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Abstract: The paper presents an event-triggered higher-order sliding mode controller design. The
event-triggering technique is the alternative approach to real-time controller execution, unlike the
classic time-triggering technique, which is not time-dependable and is governed by the triggering
policy. The technique is suitable for system resource relaxation in case of computation burden or
network usage mitigation. The paper describes the stability analysis of the super-twisted sliding mode
controller based on input-to-state stability notation. The stability analysis introduces a triggering
policy related directly to the ultimate boundness of the system states and preselected sliding variables.
The controller time execution with the selected triggering condition prevents the exhibition of the
Zeno phenomena, where the minimal inter-event time of the controller has a positive non-zero lower
bound. The minimal value of the inter-event time is related directly to the controller parameters
and triggering bound, the selection of which is given with the derived stability conditions regarding
the designer’s objective. Preventing the fast nonlinear controller execution, especially close to the
sliding manifold, also alleviates the chattering phenomena effectively, which is a primal drawback,
and limits the usage of the controller on various systems. The method’s efficiency is verified with
the hardware-in-the-loop system, where the dynamic and robustness of the triggering approach are
compared to the standard time-triggered execution technique.

Keywords: event triggering; sliding mode control; super-twisted controller; chattering alleviation
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1. Introduction

The new methodology of the sampled system opens many areas of system opti-
mization, resource management, scheduling, and data transfer. The classic computer
implementation of a feedback system utilizes fixed-time data rates and precise algorithm
execution [1,2]. Most modern feedback systems rely on the utilization of the time-triggering
decision rule. Such an approach can sometimes be too conservative, leading to insufficient
resource utilization. For example, an equidistant timer-triggering approach can lead to
excessive usage of the communication link in the networked feedback system or distributed
system [3], or inadequate computation power for fast dynamic systems, where classic
approaches of the discrete system cannot be retained [4,5]. A recent paradigm offers a
triggering mechanism for the controller update, which is not strictly time-dependent and
only occurs when control action is needed. Such an approach does not sample the system in
an equidistant time interval and involves the execution action according to the prescribed
triggering rule. Even though constant periodicity is omitted, computation relaxation can be
achieved. Such an approach still needs to preserve the closed-loop properties regarding
stability, state convergence, and time performances [6]. It is of great interest to design an
approach that can ensure the above-mentioned properties and does not rely on periodic
time triggering. The main difference between the time-triggering (TT) and event-triggering
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(ET) control is that the ET involves the triggering rule based on the specific condition of the
system states and is time-independent.

Many scholars have considered ET control in different scenarios and applications.
The authors in [7] studied ET design in networked systems, where the controller and
the plant are in the cyber-physical structure over a wireless network. The studies deal
with distributed systems in the ET approach by introducing different communication
protocols with delay and adaptive data payload management [8–11]. The work considered
the ET approach for the pinned-networked system, where the usage of the network is
relinked over different members in the controlled area in the network [12,13]. Conventional
controller structures with ET mechanisms are studied extensively in networked controlled
and distributed systems. The classic PID controller with an event-triggering mechanism is
studied in [14–17]. The stability analysis of PID-ET with different numerical implementation
approaches is studied in [18]. The authors in [19] studied different ET linear high-order
controllers in the continuous domain. The presented approach is also analyzed for the
linear state space approach [20].

The advanced ET studies introduced a proactive approach, a self-triggering (ST)
mechanism, studied in [21,22]. The advantage of ST is the system’s self-decision regarding
the controller execution. An essential part of the ST is the accurate prediction of the further
system response and planned adequate controller move. The approach is naturally similar
to the model predictive control (MPC) paradigms. The key difference between ST and
MPC is the intention of triggering mechanism relaxation without further controller move
optimization. Regarding the latter, the MPC is subsequently the objective of the ET design
studied in works [23–25]. The accuracy of the prediction is the subject of much research.
The exactness of the mathematical models is limited and suffers from unknown and
complex dynamics, uncertainties, and unknown disturbances. Moreover, the complexity
of the prediction can limit or restrain controller operation in the real-time system. In
many systems with complex and nonlinear dynamics, ST sometimes cannot guarantee
proper performance or can even lead to the unstable operation of the feedback system. To
avoid modeling and nonlinear equations’ complexity, the authors proposed soft-computing
techniques to mitigate the stated shortcomings [26–28]. Moreover, hybrid ET schemes were
proposed in works [29–31]. The studies introduce a delayed and chaotic system for network
synchronization and actuator fault detection under the ET policy.

With regard to the aforementioned factors, the ET approach is studied and analyzed
for nonlinear design techniques. For example, the sliding mode control (SMC) is subject to
different ET design procedures [32–36]. The SMC approach is a nonlinear controller design
technique used to achieve robustness and the desired performance criteria of the feedback
system in the presence of the system’s nonlinearities, uncertainty, and disturbance [37,38].
The key characteristic of the SMC is discontinuous control action regarding the preselected
sliding variable, where the control switches between different controller structures to keep
the system’s trajectory on the sliding surface [39]. This switching behavior makes sliding
mode control suited for complex and uncertain systems. Despite the SMC’s prowess
in handling uncertainties and disturbance, the key drawback is the nonlinear output,
which refers to the high-frequency oscillation around the sliding manifold [40]. High-
frequency oscillation is an undesirable phenomenon for systems, which causes wear of
the physical system, unwanted vibration, and excessive heat dissipation. Several studies
address chattering phenomena and analyze different methods for their suppression. For
example, the second-order sliding mode controller, known as the super-twisted algorithm
(STA), was a subsequent solution to reduce output oscillation by placing the nonlinear term
behind the integrator, ensuring continuous output and preserving the properties of the
first-order SMC [41,42]. Regarding work [43], the chattering phenomena can be suppressed
effectively only for first- and second-order systems, where the parasite dynamics are not
considered. The chattering phenomena alleviation with the digital implementation of the
SMC controller attracts the interest of scholars [41,44–48].
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The event-triggered sliding mode control (ET-SMC) approach has excellent potential
for the NCS system and can be considered a novel chattering alleviation technique. In
work [49], the ET approach for first-order SMC controllers is analyzed in terms of the
embedded system’s computational complexity. The ET schemes for first-order SMC with
uncertainty and delay are presented in [50]. Higher-order SMC controllers, such as STA
with ET techniques, do not have much-reported design procedures and analysis.

This paper deals with the stability analysis of the STA controller with the ET execution
technique. Most event-triggered SMC research deals with the first-order SMC, where the
state boundary and the lower positive inter-event time are presented [49,51]. The work aims
to analyze the event-triggered STA (ET-STA) stability conditions based on the input-to-state
stability (ISS) paradigm. The stability of the closed-loop system and triggering conditions
are derived directly from the STA-SMC reaching phase stability analysis. The stability
of the sliding phase is studied further for the rest of the modified closed-loop system
with STA, where the direct correlation is presented between the closed-loop dynamic and
the triggering boundary. The study also involves the Zeno phenomena analysis, where
the minimal positive lower boundedness of the controller execution time is essential for
controller realization. The derived ET-STA parameter correlation with the state boundaries
and triggering policy offers the designer a transparent approach for controller parameter
selection to achieve the desired closed-loop performance. The ET-STA is further compared
with a standard STA executed with the TT technique. In contrast to the STA, the ET-STA
algorithm excels in improved chattering properties and reduced computation burden. Both
controllers are tested on the hardware-in-the-loop system (HIL), where the controllers are
implemented on the embedded system. Regarding the computation burden relaxation, the
NSC deployment with a longer execution time and delays is favorable.

The structure of the paper is as follows: Section 2 involves the preliminaries of the
ISS stability analysis for the class of nonlinear systems. Section 3 introduced stability
conditions regarding the ET-STA policy. Section 4 introduces the analysis of the lower
nonnegativity boundary of the inter-event time. Section 5 presents the results of the ET-STA
in comparison with the standard TT technique. Section 6 is the conclusion of the work and
a brief introduction of possibilities of further research.

Standard notations are used in the paper. |·| and ‖·‖ denote the absolute value and
Euclidian norm, respectively. Matrix Q ∈ Rn×n is positive definite Q � 0, if xTQx > 0 for
any x 6= 0, x ∈ Rn and xTQx = 0 if x = 0, x ∈ Rn. The notation λmin{Q} or λmax{Q}
means the smallest or largest eigenvalue of a matrix Q. The notation z = 〈x, y〉 represents
an inner product of the vectors x,y. Regarding the ISS stability theorem, the function
α : [0, ∞] 7→ R≥0 , α(0) = 0 is a of class-K if it is increasing strictly, and α(t) of class-K∞ if
it is of class-K and tends to ∞ with respect to t.

2. Preliminaries

Consider the following single-input, single-output nonlinear system of the follow-
ing class,

.
x1 = f1(x1) + x2,
.
x2 = f2(x1, x2) + g(u + d),

(1)

where x1 ∈ Rn−1 and x2 ∈ R are the system states, and u and d are the control input and
external disturbance, respectively. Function g are the input gain function, where it holds
that g 6= 0. The given assumptions are used for further analysis.

Assumption 1. Nonlinear functions f1(x1) and f2(x1, x2) have a unique equilibrium point, where,
without the loss of generality, it holds that f1(0) = 0 and f2(0, 0) = 0. Functions can be represented
with linear and nonlinear terms. The functions are bounded ‖ f1(x1)‖ ≤ F1 and ‖ f2(x1, x2)‖ ≤ F2,
where it holds that F1 ≥ 0 and F2 ≥ 0 are known constants.
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Assumption 2. Nonlinear functions f1(x1) and f2(x1, x2) are Lipschitz with respect to the x1 and
x2 in a compact domain ∈ Rn. There exists constant L, such that ‖ f1(z1)− f1(z2)‖ ≤ L‖z1 − z2‖,
which holds for any z1, z2 ∈ D, and

∥∥ f2(z′1)− f2(z′2)
∥∥ ≤ L′

∥∥z′1 − z′2
∥∥, z′1, z′2 ∈ D, where

z′ = 〈x1, x2〉.

Assumption 3. Suppose that the matched external disturbance d(t) with respect to the control
input u(t) is a continuously differentiable function, where exist some positive constants ∆d and ςd

and it holds that sup t≥0|d(t)| < ∆d ≤ ∞, sup t≥0

∣∣∣ .
d(t)

∣∣∣ < ξd ≤ ∞.

The system dynamic given (1) is rewritten as,

.
x = f (x) + G(u + d), x(0) = x0, (2)

where x = [x1; x2] ∈ Rn, f (x) = [ f1(x1) f2(x1, x2)]
T ∈ Rn, and G = [0 g]T ∈ Rn. In

an event-triggered approach, the controller update is related to the prescribed triggering
interval. Unlike the classic sampling approach, which introduces a fixed update interval, the
ET technique is not time-dependent, and the system is stable in the sense of the preselected
triggering boundary. The ISS analysis introduced by Sonntag [52] is a generalized stability
form of the Lyapunov stability approach, where the functions of class-K and class-K∞ are
introduced for the selected Lyapunov candidate. For example, consider the case where
the system is described as

.
x = f (x, u), where u is a control input and the control law

u = k(x) such that the closed loop system
.
x = f (x, k(x)) is stable. Suppose the controller is

implemented with a sample and holds (SH) technique, where the inter-event time between
two consecutive controller updates is ti and the controller is u(t) = k(ti). Due to the SH
technique, an error exists between the current state and the last update, which is defined as
e(t) = x(t)− x(ti). Then, there exists the Lyapunov function candidate, such that:

α1(‖x‖) ≤ V(x) ≤ α2(‖x‖), (3)

and its derivative,
∂V(x)

∂x
f (x, k(x)) ≤ −α3(‖x‖) + γ(‖e‖), (4)

where α1, α2, α3 are class-K∞ functions, and γ is a class-K function. The system is ISS stable
regarding the error ‖e‖ if the triggering condition is derived in a way that meets the given
criteria,

γ(‖e‖) ≤ λα3(‖x‖) λ ∈ (0, 1), (5)

where the error ‖e‖ is bounded α3
−1, and γ is Lipschitz and holds ‖e‖ ≤ λLx‖x‖. The Lx is

a Lipschitz constant and λ the scaling factor, respectively. Regarding conditions (4) and (5),
it follows that: .

V ≤ −(1− λ)α3(‖x‖) < 0. (6)

The condition (6) provides the asymptotic stability of the system with control law
u = k(x) only if the triggering rule is designed to fulfill criteria (5).

3. Event-Triggering Super-Twisted Controller Design

A super-twisted algorithm (STA) is known as a second-order sliding mode controller,
designed primarily to overcome the unwanted behavior of the first-order SMC (FOSMC).
The STA preserves all the desired characteristics of the FOSMC, where the chattering
phenomena are suppressed by placing the nonlinear function behind the integrator term.
Regarding the research and scholars, the chattering can be suppressed effectively only
for first- and second-order systems [39,40]. In the real scenario, each system contains an
unmodeled and parasitic dynamic. Moreover, different digital implementation techniques
cause unwanted behavior in the closed-loop system and the chattering controller output.
For most SMC digital implementation techniques, the frequency of the chattering phenom-
ena is proportional to the preselected sampling time. The given paper aims to design an
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event-triggered STA which relaxes the computation effort and alleviates the high-frequency
chattering phenomena. In event-triggering control, the controller output is updated in the
discrete-time sequence,

t0, t1, t2, . . . , ti, i = 1, 2, . . . (7)

where {ti}∞
i=0 is an event-triggering instant satisfying the conditions ti+1 > ti, with t0 ≥ 0

being the initial sampling instant. Without a loss of generality, the initial sampling instant
can be selected as t0 = 0. The event-triggering instants are not uniformly distributed
and constant t ∈ [ti, ti+1). The controller u is updated at the instance ti and holds the
last value until the next triggering event occurs at ti+1. The inter-event time is defined as
Ti = {ti+1 − ti}∞

i=0, where the induced error is defined as e(t) = x(t)− x(ti). At the time
of update ti, the error is e(t) = 0, where it holds that e(t) = x(ti)− x(ti) = 0.

For the system given in (2), the sliding variable is defined as

s = cx (8)

where c = [c1 1] and x = [x1 x2]
T . Regarding the discrete implementation of the controller,

the practical sliding mode occurs and is defined by

S ∈ {x ∈ Rn|s = cx < ε}, ε > 0. (9)

The practical sliding mode is discussed in the work [33], and represents the ultimate
bounded sliding variable in the prescribed region around the sliding manifold, which is
independent of the disturbance bound and preselected sampling interval. In an event-
triggering manner, the boundary ε is related to the preselected triggering condition.

The STA controller [53] for the system (2) is given as

u(t) = (cG)−1
(
−c f (x)− k1|s(t)|1/2sign(s(t)) + v(t)

)
.
v(t) = −k2sign(s(t))

. (10)

Regarding the idea of the ET technique, the controller is updated only at the time ti.
The ET-STA controller is defined as

u(t) = (cG)−1
(
−c f (xti )− k1|s(ti)|1/2sign(s(ti)) + v(ti)

)
.
v(t) = −k2sign(s(ti))

. (11)

Theorem 1. The event triggering for a system given in (2) and the controller (11) is established, if,
for a given error function, e(t) and triggering parameter β holds,

‖c‖‖e(t)‖ < β, (12)

for all t > 0, and β ∈ R, β > 0, where the controller gains are selected as

k1 >
√

3
2 (k2 + Gξd) + η

k2 ≥ 7
3 + Gξd + η

, (13)

and it holds that η ≥ 0.

Proof. The attraction of the system variables (2) with the controller (11) to the preselected
sliding variable (8) is proven with the Lyapunov stability theorem. A closed-loop system
with ET-STA is

.
x = f (x)− (c)−1

(
c f (x)− k1|s|1/2sign(s) + v

)
+ Gd,

.
v(t) = −k2sign(s).

(14)
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For brevity, variables at the last updates are assigned with an overline, for example,
s(ti) = s. Regarding the given condition (12), the reaching phase of the SMC with a sliding
variable (8) is analyzed for the inter-event time t ∈ [ti, ti+1) . The Lyapunov function used
is V(t) = 1

2 s(t)2, where the derivative of s with respect to time and condition (13) is

.
s = c

.
x,

.
s = c( f (x)− f (x))− k1|s|1/2sign(s) + v,
.
v(t) = −k2sign(s) + G

.
d.

(15)

The stability of the sliding variable is proven similar to the approach in [38] with
introduced new variables, given as

ζ =
[
ζ1 ζ2

]T
=
[
|s|1/2 sign(s) v

]T
, (16)

where the rewritten system (16) is equal to

.
ζ1 = 1

2|ζ1|

(
c( f (x)− f (x))− k1|s|1/2sign(s) + v

)
,

.
ζ2 = −k2sign(s) + G

.
d,

(17)

where |ζ1| = |s|1/2.
The compact form of expression (17) is given as

.
ζ =

1
|ζ1|

(
A
[

ζ1
ζ2

]
+ B

)
, (18)

where A is

A =
1
2

[
k1 1
0 0

]
, (19)

and B is

B =

[ 1
2 c( f (x)− f (x))

|ζ1|
(
−k2sign(s) + G

.
d
)]. (20)

For the stability analysis of the system (15), the given Lyapunov function V(s) is used:

V(s) = ζT Pζ, (21)

where P is a symmetric matrix, given as:

P =

[
4k2 + k2

1 −k1
−k1 1

]
. (22)

The derivative of (21) along (18) is

.
V(s) =

.
ζ

T
Pζ + ζT P

.
ζ

.
V(s) = 1

‖ζ1‖

(
ζT PA

[
ζ1
ζ2

]
+
[

ζ1 ζ2
]
AT Pζ + 2ζT PB

)

.
V(s) =

1
‖ζ1‖


−
(
4k1k2 + k3

1
)
ζ1ζ1 + k2

1ζ1ζ2 +
(
4k2 + k2

1
)
ζ1ζ2 − k1ζ2ζ2

+2k1k2|ζ1|sign(s)ζ1 − 2k1G|ζ1|ζ1
.
d− 2k2|ζ1|sign(s)ζ2

+2G|ζ1|ζ2
.
d + 2c

(
4k2 + k2

1
)
( f (x)− f (x))ζ1

−2ck1
(

f (x)− G−1 f (x)
)
ζ2

.
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According to Assumption 3 and relation |ζ1|sign(s) ≤ ζ1, the derivative of V(s) is

.
V(s) ≤ 1

‖ζ1‖


−
(
4k1k2 + k3

1
)
ζ1ζ1 + k2

1ζ1ζ2 +
(
k2

1 + 2k2 + 2Gξd
)
ζ1ζ2

+2(k1k2 − k1Gξd)ζ1ζ1 − k1ζ2ζ2+
+2c

(
4k2 + k2

1
)
( f (x)− f (x))ζ1

−2ck1
(

f (x)− G−1 f (x)
)
ζ2

.

The stability has to be analyzed for the condition when |ζ1|sign(s) = |ζ1|sign(s),
and for |ζ1|sign(s) 6= |ζ1|sign(s). In the case where the sliding variable s starts from the
same region as the last values s, it can be assumed that ζ1ζ2 ≤ ‖ζ1‖‖ζ2‖. Regarding
Assumption 2, it holds that ( f (x)− f (x)) ≤ L(x− x). The expression can be rewritten
further as

.
V(s) ≤ 1

‖ζ1‖


−
(
4k1k2 + k3

1
)∥∥ζ1

∥∥‖ζ1‖+ k2
1

∥∥ζ1
∥∥‖ζ2‖+

(
k2

1 + 2k2 + 2Gξd
)
‖ζ1‖‖ζ2‖

+2(k1k2 − k1Gξd)‖ζ1‖2 − k1‖ζ2‖2+
+2c

(
4k2 + k2

1
)

L‖(x− x)‖‖ζ1‖
−2ck1L‖(x− x)‖‖ζ2‖

 (23)

From the last triggering instant, the sliding variable is bounded by

‖s‖ = ‖s + c(x− x)‖, (24)

where
‖s‖ ≤ ‖s‖+ ‖c‖‖(x− x)‖. (25)

The difference x− x is an update error between the current state and the state from the
last update, and can be defined as e = x− x. Regarding the preselected triggering rule (12)
and the condition (25), it holds that:

‖s‖ ≤ ‖s‖+ ‖c‖‖e‖
≤ ‖s‖+ ‖c‖β . (26)

A further extension for variables (16) is∥∥ζ1
∥∥ ≤ ‖ζ1‖+ β̃, (27)

where β̃ = β
1
2 . Substitute (27) to (23) gives

.
V(s) ≤ 1

‖ζ1‖


−
(
4k1k2 + k3

1
)(
‖ζ1‖+ β̃

)
‖ζ1‖+ k2

1

(
‖ζ1‖+ β̃

)
‖ζ2‖

+
(
k2

1 + 2k2 + 2Gξd
)
‖ζ1‖‖ζ2‖

+2(k1k2 − k1Gξd)‖ζ1‖2 − k1‖ζ2‖2+
+2
(
4k2 + k2

1
)

Lβ‖ζ1‖
−2k1Lβ‖ζ2‖

.

A rearrangement of the expression gives

.
V(s) ≤ 1

‖ζ1‖


(
−2k1k2 − 2k1Gξd − k3

1
)
‖ζ1‖2+

2
(
k2

1 + k2 + Gξd
)
‖ζ1‖‖ζ2‖ − k1‖ζ2‖2

+
(

8k2Lβ + 2k2
1Lβ− 4k1k2 β̃− k3

1 β̃
)
‖ζ1‖

−
(

2k1Lβ− k2
1 β̃
)
‖ζ2‖

, (28)

where the matrix form (28) is given as

.
V(s) ≤ − 1

‖ζ1‖ [‖ζ1‖ ‖ζ2‖]Q
[
‖ζ1‖
‖ζ2‖

]
+ 1
‖ζ1‖

Y
[
‖ζ1‖
‖ζ2‖

]
≤ 1
‖ζ1‖

(
−ZTQZ + YZ

) , (29)
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where the new state variable ZT = [‖ζ1‖ ‖ζ2‖] and matrices Q, Y are

Q =


(
2k1k2 + 2k1Gξd + k3

1
)
−
(

k2
1

2 + k2 + Gξd

)
−
(

k2
1

2 + k2 + Gξd

)
k1

, (30)

Y =
[(

8k2Lβ + 2k2
1Lβ− 4k1k2 β̃− k3

1 β̃
)
−
(

2k1Lβ− k2
1 β̃
)]

. (31)

To fulfill the inequality (29), the matrix Q has to be a strict positive definite, and
controller gains k1 and k2 can be selected as

k1 >
√

3
2 (k2 + Gξd) + η

k2 ≥ 7
3 + Gξd + η

. (32)

The parameter η is an additional tuning parameter selected as η ≥ 0. The positive
definiteness of matrix Q fulfills the condition,

λmin(Q)Z2 ≤ ZTQZ ≤ λmax(Q)Z2, (33)

and holds that
.

V(s) ≤ − 1
‖ζ1‖

λmin(Q)Z2 +
1
‖ζ1‖

YZ (34)

The state variable ζ(t) is stabilized in the region Ω =
{

ζ ∈ Rn | ‖ζ‖ ≥ Y
λmin(Q)

}
derived from the condition (34):

− 1
‖ζ1‖

λmin(Q)Z2 + 1
‖ζ1‖

YZ ≤ 0
−λmin(Q)Z + Y ≤ 0
Z ≥ Y

λmin(Q)

With respect to ‖ζ1‖ ≤ ‖ζ‖ and ‖ζ1‖ = ‖s‖1/2, it can be concluded that the sliding
variable s(t) is attracted to the region:

‖s‖ ≤ Y2

λmin(Q)2 (35)

It needs to be mentioned that the region (35) is unstable, and coincides with the
controller action phase when no update occurs. It follows that the sliding variable enters
the region (35) and remains in the future, ensuring stability with the triggering bound
β. For the stability for the case sign(s) 6= sign(s), it has to be proven that the sliding
variable is ultimately bounded. When sliding variables enter the region (35), the triggering
mechanism holds the last output until the variable approaches the boundary, and the
controller is updated with a new value and guides the sliding variable back into the
region (35). The given region after the last update is given as

‖s(t)− s(ti)‖ = ‖c(x− x)‖
≤ ‖c‖‖e‖
≤ β

(36)

The rest of the proof introduces the stability of the remaining system state x1 when the
sliding variable enters the region (35). Regarding the sliding variable (8),

x2 = s− c1x1 (37)
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The stability is analyzed with a selected Lyapunov function V1(t) = 1
2 x1(t)

2, and the
derivative of

.
V1(t) along x1 is

.
V1(t) = x1

.
x1

= x1( f1(x1) + x2)
= x1( f1(x1) + (s− c1x1))

= −‖c1‖‖x1‖2 + F1‖x1‖+ ‖s‖‖x1‖
≤ −(‖c1‖ − F1)‖x1‖2 + ‖s‖‖x1‖
≤ −(‖c1‖ − F1)‖x1‖2 + β‖x1‖

It is clear that the x1 is ultimately bounded with a triggering condition (12) if (‖c1‖ − F1) > 0
holds. This is the end of the proof. �

4. Admissible Inter-Event Time of the ET-STA

Regarding the idea of the SMC approach that leads the system states to the prescribed
sliding variable by employing the nonlinear switch function, it maintains the sliding
variable equal to zero even when uncertainty and disturbance are presented in the system.
By the first-order SMC, the Zeno phenome is exhibited in the system when the algorithm
tries to keep the sliding variable at the sliding manifold in the presence of uncertainty or
disturbance. Zeno phenomena perform infinite controller updates in a finite time, and
restrict the practical implementation of the algorithm by posing the chattering phenomena.
Such behavior of the controller output can potentially harm or exert wear on the system.
It is necessary to avoid and mitigate the unwanted phenomena. In the given approach,
the ET mechanism lowered the controller actions naturally, and effectively alleviated the
chattering phenomenon presented in the work [49].

For ET-STA, it is necessary to ensure that the minimum inter-event time Tmin has a
positive lower bound Tmin > 0. The inter-event time Ti is the time between two successive
controller updates, and is not fixed during controller operation. The lower boundness of
time Ti is also crucial regarding the system computation capability. The inter-event time is
analyzed with the controller structure (11) and the triggering condition (12).

Theorem 2. Consider a system (2) with a controller structure (11) and triggering condition (12).
The inter-event time Ti is positive-lower-bounded if the function Φ(Ti),

Φ(Ti) ,
1
L2

(
k2‖c‖LTi + (κL− k2‖c‖Lti − k2‖c‖)

(
eLTi − 1

))
− ‖c‖−1β, (38)

is Φ(Tmin) ≥ 0, where Ti ≥ Tmin > 0, and holds for all t > 0 and triggering sequences {ti}∞
i=0.

Proof. The inter-event time Ti for the subsequent control execution ti+1 is a time that lets
the error ‖e(t)‖ grow from zero to ‖c‖−1β. Define Π , {t ∈ [ti, ti+1) : ‖e(t)‖ = 0}, for
t ∈ [ti, ti+1)\Π, where inequality holds:

d
dt‖e(t)‖ ≤

∥∥∥ d
dt e(t)

∥∥∥,

=
∥∥∥ d

dt (x(t)− x(ti))
∥∥∥

=
∥∥∥ d

dt x(t)
∥∥∥

=

∥∥∥∥∥ f (x)−
(

f (x)− ck1|s|1/2sign(s)− ck2

t∫
ti

sign(s)dt

)
+ Gd

∥∥∥∥∥
≤ ‖ f (x)− f (x)‖ − k1‖c‖‖s‖1/2 − k2‖c‖(t− ti) + ‖G‖‖d‖
≤ L‖e(t)‖ − k2‖c‖t− k1‖c‖‖s‖1/2 + k2‖c‖ti + ‖G‖∆d

≤ L‖e‖ − k2‖c‖t + κ

, (39)
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where κ = −k1‖c‖‖s‖1/2 + k2‖c‖ti + ‖G‖∆d. The differential equation is solved with the
initial condition e(ti) = 0. The solution of differential inequality given in (39) is

‖e(t)‖ ≤ −κ − k2‖c‖t
L

−

(
−k2‖c‖ − (κL− k2‖c‖Lti − k2‖c‖)eL(t−ti)

)
L2 . (40)

The inequality (40) can be rewritten as

‖e(t)‖ ≤
−κL+k2‖c‖Lt−

(
−k2‖c‖−(κL−k2‖c‖Lti−k2‖c‖)eL(t−ti)

)
L2

≤
−κL+k2‖c‖Lt+k2‖c‖Lti−k2‖c‖Lti−

(
−k2‖c‖−(κL−k2‖c‖Lti−k2‖c‖)eL(t−ti)

)
L2

≤ −κL+k2‖c‖LTi+k2‖c‖Lti−(−k2‖c‖−(κL−k2‖c‖Lti−k2‖c‖)eLTi )
L2

≤ 1
L2

(
k2‖c‖LTi + (κL− k2‖c‖Lti − k2‖c‖)

(
eLTi − 1

))
. (41)

Regarding the triggering condition (12), functions Φ(Ti) and Ω(Ti), the inequality, (41)
are rearranged as

Φ(Ti) ,
1
L2

(
k2‖c‖LTi + (κL− k2‖c‖Lti − k2‖c‖)

(
eLTi − 1

))
− ‖c‖−1β

, Ω(Ti)− ‖c‖−1β
, (42)

where Ω(Ti) ,
1
L2

(
k2‖c‖LTi + (κL− k2‖c‖Lti − k2‖c‖)

(
eLTi − 1

))
. It holds that Ω(0) = 0

and Φ(Ti) is an increasing function for Ti > 0, where

Φ(0) = −‖c‖−1β. (43)

From (42) and (43), it can be concluded that the solution of the inequality (41) is
positive-lower-bounded if there exists Ti ≥ Tmin > 0, which yields Φ(Tmin) = 0 and
Ω(Tmin) ≥ ‖c‖−1β. This is the end of the proof. �

5. Controller Implementation and Comparison

For ET-SMC validation, the second-order system is selected as

.
x′1(t) = x′2(t).
x′2(t) = −2.715 f (u(t))x′2(t)− 1.24u(t) + d(t)

, (44)

where the vector state x′(t) is given as x′(t) = xd(t) − x(t). xd(t) is a known variable.
f (u(t)) is a nonlinear function given as

f (u(t)) =


(u(t) + ηn)sign(u(t)) i f u(t) > ηn

0 i f |u(t)| ≤ ηn
(u(t)− ηn)sign(u(t)) i f u(t) < ηn

, (45)

where ηn = 0.23. The disturbance parameters according to Assumption 3 are ∆d = 1.9 and
ξd = 1.7. The controller parameters (11) with consideration of conditions (12) and (13) are
given in Table 1.

Table 1. ET-STA controller parameters.

Parameters k1 ,k2 ,c ,β

k1 9.71
k2 4.33
c 2.78
β 0.212
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The effectiveness of the ET-SMC approach is verified in the HIL system. The HIL
system is composed of a MATLAB/Simulink environment with an embedded system based
on the STM32 AMRF7xx (ARM32) architecture; a similar approach is presented [54]. The
simulation environment and embedded system are connected over the TCP/IP protocol,
with a measured network latency of approx. < 0.98 ms. The plant and triggering policy
are implemented in the simulated environment, where the controller (11) is embedded
in the ARM32. The communication protocol over TCP/IP uses a fixed message length
of the 250 B/package. When the triggering occurs, the system states are transmitted
to the ARM32. The inter-event time is measured on the embedded system. The solver
step of the HIL system is set to 1 ms and minTi > 17 ms according to the preselected

triggering condition β. Error is calculated as e =
√
(x1(t)− x1(ti))

2 + (x2(t)− x2(ti))
2.

The performance of the ET-STA and TT-STA (TT-time triggering) implementation is verified
with the following indices,

RMSw =

√
1
ns

ns

∑
k=1

w2
k , w ∈

{
x′1, s, uTT , uET

}
, (46)

Flagu =
ns
∑

i=0
ni, ni =

{
0 f or u{‖e(t)‖ ≤ β}
1 f or u{ ‖e(t)‖ > β} , (47)

where ni, ns are triggering instants and the number of triggering events, respectively, and
ns > 0 holds. The average inter-event time Ti during the controller operation is measured as

Ti =
1
ni

ni

∑
i=1

Ti (48)

The ET-STA is compared to the TT-STA with a fixed sampling time of Ts = 1 ms.
Figure 1 shows a comparison of the ET-STA and TT-STA implementation techniques.
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The index values (46)–(48) are presented in Table 2. The RMS value is measured from
time 2.5 s after the transient response.
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Table 2. Performance indices of the ET-STA and TT-STA controllers.

Controller RMSx’
1 RMSu RMSs minTi maxTi meanTi Flag

ET-STA 0.0859 0.0068 5.2 × 10−3 18.2 ms 38.6 s 13.2 s 3.9%
TT-STA 0.0156 0.0712 3.7 × 10−5 1 ms 1 ms 1 ms 100%

Figures 1–4 present the efficiency of the ET implementation methodology. The given
experiments confirm the expected results. The dynamic performance was not affected by the
ET execution policy, and there was practically no deviation from the TT technique. The main
difference can be noticed in the number of execution flags, in Figures 3 and 4. It is evident
that the ET approach reduces the computation burden of the controller drastically, where
almost no updates are required, when the sliding variable s reaches the sliding manifold; see
Figure 3 and Table 2—flag percent. The next update will happen regarding the boundaries
(35) and (36), where the next inter-event time Ti is related closely to the closed-loop system
dynamic and triggering bound β. In contrast to the TT approach, it is evident that Ti � Ts.
The tracking accuracy of the ET-STA is due to the triggering bound β being reduced, which
can be reviewed in Table 2 with RMS measurements for state x′1 and s.

The following results were conducted with the added disturbance d(t) = 0.7 sin(3.5t)+
0.14 sin(5.8t + 0.12). Figures 5–7 present a robustness comparison of the ET-STA and TT-
STA techniques.
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The indices (46)–(48) with added disturbance d are presented in Table 3.

Table 3. Performance indices of the ET-STA and TT-STA controllers.

Controller RMSx’
1 RMSu RMSs minTi maxTi meanTi Flag

ET-STA 0.102 2.71 0.1581 13.3 ms 12.4 s 1.67 s 23.7%
TT-STA 0.087 0.7071 4.9 × 10−4 1 ms 1 ms 1 ms 100%

The added disturbance experiment shows that the closed-loop system’s robustness
was preserved regarding both techniques. The ET-STA has a significant deviation in the
controller output uET , where the disturbance dynamics trigger ET-STA at the level and
consequently produce the stable alternating output. Such a low-frequency signal uET
is not harmful to the system input as a high-frequency chattering result of the fast TT
execution technique. The difference among states’ x′1 RMS values in Table 3 and Figure 5 is
insignificant and confirms that the tracking capability and closed-loop performance were
not disturbed much. The known sliding mode performance of the STA was preserved with
the ET-STA approach.

6. Conclusions

The paper confirms that the event-triggered STA is a reliable real-time controller exe-
cution approach. It has been acknowledged that the SMC properties have not deteriorated,
and all the system performance was preserved. Additionally, event-triggered STA lowers
the computational burden drastically, confirmed by the experiments, and can be used as a
system relaxation technique or in the network control system, where the network traffic
impacts the system performance and stability significantly. For the latter, the network traffic
can be scheduled according to the knowledge of the minimal and average inter-event time.
The triggering bound and STA controller parameters affect the system accuracy perfor-
mance and computational complexity significantly. With proper selection of the controller
parameters, the sliding mode performance is preserved, and the chattering phenomena
can be mitigated effectively. The crucial role of the stability analysis is the ISS properties,
whereby the triggering policy is derived upon the error function, and the practical sliding
mode is established. All the system states are ultimately bounded, and the stability of the
ET-STA is ensured.

Further improvement of the ET-STA operation can be achieved by analyzing the
reaching phase period, where the system states’ attraction to the prescribed sliding variable
introduces a positive invariant set, where the initial value of the system and the proper
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controller action guide the system variables to the prescribed region with minimal controller
action in the transient response.
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