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Abstract: Digital images cannot be excluded as part of a popular choice of information representation.
Covert information can be easily hidden using images. Several schemes are available to hide covert
information and are known as steganography schemes. Steganalysis schemes are applied on stego-
images to assess the strength of steganography schemes. In this paper, a new steganalysis scheme is
presented to detect stego-images. Predefined kernels guide the set of a conventional convolutional
layer, and the tight cohesion provides completely guided training. The learning rate of convolutional
layers with predefined kernels is higher than the global learning rate. The higher learning rate of
the convolutional layers with predefined kernels assures adaptability according to network training,
while still maintaining the basic attributes of high-pass kernels. The Leaky ReLU layer is exploited
against the ReLU layer to boost the detection performance. Transfer learning is applied to enhance
detection performance. The deep network weights are initialized using the weights of the trained
network from high-payload stego-images. The strength of the proposed scheme is verified on the
HILL, Mi-POD, S-UNIWARD, and WOW content-adaptive steganography schemes. The results are
overwhelming and better than the existing steganalysis schemes.

Keywords: digital image steganography; image steganalysis; convolutional neural network; image
classification; image forensic

MSC: 90-04

1. Introduction

Images are the popular information representation choice because they are easier to
interpret than text and require less storage than video. Due to their popularity, images are
also used for covert communication. Steganography schemes can hide the secret message
precisely so that it cannot be detected through the naked eye or by some steganalysis
schemes [1]. Most of the content-adaptive steganography schemes involve only one unit
change in decimal pixel value. The locations of modified pixels are generally from dense
regions. In this paper, four notable content-adaptive steganography schemes, HILL [2],
Mi-POD [3], SSUNIWARD [4], and WOW [5], are analyzed. An image BOWS2 dataset [6] is
considered in the first row of Figure 1 to study the behavior of the schemes. Residual arrays
are created by taking the difference between cover and stego-images [7]. It is apparent
from the residual arrays that the number of modified elements is also amplified as the
payload increases. However, the variation in the HILL, Mi-POD, S-UNIWARD, and WOW
steganography schemes cannot be evaluated directly from residual arrays.

A computer-generated (CG) image (Figure 2a) and it’s residual to HILL, Mi-POD,
S-UNIWARD, and WOW stego-images are used to discriminate the behavior of these
schemes. In the given CG image, the difference between adjacent pixel values is 1 in
the smooth area and 255 in the edge region. Notably, the residual images on the second

Mathematics 2023, 11, 4322. https:/ /doi.org/10.3390/math11204322

https://www.mdpi.com/journal /mathematics


https://doi.org/10.3390/math11204322
https://doi.org/10.3390/math11204322
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4317-9851
https://orcid.org/0000-0002-0662-8355
https://doi.org/10.3390/math11204322
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11204322?type=check_update&version=1

Mathematics 2023, 11, 4322

20f12

HILL Payload=0.2

and third rows show that the HILL residual array has the least densely modified region
compared to other schemes. Mostly, modified pixels are dispersed in the whole image,
making the detection of HILL stego-images challenging. However, steganography artifacts
are apparent in the WOW scheme. This behavior is also reflected in the result analysis. The
effect is noticeable even on a low payload, i.e., 0.2 bpp (Figure 2c). The detection of the
HILL stego-image is more challenging than other schemes.

MiPOD Payload=0.4 . S-UNIWARD Payload=0.4

(b)

MiPOD Payload=0.2 S-UNIWARD Payload=0.2 WOW Payload=0.2

(9)

Figure 1. (a) Cover image; (b) residual arrays between cover and stego-images of payload 0.4 bpp;
(c) residual arrays between cover and stego-images of payload 0.2 bpp.

Existing steganalysis schemes can be categorized broadly based on manual and auto-
matic feature extraction. Manual feature extraction-based schemes highlight the anomalies
of stego-images, mainly using co-occurrence features and texture features. Manual schemes
are still worthy as they obtain satisfactory results with low computational costs, such as tex-
ture classification [8], image forensics [9], and emotion classification using short texts [10].
The convolutional neural network is utilized for automated feature extraction. First, some
of the relevant manual schemes are discussed; then, automated schemes are discussed.

Xiong et al. [11] exploited DCT and DFT domains to extract co-occurrence and texture
features. The feature vector dimension is also reduced by considering the symmetry in a
generalized Gaussian distribution. Xiong et al. applied their method to identify numerous
steganography schemes such as LSBM, HUGO, etc. Fridrich and Kodovsky [12] created
diverse feature sets by considering linear and nonlinear high-pass kernels of different
attributes. Multiple quantization factors are contemplated while forming the residual
arrays. Further, fourth-order co-occurrence features of dimension 34,671 are extracted from
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residual arrays. The proposed high-pass kernels are popularly known as SRM kernels.
They are also used in many deep-learning steganalysis schemes. Tang et al. [13] especially
designed a technique for WOW steganography. First, the most probable region of possible
embedding is found in stego-images. Then, the scheme [12] is applied to these regions.
Denemark et al. [14] introduced the maxSRM to reduce the large feature dimension of the
SRM [12]. In the maxSRM, the highest probability of embedding changes is considered out
of four residual probabilities. It provides a small feature vector of size 12,753. This scheme
is verified using the S-UNIWARD, S-UNIGARD, and WOW steganography techniques.
Xu et al. [15] proposed a local correlation pattern operator analogous to the maxSRM [14]
to detect SS-UNIWARD, HUGO, and LSBMR steganography techniques. The dimension
of the feature vector generated by the local correlation pattern is 35,322. Li et al. [16]
proposed a local texture pattern to extract features from high-pass filtered images. The size
of the feature vector is enormous, i.e., 59,049. The size of the feature vector is decreased
by using a PCA two times. Li et al.’s technique is applied to the HUGO and WOW
steganography schemes. Li et al. [17] proposed a steganalysis technique for the HILL,
S-UNIWARD, Mi-POD, and CMD-HILL [18] steganography schemes. The modified LBP
named the TLBP and second-order co-occurrence features are merged to improve the results.
Wang et al. [19] improved the TLBP [17] by including the rotation-invariant uniform
pattern mapping. A feature separability analysis is also performed before merging the
features. The Discrete Fourier Transform domain is exploited for additional SRM features.
Wang et al. detected HILL, Mi-POD, and S-UNIWARD stego-images using their proposed
scheme. Ge et al. [20] suggested a scheme for detecting HILL, CMD-HILL, and Mi-POD
steganography techniques. The threshold LBP and co-occurrence features are extracted
from high-pass filtered and non-negative matrix factorization arrays.

Steganalysis schemes based on deep learning are discussed here. Deep learning is
effective in various applications, such as natural language processing [21], image and
text matching [22], and image classification. Image steganalysis is a two-class classification
between the cover and the stego-image. Various deep-learning-based steganalysis schemes
have also been presented by different researchers that give promising results. Qian et al. [23,24]
started using a deep network to detect HUGO, S-UNIWARD, and WOW steganography
techniques. The proposed deep network uses convolutional, ReLU, batch normalization,
and pooling layers. Preprocessing is performed on the images using a 5 x 5 high-pass kernel.
Nevertheless, there is a lot of scope for improvement in the deep network. Xu et al. [25]
applied the same filter as Qian for preprocessing. Xu et al. proposed a deep network with
a new absolute layer and other conventional layers to detect the HILL and S-UNIWARD
steganography schemes. Wu et al. [26,27] analyzed their scheme on HILL, Mi-POD, S-
UNIWARD, and WOW stego-images. The preprocessing is performed using Qian’s filter.
The proposed deep network exploited numerous residual matrices. Ye et al. [28] utilized
the residual of thirty SRM kernel [12] arrays in the proposed CNN. A truncated linear
unit (TLU) is used in place of a ReLU. The technique is verified using HILL, S-UNIWARD,
and WOW. Boroumand et al. [29] proposed a deep network called the SRNet-steganalysis
residual network. Multiple steganography techniques, HILL, ]-UNIWARD, S-UNIWARD,
UED-JC [30], and WOW, were detected. Three kinds of sets of layers are proposed based on
skip connections and pooling layers. Statistical moments are recovered after the training of
the deep network. Yedroudj et al. [31] modified the [25,28] deep networks to improve the
results by using some measures, including the global average pooling layer. The scheme
is analyzed using the S-UNIWARD and WOW steganography schemes. Wu et al. [32]
considered the shared normalization for better results on HILL, HUGO, S-UNIWARD, and
WOW stego-images. Twenty SRM kernels were utilized for preprocessing. Zhang et al. [33]
also used the SRM kernels for preprocessing. The proposed deep network followed
the bottleneck approach and spatial pyramid pooling with other conventional layers.
The scheme was applied to HILL, SS-UNIWARD, and WOW steganography techniques.
Fu et al. [34] also applied a similar approach without using SRM kernels. Xiang et al. [35]
alleged improvements in detecting S-UNIWARD and WOW steganography techniques by



Mathematics 2023, 11, 4322

40f12

HILL Payload=0.4

HILL Payload=0.2

altering the organization of the layers. However, thirty SRM kernels were also used for
filtering. Wang et al. [36] utilized the network parameters of low-embedded stego-images
for initialization. Spatial and DCT domains are considered to detect SSUNIWARD and
WOW steganography techniques. The preprocessing is carried out by SRM kernels.

(@)

MiPOD Payload=0.4 S-UNIWARD Payload=0.4

WOW Payload=0.4

(b)

(c

Figure 2. (a) Cover CG image; (b) residual arrays between cover and stego-images of payload 0.4 bpp;

MiPOD Payload=0.2

S-UNIWARD Payload=0.2 'WOW Payload=0.2

)

(c) residual arrays between cover and stego-images of payload 0.2 bpp.

The usage of SRM kernels is the first step in many deep learning based steganalysis
schemes and other image processing applications [37,38]. This paper also exploits the
SRM kernels to alleviate the weak stego-noise. The novel contributions to improve the
classification of the cover and stego-image are highlighted below.

e  The proposed scheme amplifies the stego-noise using multiple convolutional layers
with predefined kernels. Thirty high-pass SRM kernels and one constant linear kernel
are utilized as predefined kernels.

e A layer-specific learning rate higher than the global one is considered in predefined
kernels based on convolutional layers. A learning rate variation in the layers boosts
the performance of the proposed CNN.

e  Each convolutional layer with predefined kernels is followed by three conventional
convolutional layers to direct the network correctly.

e  The weights of the deep network for low-payload stego-images are initialized using
the weights of the trained network from high-payload stego-images.

e To maximize the activation of all neurons within the network and thus improve
detection performance, the Leaky ReLU layer is preferred over the standard ReLU
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layer. This strategic choice in activation functions enhances the network’s ability to
capture and process relevant features for more effective detection.

e A single global average pooling layer is employed exclusively to extract unpro-
cessed information, and no intermediate pooling layers are integrated between the
network layers.

e  An experimental analysis is performed to detect HILL, Mi-POD, S-UNIWARD, and
WOW stego-images with payloads of 0.2 bpp, 0.3 bpp, and 0.4 bpp.

e  The proposed scheme’s detection accuracy is better than the Ye-Net, SRNet, Yedroudj-
Net, and Zhu-Net schemes.

The proposed scheme is elaborated in the subsequent sections. The experimental
results are displayed in Section 3. The conclusion is presented in Section 4.

2. Proposed Scheme

Image steganalysis is necessary as an image is the most famous representation of
information. Image steganalysis schemes evaluate the performance of steganography
schemes and are used to detect stego-images. Image steganalysis is challenging due to
there being only one unit of change in some pixel intensities. There is also no visual
distortion in a stego-image. In this paper, a deep network is proposed to address the
challenges of image steganalysis effectively. The detection of stego-images is directly related
to the payload and steganography scheme used. As shown in Figure 2, the steganography
scheme is influential in hiding the content. In Figure 3, different payloads are analyzed
using covariance plots. The detection of the stego-image becomes easier as the payload
is increased. The covariance plot is created using the standard deviation of cover and
stego-images on ten thousand images of the BOWS2 dataset [6]. BOWS2 dataset images
are resized to 256 x 256 pixels. Stego-images are created using 256 x 256 cover images
after applying a particular steganography scheme with a specific payload. The curves of
the cover and HILL stego-images with different payloads are more coupled than other
schemes. The WOW has the most negligible coupling. A common deep network can be
suggested as the variance represents the essential attribute of an image, and its pattern in
the covariance plot is similar.
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Figure 3. Covariance plots of the standard deviation of cover and stego-images.

The steganalysis is performed using the proposed convolutional neural network, as
exhibited in Figure 4. The convolutional layer, batch normalization layer, and Leaky rectifier
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unit layer are abbreviated as the Conv Layer, BN Layer, and Leaky ReLU Layer, respectively,
in the layout diagram. The first convolutional layer is non-trainable, i.e., the learning rate
is zero, and the number of predefined kernels is thirty-one. Thirty are SRM kernels, and
one is a constant linear kernel out of the thirty-one, each with a size of 5 x 5. A leaky ReLU
Layer is employed instead of the usual ReLU layer. The leaky ReLU layer activates all the
neurons to obtain better results from the trained deep network. The Leaky ReLU layer
carried out a threshold process in which every value smaller than zero is multiplied by a
constant positive real number (k). The values equal to or greater than zero stay intact. The
thresholding process of a Leaky ReLU can be defined as follows:

_lp pz0
L(p)_{k*p, p<0

where p is the input value in our experimental analysis, and k = 0.01 is found suitable.

Conv Conv Conv Conv
I L Leak L Leak
s Layer BN saky Layer BN caxy Layer BN eaky Layer BN caky
Input ReLU ReLU ReLU RelLU [
L n=31 | Layer Laver n=90 | Layer Laver n=45 | Layer Laver n=22 | Layer Laver
e =0 Ve fi=0.001 e fi=0.001 Ve l=0.001 Y
Conv | Conv Conv Conv Conv
Leak; Leak Leak Leak;
| |aver [ Layer | BN Reeuyj Layer [ BN Reeuz Layer | BN RZL;"J Layer | BN RZLE |
n=1 | n=31 | Layer Laver n=90 | Layer Laver n=45 | Layer Laver n=22 | Layer Laver
=0.001| =0.01 Ve =0.001 Ve 1=0.001 e 1=0.001 4
Conv | Conv Conv Conv Conv
Leak; Leak Leak Leak
| | Laver [ Layer | BN RZLg Layer | BN RZLE Layer | BN RZLIYJ Layer | BN RZLE |
n=1 | n=31 | Layer — n=90 | Layer . n=45 | Layer T n=22 | Layer Laver
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Conv | Conv Conv Conv Conv
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L>| = ReLU ReLU ReLU ReLU [
n=1 n=31 | Layer Laver n=90 | Layer Laver n=45 | Layer Laver n=22 | Layer —
=0.001| r=0.01 e |i=0.001 Y 1=0.001 e 1=0.001 o4
Conv | Conv Conv Conv Conv
Leak; Leak Leak Leak]
S Layer | Layer BN RZLS Layer BN RZLEJ/ Layer BN ReeLij Layer BN Reele |
n=1 n=31 | Layer Laver n=90 | Layer Laver n=45 | Layer Laver n=22 | Layer T
=0.001| 1=0.01 Ve fi=0.001 e [1=0.001 Ve [r=0.001 4
| Global Pooling |Fully Connected Softmax Classification
Layer Layer Layer Layer

Figure 4. Layout of the proposed deep neural network.

However, the values smaller than zero are substituted by zero, and other values stay
intact in the general ReLU layer threading process. The thresholding operation for a ReLU
can be described in the following manner:

, >0
R ={b P20

Traditionally, the max pooling layer is utilized to reduce the computational cost by
pooling. Nonetheless, no max pooling layer is exploited to maintain the flow of information
between the layers for better results. The second convolutional layer contains n = 90 kernels,
followed by the BN Layer and the Leaky ReLU Layer. The third convolutional layer contains
n = 45 kernels, followed by the BN Layer and Leaky ReLU Layer. The fourth convolutional
layer contains n = 22 kernels, followed by the BN Layer and Leaky ReLU Layer. To initialize
with predefined thirty-one kernels, a convolutional layer (fifth) is needed, containing only
one kernel. In the sixth convolutional layer, the thirty-one predefined kernels with high
learning rates, i.e., r = 0.01, are considered.
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The global learning rate r = 0.001 is applied to all except for the convolutional layer with
predefined kernels. The cohesion of three convolutional layers with the one convolutional
layer with predefined kernels improves the detection accuracy sufficiently. Previously, SRM
kernels [12] were found effective in many previous schemes [28,31-33,35,36]. The order of
the convolutional layers also creates a bottleneck scenario, which was also found effective in
previous schemes [33]. The kernel weights are initialized using the Glorot and Bengio [39]
scheme, except for five convolutional layers with predefined kernels. Before the fully
connected layer, the global average pooling layer [31,40] is utilized for better classification
accuracy. There is a generous improvement in performance after using the global average
pooling layer. The RMSprop optimizer is used out of three popular optimizers, i.e., Adam,
RMSprop, and SGD. Each class’s batch size of 10 images, i.e., cover and stego, is used
during network training.

To see the effect of training on the predefined kernels, one of the thirty-one predefined
kernels is displayed in the first row in Figure 5. Let us assume the name of this kernel is
K. The kernel K exists in the set of predefined kernels of convolutional layers 2, 15, 28, 41,
and 54. The updated weight after the training of kernel K is shown in the second and third
rows. The variances of the predefined kernel K after training for layers 2, 15, 28, 41, and 54
are 4.98, 4.18, 3.49, 3.51, and 3.59, respectively. The learning rate of the convolutional layers
with predefined kernels is higher than the global learning rate. The higher learning rate
of the convolutional layers with predefined kernels assures their adaptability in terms of
network training by maintaining the primary attributes of high-pass kernels.

“112 ]2

2|68 6]2
- . 2|8 [-12] 8 [=2
2|-6|8]-6]2

B » EDERE

[ 5]
|
—

—0.740| 1.528 [-1.538| 1.546 |—0.756 —0.401 [ 0.973 |—0.893| 0.954 (-0.437
1.534 | -4.950 6.745 | —4.939| 1.547 1.020 |-3.914 [ 5.652 |—4.026| 0.901
1.521 | 6.746 [-10.345] 6.792 |—1.540 0.894| 5.704 | -9.456 | 5.632 |-0.923
1.541 | -4.942( 6.782 | -5.033| 1.559 0.958 | -3.986| 5.715 | -3.858| 0.979
0.763 | 1.532 | -1.567 | 1.536 |-0.782 0.410] 0.989 |-0.917 [ 1.001 |[-0.360

-0.416| 1.078 [~1.049| 1.075 |-0.418 —0.307 [ 0.958 |-0.936| 0.984 [-0.286
1.077 |-3.968 | 5.695 |—4.011 | 1.035 0.930 [-4.191| 5.932 |-4.157 | 0.997
-1.023| 5.678 [-9.404| 5.710 |-1.0329 -0.902| 5.885 [-9.619| 5.809 |-0.882

1.026 | -3.956 5.693 |-3.989| 1.040 0.964 |-4.116| 5.899 |—4.136| 0.958

—0.405] 1.031 [-1.035| 1.052 |—0.442 —0.300 [ 0.969 |—0.922] 0.968 [-0.330

Figure 5. SRM kernel and updated predefined kernel weights after training.

In Figure 6, a single constant linear kernel is incorporated within a set of predefined
kernels. This particular kernel serves to retain unprocessed information and is comple-
mented by the inclusion of thirty high-pass kernels, which focus on extracting details from
the input data of the preceding layers.

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

Figure 6. Constant linear kernels.
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Transfer learning is used to enhance the deep network’s robustness. The weights of
the deep network for the classification of low-payload stego-images and cover images are
initialized using the weights of the trained network from high-payload stego-images. As
illustrated in Figure 7, the proposed deep network (Figure 4) follows two steps. In the first
step, the pre-training is performed using high-payload stego-images. In the second step,
the network is fine-tuned on low-payload images using the weight initialization from the
pre-training network weights. The transfer learning approach improves detection accuracy
substantially, especially for low-payload stego-images.

+ Pre-training .
Training Images Input Layer Hidden Layers output Layer :

ngh payload images > > > > >
Coverlmages
;ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ::Z [Weights IZZZZZZI::::::::::::::
+ Fine-tuning | Transfer :

Input Layer Hidden Layers output Layer E

Training Images

5 Low payload images > > -> > ->
. Cover images

Figure 7. Layout of transfer learning approach.

3. Experimental Results

Images are popularly used for covert communication. Image steganography schemes
can hide a message without any visual distortion. There is a very insignificant change
in stage image statistics compared to cover image statistics when using content-adaptive
steganography schemes. The experimental analysis is performed on a system of configura-
tion Intel i7-10700K CPU @ 3.80 GHz, NVIDIA GeForce RTX 3070 GPU, and 32 GB RAM.
Generally, the BOSSBase [41] and BOWS?2 [6] datasets are used to assess the steganalysis
schemes’ robustness. As prepared in most previous schemes, images of size 512 x 512
from both datasets are converted into 256 x 256. The experimental outputs of the pro-
posed scheme are displayed with other state-of-the-art techniques. Ye-Net [28], SRNet [29],
Yedroudj-Net [31], and Zhu-Net [33] schemes are taken into consideration for the fair
evaluation of the proposed scheme. Two types of datasets are created for the experimental
analysis. The proposed scheme classifies images into two classes, i.e., the cover and stego
class. Stego-images are formed by applying the HILL, Mi-POD, S-UNIWARD, and WOW
steganography schemes. The stego-images are produced using payloads of 0.2 bpp, 0.3 bpp,
and 0.4 bpp. The results are displayed in terms of detection accuracy.

In the first scenario, fifty percent of the images of the BOSSBase dataset cover and
stego-images are used for training, and the remaining fifty percent of images are taken for
testing. The experimental results are displayed in Tables 1-4 for scenario one. The Leaky
ReLU has a significant effect on detection accuracy in comparison to the ReLU. There is
an advantage of more than 2% in detection accuracy, as seen in Table 1. The Leaky ReLU
is also effective in generative adversarial-based steganography [42] and image resolution
enhancement [43].

Table 1. Detection accuracy, ReLU vs. Leaky ReLU comparison.

HILL Mi-POD S-UNIWARD WOW
Layer/Payload (bpp)
0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4
ReLU 5832 6295 6734 6119 6953 71.60 63.60 72.81 7777  69.64 76.69 79.14
Leaky ReLU 6049 6598 71.18 6454 7296 74.58 66.95 76.48 8143 7292 7980 82.69

The proposed scheme involves using 31 kernels within the convolutional layers as part
of a predefined set. Among these 31 kernels, 30 are SRM kernels, while the remaining 1 is a
constant linear kernel. It is worth noting that only 30 SRM kernels were utilized in many
prior schemes. The noteworthy aspect of this proposed approach is that it has resulted
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in a discernible enhancement in detection accuracy compared to the conventional use of
30 kernels. The specific details of this improvement, including the performance metrics
and results, can be found in Table 2. This table provides a clear visual representation of
how the inclusion of the additional kernel has positively impacted the detection accuracy,
highlighting the effectiveness of the proposed scheme.

Table 2. Constant linear kernel effect.

Kernels/Payload (bpp) 02 03 04 02 03 04 0.2 0.3 04 02 03 04
30 59.34 6433 69.76 6358 71.72 7331 65.81 74.64 79.72 7153 78.05 8137
31 6049 6598 71.18 6454 7296 74.58 66.95 76.48 8143 7292 79.80 82.69
Researchers leverage the global average pooling (GAP) layer to enhance performance
in steganalysis and various other applications. Including the GAP layer has proven to be
instrumental in improving detection performance, substantiated by the results presented
in Table 3. In our proposed scheme, the utilization of pooling layers is notably minimal,
with the sole exception being the GAP layer. This deliberate choice aims to harness
and retain the maximum available information, ensuring that valuable data are not lost
during processing.
Table 3. GAP layer effect.
GAP Layer HILL Mi-POD S-UNIWARD WOW
Effect/Payload (bpp) 02 03 04 02 03 04 0.2 0.3 04 02 03 04
Without GAP 59.59 6414 69.83 6345 7135 7341 65.28 7487 7980 7153 7845 80.63
GAP 6049 6598 71.18 6454 7296 74.58 66.95 76.48 8143 7292 79.80 82.69

Iterative learning is also carried out using S-UNIWARD with a payload of 0.4 bpp.
Seven iterations of network training are applied to the same training set. However, the
detection accuracy improved only for the training set, i.e., for seen images. Furthermore,
for the testing set, the detection accuracy did not increase. Overfitting may be the reason
for a reduction in testing accuracy. In Figure 8, on the first row, an image is processed by
one of the SRM kernels (Figure 8 first row). The effect of seven iterations of layer fifteen
can be seen in the second row.

teration 0115 toration 1115 toration 2115 Itoration 4115 toration 5/15 Itoration 6/15 toration 7/15

toration 0128 oration 2128 Horation 4128 oration 7728

Mtoration 0/41 Horation 2/41 toration 4/41 Hteration 6/41 Iteration 7/41

Horation 0/54 Horation 2154 Moration 4154 Mteration 5/54 ____teration Iteration 7/54

Figure 8. Iterative learning effects.
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Similarly, the effect of seven iterations on layers 28, 41, and 54 is displayed in the
third, fourth, and fifth rows, respectively. However, iterative learning is found beneficial
for the 0.2 bpp low payloads. The network is fine-tuned using the previously trained
network weights on the same training set. There is an improvement in testing accuracy
while considering three iterations. After that, there is a reduction in the testing accuracy.

In Table 4, the experimental outputs of the proposed scheme are compared with the
Ye-Net [28], SRNet [29], Yedroudj-Net [31], and Zhu-Net [33] techniques. Zhu-Net used
a bottleneck approach and obtained the best results compared to previous schemes. The
proposed method provides the best detection performance with multiple improvements in
the deep network architecture.

Table 4. Performance comparison for scenario 1 with other schemes.

Steganalysis HILL Mi-POD S-UNIWARD WOow
Scheme/Payload (bpp) ¢ 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4
Ye-Net 5200 56.65 61.39 5570 60.79 6373 5787 6538 7134 6610 6922 7561
SRNet 5315 60.62 65.07 5641 6425 69.92 6297 7131 7573 6950 7580 80.36
Yedroudj-Net 5179 5639 6496 55.86 6047 6843 5761 6607 7040 6732 7172 7715
Zhu-Net 59.47 6488 69.08 6436 70.00 7246 6642 7388 7848 7099 7431 81.64

Proposed Scheme

6049 6598 71.18 6454 7296 74.58 66.95 76.48 8143 7292 79.80 82.69

Several previous schemes discuss results with a single dataset and two datasets.
Earlier in this paper, results were discussed using only images of the BOSSBase dataset
from scenario 1. In the second scenario, two datasets are considered: fifty percent of the
images in both the BOSSBase and BOWS2 datasets are used for training, and the remaining
fifty percent are taken for testing. The proposed scheme also provides the best results
for scenario 2, as illustrated in Table 5. As the results show, the detection accuracy of the
proposed and previous methods is highest for WOW and lowest for HILL. This fact can
also be visualized in the computer-generated cover-stego residual array images in Figure 2.

Table 5. Performance comparison for scenario 2 with other schemes.

Steganalysis HILL Mi-POD S-UNIWARD WOW
Scheme/Payload (bpp) 92 03 04 02 03 04 0.2 0.3 04 02 03 04
Ye-Net 5285 5868 6298 57.81 6297 6604 59.89 6776 72.64 6844 7386 7844
SRNet 56.87 6342 6659 59.06 6605 7141 6423 7333 7755 7308 79.23 83.93
Yedroudj-Net 5457 6027 6554 5791 6244 7080 60.05 6822 7271 6954 7665 81.32
Zhu-Net 6144 6654 7312 6587 7173 7382 69.18 7741 80.89 7463 8099 87.46

Proposed Scheme

6226 69.69 7474 6753 7310 76.18 70.90 79.08 82.01 7736 8228 88.13

4. Conclusions

Image steganalysis is a significant part of image forensics. Image steganalysis serves
two purposes: it can verify the robustness of image steganography techniques and avert
the misuse of stego-images. In this paper, a new steganalysis scheme using a convolutional
neural network was proposed. A series of convolutional layers were directed by a con-
volutional layer with customized kernels, where firm cohesion was offered fully in the
directed training. The learning rate of the convolutional layers with predefined kernels was
made higher than the global 