
Citation: Hu, Y.; Xie, Y.; Wang, T.;

Chen, M.; Pan, Z. Structure-Aware

Low-Rank Adaptation for

Parameter-Efficient Fine-Tuning.

Mathematics 2023, 11, 4317. https://

doi.org/10.3390/math11204317

Academic Editors: Florin Leon,

Mircea Hulea and Marius Gavrilescu

Received: 3 September 2023

Revised: 8 October 2023

Accepted: 10 October 2023

Published: 17 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Structure-Aware Low-Rank Adaptation for Parameter-Efficient
Fine-Tuning
Yahao Hu, Yifei Xie, Tianfeng Wang, Man Chen and Zhisong Pan *

Command and Control Engineering College, Army Engineering University of PLA, Nanjing 210007, China;
yahao_hu@163.com (Y.H.); xieyifei10@163.com (Y.X.); tianfengw97@163.com (T.W.);
19205060770@stu.csust.edu.cn (M.C.)
* Correspondence: panzhisong@aeu.edu.cn

Abstract: With the growing scale of pre-trained language models (PLMs), full parameter fine-tuning
becomes prohibitively expensive and practically infeasible. Therefore, parameter-efficient adaptation
techniques for PLMs have been proposed to learn through incremental updates of pre-trained weights,
such as in low-rank adaptation (LoRA). However, LoRA relies on heuristics to select the modules
and layers to which it is applied, and assigns them the same rank. As a consequence, any fine-tuning
that ignores the structural information between modules and layers is suboptimal. In this work,
we propose structure-aware low-rank adaptation (SaLoRA), which adaptively learns the intrinsic
rank of each incremental matrix by removing rank-0 components during training. We conduct
comprehensive experiments using pre-trained models of different scales in both task-oriented (GLUE)
and task-agnostic (Yelp and GYAFC) settings. The experimental results show that SaLoRA effectively
captures the structure-aware intrinsic rank. Moreover, our method consistently outperforms LoRA
without significantly compromising training efficiency.

Keywords: pre-trained language models; parameter-efficient fine-tuning; low-rank adaptation;
intrinsic rank; training efficiency

MSC: 68T50

1. Introduction

With the scaling of model and corpus size [1–5], large language models (LLMs) have
demonstrated an ability for in-context learning [1,6,7] in various natural language process-
ing (NLP) tasks, that is, learning from a few examples within context. Although in-context
learning is now the prevalent paradigm for using LLMs, fine-tuning still outperforms it
in task-specific settings. In such scenarios, a task-specific model is exclusively trained
on a dataset comprising input–output examples specific to the target task. However, full
parameter fine-tuning, which updates and stores all the parameters for different tasks,
becomes impractical when dealing with large-scale models.

In fact, LLMs with billions of parameters can be effectively fine-tuned by optimizing
only a few parameters [8–10]. This has given rise to a branch of parameter-efficient fine-
tuning (PEFT) techniques [11–16] for model tuning. These techniques optimize a small
fraction of the model parameters while keeping the rest fixed, thereby significantly reducing
computational and storage costs. For example, LoRA [15] introduces trainable low-rank
decomposition matrices into LLMs, enabling the model to adapt to a new task while
preserving the integrity of the original LLMs and retaining the acquired knowledge. Fun-
damentally, this approach is built upon the assumption that updates to the weights of the
pre-trained language model have a lower rank during adaptation to specific downstream
tasks [8,9]. Thus, by reducing the rank of the incremental matrices, LoRA optimizes less
than 0.5% of the additional trainable parameters. Remarkably, this optimization achieves
comparable or even superior performance to that of full parameter fine-tuning.

Mathematics 2023, 11, 4317. https://doi.org/10.3390/math11204317 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11204317
https://doi.org/10.3390/math11204317
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8937-6949
https://doi.org/10.3390/math11204317
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11204317?type=check_update&version=1

Mathematics 2023, 11, 4317 2 of 16

However, despite its advantages, LoRA also comes with certain limitations that warrant
consideration. One limitation lies in LoRA’s reliance on heuristics to select the modules and
layers to which it is applied. Though heuristics can be effective under specific circumstances,
their lack of generalizability is a concern. This lack of generalizability can result in suboptimal
performance, or even complete failure, when applied to new data. Another limitation is the
assignment of the same rank to incremental matrices across different modules and layers. This
tends to oversimplify the complex structural relationships and important disparities that exist
within neural networks. This phenomenon is illustrated in Figure 1.

Figure 1. Fine-tuning performance of LoRA across different modules and layers with varying
ranks on MRPC.

In this paper, we propose a novel approach called structure-aware low-rank adapta-
tion (SaLoRA), which adaptively learns the intrinsic rank of each incremental matrix by
removing rank-0 components. As shown in Figure 2, we introduce a diagonal gate matrix
G = diag(g1, . . . , gr) for each incremental matrix. The modified incremental matrix can be
represented as ∆ W = BGA. The incremental matrix is divided into triplets, where each
triplet Ti contains the i-th column of B, the i-th gate mask of G and the i-th row of A. Here,
gi represents the binary “gate” that indicates the presence or absence of the i-th triplet.
Although incorporating the active triplet count as a penalty term in the learning objective is
unfeasible, we employ a differentiable relaxation method to selectively remove non-critical
triplets by considering the L0 norm [17,18]. The L0 norm is equal to the number of non-zero
triplets and encourages the model to deactivate less essential triplets. This strategy assigns
a higher rank to crucial incremental matrices to capture task-specific information. Con-
versely, less significant matrices are pruned to possess a lower ranks preventing overfitting.
However, A and B are not orthogonal, implying potential dependence among the triplets.
Removing these triplets can result in a more significant deviation from the original matrix.
To enhance training stability and generalization, we introduce orthogonality regularization
for B and A. Furthermore, we integrate a density constraint and leverage Lagrangian
relaxation [19] to control the number of valid parameters.

We conduct extensive experiments on a wide range of tasks and models to evaluate
the effectiveness of SaLoRA. Specifically, we conduct experiments on the General Language
Understanding Evaluation [20] benchmark in a task-oriented setting to assess the model’s
performance. In addition, we evaluate the model’s performance in a task-agnostic setting

Mathematics 2023, 11, 4317 3 of 16

by fine-tuning LLaMA-7B with a 50K cleaned instruction-following dataset [21], and then
perform zero-shot task inference on two text style transfer tasks: sentiment transfer [22]
and formality transfer [23]. The experimental results demonstrate that SaLoRA consistently
outperforms LoRA without significantly compromising training efficiency.

Figure 2. Structure-aware low-rank adaptation.

2. Backgound

Transformer Architecture. The Transformer [24] is primarily constructed using two
key submodules: a multi-head self-attention (MHA) layer and a fully connected feed-
forward (FFN) layer. The MHA is defined as follows:

MHA(Q, K, V) = Concat(head1, . . . , headh)WO,

headi = Atention(QWQ
i , KWK

i , VWV
i)

(1)

where Q, K, V ∈ Rn×d are input-embedding matrices; WO ∈ Rd×d is an output projection;
WQ

i , WK
i , WV

i ∈ Rd×dk are query, key and value projections of head i, respectively; n is
sequence length; d is the embedding dimension; h is the number of heads and dk = d/h
is the hidden dimension of the projection subspaces. The FFN consists of two linear
transformations separated by a ReLU activation:

FFN(x) = ReLU(xWU + bU)WD + bD (2)

where WU ∈ Rd×dm and WD ∈ Rdm×d.
Parameter-Efficient Fine-Tuning. With the growing size of models, recent works have

developed three main categories of parameter-efficient fine-tuning (PEFT) techniques. These
techniques optimize a small fraction of model parameters while keeping the rest fixed, thereby
significantly reducing computational and storage costs [10]. For example, addition-based
methods [11–13,25,26] introduce additional trainable modules or parameters that are not
part of the original model or process. Specifcation-based methods [14,27,28] specify certain
parameters within the original model or process as trainable, whereas the others remain
frozen. Reparameterization-based methods [15,16,29], including LoRA, reparameterize existing
parameters into a parameter-efficient form by transformation. In this study, we focus on
reparameterization-based methods, with particular emphasis on LoRA.

Low-Rank Adaptation. LoRA, as introduced in the work of Hu et al. [15], represents a
typical example of a reparameterization-based method. In LoRA, some pre-trained weights

Mathematics 2023, 11, 4317 4 of 16

of LLMs’ dense layers are reparameterized by injecting trainable low-rank incremental
matrices. This reparameterization only allows low-rank matrices to be updated, while
keeping the original pre-trained weights frozen. By reducing the rank of these matrices,
LoRA effectively reduces the number of parameters during the fine-tuning process of LLMs.
Consider a pre-trained weight matrix W ∈ Rd×k, accompanied by a low-rank incremental
matrix ∆ W = BA. For h = Wx, the modified forward pass is as follows:

h = Wx +
α

r
∆Wx = Wx +

α

r
BAx (3)

where B ∈ Rd×r, A ∈ Rr×k, with the rank r � min(d, k), and α is a constant scale hyperpa-
rameter. The matrix A adopts a random zero-mean Gaussian initialization, while the matrix
B is initialized as a zero matrix. Consequently, the product ∆W = BA is initially set to zero
at the beginning of training. Let B∗j and Aj∗ denote the j-th column of B and the j-th row
of A, respectively. Using this notation, ∆W can be expressed as ∆W = ∑r

j=1 B∗j Aj∗.

3. Method

In this section, we will first give a brief introduction to parameter-efficient fine-tuning,
and then discuss our proposed model based on the problem definition.

3.1. Problem Formalization

We consider the general problem of efficiently fine-tuning LLMs for specific down-
stream tasks. Firstly, let us introduce some notations. Consider a training corpus
D = (xi, yi)

N
i=1, where N represents the number of samples. Each sample consists an

input, xi, and its corresponding output, yi. We use the index i to refer to the incremental
matrix, i.e., ∆W i = Bi Ai for i = 1, . . . , K, where K is the number of incremental matrices.
However, LoRA’s assumption of identical ranks for each incremental matrix overlooks
structural relationships and the varying importance of weight matrices across different
modules and layers during fine-tuning. This oversight can potentially impact overall model
performance. Our objective is to determine the optimal {rank∗(∆W i)}K

i=1 on the fly. The
optimization objective can be formulated as follows:

min
W
R(W) ,

1
N
(

N

∑
i=1
L(f (xi;W), yi))

s.t. rank(∆W i) ≤ r, k = 1, . . . , K.

(4)

where W = {∆W i, . . . , ∆WK} represents the sets of trainable parameters and L corre-
sponds to a loss function, such as cross-entropy for classification. Note that rank(∆W i) ∈
{0, 1, . . . , r} is an unknown parameter that needs to be optimized.

3.2. Structure-Aware Intrinsic Rank Using L0 Norm

To find the optimal {rank∗(∆W i)}K
i=1 on the fly, with minimal computational overhead

during training, we introduce a gate matrix G to define the structure-aware intrinsic rank:

∆W = BGA =
r

∑
j=1

gjB∗j Aj∗ (5)

where the gj ∈ {0, 1} serves as a binary “gate”, indicating the presence or absence of the j-th
rank. The gate matrix G = diag(g1, . . . , gr) is a diagonal matrix consisting of the pruning
variables. By learning the variable gj, we can control the rank of each incremental matrix
individually, rather than applying the same rank to all matrices. To deactivate non-critical
rank-0 components, the ideal approach would be to apply L0 norm regularization to the
gate matrix G:

Mathematics 2023, 11, 4317 5 of 16

||G||0 =
r

∑
j=1

gj (6)

where r is the rank of incremental matrices. The L0 norm measures the number of non-
zero triplets; thus, optimizing L0 would encourage the model to deactivate less important
incremental matrices.

Unfortunately, the optimization objective involving ||G||0 is computationally in-
tractable due to its non-differentiability, making it impossible to directly incorporate it
as a regularization term in the objective function. Instead, we use a stochastic relaxation
approach, where the gate variables g are treated as continuous variables distributed within
the interval [0, 1]. We leverage the reparameterization trick [30,31] to ensure that g remains
differentiable. Following prior studies [17,19], we adopt the Hard-Concrete (HC) distri-
bution as a continuous surrogate for random variables g, illustrated in Figure 3. The HC
distribution applies a hard-sigmoid rectification to s, which can easily be sampled by first
sampling u ∈ U(0, 1) and then computing as follows:

s = Sigmod
(log u

1−u + log θ

τ

)
× (ζ − γ) + γ

g = min(1, max(0, s))
(7)

where θ is the trainable parameter of the distribution and τ is the temperature. The interval
(γ, ζ), with γ < 0 and ζ > 1, enables the distribution to concentrate probability mass at
the edge of the support. The final outputs g are rectified into [0, 1]. By summing up the
probabilities of the gates being non-zero, the L0 norm regularization can be computed via a
closed form, as follows:

E[||G||0] =
r

∑
j=1

E
[
gj > 0

]
=

r

∑
j=1

Sigmod
(

log θj − τ log
−γ

ζ

) (8)

Figure 3. Hard-Concrete distribution with different parameters.

Mathematics 2023, 11, 4317 6 of 16

As g now represents the output of the parameterized HC distribution function and
serves as an intermediate representation for the neural network, gradient-based optimiza-
tion methods can perform gradient updates for θ = {θ1, . . . , θr}. For each training batch,
we sample the gate mask and then share it across the training examples within the batch to
enhance sampling efficiency.

3.3. Enhanced Stability Using Orthogonal Regularization

In deep networks, orthogonality plays a crucial role in preserving the norm of the orig-
inal matrix during multiplication, preventing signal vanishing or exploding [32]. However,
in LoRA, where B and A are not orthogonal, the dependence can lead to larger variations
when removing certain columns or rows through L0 regularization. This, in turn, leads to
training instability and the potential for negative effects on generalization [16]. For this, we
turn to orthogonal regularization, which enforces the orthogonality condition:

Rorth(B, A) = ||BT B− I||2F + ||AAT − I||2F (9)

where I is the identity matrix.
Now, let us substitute Equations (8) and (9) into Equation (4) to derive the new training

objective:

min
W ,Θ
R(W , Θ) ,

1
N
(

N

∑
i=1
L(f (xi;W), yi)) + λ

K

∑
i=1

E[||Gi||0] + β
K

∑
i=1
Rorth(Bi, Ai) (10)

where Θ = {θi, . . . , θK} represents the sets of trainable parameters, and λ and β are two
constant hyperparameters.

3.4. Controlled Budget Using Lagrangian Relaxation

If we only rely on Equation (10) to learn the intrinsic rank for each incremental matrix,
the resulting parameter budget cannot be directly controlled. This limitation becomes
problematic in many real-world applications that require a specific model size or parameter
budget. To address this issue, we further introduce an additional density constraint on
R(W , Θ) to guide the network towards achieving a specific desired budget.

min
W
R(W) ,

1
N
(

N

∑
i=1
L(f (xi;W), yi)) + β

K

∑
i=1
Rorth(Bi, Ai)

s.t. C(Θ) ,
K

∑
i=1

E[||Gi||0]× (di + ki)

#(Bi) + #(Ai)
= b

(11)

where b represents the target density and #(x) counts the total number of parameters in
matrix x. ∆W i = Bi Ai, where Bi is of di × ri, and Ai is of ri × ki. However, lowering the
density constraint poses a challenging and (not necessarily strictly) constrained optimiza-
tion problem. To tackle this challenge, we leverage Lagrangian relaxation as an alternative
approach, along with the corresponding min-max game:

max
λ

min
W ,Θ
L(W , Θ, λ) , R(W , Θ) + λ(C(Θ)− b)2 (12)

where λ ∈ R is the Lagrangian multiplier, which is jointly updated during training. The
updates to λ would increase the training loss unless the equality constraint is satisfied,
resulting in the desired parameter budget. We optimize the Lagrangian relaxation by simul-
taneously performing gradient descent on (W, Θ) and projected gradient ascent (to R+) on
λ, as demonstrated in previous works [19,33]. During the experiments, we observed that the
term λ(C(Θ)− b)2 converged quickly. To enhance training efficiency, we only optimize (Θ, λ)
between Tstart and Tend time steps. We provide a summarized algorithm in Algorithm 1.

Mathematics 2023, 11, 4317 7 of 16

Algorithm 1 SaLoRA

Input: Dataset D; total iterations T; target density b; hyperparameters τ, γ, ζ, β, ηp, ηc.
Output: The fine-tuned parameters {W , Θ}.

for t = 1, . . . , T do
Sample a mini-batch from D
if Tstart ≤ t < Tend then

Sample a gate mask set G from HC distribution and share it across the mini-batch
Compute the gradient L(W , Θ, λ)

Update W (t+1) = W (t)−ηp∇WL(W (t), Θ(t), λ(t))

Update Θ(t+1) = Θ(t)−ηc∇ΘL(W (t), Θ(t), λ(t))

Update λ(t+1) = λ(t)+ηc∇λ(t)L(W (t), Θ(t), λ(t))
else

Compute the gradient L(W)

Update W (t+1) = W (t) − ηp∇WL(W (t))
end if

end for
return The fine-tuned parameters {W (T), Θ(T), λ(T) }.

3.5. Inference

During training, the gate mask gi is a random variable drawn from the HC distribution.
At inference time, we first calculate the expected value of each gi in G. If the value of gi is
greater than 0, we retain the corresponding i-th low-rank triplet. This procedure enables us
to obtain the deterministic matrices B and A.

4. Experiments

We evaluated the effectiveness of the proposed SaLoRA on RoBERTa [34] and LLaMA-
7B in both task-oriented and task-agnostic settings.

Baselines. We compared SaLoRA with the following methods:

• Fine-tuning (FT) is the most common approach for adaptation. To establish an upper
bound for the performance of our proposed method, we fine-tuned all parameters
within the model.

• Adapting tuning, as proposed by Houlsby et al. [25], incorporates adapter layers
between the self-attention module (and the MLP module) and the subsequent residual
connection. Each adapter module consists of two fully connected layers with biases
and a nonlinearity in between. This original design is referred to as AdapterH . Re-
cently, Pfeiffer et al. [11] introduced a more efficient approach, applying the adapter
layer only after the MLP module and following a LayerNorm. We call it AdapterP.

• Prefix-tuning (Prefix) [12] prepends a sequence of continuous task-specific activations
to the input. During tuning, prefix-tuning freezes the model parameters and only
backpropagates the gradient to the prefix activations.

• Prompt-tuning (Prompt) [13] is a simplified version of prefix-tuning, allowing the
additional k tunable tokens per downstream task to be prepended to the input text.

• LoRA, introduced by Hu et al. [15], is a state-of-the-art method for parameter-efficient
fine-tuning. The original implementation of LoRA applied the method solely to query
and value projections. However, empirical studies [16,35] have shown that extending
LoRA to all matrices, including WQ, WK, WV , WO, WU and WD, can further improve
its performance. Therefore, we compare our approach with this generalized LoRA
configuration to maximize its effectiveness.

• AdaLoRA, proposed by Zhang et al. [16], utilizes singular value decomposition (SVD)
to adaptively allocate the parameter budget among weight matrices based on their
respective importance scores. However, this baseline involves computationally in-
tensive operations, especially for large matrices. The training cost can be significant,
making it less efficient for resource-constrained scenarios.

Mathematics 2023, 11, 4317 8 of 16

4.1. Task-Oriented Performance

Models and Datasets. We evaluated the performance of different adaptive methods
on the GLUE benchmark [20] using pre-trained RoBERTa-base (125M) and RoBERTa-large
(355 M) [34] models from the HuggingFace Transformers library [36]. See Appendix A for
additional details on the datasets we used.

Implementation Details. For running all the baselines, we utilized a publicly available
implementation [37]. We evaluated the performance of LoRA, AdaLoRA and SaLoRA at r = 8.
To maintain a controlled parameter budget, we set the desired budget ratio (b) to 0.50 for both
SaLoRA and AdaLoRA. During training, we used the AdamW optimizer [38], along with the
linear learning rate scheduler. During our experiments, we observed that using a larger learning
rate (ηc) significantly improved the learning process for both the gate matrices and Lagrange
multiplier. Therefore, we set ηc to 0.01 for all conducted experiments. We fine-tuned all models
using an NVIDIA A100 (40 GB) GPU. Additional details can be found in Appendix B.

Main Results. We compared SaLoRA with the baseline methods under different model
scale settings, and the experimental results on the GLUE development set are presented in
Table 1. We can see that SaLoRA consistently achieved better or comparable performance
compared with existing approaches for all datasets. Moreover, it even outperformed the FT
method. SaLoRA’s superiority was particularly striking when compared with LoRA, despite
both models having a similar parameter count of 1.33 M/3.54 M for base/large model scales.
After training, SaLoRA effectively utilized only 0.5× 1.33 M/0.5× 3.54 parameters, yet still
attained superior performance. This observation emphasizes the effectiveness of our method in
learning the intrinsic rank for incremental matrices.

Table 1. Results with RoBERTa-base and RoBERTa-large on GLUE development set. We report the
Pearson correlation for STS-B, Matthew’s correlation for CoLA, and accuracy for other tasks. We
report the mean and maximum deviation of 5 runs using different random seeds. The best results are
shown in bold. † indicates numbers published in prior works.

Model and Method # Trainable MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B ALL
Parameters ACC ACC Mathew ACC ACC ACC ACC Pearson Avg

RoBbase(FT) † 125.00 M 87.6 94.8 63.6 91.9 92.8 78.7 90.2 91.2 86.4
RoBbase(Prefix) 1.33 M 82.58±0.24 91.65±0.44 47.45±4.47 85.98±0.11 85.91±0.44 60.47±0.54 88.09±1.37 87.49±0.63 78.70
RoBbase(Prompt) 0.62 M 79.14±0.99 88.33±1.44 42.35±5.12 73.30±5.84 80.51±1.64 55.81±2.67 69.75±0.59 76.94±3.59 70.77
RoBbase(LoRA) 1.33 M 87.49±0.44 94.77±0.53 61.22±2.09 91.39±0.18 92.85±0.28 79.24±.21 89.46±1.23 90.89±0.18 85.91
RoBbase(AdaLoRA) 1.33 M 87.93±0.20 94.59±0.21 59.29±1.06 90.94±0.13 92.61±0.10 76.39±1.30 87.35±0.39 90.87±0.15 85.00
RoBbase(SaLoRA) 1.33 M 87.83±0.04 95.14±0.73 63.39±1.79 91.46±0.09 92.99±0.21 81.01±0.87 90.20±0.74 91.13±0.17 86.64

RoBlarge(FT) † 356.05 M 90.2 96.4 68.0 92.2 94.7 86.6 90.9 92.4 88.9
RoBlarge(AdaptP) † 4.05 M 90.2±0.3 96.1±0.3 68.3±1.0 91.9±0.1 94.8±0.2 83.8±2.9 90.2±0.7 92.1±0.7 88.4
RoBlarge(AdaptH) † 7.05 M 89.5±0.5 96.2±0.3 66.5±4.4 92.1±0.1 94.7±.2 83.4±1.1 88.7±2.9 91.0±1.7 87.8
RoBlarge(Prefix) 3.02 M 88.61±0.12 94.70±0.44 60.06±1.44 87.57±0.25 89.60±0.37 77.33±1.37 89.85±.88 89.97±3.37 84.71
RoBlarge(Prompt) 1.09 M 85.65±2.54 93.95±0.83 58.34±2.63 83.98±1.45 84.92±3.28 58.70±4.83 74.22±2.65 80.47±0.71 77.53
RoBlarge(LoRA) 3.41 M 89.96±0.12 96.10±0.11 68.76±1.75 88.67±0.88 94.86±0.07 85.49±1.51 90.93±0.74 92.25±0.17 88.38
RoBlarge(AdaLoRA) 3.54 M 90.84±0.03 96.29±0.19 67.61±0.12 91.12±0.26 94.82±0.11 86.28±0.36 89.89±0.31 92.27±0.16 88.64
RoBlarge(SaLoRA) 3.54 M 90.67±0.07 96.63±0.28 68.37±0.34 91.95±0.08 94.98±0.09 87.80±1.29 91.81±1.57 92.43±0.18 89.33

4.2. Task-Agnostic Performance

Models and Datasets. We present the experiments conducted to evaluate the per-
formance of the self-instruct tuned LLaMA-7B models on instruction-following data [21].
Our objective was to assess their capability in comprehending and executing instructions
for arbitrary tasks. We evaluated model performance on two text style transfer datasets:
Yelp [22] and GYAFC [23]). Text style transfer refers to the task of changing the style of a
sentence to the desired style while preserving the style-independent content. The prompts
used in these experiments can be found in Appendix C.

Implementation Details. We tuned the learning rate ηp from {8× 10−5, 3× 10−5, 1× 10−4,
3× 10−4, 8× 10−4, 1× 10−3} and kept the following hyperparameters fixed: r = 8, b = 0.5,

Mathematics 2023, 11, 4317 9 of 16

ηc = 0.01, β = 0.1, τ = 1.0, γ = −0.1 and ζ = 1.1. All models were fine-tuned on an
NVIDIA A800 (80 G) GPU.

Furthermore, we compared the performance of SaLoRA with dataset-specific style
transfer models, including StyTrans [15], StyIns [16] and TSST [17]. In contrast to SaLoRA,
these models were trained on a specific dataset. To evaluate the performance of style transfer
models, we used the following metrics: (1) Transfer accuracy (ACC) using a fine-tuned
BERT-base [39] classifier with each dataset. (2) Semantic similarity to human references via
BLEU [40] score. (3) Sentence fluency (PPL) via perplexity, as measured by KenLM [41].

Main Results. Table 2 presents our experimental results on the Yelp and GYAFC datasets.
Compared with LoRA, our method SaloRA achieved better or comparable performance
across all directions on both datasets. This demonstrates the effectiveness of our method. In
the negative-to-positive transfer direction, though SaloRA’s transfer accuracy was lower than
the dataset-specific models (e.g., StyIns achieved 92.40 compared with SaloRA’s 71), it still
aligned with the human reference accuracy of 64.60. Furthermore, SaloRA exhibited a lower
perplexity (PPL) compared with dataset-specific models. These results show that SaLoRA
(including LoRA) aligns more closely with human writing tendencies. In the formal-to-informal
transfer direction, we also observed that our transfer accuracy was lower than dataset-specific
models. This disparity may be attributed to the inherent bias of a large model for generating
more formal outputs. This can be verified from the fact that SaLoRA exhibited a significant
improvement in the transfer accuracy compared with dataset-specific models.

Table 2. Automatic evaluation results on Yelp and GYAFC datasets. ↑ indicates that higher values mean
better performance, and vice versa.

Model and Method
Yelp GYAFC

Negative to Positive Positive to Negative Informal to Formal Formal to Informal
ACC ↑ BLEU ↑ PPL ↓ ACC ↑ BLEU ↑ PPL ↓ ACC ↑ BLEU ↑ PPL ↓ ACC ↑ BLEU ↑ PPL ↓

Reference 64.60 100 102.62 93.80 100 77.53 88.44 100 66.86 87.63 100 105.28

StyTrans 88.40 25.85 173.35 94.20 24.90 141.88 32.81 54.91 144.15 80.86 27.69 201.78
StyIns 92.40 25.98 116.01 89.60 26.08 105.79 54.73 60.87 96.53 80.57 30.25 132.54
TSST 91.20 28.95 112.86 94.40 28.83 101.92 65.62 61.83 87.04 85.87 33.54 128.78

LaA7B 2.20 33.58 208.69 0.80 31.12 156.14 12.01 60.18 189.78 7.75 34.61 145.43
LaA7B(LoRA) 71.00 25.96 82.20 92.80 31.83 83.03 89.34 61.06 68.52 34.45 41.59 82.96
LaA7B(SaLoRA) 73.20 24.76 76.49 94.60 31.96 87.41 89.63 61.76 67.53 39.04 40.91 79.54

4.3. Analysis

The Effect of Rank r. Figure 4 illustrates the experimental results of fine-tuning
RoBERTa-large across different ranks. We see that the rank r significantly influenced the
model’s performance. Both large and small values of r led to suboptimal results. This
observation emphasizes that selecting the optimal value for r through heuristic approaches
is not always feasible. Notably, SaLoRA consistently improved performance across all ranks
when compared with the baseline LoRA. This suggests that SaLoRA effectively captured
the “intrinsic rank” of the incremental matrix.

The Effect of Sparsity b. Figure 5 shows the experimental results of fine-tuning
RoBERTa-large across various levels of sparsity. Remarkably, SaLoRA consistently exhibited
enhanced performance across all sparsity levels compared with the baseline. This result
suggests that SaLoRA’s modifications facilitated the acquisition of the “intrinsic rank” of the
incremental matrix under different sparsities. It is noteworthy that SaLoRA’s performance
even surpassed the results of LoRA under low sparsity conditions (0.125). The fact that
SaLoRA can outperform LoRA even under low sparsity conditions highlights its capacity
to capture and leverage parameters with a constrained budget. Consequently, SaLoRA’s
efficacy could be expanded on a limited budget, making it a versatile method with a broader
range of applications.

Mathematics 2023, 11, 4317 10 of 16

Figure 4. Fine-tuning performance under different ranks.

Figure 5. Fine-tuning performance under different sparsity levels.

Ablation Study. We investigated the impact of Lagrangian relaxation and orthogonal
regularization in SaLoRA. Specifically, we compared SaLoRA with the following variants:
(i) SaLoRAλ=0: SaLoRA without Lagrangian relaxation; (ii) SaLoRAβ=0: SaLoRA without
orthogonal regularization. These variations involved the fine-tuning of the RoBERTa-base
model on the CoLA, STS-B, and MRPC datasets. The target sparsity was set to 0.5 by default.
SPS represented the expected sparsity of the incremental matrix. From Table 3, we see that:

1. Without Lagrangian relaxation, the parameter budget was uncontrollable, being 0.37,
0.42 and 0.43 on the three datasets, respectively. Such results highlight the pivotal
role that Lagrangian relaxation plays in controlling the allocation of the parameter
budget. Nonetheless, it is worth noting that omitting Lagrange relaxation may lead to
slight enhancements in performance. However, given the emphasis on control over
the parameter budget, this incremental enhancement should be disregarded.

2. Without orthogonal regularization, the performance of SaLoRA degenerated. These results
validate that incorporating orthogonal regularization into SaLoRA ensures the independence
of doublets from one another, leading to a significant enhancement in its performance.

Table 3. Ablation studies on Lagrangian relaxation and orthogonal regularization.

Method MRPC STS-B CoLA
ACC SPS ACC SPS ACC SPS

SaLoRA 90.20±0.74 0.51±0.00 91.13±0.17 0.52±0.00 63.39±1.79 0.52±0.00
SaLoRAλ=0 89.95±0.49 0.37±0.02 91.20±0.12 0.42±0.03 63.65±3.39 0.43±0.02
SaLoRAβ=0 90.00±0.94 0.51±0.00 90.78±0.27 0.52±0.00 62.89±2.16 0.52±0.00

Mathematics 2023, 11, 4317 11 of 16

Visualization of Four Components. We plotted the visualization of expected sparsity
b̂, the Lagrangian multiplier λ and ||AT A− I||2F and ||BT B− I||2F to show whether these
four components were regularized by Lagrangian relaxation and orthogonal regularization,
respectively. Specifically, we fine-tuned the RoBERTa-base using SaLoRA on the CoLA,
STS-B and MRPC datasets. The initial Lagrangian multiplier λ was 0 and the target sparsity
b was 0.5. From Figure 6, we see that:

1. The expected sparsity b̂ decreased from 0.92 to about 0.50, and the Lagrangian multi-
plier λ kept increasing during training. The results indicate that the SaLoRA algorithm
placed more emphasis on satisfying the constraints, eventually reaching a trade-off
between satisfying the constraints and optimizing the objective function.

2. The values of ||AT A− I||2F and ||BT B− I||2F could be optimized to a highly negligible
level (e.g., 0.001). Therefore, this optimization process enforced orthogonality upon
both matrices A and B, guaranteeing the independence of doublets from one another.

(a) (b)

(c) (d)

Figure 6. Visualization of expected sparsity b̂ and the Lagrangian multiplier λ under Lagrangian
relaxation, and ||AT A− I||2F and ||BT B− I||2F under orthogonal regularization: (a) expected sparsity
b̂; (b) Lagrangian multiplier λ; (c) A of WO at the first layer; and (d) B of WO at the first layer.

Comparison of Training Efficiency. We analyzed the efficiency of SaLoRA in terms
of memory and computational efficiency, as shown in Table 4. Specifically, we selected two
scales of the RoBERTa model, that is, RoBbase and RoBlarge, and measured the peak GPU
memory and training time under different batch sizes on an NVIDIA A100 (40 GB) GPU.
From Table 4, we see that:

1. The GPU memory usages of both methods were remarkably similar. Such results
demonstrate that SaLoRA does not impose significant memory overhead. The reason
behind this is that SaLoRA only introduces gate matrices in contrast to LoRA. The
total number of parameters was r× L×M. In this experiment, r denotes the rank of
the incremental matrix (set at 8), L corresponds to the number of layers within the
model (12 for RoBbase and 24 for RoBlarge) and M stands for the number of modules in
each layer (set at 6).

Mathematics 2023, 11, 4317 12 of 16

2. The training time of SaLoRA increased by 11% when using a batch size of 32 compared
with LoRA. This suggests that the additional computational requirements introduced
by SaLoRA are justified by its notable gains in performance. This is because SaLoRA
is only utilized during a specific training phase (Tstart to Tend) comprising 30% of the
overall training time. With the remaining 70% being equivalent to LoRA, the overall
impact on training time remains manageable.

Table 4. Comparison of training efficiency between LoRA and SaLoRA on the MRPC dataset.

Model BS Method GPU Mem Time

RoBbase

16 LoRA 3.54 GB 15 min
SaLoRA 3.54 GB 20 min

32 LoRA 5.34 GB 14 min
SaLoRA 5.35 GB 15 min

64 LoRA 9.00 GB 13 min
SaLoRA 9.00 GB 14 min

RoBlarge

16 LoRA 7.44 GB 44 min
SaLoRA 7.46 GB 53 min

32 LoRA 12.16 GB 40 min
SaLoRA 12.18 GB 44 min

64 LoRA 21.80 GB 38 min
SaLoRA 21.82 GB 41 min

The Resulting Rank Distribution. Figure 7 shows the resulting rank of each incremental
matrix obtained from fine-tuning RoBERTa-base with SaLoRA. We observed that SaLoRA always
assigned higher ranks to modules (WU, WO and WV) and layers (4, 5, 6 and 7). This aligns with
the empirical results shown in Figure 1, indicating that modules (WU, WO and WV) and layers
(4, 5, 6 and 7) play a more important role in model performance. Hence, these findings not only
validate SaLoRA’s effective prioritization of critical modules and layers, but also emphasizes its
capacity to learn the structure-aware intrinsic rank of the incremental matrix.

Figure 7. The resulting rank of each incremental matrix obtained from fine-tuning RoBERTa-base on
MRPC with SaLoRA. The initial rank is set at 8, and the target sparsity is 0.5. The x-axis is the layer
index and the y-axis represents different types of modules.

5. Conclusions

In this paper, we present SaLoRA, a structure-aware low-rank adaptation method that
adaptively learns the intrinsic rank of each incremental matrix. In SaLoRA, we introduced a
diagonal gate matrix to adjust the rank of the incremental matrix by penalizing the L0 norm
based on the count of activated gates. To enhance training stability and model generalization,
we orthogonally regularized B and A. Furthermore, we integrated a density constraint and

Mathematics 2023, 11, 4317 13 of 16

employed Lagrangian relaxation to control the number of valid ranks. In our experiments,
we demonstrated that SaLoRA effectively captures the structure-aware intrinsic rank and
consistently outperforms LoRA without significantly compromising training efficiency.

Author Contributions: Conceptualization, Y.H. and Z.P.; methodology, Y.H. and M.C.; validation,
Y.H. and M.C.; formal analysis, Y.H. and Y.X.; investigation, Y.X.; resources, Y.X.; data curation, Y.H.;
writing—original draft preparation, Y.H.; visualization, Y.H. and T.W.; supervision, Z.P.; project
administration, Z.P.; funding acquisition, Z.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No.
62076251).

Data Availability Statement: Data sharing is not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

PLMs Pre-trained language models
LLMs Large language models
NLP Natural language process
LoRA Low-rank adaptation
MHA Multi-head self-attention
FFN Feed-forward network
FT Fine-tuning
PEFT Parameter-efficient fine-tuning
HC Hard-concrete distribution

Appendix A. Description of Datasets

Table A1. Description of datasets.

Dataset Description Train Valid Test Metrics

GLUE Benchmark

MNLI Inference 393.0k 20.0k 20.0k Accuracy

SST-2 Sentiment analysis 7.0k 1.5k 1.4k Accuracy

MRPC Paraphrase detection 3.7k 408 1.7k Accuracy

CoLA Linguistic acceptability 8.5k 1.0k 1.0k Matthews correlation

QNLI Inference 108.0k 5.7k 5.7k Accuracy

QQP Question answering 364.0k 40.0k 391k Accuracy

RTE Inference 2.5k 276 3.0k Accuracy

STS-B Textual similarity 7.0k 1.5k 1.4k Pearson correlation

Text Style Transfer

Yelp-Negative
Negative reviews of
restaurants and
businesses

17.7k 2.0k 500
Accuracy
Similarity
Fluency

Yelp-Positive
Positive reviews of
restaurants and
businesses

26.6k 2.0k 500
Accuracy
Similarity
Fluency

GYAFC-
Informal

Informal sentences from
the Family and
Relationships domain

5.2k 2.2k 1.3k
Accuracy
Similarity
Fluency

GYAFC-
Formal

Formal sentences from
the Family and
Relationships domain

5.2k 2.8k 1.0k
Accuracy
Similarity
Fluency

Mathematics 2023, 11, 4317 14 of 16

Appendix B. Training Details

We tuned the learning rate ηp from {5× 10−5, 7× 10−5, 9× 10−5, 2× 10−4, 3× 10−4, 4×
10−4, 5× 10−4, 7× 10−4} and selected the best learning rate.

Table A2. The hyperparameters we used for RoBERTa on the GLUE benchmark.

Model MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B

Epoch RoBbase 15 20 20 20 15 40 40 30
RoBlarge 15 20 20 20 15 40 40 30

ηp
RoBbase 9× 10−5 4× 10−4 5× 10−4 4× 10−4 5× 10−4 4× 10−4 4× 10−4 7× 10−4

RoBlarge 9× 10−5 5× 10−4 4× 10−4 4× 10−4 4× 10−4 5× 10−4 2× 10−4 4× 10−4

Tstart = 0.2× # Epochs, Tend = 0.5× # Epochs. r = 8, b = 0.5, α = 16, ηc = 0.01, β = 0.1, τ = 1.0, γ = −0.1,
ζ = 1.1.

Appendix C. Prompts

Table A3. The prompts used in text style transfer.

Yelp: Negative → Positive

“Below is an instruction that describes a task. Write a response that appropriately completes the request.

Instruction:
{Please change the sentiment of the following sentence to be more positive.}

Input:
{$Sentence}

Response:”

Yelp: Positive→ Negative

“Below is an instruction that describes a task. Write a response that appropriately completes the request.

Instruction:
{Please change the sentiment of the following sentence to be more negative.}

Input:
{$Sentence}

Response:”

GYAFC: Informal→ Formal

“Below is an instruction that describes a task. Write a response that appropriately completes the request.

Instruction:
{Please rewrite the following sentence to be more formal.}

Input:
{$Sentence}

Response:”

GYAFC: Formal→ Informal

“Below is an instruction that describes a task. Write a response that appropriately completes the request.

Instruction:
{Please rewrite the following sentence to be more informal.}

Input:
{$Sentence}

Response:”

Mathematics 2023, 11, 4317 15 of 16

References
1. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.

Language Models are Few-Shot Learners. In Proceedings of the Advances in Neural Information Processing Systems, Virtual, 6–12
December 2020; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA,
2020; Volume 33, pp. 1877–1901.

2. Zeng, A.; Liu, X.; Du, Z.; Wang, Z.; Lai, H.; Ding, M.; Yang, Z.; Xu, Y.; Zheng, W.; Xia, X.; et al. Glm-130b: An open bilingual
pre-trained model. arXiv 2022, arXiv:2210.02414.

3. Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux, M.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.; Azhar, F.; et al.
LLaMA: Open and Efficient Foundation Language Models. arXiv 2023, arXiv:2302.13971. [CrossRef]

4. OpenAI. GPT-4 Technical Report. arXiv 2023, arXiv:2303.08774. [CrossRef]
5. Pavlyshenko, B.M. Financial News Analytics Using Fine-Tuned Llama 2 GPT Model. arXiv 2023, arXiv:2308.13032. [CrossRef]
6. Kossen, J.; Rainforth, T.; Gal, Y. In-Context Learning in Large Language Models Learns Label Relationships but Is Not

Conventional Learning. arXiv 2023, arXiv:2307.12375. [CrossRef]
7. Dong, Q.; Li, L.; Dai, D.; Zheng, C.; Wu, Z.; Chang, B.; Sun, X.; Xu, J.; Li, L.; Sui, Z. A Survey on In-context Learning. arXiv 2022,

arXiv:2301.00234. [CrossRef]
8. Li, C.; Farkhoor, H.; Liu, R.; Yosinski, J. Measuring the Intrinsic Dimension of Objective Landscapes. In Proceedings of the

International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.
9. Aghajanyan, A.; Gupta, S.; Zettlemoyer, L. Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning.

In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), Online, 1–6 August 2021; pp. 7319–7328. [CrossRef]

10. Ding, N.; Qin, Y.; Yang, G.; Wei, F.; Yang, Z.; Su, Y.; Hu, S.; Chen, Y.; Chan, C.; Chen, W.; et al. Parameter-efficient fine-tuning of
large-scale pre-trained language models. Nat. Mac. Intell. 2023, 5, 220–235. [CrossRef]

11. Pfeiffer, J.; Kamath, A.; Rücklé, A.; Cho, K.; Gurevych, I. AdapterFusion: Non-Destructive Task Composition for Transfer
Learning. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main
Volume, Online, 19–23 April 2021; pp. 487–503. [CrossRef]

12. Li, X.L.; Liang, P. Prefix-Tuning: Optimizing Continuous Prompts for Generation. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), Online, 1–6 August 2021; pp. 4582–4597. [CrossRef]

13. Lester, B.; Al-Rfou, R.; Constant, N. The Power of Scale for Parameter-Efficient Prompt Tuning. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, Online and Punta Cana, Dominican Republic, 7–11 November
2021; pp. 3045–3059. [CrossRef]

14. Ben Zaken, E.; Goldberg, Y.; Ravfogel, S. BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-
models. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
Dublin, Ireland, 22–27 May 2022; pp. 1–9. [CrossRef]

15. Hu, E.J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang, S.; Wang, L.; Chen, W. LoRA: Low-Rank Adaptation of Large Language
Models. In Proceedings of the International Conference on Learning Representations, Virtual Event, 25–29 April 2022.

16. Zhang, Q.; Chen, M.; Bukharin, A.; He, P.; Cheng, Y.; Chen, W.; Zhao, T. Adaptive Budget Allocation for Parameter-Efficient
Fine-Tuning. In Proceedings of the the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May
2023.

17. Louizos, C.; Welling, M.; Kingma, D.P. Learning Sparse Neural Networks through L_0 Regularization. In Proceedings of the
International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

18. Wang, Z.; Wohlwend, J.; Lei, T. Structured Pruning of Large Language Models. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), Online, 8–12 November 2020; pp. 6151–6162. [CrossRef]

19. Gallego-Posada, J.; Ramirez, J.; Erraqabi, A.; Bengio, Y.; Lacoste-Julien, S. Controlled Sparsity via Constrained Optimization or:
How I Learned to Stop Tuning Penalties and Love Constraints. In Proceedings of the Advances in Neural Information Processing
Systems, New Orleans, LA, USA, 29 November–1 December 2022; Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A.,
Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2022; Volume 35, pp. 1253–1266.

20. Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; Bowman, S.R. GLUE: A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. In Proceedings of the International Conference on Learning Representations, New Orleans,
LA, USA, 6–9 May 2019.

21. Taori, R.; Gulrajani, I.; Zhang, T.; Dubois, Y.; Li, X.; Guestrin, C.; Liang, P.; Hashimoto, T.B. Stanford Alpaca: An Instruction-
Following LLaMA Model. 2023. Available online: https://github.com/tatsu-lab/stanford_alpaca (accessed on 14 March
2023).

22. Li, J.; Jia, R.; He, H.; Liang, P. Delete, Retrieve, Generate: A Simple Approach to Sentiment and Style Transfer. In Proceedings
of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), New Orleans, LA, USA, 1–6 June 2018; pp. 1865–1874. [CrossRef]

https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2308.13032
https://doi.org/10.48550/arXiv.2307.12375
https://doi.org/10.48550/arXiv.2301.00234
http://doi.org/10.18653/v1/2021.acl-long.568
http://dx.doi.org/10.1038/s42256-023-00626-4
http://dx.doi.org/10.18653/v1/2021.eacl-main.39
http://dx.doi.org/10.18653/v1/2021.acl-long.353
http://dx.doi.org/10.18653/v1/2021.emnlp-main.243
http://dx.doi.org/10.18653/v1/2022.acl-short.1
http://dx.doi.org/10.18653/v1/2020.emnlp-main.496
https://github.com/tatsu-lab/stanford_alpaca
http://dx.doi.org/10.18653/v1/N18-1169

Mathematics 2023, 11, 4317 16 of 16

23. Rao, S.; Tetreault, J. Dear Sir or Madam, May I Introduce the GYAFC Dataset: Corpus, Benchmarks and Metrics for Formality
Style Transfer. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers), New Orleans, LA, USA, 1–6 June 2018; pp. 129–140.
[CrossRef]

24. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.u.; Polosukhin, I. Attention is All you Need.
In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Guyon, I., Luxburg,
U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017;
Volume 30.

25. Houlsby, N.; Giurgiu, A.; Jastrzebski, S.; Morrone, B.; De Laroussilhe, Q.; Gesmundo, A.; Attariyan, M.; Gelly, S. Parameter-
Efficient Transfer Learning for NLP. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA,
USA, 9–15 June 2019; Volume 97, pp. 2790–2799.

26. Mo, Y.; Yoo, J.; Kang, S. Parameter-Efficient Fine-Tuning Method for Task-Oriented Dialogue Systems. Mathematics 2023, 11, 3048.
[CrossRef]

27. Lee, J.; Tang, R.; Lin, J. What Would Elsa Do? Freezing Layers during Transformer Fine-Tuning. arXiv 2019, arXiv:1911.03090.
[CrossRef]

28. Guo, D.; Rush, A.; Kim, Y. Parameter-Efficient Transfer Learning with Diff Pruning. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), Online, 1–6 August 2021; pp. 4884–4896. [CrossRef]

29. Valipour, M.; Rezagholizadeh, M.; Kobyzev, I.; Ghodsi, A. DyLoRA: Parameter-Efficient Tuning of Pre-trained Models using
Dynamic Search-Free Low-Rank Adaptation. In Proceedings of the 17th Conference of the European Chapter of the Association
for Computational Linguistics, Dubrovnik, Croatia, 2–6 May 2023; pp. 3274–3287.

30. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
31. Rezende, D.J.; Mohamed, S.; Wierstra, D. Stochastic Backpropagation and Approximate Inference in Deep Generative Models. In

Proceedings of the 1st International Conference on Machine Learning, Bejing, China, 22–24 June 2014; Xing, E.P., Jebara, T., Eds.;
PMLR: Bejing, China, 2014; Volume 32, pp. 1278–1286.

32. Brock, A.; Lim, T.; Ritchie, J.; Weston, N. Neural Photo Editing with Introspective Adversarial Networks. In Proceedings of the
International Conference on Learning Representations, Toulon, France, 24–26 April 2017.

33. Lin, T.; Jin, C.; Jordan, M. On Gradient Descent Ascent for Nonconvex-Concave Minimax Problems. In Proceedings of the 37th
International Conference on Machine Learning, Vienna, Austria, 13–18 July 2020; Daumé, H., III, Singh, A., Eds.; PMLR: Vienna,
Austria, 2020; Volume 119, pp. 6083–6093.

34. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692.

35. He, J.; Zhou, C.; Ma, X.; Berg-Kirkpatrick, T.; Neubig, G. Towards a Unified View of Parameter-Efficient Transfer Learning. In
Proceedings of the International Conference on Learning Representations, Virtual Event, 25–29 April 2022.

36. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. Transformers:
State-of-the-Art Natural Language Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, Online, 16–20 November 2020; pp. 38–45. [CrossRef]

37. Mangrulkar, S.; Gugger, S.; Debut, L.; Belkada, Y.; Paul, S. PEFT: State-of-the-Art Parameter-Efficient Fine-Tuning Methods. 2022.
Available online: https://github.com/huggingface/peft (accessed on 6 July 2023).

38. Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. In Proceedings of the International Conference on Learning
Representations, New Orleans, LA, USA, 6–9 May 2019.

39. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 3–5 June 2019; pp. 4171–4186.
[CrossRef]

40. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.J. Bleu: A Method for Automatic Evaluation of Machine Translation. In Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, 6–12 July 2002; pp. 311–318.
[CrossRef]

41. Heafield, K. KenLM: Faster and Smaller Language Model Queries. In Proceedings of the Sixth Workshop on Statistical Machine
Translation, Edinburgh, UK, 30–31 July 2011; pp. 187–197.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.18653/v1/N18-1012
http://dx.doi.org/10.3390/math11143048
https://doi.org/10.48550/arXiv.1911.03090
http://dx.doi.org/10.18653/v1/2021.acl-long.378
http://dx.doi.org/10.18653/v1/2020.emnlp-demos.6
https://github.com/huggingface/peft
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.3115/1073083.1073135

	Introduction
	Backgound
	Method
	Problem Formalization
	Structure-Aware Intrinsic Rank Using L0 Norm
	Enhanced Stability Using Orthogonal Regularization
	Controlled Budget Using Lagrangian Relaxation
	Inference

	Experiments
	Task-Oriented Performance
	Task-Agnostic Performance
	Analysis

	Conclusions
	Description of Datasets
	Training Details
	Prompts
	References

