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Abstract: Monitoring life-testing trials for a product or substance often demands significant time and
effort. To expedite this process, sometimes units are subjected to more severe conditions in what is
known as accelerated life tests. This paper is dedicated to addressing the challenge of estimating the
power hazard distribution, both in terms of point and interval estimations, during constant- stress
partially accelerated life tests using progressive first failure censored samples. Three techniques
are employed for this purpose: maximum likelihood, two parametric bootstraps, and Bayesian
methods. These techniques yield point estimates for unknown parameters and the acceleration
factor. Additionally, we construct approximate confidence intervals and highest posterior density
credible intervals for both the parameters and acceleration factor. The former relies on the asymptotic
distribution of maximum likelihood estimators, while the latter employs the Markov chain Monte
Carlo technique and focuses on the squared error loss function. To assess the effectiveness of
these estimation methods and compare the performance of their respective confidence intervals,
a simulation study is conducted. Finally, we validate these inference techniques using real-life
engineering data.

Keywords: statistical model; power hazard distribution; constant stress partially accelerated life
tests; Bayes theorem; progressive first failure censored; parametric bootstrap; computer simulation;
statistics and numerical data

MSC: 62N05; 62F10

1. Introduction

Most manufacturers are currently dedicated to optimizing their product performance
to increase demand and establish trust with their customers. However, during the product
development process, producers encounter several challenges, including difficulties in
managing product failures within the allocated test duration for reliability estimation.
In industrial operations, typical operating conditions often result in long periods required to
observe unit failures, leading to extended average product failure times. This misalignment
with modern industrial practices and technology standards prompted the adoption of
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accelerated life testing (ALT) by experimenters to expedite responses in such scenarios.
ALT involves subjecting the test units to stress levels higher than standard values to
accelerate the failure process. Typically, experimenters use data from accelerated tests to
estimate the failure distribution of these units. Consequently, there are two categories of
ALTs: fully accelerated life tests, where the relationship between life and stress is known,
and partially accelerated life tests, where this relationship is either unknown or cannot be
assumed. To estimate the lifespan distribution under typical usage conditions, a statistically
relevant model is employed to extrapolate data obtained from these accelerated settings.

As outlined by [1], ALT encompasses various stress loading methods, namely constant
stress, step stress, and progressive stress. In constant-stress ALT, sample units endure a
sustained stress level until they either fail or undergo censoring, whichever occurs first.
However, constant-stress testing may become impractical in certain scenarios due to the
broad spectrum of failure times. In such cases, there is a need for a method that ensures
faster failure occurrence. Step-stress testing, which proves to be more efficient and practical
compared to continuous stress, appears to address this issue effectively. In step-stress
testing, the test unit is exposed to a specific stress level for a predefined duration until
it fails. Should it not fail within this period, the stress level is incrementally increased
until the unit eventually fails or reaches the censored condition. In progressive-stress ALT,
test units experience continuously increasing stress levels over time. Various researchers
have investigated these three stress-loading methods using a variety of distributions (refer
to [2–7]).

Given the known or assumed relationship between product life and stress, the fun-
damental presumption in ALT is that data acquired under accelerated conditions can
be extrapolated to reflect performance under normal usage conditions. Nevertheless, it
has been observed that, in certain situations, particularly when dealing with new test
units, it becomes challenging to ascertain or make a reliable assumption about this rela-
tionship. Consequently, in such cases, partial accelerated life tests (PALT) are frequently
employed. PALT finds its utility in test environments where it is challenging to collect life-
times for highly reliable items with extended lifespans using conventional test conditions.
PALT typically falls into two distinct categories: step-stress PALT (SS-PALT) and constant-
stress PALT (CS-PALT). In CS-PALT, all groups of test units are individually exposed to
accelerated conditions and usage profiles. Conversely, in SS-PALT, the usage conditions for
the remaining components of the experiment transition from normal use to higher stress
levels at predetermined times or after a predefined number of failures. Recent research
in the field of PALT has yielded numerous studies, some of which are exemplified by
references [8–14].

While the primary objective of PALT is to shorten the duration of the testing exper-
iment, experimenters often face substantial downtime as they wait for all test units to
fail. To mitigate this challenge, working with censored data becomes essential, aiming to
reduce both the cost and duration of the test. Two commonly employed types of censor-
ship are type-I and type-II censoring. In the former, units are simultaneously tested for
a predetermined duration, and during this period, some units experience failure; subse-
quently, the remaining units are withdrawn from the test at its conclusion (refer to [15,16]).
Conversely, in the latter, units are tested concurrently until a predefined number of
failures occur, at which point the remaining units are removed (as described in [17]).
However, these earlier approaches lack flexibility in terms of removing test units mid-test.
To address this limitation, a progressive type-II censoring (PTIIC) scheme is proposed as a
more versatile censoring method to overcome this challenge. In PTIIC, predetermined units
are removed from the test at the moment of a single unit’s failure, and the test proceeds at
this pace until a fixed number of units experience failure. Upon reaching this point (the last
failed unit), the remaining surviving units are then removed (refer to [18–20]).

At times, the duration of the control experiment can become excessively long due
to product aging issues. A life test method introduced by [21] offers experimenters the
flexibility to segregate the test units into distinct groups and simultaneously run each group
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until the first failure occurs within each group. This form of censorship is referred to as
‘first-failure censoring’. However, under this censoring approach, the researcher cannot
remove experimental groups from the test until the first failure is observed. To address
this limitation, ref. [22] devised a life testing approach that combines first-failure censoring
with progressive type-II censoring, resulting in what is known as a ‘progressive first-failure
censoring’ (PFFC) scheme, which will be discussed in the upcoming section. Let us now
briefly delve into the progressive first-failure filtering system. Let us put n-independent
groups each with k units to the test in real life. Start removing R1 number of groups as soon
as X1:m:n:k encounters its first failure. Repeat after the second failure time X2:m:n:k, deleting
R2 groups at random from the experiment as well as the group where the second failure
was noticed. The experimenter keeps going in the same way until all live Rm groups that
are still active and the group where the mth failure has taken place have been eliminated.
The observed failures X1:m:n:k < X2:m:n:k < · · · < Xm:m:n:k are referred to as progressive
first failure censored order statistics, whereas the progressive censoring scheme is known
as R = (R1, . . . , Rm). Recent years have seen an increase in the amount of literature on
PFFC, including in [23–30].

In the realm of lifetime data analysis and the modeling of failure processes, para-
metric models play a crucial role and are widely employed due to their demonstrated
utility across diverse scenarios. Among the various univariate models, a select few dis-
tributions hold a prominent position for their proven effectiveness in a wide array of
situations. Notably, the exponential, Weibull, gamma, and log-normal distributions stand
out in this regard. Another versatile model for lifetime distribution, capable of fitting
well with certain sets of failure data, is the power hazard function distribution (PHFD).
Reference [31] delved into the application of the PHFD and illustrated its suitability for
assessing the reliability of electrical components. Through analyses of reliability and hazard
functions, they demonstrated that the PHFD outperforms the exponential, log-normal,
and Weibull distributions in this context. As an alternative to the Weibull, Rayleigh, and
exponential distributions, Reference [32] explored the two-parameter version of PHFD,
denoted as PHFD(δ, ρ), and investigated its various characteristics. If X is a continuous
random variable that obeys a PHFD with shape and scale parameters δ and ρ, respectively,
the probability density function (PDF) and its related cumulative distribution function
(CDF) can be written as

f (x; δ, ρ) = ρxδ exp
{
− ρ

δ + 1
xδ+1

}
, x > 0,

and

F(x; δ, ρ) = 1− exp
{
− ρ

δ + 1
xδ+1

}
, x > 0,

respectively. Additionally, the failure rate (FR) and survival functions (SF) can be repre-
sented as

h(x; δ, ρ) = ρxδ , x > 0,

and

S(x; δ, ρ) = exp
{
− ρ

δ + 1
xδ+1

}
, x > 0,

where ρ > 0, and δ > −1. When δ > 0, this distribution’s FR function increases, and when
−1 < δ < 0, it decreases. This distribution is a very adaptable model, and when its param-
eters are altered, it approaches various models. It includes the following specific models:
PHFD relates to Rayleigh(α) when ρ = 1/α2 and δ = 1, PHFD lowers to Weibull(ρ, 1) when
δ = ρ− 1, and PHFD is an exponential distribution with mean 1/ρ when δ = 0. Because of
these characteristics, this model was utilized by multiple writers to model data, particularly
censored observations. Due to its practical significance in the wide range of alternative
fields, as noted in numerous references, this distribution’s verification throughout this
work serves as our inspiration. These references include in [33–37].
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The paper is structured and organized as follows: Section 2 introduces the model
description and lays out the fundamental assumptions. In Section 3, we delve into the most
common estimations, including maximum likelihood estimates (MLEs) and the construction
of approximate confidence intervals for unknown parameters. Section 4 is dedicated to the
discussion of percentile bootstrap and bootstrap-t algorithms. Section 5 outlines the process
of generating Bayes point estimates using the squared error loss function and provides
insights into the associated credible intervals. In Section 6, we conduct a simulation study
using Monte Carlo methods. Section 7 illustrates the application of our methodology with
a real engineering example. Finally, Section 8 presents some concluding remarks.

2. Model Descriptions and Assumptions

PALT is often employed in testing scenarios where it is challenging to collect data
on the lifetimes of exceptionally reliable units with long lifespans under typical testing
conditions. In PALT, certain test units are subjected to elevated stress levels, while others are
placed in a standard testing environment. This study specifically focuses on the CS-PALT
criterion, where some test units operate under normal stress conditions, while others are
subjected to a continuous elevated stress level.

2.1. Model Description

As previously mentioned, in CS-PALT, N1 test units are randomly chosen from the
total number of units available N, and they are run under normal conditions, while the
remaining N2 = N − N1 test units are operated under accelerated settings. Assuming the
test unit’s lifespan complies with the PHFD, the PDF, CDF, and FR function under typical
circumstances are provided, respectively, by

f1(x1; δ, ρ) = ρxδ
1 exp

{
− ρ

δ + 1
xδ+1

1

}
, x1 > 0, (1)

F1(x1; δ, ρ) = 1− exp
{
− ρ

δ + 1
xδ+1

1

}
, x1 > 0, (2)

and
h1(x1; δ, ρ) = ρxδ

1 , x1 > 0, (3)

where ρ > 0, and δ > −1. When a unit is tested under accelerated conditions, the FR
function is provided by the formula

h2(x2; β, δ, ρ) = βh1(x1) = βρxδ
2 , x2 > 0, (4)

where β is an acceleration factor that meets the criterion β > 1. As a result, the SF, CDF,
and PDF may each be expressed as follows

S2(x2; β, δ, ρ) = exp
{
− βρ

δ + 1
xδ+1

2

}
, x2 > 0, (5)

F2(x2; β, δ, ρ) = 1− exp
{
− βρ

δ + 1
xδ+1

2

}
, x2 > 0, (6)

and

f2(x2; β, δ, ρ) = βρxδ
2 exp

{
− βρ

δ + 1
xδ+1

2

}
, x1 > 0. (7)

Figure 1 plots the PDFs under normal and accelerated conditions. In this instance,
CS-PALT and PFFC are coupled. As a result, Group 1 and Group 2 will be created from the
entire N test units. The first group’s components (N1 = n1k1) are categorized as belonging
to normal conditions, whereas the second group’s components (N2 = n2k2) are categorized
as belonging to stress conditions. Each group is split into a number of groups with k j,
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j = 1, 2 test units under either normal or accelerated settings. The progressive censoring
plans for the normal and accelerated tests in this approach are R1i and R2i, respectively.
This technique continues to operate until mj, where j = 1, 2 failures are noticed in each test
condition. The likelihood function of the observed sample of PFFC scheme under CS-PALT
can be expressed as follows:

L(β, δ, ρ|x) ∝
m1

∏
i=1

f1(x1i; δ, ρ)(1− F1(x1i; δ, ρ))k1(R1i+1)−1

×
m2

∏
i=1

f2(x2i; β, δ, ρ)(1− F2(x2i; β, δ, ρ))k2(R2i+1)−1. (8)

Figure 1. PDFs under normal and accelerated conditions.

2.2. Assumptions

These presumptions are made in relation to the proposed PALT methodology:

• The lifetime of all units tested under various normal or accelerated conditions follows
the PHFD.

• The lifetimes of test units are independent identically distributed random variables.
• The total number of units under test is N = N1 + N2 = n1k1 + n2k2.
• Any unit has a lifetime of X2 = β−1X1 under accelerated conditions.
• The lifetimes X1i, i = 1, 2, . . . , m1 of units assigned to the normal condition, while

the lifetimes X2i, i = 1, 2, . . . , m2 of units assigned to the accelerated condition are
independent of one another.

3. Maximum Likelihood Estimation

One of the most significant and popular statistical techniques is the maximum like-
lihood estimate (MLE). The maximum likelihood (ML) technique produces estimates
of parameters with favorable statistical properties, such as consistency, asymptotic un-
biasedness, asymptotic efficiency, and asymptotic normality. To obtain the parameter
estimates with the maximum likelihood, one must calculate the estimates of the pa-
rameter that maximizes the probability of the sample data. The MLEs are consistent
and asymptotically normal for large samples, which are other desired characteristics.

Let X
Rj
j1:mj :nj :kj

< X
Rj
j2:mj :nj :kj

< · · · < X
Rj
jmj :mj :nj :kj

for j = 1, 2 represent the two PFFC samples
from the two populations whose PDFs and CDFs are as indicated in (1), (2), and (6), (7) with
censoring scheme Rj = (Rj1, Rj2, . . . , Rjm). Without a normalized constant, the logarithm
likelihood function can be written as
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`(β, δ, ρ|x) ∝ (m1 + m2) log ρ+m2 log β+ δ

(
m1

∑
i=1

log x1i +
m2

∑
i=1

log x2i

)
− ρ(Φ1 + βΦ2), (9)

where

Φs =
1

δ + 1

ms

∑
i=1

ks(Rsi + 1)x(δ+1)
si , s = 1, 2. (10)

By computing the first derivatives of (9) with respect to β, δ, and ρ and then setting
them equal to zero, the resulting simultaneous equations are represented as follows

∂`(β, δ, ρ|x)
∂β

=
m2

β
− ρΦ2 = 0, (11)

∂`(β, δ, ρ|x)
∂δ

=
m1

∑
i=1

log x1i +
m2

∑
i=1

log x2i − ρ

[(
Φ3 −

Φ1

δ + 1

)
+ β

(
Φ4 −

Φ2

δ + 1

)]
= 0, (12)

where

Φt =
1

δ + 1

mt

∑
i=1

kt(Rti + 1)x(δ+1)
ti log xti, t = 3, 4, (13)

and
∂`(β, δ, ρ|x)

∂ρ
=

m1 + m2

ρ
− (Φ1 + βΦ2) = 0. (14)

A system of three non-linear equations in three unknowns β, δ, and ρ are formally
represented by the equations that come before them. The previous non-linear equations
are challenging to provide closed-form solutions to theoretically. In order to obtain the
MLEs (β̂ML, δ̂ML, ρ̂ML) of (β, δ, ρ), the numerical Newton–Raphson approach will be used
to solve these simultaneous equations to obtain the estimates. The algorithm is described
as follows:

(1) Use the method of moments or any other methods to estimate the parameters β, δ
and ρ as starting point of iteration, denote the estimates as (β0, δ0, ρ0), and set l = 0.

(2) Calculate
(

∂`
∂β , ∂`

∂δ , ∂`
∂ρ

)
(βl ,δl ,ρl)

and the observed Fisher information matrix I−1(β, δ, ρ),

given in Section 3.
(3) Update (β, δ, ρ) as

(βl+1, δl+1, ρl+1) = (βl , δl , ρl) +

(
∂`

∂β
,

∂`

∂δ
,

∂`

∂ρ

)
(βl ,δl ,ρl)

× I−1(β, δ, ρ).

(4) Set l = l + 1, and then go back to Step (1).
(5) Continue the iterative steps until |(βl+1, δl+1, ρl+1)− (βl , δl , ρl)| is smaller than a

threshold value. The final estimates of β, δ, and ρ are the MLE of the parameters,
denoted as β̂, δ̂ and ρ̂.

To delve deeper into the topic, refer to [20] for additional information. For distributions
that are expressed using more than one parameter, the second derivatives are crucial for
a number of reasons. They will confirm that maxima have been found for one of those
reasons. The second partial derivatives of the likelihood function in our situation can be
written as

∂2`(β, δ, ρ|x)
∂β2 =

−m2

β2 , (15)

∂2`(β, δ, ρ|x)
∂β∂δ

=
∂2`(β, δ, ρ|x)

∂δ∂β
= −ρ

(
Φ4 −

Φ2

δ + 1

)
, (16)

∂2`(β, δ, ρ|x)
∂β∂ρ

=
∂2`(β, δ, ρ|x)

∂ρ∂β
= −Φ2, (17)
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∂2`(β, δ, ρ|x)
∂ρ2 =

−(m1 + m2)

ρ2 , (18)

∂`(β, δ, ρ|x)
∂ρ∂δ

=
∂`(β, δ, ρ|x)

∂δ∂ρ
= −

(
Φ3 −

Φ1

δ + 1

)
− β

(
Φ4 −

Φ2

δ + 1

)
, (19)

and
∂2`(β, δ, ρ|x)

∂δ2 =
2ρ

δ + 1
[Φ3 −Φ1 + β(Φ4 −Φ2)]− ρ(Φ5 − βΦ6), (20)

where

Φv =
1

δ + 1

mv

∑
i=1

kv(Rvi + 1)x(δ+1)
vi (log xvi)

2, v = 5, 6. (21)

The Fisher information matrix (FIM) is obtained by arranging the second partial
derivatives (15)–(20) in a matrix structure. The FIM being negative semi-definite is a
necessary requirement in an optimization context for a stationary point to be a maximum.
The asymptotic variances–covariances of the maximum likelihood estimators β̂ML, δ̂ML,
and ρ̂ML of the parameters β, δ and ρ are obtained by the elements of the inverse of the FIM.
The observed asymptotic variance-covariance matrix for the ML estimators is obtained as

I−1(β, δ, ρ) =


∂2`(β,δ,ρ|x)

∂β2
∂2`(β,δ,ρ|x)

∂β∂δ
∂2`(β,δ,ρ|x)

∂β∂ρ

∂2`(β,δ,ρ|x)
∂δ∂β

∂2`(β,δ,ρ|x)
∂δ2

∂`(β,δ,ρ|x)
∂δ∂ρ

∂2`(β,δ,ρ|x)
∂ρ∂β

∂`(β,δ,ρ|x)
∂ρ∂δ

∂2`(β,δ,ρ|x)
∂ρ2


−1

(β̂ML ,δ̂ML ,ρ̂ML)

=

 Var(β̂ML) Cov(β̂ML, δ̂ML) Cov(β̂ML, ρ̂ML)
Cov(δ̂ML, β̂ML) Var(δ̂ML) Cov(δ̂ML, ρ̂ML)
Cov(ρ̂ML, β̂ML) Cov(ρ̂ML, δ̂ML) Var(ρ̂ML)

. (22)

Therefore, using the asymptotic normality of the ML findings of intervals determined,
the approximate (1 − α)100% confidence intervals (ACIs) for β, δ, and ρ are obtained
according to

β̂ML ∓ z α
2

√
Var(β̂ML), δ̂ML ∓ z α

2

√
Var(δ̂ML), ρ̂ML ∓ z α

2

√
Var(ρ̂ML). (23)

Here, z α
2

is the percentile of the conventional normal model with a right-tail proba-
bility of α

2 . The problem with applying a normal approximation of the MLE is that when
the sample size is small, the normal approximation may be poor. However, a different
transformation of the MLE can be used to correct the inadequate performance of the normal
approximation. Reference [38] presented a log-transformation as a way to enhance the
performance of the normal approximation. Therefore, for the parameters being considered,
ACIs of (1− α)100% are provided as

β̂ML exp

∓ z α
2

√
Var(β̂ML)

β̂ML

, δ̂ML exp

∓ z α
2

√
Var(δ̂ML)

δ̂ML

, ρ̂ML exp

(
∓

z α
2

√
Var(ρ̂ML)

ρ̂ML

)
. (24)

3.1. Consistent and Asymptotically Normal Estimators
3.1.1. Consistency characteristic

Consider θ = (β, δ, ρ) as the true parameter value of a statistical model, and let θ̂
represent the MLE of θ. The MLE is considered consistent when θ̂ converges to θ in
probability as the sample size n grows. To establish the MLE’s consistency, we can employ
the following theorem.
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Theorem 1. Assuming that the log-likelihood function `(θ|x) exhibits continuity with respect to
θ and meets the subsequent criteria:

1. `(θ|x) is differentiable in θ for all x in the sample space.

2. The expected value of the score function Ω(x, θ) =
∂`(θ|x)

∂θ
is zero at the true parameter

value, i.e., E[Ω(x, θ)] = 0 for θ = θ0.
3. The FIM I−1(θ) = E

[
Ω(x, θ)Ω(x, θ)T

]
is positive definite at the true parameter value, i.e.,

I−1(θ0) > 0.

Then, the θ̂ is a consistent estimator of θ.

Proof. Consider ε > 0 as any chosen positive value. Applying the Chebyshev inequality,
we obtain

P
(∣∣∣θ̂− θ

∣∣∣ > ε
)
�

Var
(

θ̂
)

ε2 .

Utilizing the central limit theorem, it’s established that the distribution of θ̂ tends
toward a normal distribution with a mean of θ and a variance of I−1(θ) as the sample size
n grows. Consequently, we can express this as

Var
(

θ̂
)
= I−1(θ) + o(1),

where o(1) is a term that goes to zero as n increases. Substituting this into the Chebyshev
inequality, we obtain

P
(∣∣∣θ̂− θ

∣∣∣ > ε
)
� I−1(θ) + o(1)

ε2 .

As the sample size n increases, the term o(1) diminishes to zero, and the denominator
in the inequality grows towards infinity. Consequently, the probability of

∣∣∣θ̂− θ
∣∣∣ > ε

approaches zero, thereby confirming the consistency of the θ̂ with respect to θ.

3.1.2. Asymptotic Normality Characteristic

We describe the θ̂ as exhibiting asymptotic normality when its distribution approxi-
mates a normal distribution with a mean of θ and a variance of I−1(θ) as the sample size n
grows. To establish the MLE’s asymptotic normality, we can utilize the following theorem.

Theorem 2. If the log-likelihood function `(θ|x) fulfills the conditions outlined in the consistency
theorem mentioned earlier, then the θ̂ demonstrates asymptotic normality.

Proof. According to the central limit theorem, it is established that the distribution of the
score function Ω(x, θ) tends towards a normal distribution with a mean of zero and a
variance of I−1(θ) as the sample size n grows. As a result, we can express it as follows:

Ω(x, θ) = N
(

0, I−1(θ)
)
+ o(1),

here, o(1) represents a term that diminishes to zero with the increasing value of n.
Utilizing the Taylor series expansion, we can express this as

θ̂− θ = I−1(θ)Ω(x, θ) + o(1).

Replacing the preceding equation into the score function’s asymptotic normality,
we obtain

θ̂− θ = I−1(θ)N
(

0, I−1(θ)
)
+ o(1).

This demonstrates that as the sample size n increases, the distribution of θ̂− θ tends
toward a normal distribution with a mean of zero and a variance of I−1(θ), thereby con-
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firming the asymptotic normality of the θ̂. It is essential to emphasize that the consistency
and asymptotic normality properties of MLEs are valid under specific regularity conditions.
While these conditions are generally met in numerous statistical models, it is crucial to
verify their satisfaction before employing the MLE approach.

4. Parametric Bootstrap

As mentioned earlier, normal approximations are effective when dealing with large
sample sizes. However, when working with small sample sizes, the assumption of normal-
ity may not hold. In such cases, the use of resampling techniques like bootstrapping can
provide more precise approximations for confidence intervals. Bootstrapping has gained
popularity in recent times due to its capability to offer a robust and accurate means of assess-
ing the reliability of a specific model. Bootstrapping entails repeatedly resampling data from
a population to obtain more accurate estimates of the population’s true mean and variance.
To achieve this, we recommend employing confidence intervals based on two parametric
bootstrap methods: the percentile bootstrap technique (Boot-p), which relies on the the-
ory of [39], and the bootstrap-t method (Boot-t), which is grounded in the theory of [40].
To generate bootstrap samples for both approaches, the following procedures are employed:

1. Using the original PFFC sample as a foundation, x
Rj
j1:mj :nj :kj

, x
Rj
j2:mj :nj :kj

, · · · , x
Rj
jmj :mj :nj :kj

for j = 1, 2, obtain β̂ML, δ̂ML and ρ̂ML.
2. Employ the censoring plan

(
nj, mj, k j, Rji

)
and (β̂ML, δ̂ML, ρ̂ML) to generate a PFFC

bootstrap sample x
∗Rj
j1:mj :nj :kj

, x
∗Rj
j2:mj :nj :kj

, · · · , x
∗Rj
jmj :mj :nj :kj

for j = 1, 2.

3. From x
∗Rj
j1:mj :nj :kj

, x
∗Rj
j2:mj :nj :kj

, · · · , x
∗Rj
jmj :mj :nj :kj

calculate the bootstrap estimates, which are

indicated by the symbol η̂∗, where η̂∗ = β̂∗ML, δ̂∗MLand ρ̂∗ML.
4. Steps 2 and 3 should be repeated NB times to produce η̂∗1 , η̂∗2 , . . . , η̂∗NB.
5. Sort η̂∗j , j = 1, 2, . . . , NB, ascendingly as η̂∗(j), j = 1, 2, . . . , NB.

4.1. Parametric Boot-p

Let ϕ1(z) = P(η̂∗ ≤ z) be the CDF of η̂∗. Define η̂∗boot−p(z) = ϕ−1(z) for given z.
Then, the approximate 100(1− α)% Boot-p CI of η̂∗is given by[

η̂∗boot−p

(α

2

)
, η̂∗boot−p

(
1− α

2

)]
. (25)

4.2. Parametric Boot-t

We discover the ordering statistics η̂∗ as

ϑ̂∗η =
η̂∗ − η̂√
Var(η̂∗)

,

where Var(η̂∗) obtained using FIM for η̂∗ = β̂∗ML, δ̂∗MLand ρ̂∗ML. Let ϕ2(z) = P
(
ϑ̂∗η ≤ z

)
be

the CDF of ϑ̂∗η . For a given z , define

η̂boot−t(z) = η̂ +
√

Var(η̂)ϕ−1
2 (z).

Thus, the approximate 100(1− α)% Boot-t CI of η̂ is given by[
η̂boot−t

(α

2

)
, η̂boot−t

(
1− α

2

)]
. (26)

5. Bayesian Estimation

Bayesian estimation is a powerful technique for determining unknown parameters
from measurable data. Its foundation is the Bayes theorem, a concept in probability theory
that allows the probability of a hypothesis to be updated as new information is gathered.
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This approach provides a number of benefits over traditional MLE strategies because it
may account for prior knowledge while estimating. It also has the ability to assess the
degree of uncertainty surrounding each parameter. For Bayesian deduction to work, the
priors for the parameters must be chosen correctly. The authors of Reference [41] argue
that it is evident that from a properly Bayesian standpoint, one cannot assert that one prior
is superior to all others. One must undoubtedly accept their own subjective past with all
of its flaws. However, if we have enough information about the parameter(s), employing
informative priors that are unquestionably preferred over all other options is preferable.
If not, using ambiguous or non-descriptive priors may be appropriate; for more details,
see [42]. The family of gamma distributions is known to be simple and flexible enough
to suit a variety of the experimenter’s preexisting ideas, according to [43]. Consider the
case in which the unknown parameters, δ and ρ, are stochastically independent and have
conjugate gamma priors. Specifically, gamma(a1, b1) and gamma(a2, b2). Additionally, a
vague prior is selected for the acceleration factor β with the following PDF

πβ =
1
β

, β > 0. (27)

As a result, the joint prior of the parameters δ, ρ, and β together can be stated as
follows

π(β, δ, ρ) ∝ δa1−1ρa2−1β−1 exp{−b1δ− b2ρ}. (28)

In order to present the joint posterior distribution of δ, ρ, and β, one must combine the
joint prior distribution π(β, δ, ρ) in (38) with the likelihood function L(β, δ, ρ|x) supplied
in (8) as

π∗(β, δ, ρ|x)= L(β, δ, ρ|x)× π(β, δ, ρ)∫ ∞
1

∫ ∞
0

∫ ∞
0 L(β, δ, ρ|x)× π(β, δ, ρ)dβdδdρ

∝ βm2−1δa1−1ρm1+m2+a2−1 exp{−δb1 − ρ(Φ1 + βΦ2 + b2)}
(

m1

∏
i=1

xδ
1i

)(
m2

∏
i=1

xδ
2i

)
, (29)

where Φ1 and Φ2 are given in (10). In the Bayes technique, one should select a loss
function that corresponds to each of the potential estimators in order to arrive at the best
estimator. Here, the squared error loss function estimations, which we can express as
ϕ(η̂, η) = (η̂ − η)2, and Bayes estimate Eη(η|x) are calculated. The inability to derive the
joint posterior in a closed form, which would allow us to compute Bayes estimates of the
unknown parameters δ, ρ, and β, may be seen in relation (29). The MCMC technique, which
enables us to acquire simulated samples from the posterior distributions of the parameters,
will therefore be used in order to obtain these estimations. Calculations for the point and
interval estimate of unidentified parameters will be made using these generated samples.
As for how this approach operates, it is based on the calculation of conditional posterior
functions, where the conditional distribution of β given δ and ρ can be represented as

π∗1 (β|δ, ρ, x) ∝ βm2−1 exp{−β(ρΦ2)}
∼ Gamma[m2, ρΦ2]. (30)

Similarly, the conditional distribution of δ given β and ρ can be reported as

π∗2 (δ|β, ρ, x) ∝

(
m1

∏
i=1

xδ
1i

)(
m2

∏
i=1

xδ
2i

)
δa1−1 exp{−δb1 − ρ(Φ1 + βΦ2)}. (31)

Additionally, the conditional distribution of ρ given β and δ can be stated as

π∗3 (ρ|β, δ, x) ∝ ρm1+m2+a2−1 exp{−ρ(Φ1 + βΦ2 + b2)}
∼ Gamma[m1 + m2 + a2, Φ1 + βΦ2 + b2]. (32)
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Gamma densities π∗1 (β|δ, ρ, x) and π∗3 (ρ|β, δ, x) are evident. As a result, samples of
β and ρ can be produced using a gamma generator. Additionally, π∗2 (δ|β, ρ, x) cannot be
reduced for directly drawing samples using conventional techniques. The gamma distribu-
tion was chosen as the prior distribution of the parameters because it is the most appropriate
one that matches the maximum likelihood function. Moreover, they are from the same
family. The evidence for this is that two of the full conditional posterior distributions of the
parameters π∗1 (β|δ, ρ, x) and π∗3 (ρ|β, δ, x) resulted in a gamma distribution, which proves
the validity of the choice. In addition, choosing another prior distribution or dependent
prior will increase the complexity and difficulty of mathematical equations. Gamma distri-
bution is one of the rich distributions, as when changing its parameters (hyper-parameters),
we obtain new data with new information, so it is the focus of attention of most statisticians.
A special case is that when all hyper-parameters of gamma distribution are zero, we obtain
the Jaffrey prior in the form 1

β , 1
δ , and 1

ρ .
In this scenario, we can utilize the Metropolis–Hastings (M-H) algorithm model, which

is suggested by [44], to derive Bayes’ estimate for using one of the well-known MCMC
methods. To reduce the rejection rate as much as feasible in this algorithm, we can select
either a symmetric or non-symmetric proposal distribution. The normal distribution is
included as a symmetric proposal distribution since the marginal distribution of δ is not
well known. The M-H steps are additionally incorporated into the Gibbs sampler to update
δ, while β as well as ρ is updated straight from its full conditional; see [45] as follows:

1. Start with an (β, δ, ρ) = (β̂ML, δ̂ML, ρ̂ML), and set J = 1.

2. Generate β(J) from Gamma
[
m2, ρ(J−1)Φ2

]
.

3. Generate δ(J) according to the following :

(a) Generate δ∗ from normal distribution N
[
δ(J−1), Var(δ̂ML)

]
where Var(δ̂ML)

the variance of δ given in (22).

(b) Compute r = min
[

1, π∗2 (δ
∗ |β(J),ρ(J−1),x)

π∗2 (δ
(J−1) |β(J),ρ(J−1),x)

]
.

(c) Generate a sample µ from the U[0, 1] distribution.
(d) Ifµ � r set δ(J) = δ∗; otherwise, δ(J) = δ(J−1).

4. Generate ρ(J) from Gamma
[
m1 + m2 + a2, Φ1 + β(J)Φ2 + b2

]
.

5. Set J = J + 1.
6. To collect the required number of samples, repeat Steps 2–5 M times.

The original M0 sample count from the burn-in process is discarded, and we use the
M−M0 samples that are still there to derive estimations. As a result, the Bayes estimate of
ζ = (β, δ or ρ) under the squared error loss function can be viewed as the average of the
samples that were obtained from the posterior densities as follows:

ζ̂BS =
1

M−M0

M

∑
J=M0+1

ζ(J). (33)

In order to create the highest posterior density (HPD) credible intervals (CRIs) of
ζ = (β, δ or ρ) using generated MCMC sampling procedure, we first refer to the ordered
random sample produced by the previous algorithm in the form ζ(1) < ζ(2) < · · · < ζ(M).
Then, the 100(1− α)% two-sided CRIs of ζ can be constructed as

ζ̂((M−M0)
α
2 )

, ζ̂((M−M0)(1− α
2 )). (34)

6. Simulation Study

In this section, some computations in line with Monte Carlo simulation experiments are
carried out using Mathematica ver. 13 in an effort to assess the performance of the offered
approaches. In light of the proposed algorithm proposed in [18] with the distribution
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function 1 − (1− F(x))k, 1000 PFFC samples were generated under both normal and
acceleration conditions from the PHF(δ, ρ) and PHF(β, δ, ρ) distributions, respectively, with
the parameters (β, δ, ρ) = (2, 1.5, 2.5). The effectiveness of the obtained estimates of β,
δ, and ρ from the various proposed approaches (MLE, two parametric bootstrap, and
MCMC technique) is compared in terms of point and interval estimates. In order to achieve
this, mean squared errors (MSEs) are taken into account for point estimates, whereas
the average widths (AWs) of 95% confidence/HPD credible intervals and 95% coverage
probabilities (CPs) of the parameters based on the simulation are taken into account for
interval estimates. For the purpose of conducting our investigation, multiple combinations
of k1 = k2 = k (group size), n1 = n2 = n (number of groups), and mj, j = 1, 2 (observed
data) are taken into consideration with various censoring schemes (CSs) Rj, j = 1, 2. For
ease, three categories of CSs are taken into consideration, namely Rj = (Rj1, Rj2, . . . , Rjm)

CS I:Rj1 = nj −mj, Rj2 = Rj3 = · · · = Rjmj = 0, j = 1, 2.

CS II:


R

j
(

mj+1
2

) = nj −mj, Rji = 0, for i 6= mj+1
2 if mj is odd

R
j
(mj

2

) = nj −mj, Rji = 0, for i 6= mj
2 if mj is even

.

CS III:Rj1 = Rj2 = · · · = Rj(mj−1) = 0, Rjmj = nj −mj, j = 1, 2.

To resolve the non-linear Equations (11)–(14) and obtain the MLEs of the parameter
values, we used the NMaximize command of the Mathematica 13 package. Additionally,
the β̂ML, δ̂ML, and ρ̂ML are produced utilizing the MLE’s invariance feature. A total of
1000 replicates were used in the investigation. Each replication makes use of 1000 bootstrap
(Boot-p and Boot-t) samples. The first 2000 values are deleted as “burn-in” while computing
Bayes estimates (BEs) and highest posterior density CRIs in a Bayesian framework utilizing
12,000 MCMC samples. Furthermore, we take into account informative gamma priors with
the following hyper-parameter values: a1 = 2, b1 = 1, a2 = 3, and b2 = 2. The parameter
values for the informative priors are chosen such that their mean is equal to the parameter
values themselves. Tables 1–5 show the outcomes of the Monte Carlo simulation study.
These tables allow us to draw the following conclusions:

1. In every instance, as would be expected, the MSEs and AWs of all estimates decrease
as sample sizes increase. It verifies the consistency features of each estimation method.

2. With n and m keeping invariant, k increases both MSEs and AWs increase.
3. In terms of decreased MSEs and AWs, the first scheme (I) performs the best when

sample sizes are fixed and failures are observed.
4. The MSE and AW both increase when removals are delayed.
5. In terms of MSEs and AWs, Bayes estimation using MCMC performs better than the

other approaches (ML, Boot-p, Boot-t).
6. Due to having the smallest MSE and narrowest width, MCMC CRIs are, overall, the

most satisfactory.
5. Bootstrap methods outperform the ML approach in terms of MSEs and AWs. Further-

more, Boot-t performs better than Boot-p in terms of MSEs and AWs.
8. The estimates produced by the ML, bootstrap, and Bayesian approaches are highly

similar and have high CPs (around 0.95).
9. In spite of the fact that the Bayes estimators perform better than all other estimators, the

simulation results show that all point and interval estimator approaches are efficient.
The Bayes technique may be chosen if one has sufficient prior knowledge. If past
knowledge of the topic being studied cannot be accessed, bootstrap approaches that
primarily rely on MLEs are preferred.
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Table 1. MSE of estimates for the parameters β and δ.

β δ

(k, n, m1, m2) CS ML Boot-p Boot-t Bayes ML Boot-p Boot-t Bayes

(2, 40, 15, 15) I 0.22546 0.23547 0.20417 0.18652 0.33457 0.32485 0.30635 0.28965
II 0.24687 0.25473 0.22563 0.19968 0.35647 0.34783 0.32968 0.30124
III 0.27365 0.26475 0.23984 0.22364 0.37856 0.36451 0.34789 0.32658

(2, 40, 20, 25) I 0.17635 0.17335 0.15364 0.13478 0.29365 0.28647 0.26455 0.24365
II 0.19635 0.19124 0.17365 0.15879 0.31254 0.30654 0.28574 0.26458
III 0.23345 0.22654 0.20658 0.18657 0.35647 0.34998 0.32456 0.29571

(2, 60, 30, 30) I 0.14532 0.14110 0.12365 0.10859 0.25648 0.24782 0.23011 0.21109
II 0.15998 0.15366 0.13948 0.11932 0.27457 0.26475 0.24986 0.22145
III 0.16997 0.16984 0.15621 0.13265 0.30564 0.29658 0.27694 0.24362

(2, 60, 35, 40) I 0.11997 0.10999 0.09587 0.91124 0.21456 0.20548 0.18325 0.15964
II 0.12658 0.11965 0.10689 0.09463 0.23547 0.22457 0.19875 0.17145
III 0.13475 0.12968 0.11654 0.10556 0.25639 0.24573 0.22143 0.20325

(2, 90, 45, 45) I 0.09967 0.09745 0.08869 0.08234 0.18635 0.18002 0.15968 0.13124
II 0.10568 0.11002 0.09378 0.08968 0.21245 0.20321 0.17663 0.15347
III 0.12065 0.11890 0.10554 0.99976 0.23475 0.22657 0.19661 0.16999

(2, 90, 60, 75) I 0.09345 0.09164 0.08345 0.07965 0.15635 0.14658 0.13001 0.11475
II 0.97367 0.09535 0.09128 0.08467 0.17658 0.16584 0.15348 0.13554
III 0.10369 0.10024 0.09786 0.09164 0.20214 0.19648 0.17653 0.14587

(4, 40, 15, 15) I 0.26548 0.25545 0.22416 0.20653 0.35456 0.34487 0.32636 0.29999
II 0.27655 0.26547 0.24635 0.21455 0.37365 0.36784 0.34621 0.32632
III 0.29365 0.28456 0.26459 0.23587 0.39652 0.38843 0.36427 0.33994

(4, 40, 20, 25) I 0.19639 0.19339 0.17368 0.15479 0.33364 0.32646 0.29454 0.27361
II 0.21356 0.21012 0.19875 0.17348 0.35652 0.34721 0.31265 0.29478
III 0.23854 0.23187 0.21365 0.19597 0.37452 0.36543 0.34652 0.31247

(4, 60, 30, 30) I 0.17534 0.17113 0.15364 0.13852 0.28646 0.27783 0.25024 0.23128
II 0.19658 0.18635 0.16996 0.15023 0.30245 0.29654 0.27683 0.25362
III 0.21345 0.20689 0.18965 0.17647 0.32654 0.31475 0.29012 0.26948

(4, 60, 35, 40) I 0.13998 0.12996 0.11581 0.10125 0.24453 0.23547 0.20326 0.17965
II 0.15234 0.14687 0.12897 0.11012 0.26481 0.25644 0.22345 0.19634
III 0.17124 0.16589 0.14658 0.13011 0.28635 0.27461 0.24867 0.21543

(4, 90, 45, 45) I 0.11968 0.10744 0.09866 0.09233 0.21636 0.20003 0.17969 0.14125
II 0.13546 0.12896 0.10554 0.09989 0.23154 0.22547 0.19568 0.16532
III 0.14896 0.13997 0.11856 0.10743 0.25473 0.24516 0.22341 0.18678

(4, 90, 60, 75) I 0.10346 0.10005 0.09344 0.08966 0.18634 0.17657 0.15002 0.12671
II 0.11597 0.11063 0.10557 0.09764 0.21548 0.20362 0.17695 0.14635
III 0.13124 0.12897 0.11869 0.10323 0.23684 0.22457 0.19632 0.17021

Table 2. MSE of estimates for the parameter ρ.

(k, n, m1, m2) CS ML Boot-p Boot-t Bayes

(2, 40, 15, 15) I 0.52634 0.51635 0.47654 0.42658
II 0.53642 0.52369 0.49652 0.45234
III 0.56471 0.55632 0.52362 0.47685

(2, 40, 20, 25) I 0.49632 0.48657 0.42364 0.39874
II 0.51243 0.50247 0.45632 0.41867
III 0.53624 0.52463 0.47562 0.43869

(2, 60, 30, 30) I 0.45783 0.44568 0.38745 0.35476
II 0.47695 0.46357 0.40693 0.37985
III 0.49863 0.48655 0.43675 0.40127

(2, 60, 35, 40) I 0.41236 0.40238 0.35968 0.32154
II 0.43658 0.42563 0.37454 0.34578
III 0.46112 0.45027 0.40321 0.36942
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Table 2. Cont.

(k, n, m1, m2) CS ML Boot-p Boot-t Bayes

(2, 90, 45, 45) I 0.37695 0.36546 0.31258 0.28994
II 0.39542 0.38456 0.34127 0.31253
III 0.41258 0.40357 0.37124 0.34624

(2, 90, 60, 75) I 0.33642 0.32145 0.28635 0.24751
II 0.35628 0.34658 0.30547 0.27136
III 0.37564 0.36472 0.33453 0.29954

(4, 40, 15, 15) I 0.54635 0.53636 0.49655 0.44657
II 0.56243 0.55364 0.51247 0.47635
III 0.58672 0.57463 0.53241 0.49356

(4, 40, 20, 25) I 0.51634 0.50655 0.44366 0.42875
II 0.53624 0.52471 0.46572 0.44632
III 0.56328 0.55473 0.48652 0.46211

(4, 60, 30, 30) I 0.47782 0.46569 0.40746 0.37475
II 0.49363 0.48657 0.42869 0.39674
III 0.51364 0.50472 0.45362 0.42578

(4, 60, 35, 40) I 0.43237 0.42239 0.37967 0.34155
II 0.45362 0.44572 0.39452 0.36973
III 0.48965 0.47658 0.42583 0.39112

(4, 90, 45, 45) I 0.39696 0.38545 0.33257 0.30995
II 0.41283 0.40324 0.36254 0.32164
III 0.44658 0.43657 0.39655 0.36442

(4, 90, 60, 75) I 0.35642 0.34145 0.30635 0.26751
II 0.37625 0.37001 0.32487 0.28974
III 0.41235 0.40586 0.35646 0.31587

Table 3. AWs and CPs of estimates for the parameter β.

(k, n, m1, m2) CS MLE Boot-p Boot-t Bayes
ACIs ACIs ACIs CRIs

AWs CPs AWs CPs AWs CPs AWs CPs

(2, 40, 15, 15) I 3.2536 0.941 3.1562 0.951 2.9974 0.951 2.9265 0.959
II 3.2785 0.939 3.1847 0.941 3.1047 0.954 2.9847 0.954
III 3.3246 0.938 3.2354 0.945 3.1648 0.949 3.1025 0.951

(2, 40, 20, 25) I 3.1346 0.941 3.0994 0.943 2.8575 0.947 2.7996 0.961
II 3.1954 0.942 3.1168 0.950 2.9347 0.948 2.8465 0.974
III 3.2246 0.929 3.1648 0.939 2.9877 0.951 2.9364 0.963

(2, 60, 30, 30) I 3.0258 0.938 2.9578 0.954 2.7754 0.950 2.6789 0.955
II 3.1045 0.937 3.0987 0.941 2.8346 0.955 2.7245 0.958
III 3.1567 0.941 3.1011 0.939 2.9124 0.954 2.8654 0.963

(2, 60, 35, 40) I 2.9567 0.938 2.8836 0.938 2.6648 0.949 2.5763 0.964
II 2.9997 0.937 2.9475 0.941 2.7135 0.942 2.6345 0.954
III 3.1245 0.941 3.0899 0.942 2.8366 0.947 2.7541 0.971

(2, 90, 45, 45) I 2.8746 0.943 2.7986 0.947 2.5564 0.951 2.4975 0.972
II 2.9257 0.939 2.8345 0.951 2.5987 0.946 2.5563 0.966
III 2.9765 0.937 2.8841 0.946 2.6634 0.955 2.5946 0.967

(2, 90, 60, 75) I 2.7568 0.951 2.6899 0.942 2.4757 0.953 2.3999 0.958
II 2.8364 0.948 2.7246 0.943 2.5376 0.955 2.4462 0.955
III 2.8822 0.943 2.7864 0.941 2.5947 0.951 2.5146 0.957

(4, 40, 15, 15) I 3.3536 0.952 3.2562 0.951 3.1974 0.949 3.0926 0.962
II 3.4125 0.954 3.3154 0.952 3.2246 0.948 3.1124 0.958
III 3.4855 0.947 3.3698 0.944 3.2997 0.951 3.1994 0.962

(4, 40, 20, 25) I 3.2347 0.946 3.1993 0.937 2.9576 0.953 2.8395 0.958
II 3.3145 0.937 3.2564 0.951 3.1045 0.952 2.9457 0.961
III 3.3765 0.938 3.3145 0.947 3.2247 0.956 3.1046 0.962
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Table 3. Cont.

(k, n, m1, m2) CS MLE Boot-p Boot-t Bayes
ACIs ACIs ACIs CRIs

AWs CPs AWs CPs AWs CPs AWs CPs

(4, 60, 30, 30) I 3.1254 0.941 3.0579 0.939 2.8757 0.957 2.7786 0.958
II 3.2547 0.944 3.1147 0.938 2.9456 0.955 2.8359 0.956
III 3.3254 0.940 3.2169 0.941 3.1456 0.954 2.9248 0.955

(4, 60, 35, 40) I 3.0766 0.951 2.9837 0.936 2.7649 0.953 2.6462 0.961
II 3.1365 0.949 3.0689 0.941 2.8365 0.949 2.7154 0.960
III 3.2355 0.950 3.1347 0.945 2.9446 0.955 2.8122 0.958

(4, 90, 45, 45) I 2.9745 0.929 2.8985 0.943 2.6565 0.948 2.5976 0.957
II 3.0997 0.955 2.9648 0.933 2.7253 0.959 2.6541 0.964
III 3.1605 0.941 3.0765 0.941 2.8223 0.958 2.7446 0.955

(4, 90, 60, 75) I 2.8567 0.949 2.7898 0.951 2.5758 0.954 2.4995 0.974
II 2.9124 0.934 2.8247 0.952 2.6647 0.953 2.5731 0.966
III 2.9999 0.941 2.8976 0.949 2.7764 0.955 2.6474 0.962

Table 4. AWs and CPs of estimates for the parameter δ.

(k, n, m1, m2) CS MLE Boot-p Boot-t Bayes
ACIs ACIs ACIs CRIs

AWs CPs AWs CPs AWs CPs AWs CPs

(2, 40, 15, 15) I 2.0456 0.939 1.8947 0.941 1.7458 0.941 1.6978 0.958
II 2.1354 0.937 1.9365 0.945 1.8657 0.945 1.7245 0.956
III 2.3654 0.951 2.0584 0.943 1.9658 0.948 1.8654 0.955

(2, 40, 20, 25) I 1.8654 0.948 1.7548 0.950 1.6645 0.946 1.5471 0.961
II 1.9345 0.943 1.8673 0.939 1.7654 0.944 1.6745 0.960
III 2.1346 0.952 1.9694 0.954 1.8568 0.952 1.7589 0.958

(2, 60, 30, 30) I 1.6547 0.954 1.5694 0.941 1.4573 0.951 1.3365 0.957
II 1.7548 0.939 1.6947 0.939 1.5576 0.952 1.4289 0.964
III 1.8345 0.937 1.7784 0.941 1.6532 0.954 1.5364 0.955

(2, 60, 35, 40) I 1.4698 0.951 1.3687 0.945 1.3001 0.951 1.2874 0.974
II 1.5643 0.948 1.4568 0.943 1.4999 0.954 1.3568 0.958
III 1.6637 0.943 1.5587 0.950 1.5003 0.949 1.4346 0.956

(2, 90, 45, 45) I 1.2654 0.952 1.1547 0.939 1.1136 0.947 1.0996 0.955
II 1.3654 0.954 1.2756 0.954 1.2136 0.948 1.1564 0.961
III 1.4587 0.939 1.3654 0.941 1.3122 0.951 1.2456 0.960

(2, 90, 60, 75) I 1.1769 0.937 1.0987 0.939 1.0778 0.950 1.0658 0.958
II 1.2365 0.951 1.1647 0.941 1.1034 0.955 1.1001 0.957
III 1.3124 0.948 1.2546 0.945 1.1865 0.954 1.1236 0.964

(4, 40, 15, 15) I 2.1454 0.943 1.9948 0.943 1.8457 0.951 1.7979 0.955
II 2.2365 0.952 2.1457 0.950 1.9658 0.954 1.8547 0.974
III 2.3691 0.954 2.2574 0.939 2.1365 0.949 1.9432 0.958

(4, 40, 20, 25) I 1.9655 0.939 1.8549 0.954 1.7644 0.947 1.6472 0.956
II 2.0547 0.937 1.9358 0.941 1.8576 0.948 1.7569 0.955
III 2.1369 0.951 2.0965 0.939 1.9658 0.951 1.8694 0.961

(4, 60, 30, 30) I 1.7548 0.948 1.6695 0.941 1.5574 0.950 1.4366 0.960
II 1.8476 0.943 1.7764 0.945 1.6547 0.955 1.5467 0.958
III 1.9568 0.952 1.8649 0.943 1.7466 0.954 1.6573 0.957

(4, 60, 35, 40) I 1.5697 0.954 1.4686 0.950 1.4002 0.951 1.3875 0.964
II 1.6694 0.941 1.5473 0.939 1.5012 0.954 1.4768 0.955
III 1.7589 0.939 1.6377 0.954 1.5999 0.949 1.5152 0.974

(4, 90, 45, 45) I 1.3652 0.937 1.2548 0.941 1.2137 0.947 1.1593 0.961
II 1.4586 0.951 1.3475 0.939 1.3104 0.948 1.2468 0.960
III 1.5624 0.948 1.4586 0.929 1.4007 0.951 1.3567 0.959

(4, 90, 60, 75) I 1.2767 0.943 1.1988 0.941 1.1576 0.950 1.1051 0.953
II 1.3654 0.952 1.2689 0.939 1.2145 0.955 1.1698 0.961
III 1.4652 0.954 1.3584 0.941 1.2997 0.954 1.2563 0.959
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Table 5. AWs and CPs of estimates for the parameter ρ.

(k, n, m1, m2) CS MLE Boot-p Boot-t Bayes
ACIs ACIs ACIs CRIs

AWs CPs AWs CPs AWs CPs AWs CPs

(2, 40, 15, 15) I 4.0564 0.929 3.8654 0.939 3.6548 0.947 2.9584 0.951
II 4.2658 0.955 4.0569 0.954 3.8614 0.948 3.1653 0.958
III 4.4635 0.941 4.2355 0.941 4.0563 0.951 3.4658 0.957

(2, 40, 20, 25) I 3.7365 0.949 3.5468 0.939 3.3659 0.950 3.0125 0.964
II 3.9652 0.934 3.7659 0.941 3.5476 0.955 3.2486 0.955
III 4.1365 0.929 3.9254 0.939 3.7463 0.954 3.3192 0.974

(2, 60, 30, 30) I 3.5564 0.955 3.3684 0.954 3.1468 0.947 2.8567 0.958
II 3.7685 0.941 3.5477 0.941 3.3698 0.948 3.0568 0.957
III 3.9476 0.949 3.7666 0.939 3.5574 0.951 3.2695 0.964

(2, 60, 35, 40) I 3.3659 0.934 3.1457 0.941 2.8745 0.950 2.6547 0.955
II 3.5687 0.929 3.3394 0.939 3.1692 0.955 2.7954 0.974
III 3.6985 0.955 3.5147 0.954 3.2998 0.954 3.0045 0.958

(2, 90, 45, 45) I 3.1254 0.941 2.7994 0.941 2.5998 0.947 2.4577 0.957
II 3.3258 0.949 2.9957 0.939 2.7984 0.948 2.5969 0.964
III 3.5462 0.934 3.2598 0.941 3.0243 0.951 2.8635 0.955

(2, 90, 60, 75) I 2.9965 0.929 2.6954 0.939 2.3874 0.950 2.2466 0.974
II 3.1564 0.955 2.8547 0.954 2.5146 0.955 2.3721 0.958
III 3.3467 0.941 3.0119 0.941 2.7568 0.954 2.5599 0.957

(4, 40, 15, 15) I 4.2564 0.949 4.0654 0.939 3.8548 0.947 3.1584 0.964
II 4.4689 0.934 4.2658 0.941 4.0654 0.948 3.2581 0.955
III 4.5956 0.929 4.4365 0.939 4.1997 0.951 3.5876 0.974

(4, 40, 20, 25) I 3.9365 0.955 3.7468 0.954 3.5659 0.950 3.2125 0.958
II 4.1358 0.941 3.9524 0.941 3.7456 0.955 3.4658 0.957
III 4.3692 0.949 4.1365 0.939 3.9647 0.954 3.6524 0.964

(4, 60, 30, 30) I 3.7563 0.934 3.5685 0.941 3.2467 0.947 3.0568 0.955
II 3.9658 0.929 3.7458 0.939 3.4578 0.948 3.1995 0.974
III 4.1568 0.955 3.9651 0.954 3.6654 0.951 3.4554 0.958

(4, 60, 35, 40) I 3.5657 0.941 3.3454 0.941 3.0746 0.950 2.8548 0.957
II 3.7441 0.949 3.5662 0.939 3.2313 0.955 3.0533 0.964
III 3.8954 0.934 3.7441 0.941 3.4225 0.954 3.1899 0.955

(4, 90, 45, 45) I 3.3256 0.929 2.9895 0.939 2.7999 0.947 2.6578 0.974
II 3.4996 0.955 3.1645 0.954 2.8974 0.948 2.8557 0.958
III 3.7154 0.941 3.4571 0.941 3.1824 0.951 3.0079 0.957

(4, 90, 60, 75) I 3.1063 0.949 2.8956 0.939 2.5875 0.950 2.4467 0.964
II 3.3651 0.938 3.1587 0.943 2.7458 0.955 2.6552 0.955
III 3.4985 0.397 3.3334 0.942 2.8965 0.954 2.8324 0.974

7. Practical Analysis of Engineering Data

In this section, we want to see how the estimate algorithms suggested for the accel-
erated data set perform as described in the aforementioned sections. The effectiveness of
the suggested inferential approaches is displayed and demonstrated using a genuine data
set that represents the observed failure rates in a life test of the light-emitting diode (LED).
References [46,47] recently conducted an analysis of this data that was initially conducted
by [48]. The observed failure samples were created in both normal and accelerated condi-
tions, and they include the following:
Normal use condition: 0.18, 0.19, 0.19, 0.34, 0.36, 0.40, 0.44, 0.44, 0.45, 0.46, 0.47,0.53, 0.57,
0.57, 0.63, 0.65, 0.70, 0.71, 0.71, 0.75, 0.76, 0.76, 0.79,0.80, 0.85, 0.98, 1.01, 1.07, 1.12, 1.14, 1.15,
1.17, 1.20, 1.23, 1.24,1.25, 1.26, 1.32, 1.33, 1.33, 1.39, 1.42, 1.50, 1.55, 1.58, 1.59, 1.62, 1.68, 1.70,
1.79, 2.00, 2.01, 2.04, 2.54, 3.61, 3.76, 4.65, 8.97.
Accelerated stress condition: 0.13, 0.16, 0.20, 0.20, 0.21, 0.25, 0.26, 0.28, 0.28, 0.30, 0.31, 0.33,
0.35, 0.35, 0.35, 0.39, 0.50, 0.52, 0.58, 0.60, 0.60, 0.62, 0.63, 0.67, 0.71, 0.73, 0.75, 0.75, 0.78, 0.80,
0.80, 0.86, 0.90, 0.91, 0.93, 0.93, 0.94, 0.98, 0.99, 1.01, 1.03, 1.06, 1.06, 1.10, 1.22, 1.22, 1.24, 1.28,
1.39, 1.39, 1.46, 1.48, 1.52, 1.74, 1.95, 2.46, 3.02, 5.16.

Before moving on, we first determine whether the PHFD can be employed as a suitable
model to match the data set using the goodness-of-fit statistic, known as the Kolmogorov–



Mathematics 2023, 11, 4323 17 of 21

Smirnov (K-S) statistic. The calculated K-S distances and p-values for the data set under the
normal and accelerated stress conditions are 0.136924 (0.226930) and 0.092780 (0.700232),
respectively. The PHFD was found to be a suitable model for this set of data. Further, the
empirical PDF, P-P, and SF plots which are shown in Figures 2 and 3 provide additional
proof that the PHFD provides a strong fit to the data. Non-parametric approaches, such as
histograms, kernel densities, box, violin, TTT, and standard Q-Q plots, are used in Figures 4
and 5 to depict the initial shape. The asymmetry of the data and the validity of some outlier
observations should be highlighted.
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Figure 2. Empirical PDF, P-P, and SF plots for normal condition.
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Figure 3. Empirical PDF, P-P, and SF plots for accelerated condition.
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Figure 4. Non-parametric plots for normal condition.
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Figure 5. Non-parametric plots for accelerated condition.

By implementing the technique outlined in Section 2, PFFC samples are obtained.
The original data under both normal use and accelerated stress conditions are separated
into groups of a specific size under the use of CSs. Refer to the details presented in Table 6.

Table 6. PFFC under CS-PALT LED failure data.

Normal use condition: (k1, n1, m1) = (2, 29, 15).
R1 = (3, 1, 1, 2, 0, 1, 2, 1, 0, 2, 0, 1, 0, 0, 0).
0.18, 0.19, 0.36, 0.45, 0.47, 0.57, 0.63, 0.70, 0.71, 0.76, 0.79, 0.85, 1.01, 3.76, 8.97.

Accelerated stress condition: (k2, n2, m2) = (2, 29, 18).
R2 = (1, 1, 2, 0, 1, 0, 2, 0, 2, 0, 2, 0, 0, 1, 0, 0, 0, 0).
0.13, 0.20, 0.21, 0.26, 0.31, 0.35, 0.50, 0.58, 0.60, 0.63, 0.75, 0.78, 0.80, 0.94, 1.22, 1.95,
2.46, 3.02.

The ML and two parametric Bootstrap point estimates as well as the associated ACIs
are obtained and listed in Table 7. By moving to Bayes estimates, since no previous
knowledge of the unknown population parameters is provided, the non-informative (or
vague) gamma priors are adequate in this situation. In this instance, the hyper-parameters
are set to zero (ai = bi = 0, i = 1, 2). As previously mentioned, the Gibbs algorithm relies
on Metropolis to produce 12,000 MCMC samples using the β̂ML, δ̂ML and ρ̂ML as initial
values at the beginning of the algorithm. Additionally, the Bayes estimates are computed
and recorded in Table 7. Finally, we can say that the estimated PHFD offers a superb fit for
the provided data and that Bayes estimates performs better than MLEs and bootstrap.
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Table 7. Estimates of (β, δ, ρ) and its corresponding 95% CI using PFFC under CS-PALT.

Parameter (.)ML (.)Boot−p (.)Boot−t (.)BS

β Estimate 1.70985 1.74865 1.66473 1.54899
95% CI (0.8371,

3.4926)
(0.9436,
3.3772)

(0.8945,
2.9246)

(0.9932,
2.6745)

δ Estimate 0.15323 0.16225 0.13482 0.12557
95% CI (0.0295,

0.7953)
(0.0365,
0.8766)

(0.0334,
0.7452)

(0.0215,
0.6935)

ρ Estimate 0.28209 0.26942 0.21641 0.19984
95% CI (0.1701,

0.4679)
(0.1432,
0.5211)

(0.1165,
0.4263)

(0.0989,
0.3762)

8. Conclusions

This paper highlights the statistical inference issue for a system of CS-PALTs under
PFFC when the testing products’ lifetimes follow the PHFD. By reducing the amount of
time and test units required, and hence the cost, this combination makes our study more
useful and applicable in the industrial and technical domains. Several techniques have
been developed throughout the study to estimate the relevant parameters, the acceleration
factor, and the corresponding confidence intervals. Using the observed FIM, the MLEs are
obtained as classical estimation, and the related ACIs are established. Also, two parametric
Bootstrap estimates (Boot-p and Boot-t) for the relevant parameters are provided for
comparison. Due to the difficulties of obtaining Bayes estimates in closed form, the point
and interval estimates for the Bayesian approach are created with the use of the MCMC
technique. The effectiveness of the suggested methods is examined by in-depth Monte
Carlo simulations. The results clearly show that the Boot-t and Bayes estimates outperform
the traditional likelihood and Boot-p estimates in terms of performance and accuracy.
In the end, a single collection of actual engineering data is examined for more illustration.
The study has shown that the PHFD has offered good flexibility for modeling the life
test of the light-emitting diode practically. This study is innovative in that it shows that
variable sample sizes k1 and k2 can be taken into account in each group when a type-II
progressively first failure censored sample is employed. This is completely consistent with
real-world examples when conducting life tests. Even though progressively first failure
type-II censoring and PHFD have received most of our attention in this study, the same
approach can be applied to various distribution and censoring methods. The design of the
best censoring schemes, the inference of competing risk models with more failure factors,
and the statistical prediction of the subsequent order statistics based on the PALTs from
PHFD are just a few of the numerous additional tasks that need to be completed in this
area. Finally, we advise adopting the MCMC method based on partially accelerated life
testing with the progressive first failure type-II censored on data from life testing, reliability
modeling, and medical analysis.
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