that the problem we are considering is considered on a time interval in which no
focal points arise, but only a turning point x = 0 is present. In addition, it contains an
inhomogeneous Schrödinger equation, which, as will become clear in the main text of the
article, significantly complicates the process of constructing a regularized asymptotic series
. In many ways, our studies on the asymptotic integration of a mixed problem on a semiaxis
for a nonstationary and inhomogeneous Schrödinger equation with the above-mentioned
Hamiltonian at h̄→ 0 represent the development of ideas from [12,13], where the Cauchy
problem for a parabolic equation with “strong” turning point.

2. Nomenclature

All quantities in the article are dimensionless:

1. x, t, τ variables;
2. x ∈ [0,+∞), τ, t ∈ [0, T] and 0 ≤ τ ≤ t ≤ T;
3. ε is a small parameter varying within 0 < ε < ε0;
4. f (x, t), u(x, t, ε), ϕ(x, t), ψ(t), v(x, t, ε), vk(x, t, ε), yi(t, ε), zi(t, ε), w(x, t, ε),

W(x, t, ε)k, H(x, t, ε) functions;
5. G, F, Tε, σi operators;
6. M, k, m, C, C1, C2 constants;
7. QT = [0,+∞)× [0, T] problem solution area.

3. Formulation of the Problem

Let the task be given
iε

∂u
∂t

= −ε2 ∂2u
∂x2 + x2u + h(x, t),

u(x, 0) = f (x),
u(x, t) = ψ(t), f (0) = ψ(0), 0 ≤ x < +∞,
t ∈ [0, T], 0 ≤ T < π

4 (no f ocal point condition).

(1)



Mathematics 2023, 11, 4328 3 of 20

and the following conditions are met:

(1) f (x) ∈ C∞(0,+∞);
(2) h(x, t) ∈ C∞(0,+∞)× [0, T];

(3)
+∞∫
0

x2| f (x)|dx < ∞ and
+∞∫
0

x2|h(x, t)|dx < ∞ converge uniformly in t (sufficient

conditions for the existence of a classical solution to the problem);

(4) ∀k, m, n ∈ N:
+∞∫
0

xm| f (k)0 (x)| dx < ∞,
+∞∫
0

xm|h(k,n)(x, t) vert dx < ∞ converge uni-

formly in t (which are sufficient conditions for constructing an asymptotic series).

A classical solution to the problem (1) is a function u(x, t, ε) continuous in

QT = [0,+∞)×[0, T], having continuous
∂u
∂t

,
∂u
∂x

,
∂2u
∂x2 in QT , which satisfies Equation (1)

at all points of QT , and continuously adjoins the initial conditions f (x) and edge ψ(t). The
following theorem is true.

Theorem 1. The classical solution of the problem (1) under conditions (1)–(3) exists and is unique.

Proof. See Appendix A.

For a visual representation of the form of the spectral feature in the problem posed,
one should switch to the matrix form of notation:

ε
∂

∂x

(
u
υ

)
=

(
0 1
x2 0

)
·
(

u
υ

)
− iε

(
0 0
∂
∂t 0

)
·
(

u
υ

)
+

(
0
h

)
,

here, the replacement ε∂u/∂x = υ. is introduced. Then, the matrix of the limit operator has
the form:

A(x) =

(
0 1
x2 0

)
.

Now, it is easy to see that the matrix A(x) is diagonalizable and has a smooth basis
of eigenvectors at x 6= 0, and at the intersection point of the eigenvalues (that is, at x = 0)
the corresponding limit operator changes diagonal structure onto a Jordan structure and
the basis of eigenvectors loses smoothness in x. According to the classification given in the
introduction, such a spectral feature is a strong turning point.

In the general case, regularizing functions must be constructed based on the canonical
form of the limit operator, which can be reduced by smooth transformations (see, for
example, [15]), and the corresponding basis, but in the proposed problem, the operator
already has the canonical form and there is no need for corresponding constructions.
Moreover, it is necessary to regularize the right side of h(x, t), due to the fact that the limit
operator with matrix A(x) at the point x = 0 is not invertible.

4. Formalism of the Regularization Method
4.1. Regularizing Function

The regularizing function of the problem (1) will be sought in the standard form
e−iϕ(x,t)/ε. For solutions of linear homogeneous equations, such singularities were high-
lighted by J. Liouville in [16]. So, substituting u(x, t) = v(x, t)e−iϕ(x,t)/ε into the corre-
sponding homogeneous equation of (1) and collecting the terms for the same powers of ε,
we obtain: (

∂ϕ

∂t
−
(∂ϕ

∂x

)2
− x2

)
v + iε

(
∂v
∂t
− 2

∂ϕ

∂x
∂v
∂x
− ∂2 ϕ

∂x2 v

)
+ ε2 ∂2v

∂x2 = 0. (2)
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An analysis of the last expression allows us to state that to search for u(x, t) as a regular
series in ε; we need to take the solution of the following problem as ϕ(x, t):

∂ϕ

∂t
−
(∂ϕ

∂x

)2
= x2, ϕ(x, 0) = 0. (3)

The choice of the initial condition for ϕ(x, t) is due to the fact that, in what follows, the
initial condition for v(x, t) does not contain a singular dependence on ε. Moreover, with
such a choice, the initial condition on v(x, t) inherits the initial condition of the (1) problem.

The problem (3) is a problem for a nonlinear partial differential equation of the first
order, which we will solve by the method of characteristics (see [17], Ch. 5, §4, pp. 268–272).
Denoting p = ∂ϕ/∂t and q = ∂ϕ/∂x, we obtain the following characteristic system for the
equation of problem (3):

dt
1

=
dx
−2q

=
dp
0

=
dq
2x

=
dϕ

p− 2q2 = dτ,

N.W.: t = 0, x = s, ϕ = 0, q = 0, p = s2.
(4)

The initial conditions in the last system are obtained by parametrization (s—parameter)
of the initial condition of problem (3).

Integrating system (4), we obtain the desired surface in a parametric form:

t = τ, x = s cos(2τ), ϕ = s2 sin(4τ)

4
.

Then, finally, for the function ϕ(x, t) we explicitly have:

ϕ(x, t) =
x2 tan(2t)

2
. (5)

Thus, the regularizing function has the form e−i x2 tan(2t)
2ε .

4.2. Regularizing Singular Operators

Additional regularizing singular operators, related to the pointwise irreversibility of
the limit operator A(x), are constructed using the fundamental solution of problem (1) on
the entire line (see item 8). We write here only the final form of the fundamental solution:

K(x, ξ, t) =
1− i

2
√

πε sin(2t)
exp

[
i
(

cot(2t)
x2 + ξ2

2ε
− xξ

ε sin(2t)

)]
K(x, ξ, t) has the property K(x, ξ, 0) = δ(x− ξ).
Additional singular integral operators for the regularization of the right-hand sides of

iterative problems are obtained by integrating K(x, ξ, t) over the variable ξ (see Section 5)
and dividing by i for convenience. Then, we obtain:

σ0(x, t, ε)(·) = −i
t∫

0

(·)dτ

+∞∫
−∞

K(x, ξ, t− τ)dξ =

= −i
t∫

0

(·) 1√
cos(2(t− τ))

e−
ix2 tan(2(t−τ))

2ε dτ,

σ1(x, t, ε)(·) = −ix
t∫

0

(·)dτ

+∞∫
−∞

ξK(x, ξ, t− τ)dξ =

= −ix
t∫

0

(·) 1√
cos 2(t− τ)

3 e−
ix2 tan(2(t−τ))

2ε dτ.
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In fact, the singular operators σ0(x, t, ε)(·), σ1(x, t, ε)(·) are solutions of the Schrödinger
equation with right-hand sides −iε, −iεx. The actions of operators on a function will be
written as:

σ0( f (t)) = −i
t∫

0

f (τ)√
cos 2(t− τ)

e−
ix2 tan(2(t−τ))

2ε dτ = −i f (t) ∗ e−
ix2 tan(2t)

2ε√
cos(2t)

,

σ1( f (t)) = −ix
t∫

0

f (τ)√
cos 2(t− τ)

3 e−
ix2 tan(2(t−τ))

2ε dτ = −ix f (t) ∗ e−
ix2 tan(2t)

2ε

√
cos 2t

3 .

(6)

4.3. Singular Integral Operator for Describing the “Boundary Layer” in the Vicinity of the Point x = 0

This operator has the form:

G(Ψ) =

t∫
0

Ψ(τ)W(x, t− τ, ε)dτ = (1 + i)

√
2
π

∞∫
x√

2ε tan(2t)

ψ
(

t− 1
2 arctan(b)

)
e−z2

4
√

1 + b2
dz,

where W(x, t, ε) =
(1 + i)x√

επ

e−
ix2 cot(2t)

2ε√
sin(2t)

3 , b = x2

2εz2 . We note the properties of the operator G:

TεG(Ψ) = 0, G(Ψ)
∣∣
x=0= Ψ(t).

5. Construction of a Regularized Asymptotic Series: Iterative Problems

The regularizing function e−iϕ(x,t)/ε introduced in the previous section, and the ad-
ditional regularizing operators σ0(x, t, ε), σ1(x, t, ε), allow us to expect that the rest of the
solution can be sought in the form of power series in ε. The regularized solution of the
problem (1) is sought in the form

u(x, t, ε) = v(x, t, ε)e−
ix2 tan(2t)

2ε + G(Ψ(t, ε)) + σ0(y(t, ε)) + σ1(z(t, ε)) + w(x, t, ε). (7)

Substituting (7) into (1) and extracting the terms of the regularizing functions, we
obtain the problem:

∂v
∂t
− 2x tan(2t)

∂v
∂x
− tan(2t)v = iε

∂2v
∂x2 ,

Ψ(t, ε) ∗ TεW(t, ε) = 0,

y(t, ε) ∗ Tε

( e−
ix2 tan(2t)

2ε√
cos(2t)

)
= 0,

z(t, ε) ∗ Tε

(
x

e−
ix2 tan(2t)

2ε√
cos(2t)

3

)
= 0,

x2w = −h(x, t) + iε
∂w
∂t

+ ε2 ∂2w
∂x2 + εy(t, ε) + εxz(t, ε),

v(x, 0) + w(x, 0) = f (x),

v(0, t, ε) + Ψ(t, ε) +

t∫
0

y(τ, ε)√
cos(2(t− τ))

dτ + w(0, t, ε) = ψ(t).

(8)



Mathematics 2023, 11, 4328 6 of 20

From (8), we obtain a series of iterative problems:

∂vk
∂t
− 2x tan(2t)

∂vk
∂x
− tan(2t) vk =

∂2vk−1

∂x2 ,

Ψk(t) ∗ TεW(t, ε) = 0,

yk(t) ∗ Tε

( e−
ix2 tan(2t)

2ε√
cos(2t)

)
= 0,

zk(t) ∗ Tε

(
x

e−
ix2 tan(2t)

2ε√
cos(2t)

3

)
= 0,

x2wk = −h(x, t)δk
0 + i

∂wk−1
∂t

+
∂2wk−2

∂x2 + yk−1(t) + xzk−1(t),

vk(x, 0) + wk(x, 0) = f (x)δ0
k ,

vk(0, t) + Ψk(t) +
t∫

0

yk(τ)√
cos 2(t− τ)

dτ + wk(0, t) = δ0
k ψ(t), k = −1, ∞.

(9)

Here, δ0
k is the Kronecker symbol: δ0

0 = 1, δ0
k = 0 for k 6= 0. The system at step k = −1

has the form

∂v−1

∂t
+ 2x tan(2t)

∂v−1

∂x
+ tan(2t) v−1 = 0,

Ψ−1(t) ∗ TεW(t, ε) = 0,

y−1(t) ∗ Tε

( e−
ix2 tan(2t)

2ε√
cos(2t)

)
= 0,

z−1(t) ∗ Tε

(
x

e−
ix2 tan(2t)

2ε√
cos(2t)

3

)
= 0,

x2w−1 = 0,

v−1(x, 0) + w−1(x, 0) = 0,

v−1(0, t) + Ψ−1(t) +
t∫

0

y−1(τ)√
cos(2(t− τ))

dτ + w−1(0, t) = 0.

Solutions at the iterative step k = −1 will be v−1(x, t) ≡ 0, w−1(x, t) ≡ 0, and Ψ−1(t),
y−1(t), z−1(t) are arbitrary functions. To determine them, consider the iteration problem at
the zero iteration step k = 0:

∂v0

∂t
+ 2x tan(2t)

∂v0

∂x
+ tan(2t) v0 = 0,

Ψ0(t) ∗ TεW(t, ε) = 0,

y0(t) ∗ Tε

( e−
ix2 tan(2t)

2ε√
cos(2t)

)
= 0,

z0(t) ∗ Tε

(
x

e−
ix2 tan(2t)

2ε√
cos(2t)

3

)
= 0,

x2w0 = −h(x, t) + y−1(t) + xz−1(t),

v0(x, 0) + w0(x, 0) = f (x),

v0(0, t) + Ψ0(t) +
t∫

0

y0(τ)√
cos 2(t− τ)

dτ + w0(0, t) = ψ(t).

(10)
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The functions y0(t), z0(t) are arbitrary at this step. For the equation to be solvable
with respect to w0(x, t), it is necessary and sufficient that the relations y−1(t) = h(0, t),
z−1(t) = ∂h

∂x (0, t). From here,

w0(x, t) =
h(x, t)− h(0, t)− x ∂h

∂x (0, t)
x2 = h0(x, t).

where h0(x, t) is a smooth function. Having determined y−1(t), we find the function Ψ−1(t)
from the boundary condition:

Ψ−1(t) = −
t∫

0

h(0, τ)√
cos(2(t− τ))

dτ.

Now, we can write the solution at step k = −1:

u−1(x, t) = G(Ψ−1(t)) +
t∫

0

h(0, τ)√
cos(2(t− τ))

e−
ix2 tan(2(t−τ))

2ε dτ+

+x
t∫

0

∂h(0,τ)
∂x√

cos 2(t− τ)
3 e−

ix2 tan(2(t−τ))
2ε dτ.

To solve the equation for v0(x, t), we make the change v0(x, t) = α(x,t)√
cos(2t)

. Then, we

obtain the equation
∂α

∂t
+ 2x tan(2t)

∂α(x, t)
∂x

= 0.

Let us write the equation of the characteristics:

dt =
dx

2x tan(2t)
=

dα

0
.

The first integral is, respectively, equal to:

x
cos(2t)

= c1.

From this, we obtain the general solution

α(x, t) = g0

(
x

cos(2t)

)
.

where the function g0(x, t) is determined from the initial conditions. Thus, the general
solution v0(x, t) has the form:

v0(x, t) =
g0

(
x

cos(2t)

)
√

cos(2t)
.

From the initial condition, we define an arbitrary function g0(x, t). For t = 0, we have

g0(x) + h0(x, 0) = f (x).

Hence, g0(x) = f (x) − h0(x, 0) (here, it is taken into account that Ψ0(0) = 0).
Or, expanded,
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g0(x, t) = f
(

x
cos(2t)

)
− h0

(
x

cos(2t)
, 0
)
=

= f
(

x
cos(2t)

)
−

h
(

x
cos(2t) , 0

)
− h(0, 0)− x

cos(2t)
∂h
∂x (0, 0)(

x
cos(2t)

)2 .

To determine arbitrary functions y0(t), z0(t), consider the problem at the ε step:

∂v1

∂t
+ 2x tan(2t)

∂v1

∂x
+ tan(2t)v1 =

∂2v0

∂x2 ,

Ψ1(t) ∗ TεW(t, ε) = 0,

y1(t) ∗ Tε
e−

ix2 tan(2t)
2ε√

cos(2t)
= 0,

z1(t) ∗ Tε

(
x

e−
ix2 tan(2t)

2ε√
cos(2t)

3

)
= 0,

x2w1 = −∂h0

∂t
(x, t)− y0(t)− xz0(t),

v1(x, 0) + w1(x, 0) = 0,

v1(0, t) + Ψ1(t) +
t∫

0

y1(τ)√
cos(2(t− τ))

dτ + w1(0, t) = 0.

(11)

To define w1(x, t) it is necessary and sufficient that

y0(t) = −
∂h0

∂t
(0, t), z0(t) = −

∂2h0

∂x∂t
(0, t),

Now, from the boundary condition of problem (5), we define the function Ψ0(t). To
do this, consider the boundary condition for x = 0:

Ψ0(t) = ψ(t)− v0(0, t) +
t∫

0

∂h0
∂τ (0, τ)dτ√

cos(2(t− τ))
− w0(0, t).

Thus, at this step, the term at the zero step is found. It can be written as:

u0(x, t) =
1√

cos(2t)

[
f
(

x
cos(2t)

)
− h0

(
x

cos(2t)
, 0
)]

e−
ix2 tan(2t)

2ε + G(Ψ0(t))−

−
t∫

0

∂h0(0,τ)
∂τ√

cos(2(t− τ))
e−

ix2 tan(2(t−τ))
2ε dτ − x

t∫
0

∂2h0
∂τ∂x (0, τ)√

cos(2(t− τ))
3 e−

ix2 tan(2(t−τ))
2ε dτ+

+
h(x, t)− h(0, t)− x ∂h

∂x (0, t)
x2 .

Now, we can write the leading term of the asymptotics:
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ugl(x, t) =
1
ε

[
G(Ψ−1(t)) +

t∫
0

h(0, τ)√
cos(2(t− τ))

e−
ix2 tan(2(t−τ))

2ε dτ+

+ x
t∫

0

∂h(0,τ)
∂x√

cos(2(t− τ))
3 e−

ix2 tan(2(t−τ))
2ε dτ

]
+

1√
cos(2t)

[
f
( x

cos(2t)
)
−

− h0
( x

cos(2t)
, 0
)]

e−
ix2 tan(2t)

2ε + G(Ψ0(t))−
t∫

0

∂h0(0,τ)
∂τ√

cos(2(t− τ))
e−

ix2 tan(2(t−τ))
2ε dτ−

− x
t∫

0

∂2h0
∂τ∂x (0, τ))√

cos(2(t− τ))
3 e−

ix2 tan(2(t−τ))
2ε dτ +

h(x, t)− h(0, t)− x ∂h
∂x (0, t)

x2 . (12)

Now, we can write the solution w1(x, t) of system (11):

w1(x, t) = −
∂h0
∂t (x, t)− ∂h0

∂t (0, t)− x ∂2h0
∂t∂x (0, t)

x2 = h1(x, t).

where h1(x, t) is a smooth function.
Let us solve the inhomogeneous equation with respect to v1(x, t)

∂v1

∂t
+ 2x tan(2t)

∂v1

∂x
+ tan(2t)v1 =

∂2v0

∂x2

To solve the equation for v1(x, t), make the change v1(x, t) = α(x,t)√
cos(2t)

and compute

∂2v0
∂x2 . We obtain the equation

∂α

∂t
+ 2x tan(2t)

∂α(x, t)
∂x

=
g′′0 (

x
cos(2t) )

cos2(2t)
.

Let us write the equation of the characteristics:

dt =
dx

2x tan(2t)
=

cos2(2t)dα

g′′0(
x

cos(2t) )
.

The first integrals are, respectively, equal:

x
cos(2t)

= c1, α(x, t)− 1
2

tan(2t) · g′′0 (c1) = c2.

From this, we obtain the general solution

α(x, t) =
1
2

tan(2t) · g′′0
(

x
cos(2t)

)
+ g1

(
x

cos(2t)

)
,

where the function g1 is determined from the initial conditions. Thus, the solution v1(x, t)
has the form:

v1(x, t) =
1√

cos(2t)

[
tan(2t)

2
g′′0

(
x

cos(2t)

)
+ g1

(
x

cos(2t)

)]
.
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We define the function g1

(
x

cos(2t)

)
. Let us use the initial condition g1(x) = −h1(x, 0).

Hence,

v1(x, t) =
1√

cos(2t)

[
tan(2t)

2
g′′0

(
x

cos(2t)

)
− h1

(
x

cos(2t)
, 0
)]

.

The functions y1(t), z1(t) are at the next iterative step. They are found from the
condition of solvability of the equation with respect to w2(x, t):

y1(t) = −
∂h1

∂t
(0, t) +

∂2h0

∂x2 (0, t),

z1(t) = −
∂2h1

∂t∂x
(0, t) +

∂3h0

∂x3 (0, t).

Thus, at this step, the term at the k = 1 step is found. It can be written as follows:

u1(x, t) =
1√

cos(2t)

[
tan(2t)

2
g′′0

(
x

cos(2t)

)
+ g1

(
x

cos(2t)

)]
e−

ix2 tan(2t)
2ε +

+ G(Ψ1(t))−
t∫

0

∂h1
∂τ (0, τ)− ∂2h0

∂x2 (0, τ)√
cos(2t(t− τ)

e−
ix2 tan(2t)(t−τ)

2ε dτ−

− x
t∫

0

∂2h1
∂τ∂x (0, τ)− ∂3h0

∂x3 (0, τ)√
cos(2(t− τ))

3 e−
ix2 tan(2(t−τ))

2ε dτ −
∂h0
∂t (x, t)− ∂h0

∂t (0, t)− x ∂2h0
∂t∂x (0, t)

x2 .

Using this scheme, the following terms of the asymptotic series are found by induction.

6. Estimation of the Remainder Term

Let (N + 1) iteration problems be solved. Then, the solution of the problem can be
represented as

u(x, t, ε) =
N

∑
k=−1

εkuk(x, t) + εN+1RN(x, t, ε), (13)

where RN(x, t, ε) is the remainder.

uk = vk(x, t)e−
iϕ(x,t)

ε + G(Ψk(t)) + σ0(yk(t)) + σ1(zk(t)) + wk(x, t).

Substituting Equation (8) into (1), we obtain the problem for the remainder RN(x, t, ε):

iε
∂RN

∂t
+ ε2 ∂2RN

∂x2 − x2RN = H(x, t, ε),

RN(0, t, ε) = 0,
RN(x, 0, ε) = 0,

(14)

where H(x, t, ε) = x2wN+1(x, t) + ε
(

∂2vN(x,t)
∂x2 e−

iϕ(x,t)
ε + ∂2wN(x,t)

∂x2

)
. Note that since the itera-

tive problems are solved up to εN+1, the term x2wN+1(x, t) = O(1).
A classical solution problem (14) is a function R(x, t, ε) continuous in

QT = (0,+∞)×[0, T] with continuous ∂R
∂t , ∂R

∂x , ∂2R
∂x2 in QT and satisfies Equation (14) at

all points of QT and the initial conditions for t = 0.

Theorem 2 (Evaluation of the remainder term). Let the requirements be met:

(1) conditions (1)–(4) for problem (1);
(2) H(x, t, ε) satisfies condition (4) (1) (see Appendix A).

Then, ∃C > 0 |RN(x, t, ε)| ≤ C ∀(x, t) ∈ (0,+∞)× [0, T] ∀ε ∈ (0, ε0].
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Proof. Extend the right-hand side H(x, t, ε) and the initial condition by zeros to the negative
semiaxis 0x. Using Mehler’s fundamental solution, we write the solution of problem (14)
in the form

RN(x, t, ) =
1
ε

t∫
0

dτ

+∞∫
−∞

H(ξ, τ, ε)K(x, ξ, t− τ)dξ.

Let us evaluate the remainder modulo. Then, we obtain

|RN(x, t, ε)| ≤ 1
ε

t∫
0

dτ
+∞∫
−∞
|H(ξ, τ, ε)||K(x, ξ, t− τ)|dξ =

= 1
ε

t∫
0
|e−

ix2 tan(2(t−τ))
2ε |dτ

+∞∫
−∞
|H(ξ, τ, ε)| 1√

2πε sin(2(t−τ))
| exp

( i cot(2(t−τ))
2ε (ξ − x

cos(t−τ)
)2)|dξ =

= 1
ε

t∫
0

1√
2πε sin(2(t−τ))

dτ
+∞∫
−∞
|H(ξ + x

cos(t−τ)
, τ, ε)|| exp

( i cot(2(t−τ))
2ε ξ2)|dξ =

= {z = ξ√
2ε sin(2(t−τ))

} =

= 1
ε
√

π

t∫
0

dτ
+∞∫
−∞
|H(z

√
2ε sin(2(t− τ)) + x

cos(t−τ)
, τ, ε)|| exp

(
i cos(2(t− τ))z2)|dz =

= 1
ε
√

π

t∫
0

dτ
+∞∫
−∞
|H(z

√
2ε sin(2(t− τ)) + x

cos(t−τ)
, τ, ε)|dz ≤ M

ε .

We write the remainder term in the form

RN = uN+1 + εRN+1.

Then, |RN | ≤ |uN+1|+ ε M1
ε ≤ C, C > 0.

7. Construction of the Fundamental Solution

To find a fundamental solution, consider the problem:

iε
∂u
∂t

+ ε2 ∂2u
∂x2 − x2u = 0, u(x, 0) = δ(x− ξ).

We make the change u(x, t) = e
x2
2ε +itv(x, t). As a result, we obtain the task:

∂v
∂t
− i2x

∂v
∂x

= iε
∂2v
∂x2 , v(x, 0) = e−i ξ2

2ε δ(x− ξ).

Let us carry out the Fourier transform. Then, we obtain a linear equation in the space
of images with respect to F:

∂F
∂t

+ i2λ
∂F
∂λ

= −i(ελ2 + 2)F, F(λ, 0) = e−i ξ2
2ε −iλξ , (15)

where F(λ, t) =
∞∫
−∞

v(x, t)e−iλxdx.

Solution (15) has the form F(λ, t) = e−i2t− ξ2
2ε −

ελ2
4 (1−e−i4t)−iλξe−i2t

.
Making the inverse Fourier transform and taking into account the change u(x, t) =

e
x2
2ε +itv(x, t), we obtain:

u(x, t) = e
x2−ξ2

2ε −it 1
2π

∞∫
−∞

exp
(
− ελ2

4
(1− e−i4t)− iλ(ξe−i2t − x)

)
dλ

Selecting the full square in the exponent and calculating the Fresnel integral, we
finally obtain:
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K(x, ξ, t) =
1− i

2
√

πε sin(2t)
e

i
ε

(
cot(2t) x2+ξ2

2 − xξ
sin(2t)

)
.

The kernel K(x, ξ, t) has the property K(x, ξ, 0) = δ(x− ξ).

8. A Singular Integral Operators for Regularization of the Right Parts of Iterative Problems

Additional regularizing singular operators related to the pointwise irreversibility of
the limit operator are constructed using the fundamental solution. Their task is to embed
the right side of the equation in the image of the limit operator. The limit operator is
obtained by putting (1) ε = 0 into the equation of the problem.

Additional singular integral operators for the regularization of the right-hand side
of the problem are obtained by integrating the kernel K(x, ξ, t) over the variable ξ. Then,
we obtain:

σ0(x, t, ε)(·) = −i
t∫

0

(·)dτ

+∞∫
−∞

K(x, ξ, t− τ)dξ =

= −i
t∫

0

(·) 1√
cos(2(t− τ))

e−
ix2 tan(2(t−τ))

2ε dτ,

σ1(x, t, ε)(·) = −ix
t∫

0

(·)dτ

+∞∫
−∞

ξK(x, ξ, t− τ)dξ =

= −ix
t∫

0

(·) 1√
cos(2(t− τ))

3 e−
ix2 tan(2(t−τ))

2ε dτ.

In fact, the singular operators σ0(x, t, ε)(·), σ1(x, t, ε)(·) are solutions of the Schrödinger
equation with right-hand sides −iε, −iεx. The actions of operators on a function will be
written as:

σ0( f (t)) = −i
t∫

0

f (τ)√
cos(2(t− τ))

e−
ix2 tan(2(t−τ))

2ε dτ =

= f (t) ∗ −i
e−

ix2 tan(2(t−τ))
2ε√

cos(2t)
,

σ1( f (t)) = −ix
t∫

0

f (τ)√
cos(2(t− τ))

3 e−
ix2 tan(2(t−τ))

2ε dτ =

= f (t) ∗ −ix
e−

ix2 tan(2(t−τ))
2ε√

cos(2t)
3 .

Let us introduce the operator Tε = iε ∂
∂t + ε2 ∂2

∂x2 − x2. Then,

Tε(σ0( f (t))) = ε f (t) + f (t) ∗ Tε

(
− i

e−
ix2 tan(2t)

2ε√
cos(2t)

)
=

= ε f (t),

Tε(σ1( f (t))) = εx f (t) + f (t) ∗ Tε

(
− ix

e−
ix2 tan(2t)

2ε√
cos(2t)

3

)
=

= εx f (t).
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9. A Singular Integral Operator for Describing the “Boundary Layer” in the Vicinity of
the Point x = 0

Let us solve a mixed problem:

iε
∂u
∂t

+ ε2 ∂2u
∂x2 − x2u = 0, u(x, 0) = 0, u(0, t) = 1.

We make the change u(x, t) = e
x2
2ε v(x, t). As a result, we obtain the task:

∂v(x, t)
∂t

− i2x
∂v(x, t)

∂x
− iv(x, t) = iε

∂2v(x, t)
∂x2 , v(x, 0) = 0, v(0, t) = 1.

Let us perform a sine transform. Then, in the space of images, we obtain:

∂F
∂t

+ i2λ
∂F
∂λ

= −i(ελ2 + 1)F + iελ, F(λ, 0) = 0, (16)

where the notation

F(λ, t) =
∞∫

0

v(x, t) sin λxdx.

Let us write the characteristic system for the linear equation in the problem (16):

dt =
dλ

i2λ
=

dF
−i(ελ2 + 1)F + iελ

.

The system of first integrals for it has the form:

λe−i2t = C1,

e
ε2λ2

4
√

λF +
ε

2

∞∫
λ

e
εµ2

4
√

µdµ = C2.

Now it is easy, given the initial condition, to obtain a solution to the original problem
in the space of images:

F(λ, t) =
ε

2

λ∫
λe−i2t

e
ε
4 (−λ2+µ2)

√
µ

λ
dµ.

The replacement of the variable µ = λe−i2(t−τ) in the last integral will lead to a more
convenient relation in what follows:

F(λ, t) = iελ

t∫
0

exp
(
− ε

4
λ2(1− e−i4(t−τ))− i3(t− τ)

)
dτ.

It remains to carry out the inverse Fourier sine transform, which in the end will allow
us to obtain a solution to the problem of interest to us:

v(x, t) =
2
π

∞∫
0

F(λ, t) sin λxdλ =

=
i2ε

π

∞∫
0

 t∫
0

exp
(
− ε

4
λ2(1− e−i4(t−τ))− i3(t− τ)

)
dτ

λ sin λxdλ.
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By changing the order of integration in the resulting iterated integral and performing
simple transformations, we obtain

v(x, t) =
(1− i)x√

επ

t∫
0

e−
x2
εa√

sin 2(t− τ)
3 dτ, (17)

where a = 1− e−i4(t−τ). From here,

u(x, t) =
(1− i)x√

επ

t∫
0

e
ix2 cot(2(t−τ))

2ε√
sin(2(t− τ))

3 dτ.

The solution for an arbitrary boundary condition ψ(t) can be written as

u(x, t) =
(1− i)x√

επ

t∫
0

ψ(τ)
e

ix2 cot(2(t−τ))
2ε√

sin(2(t− τ))
3 dτ. (18)

Let us give a different representation of solution (18), having previously made the

change of variables z2 = x2 cot(2(t−τ))
2ε . Namely,

u(x, t) = (1− i)

√
2
π

∞∫
x√

2ε tan(2t)

ψ
(

t− 1
2 arctan(b)

)
eiz2

4
√

1 + b2
dz,

where b = x2

2εz2 .

10. Conclusions

In conclusion, to understand the method, we note that the regularization method in
practice consists of the following stages:

(1) Identifying regularizing functions, operators containing a non-uniform dependence
of the solution to a singularly perturbed problem on the parameter ε (this is the most
difficult stage);

(2) Introduction of additional variables corresponding to regularizing functions and
operators;

(3) Using complex differentiation formulas, an extended problem is formulated in a space
of higher dimension, in which the singularly perturbed problem becomes regular;

(4) A solution to the extended problem is constructed in the form of a power series in the
parameter ε, to determine the coefficients of which theorems of solvability and unique
solvability of the corresponding iterative problems are proved;

(5) At the final stage, the solution is narrowed to regularizing functions and operators,
which gives a solution to the singularly perturbed problem.

In the proposed work for a mixed problem on a half-line for an inhomogeneous Schrödinger
equation with a spectral feature in the form of a “strong” turning point, regularization con-
sisted of introducing one regularizing function and three additional singular operators. Note
that in this work, we developed an algorithm for the regularization method for solving a
singularly perturbed problem for the Schrödinger equation in the presence of a “strong”
turning point at x = 0 on a time interval that does not contain focal points. Regularization of
the task in the presence of focal points in time will be described in the following articles.
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Appendix A

Let us show that the function

u(x, t) =
1− i

2
√

πε sin(2t)

∞∫
−∞

exp
[

i
(

cot(2t)
x2 + ξ2

2ε
− xξ

ε sin(2t)

)]
f (ξ)dξ+

+
1− i
2
√

πε

t∫
0

dτ√
sin(2(t− τ))

+∞∫
−∞

exp
[

i
(

cot(2(t− τ))
x2 + ξ2

2ε
− xξ

ε sin(2(t− τ))

)]
h(ξ, τ)dξ =

=
1− i

2
√

πε sin(2t)

∞∫
−∞

exp
[

i
(
(ξ − x cos(2t))2

ε sin 4t
− ξ2 tan(2t)

2ε

)]
f (ξ)dξ+

+
1− i
2
√

πε

t∫
0

dτ√
sin(2(t− τ))

∞∫
−∞

exp
[

i
(
(ξ − x cos(2(t− τ)))2

ε sin 4(t− τ)
− ξ2 tan(2(t− τ))

2ε

)]
h(ξ, τ)dξ

(A1)

where f (x), h(x, t) are continuous bounded functions satisfying the conditions
+∞∫
−∞

x2| f (x)|dx < ∞,
+∞∫
−∞

x2|h(x, t)|dx < ∞, which satisfy the problem.

iε
∂u
∂t

+ ε2 ∂2u
∂x2 − x2u = h(x, t), u(x, 0) = f (x). (A2)

Note that the integral (A1) converges uniformly on (−∞,+∞)× [0, T]. Indeed, the
score gives:

|u(x, t)| ≤ 1√
2πε sin(2t)

∞∫
−∞

| exp
[

i
(
(ξ − x cos(2t))2

ε sin 4t
− ξ2 tan(2t)

2ε

)]
| f (ξ)|dξ+

+
1√
2πε

t∫
0

dτ√
sin(2(t− τ))

∞∫
−∞

| exp
[

i
( (ξ − x cos(2(t− τ)))2

ε sin(4(t− τ))
−

− ξ2 tan(2(t− τ))

2ε

)]
|h(ξ, τ)|dξ=

1√
2πε sin(2t)

∞∫
−∞

| exp
[

i
(
(ξ − x cos(2t))2

ε sin(4t)

)]
| f (ξ)|dξ+

+
1√
2πε

t∫
0

dτ√
sin(2τ)

∞∫
−∞

| exp
[

i
(
(ξ − x cos(2τ)2

ε sin 4τ

)]
|h(ξ, t− τ)|dξ =

=

〈
ξ − x cos(2t)√

2ε sin(2t)
= z, dξ =

√
2ε sin(2t)dz

〉
=

=
1√
π

∞∫
−∞

| f (x cos(2t) + z
√

2ε sin(2t))|dz +
1√
π

t∫
0

dτ

∞∫
−∞

|h(x cos(2t))+

+z
√

2ε sin(2t), (t− τ))|dz ≤ C1.

In what follows, without loss of generality, we will consider only the part of the
solution (A1) that satisfies the homogeneous Equation (A2).

Step 1. Formal differentiation and substitution of formal derivatives into the equation.
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Let us find formally (that is, without thinking about the legitimacy of these actions) the
derivatives of the function u(x, t) entering the equation. Then, we check that the resulting
integral satisfies the homogeneous equation in problem (A2).

iε
∂u
∂t

=

=
1− i

2
√

πε sin(2t)

∞∫
−∞

exp
(

. . .
)(
−iε cot(2t) +

x2 + ξ2 − 2xξ cos 2t
sin2(2t)

)
f (ξ)dξ =

=
1− i

2
√

πε sin(2t)

∞∫
−∞

exp
(

. . .
)(
−iε cot(2t)− x2 +

(x cos(2t)− ξ)2

sin2(2t)

)
f (ξ)dξ =

ε2 ∂2u
∂x2 =

=
1− i

2
√

πε sin(2t)

∞∫
−∞

exp
(

. . .
)(

iε cot(2t) +
x2 cos2(2t)− 2xξ cos(2t) + ξ2

sin2(2t)

)
f (ξ)dξ =

=
1− i

2
√

πε sin(2t)

∞∫
−∞

exp
(

. . .
)(

iε cot(2t) +
(x cos(2t)− ξ)2

sin2(2t)

)
f (ξ)dξ.

Here, the ellipsis denotes the exponent of the fundamental solution.
Substituting the calculated ut, uxx into the equation, we obtain:

1√
2πε sin(2t)

∞∫
−∞

exp
(

. . .
)[
−iε cot(2t)− x2 + (x cos(2t)−ξ)2

sin2(2t)
+

iε cos(2t)− (x cos(2t)−ξ)2

sin2(2t)
+ x2

]
f (ξ)dξ = 0.

Step 2. Justify the eligibility of formal actions.
In order to show that the function u(x, t) satisfies the equation, it is necessary to justify

the possibility of differentiating with respect to x and t under the integral sign for t > 0,
−∞ < x < +∞. Let us prove this fact for t > t0, t0 > 0 whence, due to the arbitrariness of
t0, this fact will hold for t > 0.

Theorem A1 (Existence of a classical solution). Let the following conditions be met:

(1) f (x) ∈ C(−∞,+∞) satisfying
∞∫
−∞

x2| f (x)|dx < ∞;

(2) h(x, t) ∈ C((−∞,+∞)× [0, T]) satisfying the conditions
∞∫
−∞

x2|h(x, t)|dx < ∞ uniformly

in t.

Then, the classical solution to problem (1) exists.

Proof. Let us estimate the derivatives obtained at step 1 on the rectangle [−L, L]× [t0, T]:

ε|∂u
∂t
| ≤ 1√

2πε sin 2t0

∞∫
−∞

(
ε

| sin 2t0|
+ x2 +

(|ξ|+ |x|)2

sin2 2t0

)
| f (ξ)|dξ ≤

≤ 1
√

2πε
√

sin 2t0
5

(
(1 + 2L2)M0 + 2LM1 + M2

)
,

ε2|∂
2u

∂x2 | ≤
1

√
2πε
√

sin 2t0
5

(
(1 + L2)M0 + 2LM1 + M2

)
.
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Considering that f (x) satisfies condition (1) of the theorem, the integrals

Mj =
∞∫
−∞
|ξ|j| f (ξ)|dξ, j = 0, 1, 2, exist. Therefore, the integrals converge uniformly on the

rectangle [−L, L]× (0, T]. It follows that the function u(x, t) ∈ C(2,1)(−∞,+∞)× (0, T]
and satisfies the homogeneous equation (A2). Let us prove that (A1) satisfies the
initial condition.

The function u(x, t) is not defined for t = 0. However, it can be extended at the initial
moment of time by continuity, i.e., take equal to its limit at time t = 0 at
t→ 0 + 0. Since the integral (A1) converges uniformly on (−∞,+∞)× [0, T], it is possible
to pass to the limit under the integral sign:

u(x, 0) = lim
t→0+0

1− i
2
√

πε sin(2t)

∞∫
−∞

exp
[

i
(
(ξ − x cos(2t))2

ε sin(4t)
+

ξ2 tan(2t)
2ε

)]
f (ξ)dξ =

=

〈
ξ − x cos 2t√

2ε sin(2t)
= z, dξ =

√
2ε sin(2t)dz

〉
=

=
1− i√

2π

∞∫
−∞

lim
t→0+0

ei
(

z2
cos(2t)+

ξ2 tan(2t)
2ε

)
f (x cos(2t) + z

√
2ε sin(2t))dz =

= f (x)
1− i√

2π

∞∫
−∞

eiz2
dz =

(1− i)(1 + i)
√

π

2
√

π
f (x) = f (x).

Thus, u(x, t) really sets the solution to the problem.

Comment A1. Let us prove that the solution of the problem (A2) belongs to the space L2(−∞,+∞).
Let us present the solution in the form:

u(x, t) =
1− i

2
√

πε sin(2t)

∞∫
−∞

f (ξ) exp
[

i
(

cot(2t)
x2 + ξ2

2ε
− xξ

ε sin(2t)

)]
dξ =

1− i
2
√

πε sin(2t)

∞∫
−∞

f (ξ) exp(−i
xξ

ε sin(2t)
) exp

(
i cot(2t)

x2 + ξ2

2ε

)
dξ =

=
1− i

2
√

πε sin(2t)

∞∫
−∞

f (ξ) exp(−i
xξ

ε sin(2t)
)ψ(x, t, ξ)dξ =

=
1− i

2
√

πε sin(2t)

[
− ε sin(2t)

ix
f (ξ)ψ(ξ) exp(−i

xξ

ε sin(2t)
) |+∞
−∞ +

+
ε sin(2t)

ix

+∞∫
−∞

exp(−i
xξ

ε sin(2t)
)

∂

∂ξ
( f (ξ)ψ(ξ))dξ

]
=

=
1− i

2
√

πε sin(2t)
ε sin(2t)

ix

+∞∫
−∞

exp(−i
xξ

ε sin(2t)
)

∂

∂ξ
(ϕ(ξ)ψ(ξ))dξ

Estimating u(x, t, ε) modulo and taking into account the conditions of the problem (1),
we obtain

|u(x, t, ε)| ≤ M
√

ε sin(2T)√
2π|x|

=
C1

|x| , |x| → ∞

Given the estimate on u(x, t, ε), we can write the estimate |u(x, t, ε)| ≤ C
1+|x| , |x| → ∞.

It follows that u(x, t, ε) ∈ L2(∞,+∞). It is similarly proven that ∂u
∂t ∈ L2)(∞,+∞) .
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Comment A2. f (x), h(x, t) satisfy the conditions ∀m ∈ N ∃
+∞∫
−∞

|x|m f (x)|dx,
+∞∫
−∞

|x|m|h(x, t)|dx

converging uniformly with respect to t, then u(x, t) has continuous derivatives of any order with
respect to x and t for t > 0.

Indeed, if u(x, t) is differentiated with respect to x and t an arbitrary number of times, then
the factor (ξ − x cos(2t)) will be allocated to a positive power, and the factor sin(2t) to a negative
degree. Thus, the matter reduces to the uniform convergence of an integral of the form

J = (sin(2t))−k
∞∫
−∞

exp
[

i
(
(ξ − x cos(2t))2

ε sin(4t)
+

ξ2 tan(2t)
2ε

)]
(ξ − x cos(2t))m f (ξ)dξ.

Let us estimate the integral modulo. Then,

|J| ≤ | sin(2t0)|−k
∞∫
−∞

| exp
[

i
(
(ξ − x cos(2t))2

ε sin(4t)
+

ξ2 tan(2t)
2ε

)]
||ξ − x cos(2t)|m| f (ξ)|dξ =

= | sin(2t0)|−k
∞∫
−∞

|ξ − x cos(2t)|m| f (ξ)|dξ ≤ | sin(2t0)|
m

∑
j=0

Cj
m|x|m−j

∞∫
−∞

|ξ|j| f (ξ)|dξ =

= | sin(2t0)|
m

∑
j=0

Cj
m|x|m−j Mj ≤ | sin(2t0)|(L + 1)m Mm.

Considering that f (x) satisfies condition (1) of the problem (A2) the integrals

Mj =
∞∫
−∞
|ξ|j| f ( xi)|dξ exist. Therefore, the integral J converges uniformly for 0 < t0 ≤ t ≤ T.

This implies that the function u(x, t) is continuous and has continuous derivatives of any order
with respect to x and t for t > 0. Moreover, since all the integrals involved in our formal operations
are uniformly convergent in the parameters x, t in any closed rectangle (x, t) ∈ [−L, L]× [t0, T],
t0 > 0, then they can be differentiated in this rectangle with respect to x and t arbitrarily times.

Theorem A2 (Uniqueness theorem). The problem for a homogeneous equation with a homoge-
neous initial condition

iε
∂u
∂t

+ ε2 ∂2u
∂x2 − x2u = 0, u(x, 0) = 0, (A3)

has only a trivial solution.

Proof. Let u(x, t) be a solution to problem (A3), then

∂u
∂t

= iε
∂2u
∂x2 −

i
ε

x2u,

∂u
∂t

= −iε
∂2u
∂x2 +

i
ε

x2u,

(A4)

where the bar denotes complex conjugation.
Now, consider the following integral:

I(t) =
∞∫
−∞

dx · |u(x, t)|2. (A5)

Differentiating the integral I(t) with respect to t and taking into account that the
function u(x, t) tends to zero as x → ±∞ together with its partial derivatives, we have:
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İ(t) =
∞∫
−∞

dx
(

∂u
∂t

u + u
∂u
∂t

)
=
[
substitute the relations (A4)

]
=

=

∞∫
−∞

dx
(

iεuxxu− i
ε

x2|u|2
)
+

∞∫
−∞

dx
(
−iεuuxx +

i
ε

x2|u|2
)
=

= iε

uxu
∣∣∣∞
−∞
−

∞∫
−∞

dx|ux|2
− iε

uux

∣∣∣∞
−∞
−

∞∫
−∞

dx|ux|2
 = 0.

Therefore, I(0) = I(t), where I(0) = 0 due to the initial conditions in the (A5) problem.
Thus, the integral (A5) vanishes for all t ∈ [ 0, T]. And this is possible only if u(x, t) = 0.

Appendix B

Proof that the operator Tε = iε
∂

∂t
+ ε2 ∂2

∂x2 − x2 nullifies
e−i x2 tan(2t)

2ε√
cos(2t)

, is confirmed by

direct verification:

iε
∂

∂t

(
e−i x2 tan(2t)

2ε√
cos(2t)

)
=

e−i x2 tan(2t)
2ε√

cos(2t)

(
x2

cos2(2t)
+ iε tan(2t)

)
;

ε2 ∂2

∂x2

(
e−i x2 tan(2t)

2ε√
cos(2t)

)
=

e−i x2 tan(2t)
2ε√

cos(2t)

(
−x2 tan2(2t)− iε tan(2t)

)
.

Hence, it follows that

Tε

(
e−i x2 tan(2t)

2ε√
cos(2t)

)
=

e−i x2 tan(2t)
2ε√

cos(2t)

(
x2

cos2(2t)
+ iε tan(2t)− x2 tan tan2(2t)− iε tan((2t))− x2

)
= 0.

It can be proved similarly that Tε

(
x

e−i x2 tan(2t)
2ε√

cos(2t)
3

)
= 0.

Appendix C

The equation for determining the particular solution w0 is:

x2w0(x, t) = h(x, t)− h(0, t)− x
∂h
∂x

(0, t).

From here,

w0(x, t) =
h(x, t)− h(0, t)− x ∂h

∂x (0, t)
x2 = h0(x, t),

where h0(x, t) is a smooth function. Let us run a chain of evaluations:

1. |h0(x, t)| =
∣∣∣∣0, 5

∂2h
∂x2 (ξ, t)

∣∣∣∣, where 0 < ξ(x) < x. Consequently, h0(x, t) satisfies condi-

tion (4) in the statement of problem (1), since h(x, t) satisfies this condition.

2.
∣∣∣∣∂w0

∂x

∣∣∣∣ = ∣∣∣∣∂h0

∂x
(x, t)

∣∣∣∣ = ∣∣∣∣16 ∂3h
∂x3 (ξ1, t)

∣∣∣∣, where 0 < ξ(x) < x. Consequently,
∂w0

∂x
satis-

fies condition (4) in the formulation of problem (1), since h(x, t) satisfies this condition.

Since wk =
i ∂wk−1

∂t +
∂2wk−2

∂x2 + yk−1(t) + xzk−1(t),
x2 , k ≥ 1, then all wk(x, t) obtained by

solving iterative problems also satisfy condition (4). Estimating x2w0 gives
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|x2w0| =
∣∣∣∣h(x, t)− h(0, t)− x

∂h
∂x

(0, t)
∣∣∣∣ = ∣∣∣∣12 ∂2h

∂x2 (ξ, t)
∣∣∣∣, which leads to the statement

that x2w0 also satisfy condition (4), and similarly for all x2wk.
Estimating x2w0 gives x2w0 = h(x, t) − h(0, t) − x ∂h

∂x (0, t) = 0.5x2 ∂2h
∂x2 (ξ(x), t), i.e.,

x2w0 satisfies condition (4) of (1). From the above, and because f (x) belongs to the declared
class of functions, the solutions of iterative problems also belong to this class.

Similarly, one can show that all solutions of iterative problems for vk(x, t) satisfy
condition (4) in the statement of problem (1).

The considerations given here allow us to conclude that the integral
∞∫
−∞

|H(x, t, ε)|dx

converges. Here, H(x, t, ε) is the right hand side of (14) for the remainder term.
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