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Abstract: This study investigates the flying sidekick traveling salesman problem (FSTSP), in which
a truck and an unmanned aerial vehicle work together to make deliveries. This study develops a
revised mixed-integer linear programming (MILP) model for the FSTSP. The revised MILP model
performs better than the existing model. Due to the FSTSP’s high complexity, we propose an effective
heuristic based on simulated annealing (SA) to solve the problem. The novelty of the proposed SA
heuristic lies in the new solution representation, which not only determines the visiting sequence of
customers but also the service type of customers and rendezvous positions. Another feature of the
proposed SA is a new operator specifically designed for the FSTSP. To evaluate the performance of
the proposed SA heuristic, we conduct a comprehensive computational study where we fine-tune
the parameters of the SA heuristic and compare the performance of the SA heuristic with several
state-of-the-art algorithms including hybrid genetic algorithm (HGA) and iterated local search (ILS)
in solving existing FSTSP benchmark instances. The results indicate that the proposed SA heuristic
outperforms ILS and is statistically competitive with HGA. It obtains best-known solutions for all
small FSTSP instances and 29 best-known solutions for the 60 large FSTSP instances, including 20 new
best-known solutions.

Keywords: simulated annealing; traveling salesman problem; unmanned aerial vehicle; flying
sidekick traveling salesman problem

MSC: 90B06; 90C11; 68T20

1. Introduction

As the e-commerce market expands, challenges that are encountered by logistics firms
become more complex, particularly in the last-mile delivery. Companies need to meet
customer expectations on shorter delivery times while demands grow higher [1]. According
to [2], for many companies the transportation cost occurring in the last-mile parcel delivery
often exceeds 50% of the total transportation cost.

To run a more cost-effective and efficient business to deliver goods to customers,
logistics companies are looking for more advanced technology to enhance their last-mile
delivery performance. Unmanned aerial vehicles (UAVs)—which are known as drone
technology—have recently received attention from both companies and researchers to be
utilized in a wide range of applications, such as forestry research [3], fisheries assessment
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and management [4], agriculture [5], disaster management [6,7], inspection and monitor-
ing [8–10], and healthcare [11,12], to name a few. This emerging technology opens an
opportunity for the last-mile delivery. Several advantages are offered, including that no
costly human pilot is needed, and no congestion will occur for the travel of the drone [13].

The application of drone technology was initiated by several companies, pioneered
by Amazon in 2013, where Amazon CEO Jeff Bezos first announced “Amazon Prime
Air,” which utilized drones for delivery purposes [14]. A test was later conducted by
Australia Post for delivering small packages [15]. DHL has also developed DHL Parcel to
distribute emergency supplies and medications to one of Germany’s North Sea Islands [16].
Google’s parent company—Alphabet—has developed Project Wing to create a working
drone delivery system [17].

Although drone technology provides new competitive advantages, several innate
limitations, such as flight duration and flight restriction, are unavoidable. Therefore, a
hybrid system integrating drone technology to regular truck delivery was developed to
further extend the benefit of utilizing drones. This type of system was initially tested by
AMP Electric Vehicles and the Department of Aerospace Engineering, University of Cincin-
nati [13]. Later, UPS successfully experimented the integration of the drone technology
with UPS trucks [18].

The hybrid system between drone technology and regular truck delivery has started to
gain attention from researchers and recently has given rise to several optimization problems
proposed in the academic literature [19–25]. Murray and Chu [26] pioneered this stream
of research. They proposed two new variants of the classical traveling salesman problem
(TSP), incorporating drones with a delivery truck. One of the variants is the flying sidekick
traveling salesman problem (FSTSP). When there are long distances between the depot and
customers, the FSTSP is applicable to extend the coverage of the drones by collaborating
with delivery trucks. In the FSTSP, each customer must be served precisely once by either a
delivery truck or a drone working with the truck. Several customers are infeasible to be
visited by a drone, and consequently they could only be visited by the truck. Minimizing
the customer service time and disposition time of vehicles is the purpose of the FSTSP.

This study is motivated by the challenges and the practicality presented by the FSTSP.
The problem is difficult to solve as it extends the TSP, an NP-hard problem. However, since
the truck–drone delivery system is gaining popularity in practice, the FSTSP may become
an essential optimization problem that needs to be effectively solved routinely. Therefore,
an improved mixed-integer linear programming (MILP) model and an effective simulated
annealing (SA) heuristic is developed in this study to solve the problem. Based on the
computational results, our SA is competitive with the state-of-the-art algorithms for the
FSTSP. Thus, the contribution of this study is two-fold:

1. An improved MILP model for the FSTSP is formulated. The model is more compact
and effective than the existing model of Murray and Chu [26].

2. A simulated annealing algorithm is developed for the FSTSP. The proposed SA fea-
tures a new solution representation and a new operator specifically designed for the
FSTSP. It outperforms the iterative local search for the FSTSP and is competitive with
the hybrid genetic algorithm for the FSTSP.

The remainder of the paper is organized as follows. Section 2 reviews the relevant
literature. Section 3 describes the FSTSP and presents a new mixed-integer programming
model for the problem. Section 4 discusses the proposed SA heuristic for solving the FSTSP.
Section 5 presents the experimental results. Section 6 provides conclusions and points out
potential directions for future studies.

2. Literature Review

Murray and Chu [26] pioneered the research on the integrated truck and drone delivery
system by extending the TSP to become the FSTSP. A mixed-integer linear programming
model was formulated for the problem. They also analyzed the influence of a drone’s
speed and endurance toward the potential savings of these two models compared to the
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classical TSP in terms of makespan. Based on the conducted experiments, they showed that
the speed has a significant impact, while the endurance seemingly shows no effect on the
potential savings. The faster a drone is, the higher the potential saving that could be made.

The research on the integrated truck and drone delivery system started to gain mo-
mentum after the work of Murray and Chu [26]. Agatz, Bouman, and Schmidt [19] further
improved the mathematical models of Murray and Chu [26] and successfully solved large
instances to optimality. They also proposed a route-first, cluster-second heuristic of several
versions to solve large instances since they could not solve their mathematical models to
optimality. More recently, Dell’Amico et al. [27] proposed improved mathematical pro-
gramming models for the FSTSP and Roberti and Ruthmair [28] provided a more compact
mathematical model for several variants of TSP-D.

Several solution approaches have been proposed for solving the FSTSP. Exact algo-
rithms such as the branch-and-bound algorithm [24] and branch-and-cut algorithm [27,29]
were developed for the problem. Many heuristic algorithms were also proposed in recent
years. De Freitas and Penna [30] developed a randomized variable neighborhood descent
heuristic for solving the FSTSP. They first solved a TSP to build an initial solution and
then improved the solution by the proposed RVND heuristic. Yurek and Ozmutlu [31]
proposed a decomposition-based iterative optimization algorithm to solve the FSTSP in
two stages. The first stage determines the truck route and the assignment of customers
to the drone. The second stage solves a MILP to improve the solution obtained in the
first stage. De Freitas and Penna [32] developed a variable neighborhood search (VNS)
heuristic for the FSTSP. An initial solution is obtained by optimally solving a TSP. The
proposed VNS is then applied to improve the initial solution. Ha et al. [33] proposed two
algorithms for solving TSP-D. The first algorithm, TSP-LS, applies a local search procedure
on an optimal TSP solution to obtain a feasible TSP-D solution. The second algorithm is a
greedy randomized adaptive search procedure (GRASP). The experimental results suggest
that GRASP outperforms TSP-LS. Ha et al. [34] developed a hybrid genetic algorithm
(HGA) for TSP-D. The algorithm incorporates many features such as dynamic population
management, adaptive diversity control, tailored crossover, and local search operators.
The algorithm is competitive to two existing algorithms and finds many new best-known
solutions. In Ha et al. [35], an iterated local search (ILS) was proposed to solve the TSP
with a Multi-Visit Drone (TSP-MVD), in which a truck works in collaboration with a drone
that can serve up to q ≥ 1 customers consecutively during each sortie. The authors also
tested the performance of ILS on the FSTSP instances (the cases with q = 1) and the obtained
results showed that this metaheuristic performs better than other algorithms in terms of
both solution quality and running time on several instance classes.

Chang and Lee [20] developed a new variant of TSP-D in which multiple drones are
released and received at certain locations. They formulated a nonlinear programming
model to find shift weights to move the center of clusters after applying k-means clustering
and solving the TSP model. Another new variant of TSP-D considering two types of cost,
i.e., total transportation cost and time waste cost when a vehicle has to wait for the other,
was tackled by Ha, Deville, Pham, and Hà [33]. They formulated a mathematical model
for the problem and proposed two algorithms, TSP-LS and greedy randomized adaptive
search procedure (GRASP), to solve instances of various sizes.

Kitjacharoenchai, Ventresca, Moshref-Javadi, Lee, Tanchoco, and Brunese [23] further
extended the TSP-D by considering multiple vehicles. They formulated a mixed-integer
linear program for the problem and developed an Adaptive Insertion Heuristic (ADI).
Several papers have recently dealt with developing various methods to solve the TSP-D,
e.g., dynamic programming, a decomposition-based iterative optimization algorithm, and
an integrated k-means and genetic algorithm [36].

The research of integrating the truck and drone system has been further developed to
address another famous variant of a logistics problem, namely the vehicle routing problem
(VRP). Wang et al. [37] proved several worst-case theorems of vehicle routing problems
with drones (VRP-D). They showed that the comparative speed of the drone to the truck
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and the number of drones carried by a truck determine the worst-case results. Wang and
Sheu [38] formulated a mixed-integer program for VRP-D and developed a branch-and-
price algorithm. In addition, they showed that the average potential cost reduction is over
20% based on the generated benchmark instances. Karak and Abdelghany [22] addressed
an extension of VRP-D by including the pick-up and delivery problem. A mixed-integer
program was developed, and a modified Clarke and Wright algorithm was proposed.
To assess the performance of the developed algorithm, they performed a performance
comparison against two heuristics: the vehicle-driven routing heuristic and the drone-
driven routing heuristic. Furthermore, the dynamic version of VRP-D can be found in
Ulmer and Thomas [39]. Their work reveals that a combination of drones and vehicles
could achieve two major implications, i.e., geographical districting increases the expected
number of same-day deliveries and reduces the delivery resources effectively. Recently,
several approaches have been developed to deal with the VRP-D, e.g., matheuristics [40], a
hybrid VNS/Tabu search algorithm [41], and an adaptive large neighborhood search [25].

In recent years, numerous new drone routing models and applications have emerged
in the literature. For example, Bruni and Khodaparasti [42] introduced the drone routing
problem with beehive sharing and formulated a location-routing model for the problem.
They also derived the problem’s robust counterpart under travel time uncertainty. A
matheuristic combining variable neighborhood descent with an intersection generation
approach is used to solve the problem.

In the business arena, companies are increasingly adopting innovative models to im-
prove responsiveness and efficiency. The use of drones in the logistics sector is a significant
advancement in this direction. Sah et al. [43] concluded that regulatory constraints and
concerns related to privacy and security are the primary barriers hindering the widespread
adoption of drones in logistics operations. Several survey papers have contributed to a
more comprehensive understanding of the field. Chung et al. [44] investigated the state-
of-the-art techniques for optimizing drone operations and drone–truck operations in the
civil engineering sector. This sector encompasses a wide range of applications including
construction, infrastructure, agriculture, transportation, logistics, security, disaster manage-
ment, entertainment, media, etc. Pasha et al. [45] conducted a comprehensive review of the
scientific literature pertaining to drone planning. Daud et al. [46] provided a comprehensive
review of the use of drones in disaster management.

3. Problem Description and Mathematical Model

Figure 1 provides a visual illustration of a solution to the flying sidekick traveling
salesman problem. The sets and parameters used in the mathematical model are also
described as follows. A truck and a drone work in coordination to fulfill the demand
of customers. The drone is launched from and retrieved at the depot or any one of the
customer sites. The demand of each customer is a package. Let C = {1, 2, . . . , c} be the set
of all customers and C′ ⊆ C be the subset of C containing all the customers that the drone
can service. Although there is only one depot, for modeling purposes we use 0 and c + 1 to
represent the starting depot and ending depot, respectively. Let N = {0, 1, . . . , c + 1} be
the set of all nodes; we define N0 = {0, 1, . . . , c} and N+ = {1, 2, . . . , c + 1}. Let τij be
the travel time of the truck from node i to node j and τ′ij be the travel time of the drone from
node i to node j. Let SL and SR be the launching time and retrieving time of the drone and e
be the endurance of the drone. P is the set of all feasible drone routes. Each element of P is
denoted by a triplet < i, j, k >, where i, j, and k represent the launching point, customer site,
and rendezvous point, respectively. A feasible route of the drone must satisfy the following
three conditions:

(1) The drone cannot be launched from the ending depot.
(2) Each delivery point must be drone-eligible and not the drone’s launching point.
(3) Each rendezvous point must be either the ending depot or a customer site, and the

travel time of the drone should be within its endurance.
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The assumptions of the FSTSP are as follows.

(1) The drone can carry at most one package on each trip.
(2) The drone can perform multiple delivery trips.
(3) The truck performs at most one route.
(4) The distance metric is the same for the truck and the drone. More specifically, both

the truck and the drone travel between nodes via the street network.
(5) The time needed to dispatch the drone from the truck is SL (for loading a package and

replacing the battery).
(6) The time needed for the truck to receive the drone is SR.
(7) The drone can be dispatched or received only at the depot and customer nodes.
(8) Both the truck and the drone must wait for the other if it first arrives at the rendezvous

point (a customer site or depot). Receiving time SR and waiting time are included in
the flying time.

(9) When the drone is dispatched from the depot, it does not need the preparation time
SL. The drone can be dispatched after the truck has left the depot.

(10) Every customer is serviced exactly once either by the drone or the truck.

This study modifies the mathematical programming model of Murray and Chu [26]
for a more compact and efficient model. The sets and parameters used in the mathematical
model are also described at the beginning of this section. The modified mathematical model
is as follows.

Decision Variables

xi,j Binary variable. 1 if the truck travels from node i to node j; 0 otherwise.

yi,j,k
Binary variable. 1 if the drone is dispatched at node i, flies from node i to node j, and then
returns to node k; 0 otherwise.

ti Arrival time of the truck at node i.
t′i Arrival time of the drone at node i.

qi,j Load of the truck when it traverses arc (i, j) ∈ E.
pi,j Auxiliary binary decision variable that equals 1 if ti < tj; pi,j = 1 for every i.
TC Completion time.

Objective Function

Minimize TC
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Constraints

∑
w∈M

∑
i∈N0
i 6=j

x
i,j
+ ∑

w∈M
∑

i∈N0
i 6=j

∑
k∈N+

i 6=j

y
i,j,k

= 1 ∀j ∈ C (1)

∑
j∈N+

x
0,j

= 1 (2)

∑
j∈N0

x
j,c+1

= 1 (3)

∑
k∈N+

〈i,j,k〉∈P

y
0,j,k
≤ 1 ∀j ∈ C (4)

∑
i∈N0
〈i,j,k〉∈P

y
i,j,c+1

≤ 1 ∀j ∈ C (5)

∑
i∈N0,k 6=j

x
i,j
= ∑

k∈N+ ,k 6=j
x

j,k
∀j ∈ C (6)

2yi,j,k ≤ ∑
h∈N0
h 6=i

xh,i + ∑
l∈C
l 6=k

xl,k
∀i, j ∈ C, j 6= i,

k ∈ N+, 〈i, j, k〉 ∈ P
(7)

y0,j,k ≤ ∑
h∈N0
h 6=k

xh,k ∀j ∈ C, k ∈ N+, 〈0, j, k〉 ∈ P (8)

∣∣∣N∣∣∣xj,i ≥ qj,i ∀i ∈ C, ∀j ∈ N0 (9)

∑
j∈N0,i 6=j

qj,i − ∑
j∈C,i 6=j

qi,j = ∑
k∈N0

xk,i + ∑
j∈C
j 6=i

∑
k∈N+
〈i,j,k〉∈P

y
ijk

∀i ∈ C (10)

t′i ≥ ti − L(1− ∑
j∈C
j 6=i

∑
k∈N+
〈i,j,k〉∈P

yi,j,k) ∀i ∈ C (11)

t′i ≤ ti + L(1− ∑
j∈C
j 6=i

∑
k∈N+
〈i,j,k〉∈P

yi,j,k) ∀i ∈ C (12)

t′k ≥ tk − L(1− ∑
i∈N0
i 6=k

∑
j∈C

〈i,j,k〉∈P

yi,j,k) ∀k ∈ N+ (13)

t′k ≤ tk + L(1− ∑
i∈N0
i 6=k

∑
j∈C

〈i,j,k〉∈P

yi,j,k) ∀k ∈ N+ (14)

tk ≥ th + τhk + sL( ∑
l∈C
l 6=k

∑
m∈N+
〈k,l,m〉∈P

y
k,l,m

)+

sR( ∑
i∈N0
i 6=k

∑
j∈C

〈i,j,k〉∈P

y
i,j,k

)− L(1− x
hk
)

∀h ∈ N0, k ∈ N+, k 6= h (15)

t′j ≥ t′i + τ′ij − L(1− ∑
k∈N+
〈i,j,k〉∈P

yi,j,k) ∀j ∈ C′, i ∈ N0, i 6= j (16)
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t′k ≥ t′j + τ′jk + SR − L(1− ∑
i∈N0
〈i,j,k〉∈P

yi,j,k) ∀j ∈ C′, k ∈ N+, k 6= j (17)

t′k − t′i − SL( ∑
z∈C

〈k,z,m〉∈P

yk,z,m) ≤ e + L(1− yi,j,k)
∀k ∈ N+, j ∈ C, j 6= k,

i ∈ N, 〈i, j, k〉 ∈ P
(18)

ti + τi,c+1xi,c+1 ≤ TC ∀i ∈ N (19)

t′c+1 ≤ TC (20)

pij + pji = 1 ∀i, j ∈ C, j 6= i (21)

x
i,j
≤ pij ∀i ∈ N0, j ∈ N+ , j 6= i (22)

t′l ≥ t′k − L


3− ∑

j∈C
j 6=l

〈i,j,k〉∈P

yi,j,k − ∑
m∈C
m 6=i
m 6=k
m 6=l

∑
n∈C
j 6=l

〈i,j,k〉∈P

yl,m,n − Pil


∀i ∈ N0, k ∈ N+, k 6= i,

l ∈ C, l 6= i, l 6= k
(23)

t0,i = 0, ∀i ∈ C (24)

ti ≥ 0, t′i ≥ 0, qi,j ≥ 0 ∀i ∈ N+, j ∈ C, j 6= k (25)

xi,j, pi,j, y
i,j,k
∈ {0, 1} (26)

Constraint (1) confirms that the drone or the truck services every customer once
precisely. Constraints (2) and (3) guarantee the departure and the return of the truck
from and to the depot. Constraints (4) and (5) restrict the drone from being dispatched
from the depot at most once and returns to the depot at most once. Constraint (6) is
the flow conservation constraint for the truck. Constraint (7) ensures that if the drone is
dispatched from node i and received at node k, then the truck visits both nodes i and k.
Constraint (8) makes sure that if the drone is dispatched from the depot and received at
node k, then the truck visits node k. Constraint (9) is the capacity constraint. Constraint (10)
forbids sub-tours.

Constraints (11) and (12) synchronize the time between the truck and the drone. When
the drone is dispatched from the truck at a customer node, say, i, the departure times of the
drone and the truck at node i must be the same. However, the drone and the truck may
depart from the depot separately. Similarly, constraints (13) and (14) also synchronize the
time between the truck and the drone. If the drone is received at a customer node, say, k,
then the drone and the truck arrive at node k simultaneously. Note that constraints (11)–(14)
ensure that the drone cannot be received at the node where it was dispatched. Moreover, it
cannot be dispatched from a node multiple times.

Constraint (15) ensures that if the truck travels from node h to node k, its effective
arrival time at node k must include the arrival time at node h and the travel time from
node h to node k. Constraint (16) states that if the drone is launched from node i, its arrival
time at any other node, say, j, must include the travel time from node i to node j. Likewise,
constraint (17) ensures that if the drone is retrieved at a node, say, k, the truck’s arrival
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time at node k must include its travel time from node j to node k and the recovery time SR.
Constraint (18) ensures that the operation time of the drone is within its endurance.

Constraint (19) states that the completion time should be no earlier than the truck’s
arrival at the depot. Similarly, constraint (20) states that the completion time should be
no earlier than the drone’s arrival at the depot. Constraints (21) and (22) determine the
precedence relationship between each pair of customers. Constraint (23) guarantees that
if the drone is dispatched from node l and received at node k, then its launch time from
l, t′w,l does not precede its return time to k, t′w,k. Also, this constraint will not bind if the
drone is not launched from l or does not return to k, or if i does not precede l. Constraint
(24) determines the departure time of the truck at the depot. Constraints (25) and (26) are
variable constraints.

Our mathematical model uses truckload constraints (9) and (10) to avoid sub-tours in
the truck route, as opposed to using constraints (5), (11), (20), and (21) found in the work
of Murray and Chu [26]. This modification renders our model more compact and more
efficient. Specifically, the total number of constraints in our model, comprising constraints
(9) and (10), is |C| × |N0| + |C|. In contrast, the total number of constraints (5), (11), (20),
and (21) used in Murray and Chu [26] is 2 × |C| × (|N+| − 1) + 2 × |C| × (|C| − 1).

4. Simulated Annealing Heuristic for the FSTSP

This study develops a simulated annealing heuristic for solving the FSTSP. SA is
chosen mainly due to its effectiveness and simplicity. Kirkpatrick et al. [47] introduced SA
based on the algorithm developed by Metropolis et al. [48]. Several complex combinatorial
analyses and real-world problems are solved by the heuristic [49–55].

An initial solution is randomly generated to begin the SA. A new neighborhood
solution is subsequently chosen to replace the current solution if its objective function
value is better than that of the current one at each iteration. A solution with a worse
objective function value may also be accepted as the new solution, with a small probability
to allow the search to move to worse solutions, and thus enables SA to escape from local
optimum. The following subsections further discuss the solution representation, initial
solution, neighborhood, and SA procedure for solving the FSTSP.

4.1. Solution Representation

A FSTSP solution is divided into two parts. The first part is a permutation of c
customers, denoted by the set {1, 2, . . . , c}, in which the jth number indicates the jth
customers to be serviced. The second part indicates the service type (vehicle or drone) of
individual customers ranging from 0 to c− 1, where c denotes the number of customers. If
a customer is serviced by the vehicle, the service type is set as 0. Otherwise, the service
type is set to be the number of customers serviced by the truck between the sortie of the
drone and the rendezvous, say, r. If the number of remaining customers to be serviced by
the vehicle after launching the drone at a customer is smaller than r, the rendezvous of
this customer is set to be a depot. The service type of some customers will be changed to
zero if (1) they cannot be serviced by drone as the constraints imposed; (2) the drone is
not in the vehicle; (3) the rendezvous cannot receive the drone; and (4) the flying distance
(from the launching node to the customer and coming back to the rendezvous) exceeds the
endurance of the drone.

4.2. Illustration of Solution Representation

Two graphic examples from Murray and Chu [26] are used to demonstrate the pro-
posed solution representation. There are nine customers in both examples. The graphic
example of Figure 9b in Murray and Chu [26] can be encoded by the solution representation
shown in Figure 2. By scanning the visiting sequence in the first part, and choosing only
the customers with service type zero, the visiting sequence of the vehicle is obtained as
5-3-9-8-2-7-1. Because the service type (or rendezvous position) of customer four is four
and it is the first customer to be serviced, the drone is launched from the depot, and the
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rendezvous position is customer eight (the fourth customer to be serviced by the vehicle
after customer four). Since the vehicle services customer one last, it will return to the depot
after leaving customer one. Because the service type (or rendezvous position) of customer
six is one and its previous truck customer is customer one, the drone will be launched at
customer one, fly to customer six and then go back to the depot. It should be noted that
if the service type of a drone customer is changed to zero, the route of the vehicle will
change. Furthermore, if the drone is launched or received by the vehicle, the launching
time (SL) and the receiving time (SR) should be included in calculating the traveling time of
the vehicle.
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Figure 2. The first example of the FSTSP.

The second graphic example in Figure 10b of Murray and Chu [26] is encoded by
the solution representation shown in Figure 3. In a similar way, the visiting sequence of
the vehicle is obtained as 3-9-8-2-7-6-1. The drone is launching from the depot to service
customer five first since this customer is the first to be serviced. The rendezvous position of
customer five is one, so the rendezvous position is customer three (the first customer to be
serviced by a vehicle after the drone is launched). Because the service type (or rendezvous
position) of customer four is three and the first truck customer before customer four is
customer eight, the drone will be launched at customer eight to service customer four,
and then be received at customer six (the third customer to be serviced by vehicle after
customer eight).
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4.3. Neighborhood

Let σ represent the current solution, and N(σ) denote the set of solutions in the
neighborhood of σ. N(σ) is generated by either one of the swap, insertion, inversion,
and change in service type operators. The swap operator switches the positions of two
randomly selected elements in the first part of σ. The insertion operator inserts a random
element immediately before another random element in the first part of σ. The inversion
operator reverses the order of a random substring in the first part of σ. The change of
service type operator randomly chooses an element in the second part of σ and changes its
value at random (between 0 and N − 1). The four operators are illustrated in Figures 4–7.
The probabilities of performing the swap, insertion, inversion, and change in the service
type operators are fixed at 0.25, 0.25, 0.25, and 0.25, respectively.
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4.4. Parameter Setting and the SA Procedure

Initially, T0 stands as the present temperature T and σ is the random initial solution. σ
consists of a random service sequence of N customers and N service types. σbest represents
the current best solution and Fbest denotes the current best objective function value, obj(σ).
The objective function is the completion time. The calculation of the completion time
can be referred to as the MILP of the FSTSP as proposed by Murray and Chu [26]. The
algorithm searches the neighborhood of σ, N(σ), to obtain a new solution σ′ with the
objective function value obj(σ′). Let ∆ = obj(σ′)− obj(σ) be the change in the objective
function value. If ∆ < 0 (i.e., σ′ is better than σ), then σ is replaced by σ. Otherwise,
the algorithm replaces σ by σ′ with the probability e−∆/T . The best solution obtained
so far and its objective function value, σbest and Fbest, are continuously updated as the
algorithm proceeds.

The current temperature T decreases after Iiter iterations at the rate of T = αT,
0 < α < 1. The algorithm stops when σbest is unchanged after the Nnon−improving con-
secutive temperature decreases. Finally, the algorithm derives the best FSTSP solution from
σbest. Figure 8 depicts the pseudocode of the proposed SA heuristic.
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5. Experimental Results

This section presents the comparative results of the proposed solution approaches
(SA and modified MILP), several heuristics (IP, Saving, Nearest neighbor, and Sweep), and
MILP of Murray and Chu [26] for the FSTSP. Furthermore, the proposed SA is compared
with the state-of-the-art algorithms HGA [34] and ILS [35] for the FSTSP. An Intel® Xeon®

E3-1245 v6@ 3.7 GHz computer with 64 GB of RAM is used to test the proposed SA
in C++. The following subsections explain the test problems, parameter selection, and
experimental results.

5.1. Test Problems

Two FSTSP benchmark datasets are used to verify the performance of the proposed
simulated annealing heuristic. The first dataset is taken from Murray and Chu [26]. The
second dataset is adopted from Ha, Deville, Pham, and Hà [33]. The characteristics of the
two datasets are briefly described below.

The first FSTSP benchmark dataset includes 72 instances. Each instance has ten
customers distributed over an eight-mile square region. The depot of each instance is set
at random. It is either the origin (southwest corner of the area), the center of gravity, or
the average x-coordinate of customers, 0. UAV-eligible customers are randomly set and
comprise 80–90% of the total population. Twenty or forty minutes is randomly assigned to
be the endurance of the UAV. The speed of the UAV is set to be 15, 25, or 35 miles per hour
at random based on Euclidean UAV flight paths. The speed of the truck is set as 25 miles/h.
The truck route is based on the Manhattan metric. Both SL and SR are set to be one minute.
In addition, the Euclidean distance between customers corresponds to the traveling time
between customers for the UAV.

The second FSTSP benchmark dataset contains 60 instances. In each instance, there are
either 50 or 100 customers whose locations are generated at random in a square region of
100 km2, 500 km2, or 1000 km2. Manhattan distance is used for the truck, while Euclidean
distance is used for the drone to reflect the difference in the ways the truck and the drone
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travel. The truck and the drone travel at the same speed of 40 km/h. The endurance or
flight time of the drone is 20 min.

The depot location is set at the lower left corner of the entire service area. For every
instance, only 80% of the customers can be serviced by drone to reflect the real situation.
As in Murray and Chu [26], both the start time SL and pickup time SR are 1 min.

5.2. Parameter Selection

T0, Iiter, α, and Nnon−improving are the four parameters used in the proposed SA, where
T0 denotes the initial temperature, Iiter represents the number of iterations to be performed
at a particular temperature, α is the cooling rate, and Nnon−improving is the maximum
number of consecutive temperature reductions during which the best objective function
value has not been improved. In the following, we will show how the parameter values
are determined.

The parameter values have 44 combinations since each of the four parameters has
four levels, as shown in Table 1. To determine the best values of the four parameters
in combination more effectively, the Taguchi L16 orthogonal design of the experiment
that has 16 parameter combinations obtained by PASS 2023 software (https://www.ncss.
com/software/pass/) (accessed on 1 August 2023) is applied to six randomly generated
test instances for the FSTSP. The proposed SA algorithm is used to solve each of the
selected instances 30 times independently. Table 1 exhibits the average relative percentage
deviation (ARPD) of the best solutions obtained by using different levels of the parameters.

The ARPD is computed as ARPD =
∑6

i=1 ∑30
j=1(objij−objbest

i )
objbest

i
× 100%, where Objij denotes the

total distance of the solution obtained in the jth (j = 1, . . . , 30) replicate of test instance
i (i = 1, . . . , 6) using the SA algorithm with a designated parameter combination; objbest

i
is the total distance of the best solution obtained among 30 replicates of test instance
i (i = 1, . . . , 6) using the SA algorithm with a designated parameter combination.

Table 1. Orthogonal array and the obtained ARPDs for the FSTSP.

Experiment No. T0 Iiter α Nnon−improving ARPD for FSTSP

1 1.0 5000 L * 0.900 5 1.0586
2 1.0 10,000 L 0.925 10 0.8969
3 1.0 15,000 L 0.950 15 0.8168
4 1.0 20,000 L 0.975 20 0.7168
5 1.5 5000 L 0.925 15 0.8259
6 1.5 10,000 L 0.900 20 0.8041
7 1.5 15,000 L 0.975 5 0.7427
8 1.5 20,000 L 0.950 10 0.6790
9 2.0 5000 L 0.950 20 0.7698

10 2.0 10,000 L 0.975 15 0.7032
11 2.0 15,000 L 0.900 10 0.7255
12 2.0 20,000 L 0.925 5 0.7428
13 2.5 5000 L 0.975 10 0.8806
14 2.5 10,000 L 0.950 5 0.8466
15 2.5 15,000 L 0.925 20 0.6737
16 2.5 20,000 L 0.900 15 0.7009

*: L Denotes the length of solution representation.

Table 2 displays the statistical significance for the FSTSP. Iiter has the largest range of
ARPD and is the most significant among the four parameters. In addition, the proposed
SA algorithm can produce a better solution in a prolonged process, as more solutions are
evaluated at the same temperature. T0, Iiter, α, and Nnon−improving are set to be 2.0, 20,000 L,
0.975, and 20, respectively, when solving the FSTSP instances to seek a balance between the
solution time and solution quality.

https://www.ncss.com/software/pass/
https://www.ncss.com/software/pass/
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Table 2. ARPDs obtained by different levels of each parameter for the FSTSP.

Level T0 Iiter α Nnon−improving

1 0.8723 0.8837 0.8223 0.8477
2 0.7629 0.8127 0.7848 0.7955
3 0.7353 0.7396 0.7780 0.7617
4 0.7754 0.7099 0.7608 0.7411

Range 0.1369 0.1739 0.0615 0.1066
Rank 2 1 4 3

5.3. Results and Discussion

It should be noted that the several heuristics (IP, Savings, Nearest neighbor, and
Sweep) proposed by Murray and Chu [26] were run on a PC with an Intel quad-core
i7–860 processor and 4 GB RAM under 64-bit Ubuntu Linux 14.04 [26], which is different
from the computer used in this study. Since the hardware, software, and code efficiency
all affect solution time, a direct comparison between the efficiency of the algorithms is
infeasible. Therefore, the single-thread performance of CPUs (http://www.cpubenchmark.
net/singleThread.html, accessed on 1 August 2023) is used to measure the relative speed of
different processors. The original computer used to run the several heuristics (IP, Saving,
Nearest neighbor, and Sweep) has a score of 1319. The computer running the proposed SA
heuristic has a score of 2429. The HGA and ILS are implemented in C++ and compiled with
the “−O3” flag. The experiments are run on a desktop computer with an Intel Core i7-6700,
3.4 GHz processor which has a score of 2302. The speed of the computer for the HGA and
ILS are similar to the speed of the computer used by the proposed SA. Because the HGA
and ILS are executed 10 times for the first FSTSP dataset, the proposed SA is also executed
10 times and the best and average solutions among 10 runs are recorded for comparison.
Because the MILPMC used the same maximal computational time (1800 s), the maximal
computational time is set to 1800 s to MILPNew.

The objective function values of the best solutions for each benchmark instance ob-
tained using various algorithms are compared based on the relative percentage deviation
(RPD), calculated as

RPDh =
Objh −ObjB

ObjB
× 100%,

where Objh and ObjB are the best objective function values obtained by solution approach
h and the best-known solution (BKS), respectively.

Table 3 summarizes results obtained by the various heuristics compared for the first
FSTSP dataset. The detailed objective function values obtained by these solution ap-
proaches are listed in Table 4. The average RPD on the best solution among 10 runs of
the proposed SA heuristic is 0.000%, whereas the corresponding values for IP, Savings,
Nearest, Sweep, HGA, ILS, MILPMC, and MILPNew are 2.072%, 3.604%, 6.215%, 11.807%,
0.008%, 0.000%, 3.537%, and 0.421%, respectively. The maximal RPD on the 72 benchmark
instances for the proposed SA is 0.000%, whereas the corresponding values for IP, Savings,
Nearest, Sweep, HGA, and ILS are 14.083%, 18.300%, 21.315%, 36.803%, 0.569%, 0.000%,
30.486%, and 4.186%, respectively. Therefore, the proposed SA algorithm is competitive
to the existing methods. It should be noted that the solutions to Problems 11, 61, and
63 reported in Murray and Chu (2015) are incorrect. For the 72 benchmark instances,
the proposed SA finds 72 BKSs (72/72 = 100.00%), while IP, Savings, Nearest, Sweep,
HGA, and ILS find 32 (32/72 = 44.444%), 21 (21/72 = 29.167%), 12 (12/72 = 16.667%), 1
(1/72 = 1.389%), 70 (71/72 = 98.611%), 72 (72/72 = 100.00%) BKSs, 37 (37/72 = 51.389%),
and 51 (51/72 = 70.833%), respectively. Clearly, the proposed SA and ILS heuristics obtain
more BKSs than any one of the other solution approaches in the comparison. Further-
more, the proposed SA requires merely 1.091 s on average and 1.775 s maximum. These
results show that the proposed SA heuristic either outperforms or is comparable with
state-of-the-art algorithms in solving the FSTSP.

http://www.cpubenchmark.net/singleThread.html
http://www.cpubenchmark.net/singleThread.html


Mathematics 2023, 11, 4305 14 of 21

Table 3. Summary of results obtained by various solution approaches for the first FSTSP dataset.

Method Average RDP for the Best
Solution among 10 Runs

Max. RDP for 72
Benchmark Problems # of BKS Attained

IP 2.072% 14.083% 32
Savings ! 3.604% 18.300% 21
Nearest ! 6.215% 21.315% 12

Sweep 11.807% 36.803% 1
HGA 0.008% 0.569% 71
ILS 0.000% 0.000% 72
SA 0.000% 0.000% 72

MILPMC 0.000% 30.486% 31
MILPNew 0.000% 4.186% 57

! Incorrect solutions are excluded.

Table 5 summarizes results obtained by the various heuristics for the second dataset.
The detailed objective function values obtained by these solution approaches are listed in
Tables 6 and 7. The average RPD of the best solution among 10 runs on the 60 benchmark
instances for the proposed SA heuristic is 0.261%, whereas the corresponding values for
HGA and ILS are 0.258% and 0.720%, respectively. The average RPD of the average
solution among 10 runs for the proposed SA is 1.043%, whereas the corresponding values
for HGA and ILS are 0.812% and 2.915%, respectively. For the 60 benchmark instances, the
proposed SA finds 29 BKSs (29/60 = 48.33%), while HGA and ILS are 27 (27/60 = 45.00%)
and 16 (16/60 = 26.677%) BKSs, respectively. Clearly, the proposed SA heuristic obtains
more BKSs than other solution approaches in the comparison. The average computation
time for SA is 2.52 min, while the corresponding values for HGA and ILS are 2.66 and
1.59 min, respectively.
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Table 4. The objective function values obtained by various heuristics on the FSTSP for the first problem dataset.

No. IP Savings Nearest Sweep HGA ILS SA MILPMC MILPnew No. IP Savings Nearest Sweep HGA ILS SA MILPMC MILPnew

1 56.468 56.709 57.992 57.992 56.468 56.468 56.468 56.468 56.468 37 49.996 49.996 50.030 58.378 49.422 49.422 49.422 51.922 49.422
2 50.573 50.813 52.625 52.096 50.573 50.573 50.573 52.096 52.690 38 49.470 49.470 49.470 54.493 49.204 49.204 49.204 49.204 49.204
3 53.207 55.351 53.207 57.367 53.207 53.207 53.207 53.207 53.207 39 62.796 62.796 64.270 69.147 62.576 62.222 62.222 65.624 62.222
4 47.311 53.761 47.311 51.471 47.311 47.311 47.311 47.311 47.311 40 62.270 62.270 62.270 68.183 62.004 62.004 62.004 62.270 62.004
5 53.687 53.687 53.687 56.395 53.687 53.687 53.687 53.687 53.687 41 42.799 46.367 51.599 44.253 42.533 42.533 42.533 44.253 42.799
6 53.687 53.687 53.687 56.241 53.687 53.687 53.687 53.687 54.241 42 42.799 46.367 50.015 44.253 42.533 42.533 42.533 44.253 42.799
7 67.464 67.464 67.464 80.958 67.464 67.464 67.464 67.464 67.464 43 43.342 43.342 43.369 52.503 43.076 43.076 43.076 43.076 43.076
8 66.487 66.487 66.487 80.726 66.487 66.487 66.487 66.487 66.487 44 43.342 43.342 43.369 52.503 43.076 43.076 43.076 43.076 43.297
9 51.149 51.390 51.172 51.172 50.551 50.551 50.551 50.551 51.634 45 49.204 49.204 49.470 56.347 49.204 49.204 49.204 49.204 49.204
10 51.149 51.149 51.149 51.149 44.835 44.835 44.835 45.835 44.835 46 49.204 49.204 49.470 54.423 49.204 49.204 49.204 49.204 49.204
11 45.176 ! 47.601 45.176 ! 46.576 47.311 47.311 47.311 47.601 47.601 47 62.004 62.004 64.270 69.881 62.004 62.004 62.004 62.004 62.004
12 45.863 47.601 45.863 46.576 43.602 43.602 43.602 47.601 44.285 48 62.004 62.004 62.830 64.404 62.004 62.004 62.004 62.004 62.004
13 49.581 49.581 49.581 49.581 49.581 49.581 49.581 51.887 49.581 49 69.586 69.586 82.280 79.760 69.586 69.586 69.586 69.586 69.586
14 47.791 47.791 47.791 48.369 46.621 46.621 46.621 46.621 46.621 50 55.493 55.493 59.413 57.251 55.493 55.493 55.493 57.251 55.493
15 62.381 62.381 62.381 75.983 62.381 62.381 62.381 64.687 62.381 51 72.146 74.740 86.043 86.605 72.146 72.146 72.146 72.146 72.146
16 60.591 60.591 60.591 69.247 59.416 59.416 59.416 59.776 59.416 52 58.053 58.053 64.054 76.009 58.053 58.053 58.053 58.053 58.053
17 46.254 46.254 46.276 46.276 42.416 42.416 42.416 45.985 42.996 53 77.344 82.083 91.763 91.304 77.344 77.344 77.344 77.344 77.344
18 46.254 46.254 46.254 46.254 42.416 42.416 42.416 42.416 42.416 54 69.900 70.853 74.773 74.454 68.431 68.431 68.431 69.175 69.431
19 42.416 47.601 42.416 46.576 41.729 41.729 41.729 43.093 41.729 55 90.144 94.883 104.563 105.104 90.144 90.144 90.144 90.144 90.144
20 42.416 47.601 42.416 46.576 41.729 41.729 41.729 41.729 41.729 56 82.700 83.653 89.654 88.947 82.700 82.700 82.700 82.700 82.700
21 42.896 42.896 42.896 48.369 42.896 42.896 42.896 48.214 42.896 57 55.493 55.493 61.707 57.251 54.973 54.973 54.973 63.247 55.302
22 42.896 42.896 42.896 48.369 42.896 42.896 42.896 42.896 42.896 58 53.980 53.980 54.252 53.741 51.929 51.929 51.929 53.447 52.093
23 56.696 56.696 56.696 76.983 56.273 56.273 56.273 61.569 56.273 59 58.053 60.530 64.054 64.054 55.209 55.209 55.209 64.702 55.209
24 55.696 55.696 55.696 59.653 55.696 55.696 55.696 55.696 55.696 60 57.088 57.088 53.837 60.249 52.329 52.329 52.329 52.329 52.329
25 49.430 53.890 55.111 53.044 49.430 49.430 49.430 49.430 49.430 61 69.009 64.409 ! 68.489 70.650 65.523 65.523 65.523 67.770 65.523
26 46.886 48.340 54.952 48.340 46.886 46.886 46.886 48.723 46.886 62 64.841 64.409 65.010 65.105 60.743 60.743 60.743 60.743 61.886
27 50.708 52.133 57.591 58.628 50.708 50.708 50.708 50.708 50.708 63 80.809 77.209 ! 81.289 86.777 78.323 78.323 78.323 83.700 78.323
28 46.423 46.423 47.543 58.582 46.423 46.423 46.423 46.423 46.423 64 74.686 73.967 77.209 80.809 72.967 72.967 72.967 74.686 74.686
29 56.102 56.102 62.331 71.426 56.102 56.102 56.102 56.102 56.102 65 49.049 49.049 54.658 50.009 45.931 45.931 45.931 59.321 45.931
30 56.102 56.102 57.060 57.102 53.933 53.933 53.933 53.933 55.223 66 49.049 49.049 54.658 50.009 45.931 45.931 45.931 47.250 46.740
31 69.902 69.902 76.131 81.606 69.902 69.902 69.902 69.902 69.902 67 47.935 55.524 54.481 64.155 46.935 46.935 46.935 61.240 47.935
32 68.902 68.902 74.717 71.757 68.397 68.397 68.397 68.397 68.902 68 47.935 53.555 52.481 60.249 46.935 46.935 46.935 48.865 47.935
33 43.533 49.787 45.950 44.987 43.533 43.533 43.533 45.358 43.533 69 61.886 57.382 60.476 60.744 56.395 56.395 56.395 67.435 56.395
34 43.533 46.358 50.979 44.987 43.533 43.533 43.533 46.590 43.533 70 61.886 57.382 57.265 60.744 56.395 56.395 56.395 56.395 57.382
35 44.076 44.076 45.040 50.876 43.949 56.468 43.949 44.076 44.076 71 74.686 69.195 73.276 75.436 69.195 69.195 69.195 83.700 69.195
36 44.076 44.076 44.076 47.900 43.810 50.573 43.810 44.076 43.810 72 73.894 69.195 69.195 80.809 69.195 69.195 69.195 69.195 69.195

A bold number indicates the best results obtained. ! denotes infeasible solutions.

Table 5. Summary of results obtained by various solution approaches for the second FSTSP dataset.

Method Average RDP for the Best Solution among 10 Runs Average RDP for the Average Solution among 10 Runs # of BKS Obtained Average Computing Time (Min)

HGA 0.258% 0.812% 27 2.66
ILS 0.720% 2.915% 16 1.59
SA 0.261% 1.043% 29 2.52
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Table 6. The objective function values obtained by various heuristics for the second FSTSP dataset with N = 50.

Inst. BKS ILS HGA SA

Best Gap Ave. Gap Time (m) Best Gap Ave. Gap Time (m) Best Gap Ave. Gap Time (m)

B1 115.59 115.65 0.05 116.43 0.73 0.76 115.72 0.11 118.45 2.47 0.38 115.59 0.00 116.36 0.67 1.21
B2 118.39 118.39 0.00 118.39 0.00 0.33 118.39 0.00 119.96 1.33 0.36 118.39 0.00 118.88 0.41 1.07
B3 116.21 116.21 0.00 116.39 0.15 0.57 116.21 0.00 118.79 2.22 0.47 116.21 0.00 116.25 0.03 1.09
B4 118.71 118.71 0.00 119.26 0.46 0.47 118.99 0.24 120.65 1.63 0.48 118.93 0.19 119.09 0.32 1.07
B5 115.78 115.78 0.00 115.91 0.11 0.58 115.78 0.00 118.48 2.33 0.38 116.72 0.81 117.53 1.51 1.09
B6 114.31 114.31 0.00 115.46 1.01 0.88 115.26 0.83 117.97 3.20 0.46 115.11 0.70 115.96 1.44 1.08
B7 115.52 115.52 0.00 115.63 0.10 0.62 115.53 0.01 116.63 0.96 0.41 115.52 0.00 115.67 0.13 1.08
B8 117.16 117.90 0.63 118.04 0.75 0.78 117.90 0.63 118.28 0.96 0.39 117.16 0.00 118.02 0.73 1.09
B9 117.64 117.64 0.00 117.72 0.07 0.39 117.72 0.07 118.69 0.89 0.37 117.72 0.07 117.73 0.08 1.10
B10 116.94 117.38 0.38 117.70 0.65 0.60 117.74 0.68 119.13 1.87 0.44 116.94 0.00 117.75 0.69 1.08
C1 215.00 215.07 0.03 215.37 0.17 0.60 215.00 0.00 218.87 1.80 0.43 215.47 0.22 215.64 0.30 1.24
C2 208.66 209.23 0.27 210.11 0.69 0.53 209.69 0.49 210.47 0.87 0.35 208.66 0.00 209.45 0.38 1.18
C3 212.02 212.02 0.00 212.22 0.09 0.38 212.02 0.00 214.38 1.11 0.24 212.36 0.16 212.36 0.16 1.14
C4 212.00 212.08 0.04 213.27 0.60 0.60 213.45 0.68 217.67 2.67 0.44 212.00 0.00 214.85 1.34 1.26
C5 220.50 223.06 1.16 224.57 1.85 0.48 220.50 0.00 226.23 2.60 0.34 220.50 0.00 224.03 1.60 1.22
C6 233.67 234.01 0.15 235.56 0.81 0.31 233.67 0.00 237.38 1.59 0.31 233.67 0.00 235.76 0.89 1.16
C7 222.27 222.27 0.00 223.40 0.51 0.51 222.81 0.24 227.99 2.57 0.45 224.08 0.81 224.08 0.81 1.22
C8 233.43 234.26 0.36 237.53 1.76 0.46 233.71 0.12 238.45 2.15 0.39 233.43 0.00 236.89 1.48 1.19
C9 223.57 226.01 1.09 227.43 1.73 0.68 226.02 1.10 233.10 4.26 0.42 223.57 0.00 226.19 1.17 1.26

C10 225.93 226.17 0.11 226.17 0.11 0.48 225.93 0.00 229.74 1.69 0.38 226.90 0.43 226.97 0.46 1.22
D1 304.73 306.39 0.54 307.09 0.77 0.61 304.73 0.00 313.18 2.77 0.33 305.45 0.24 307.27 0.83 1.24
D2 311.56 313.93 0.76 315.64 1.31 0.57 311.80 0.08 317.17 1.80 0.35 311.56 0.00 314.03 0.79 1.24
D3 293.31 295.86 0.87 297.54 1.44 0.60 294.23 0.31 308.78 5.27 0.36 293.31 0.00 294.10 0.27 1.22
D4 323.42 323.72 0.09 324.60 0.36 0.56 323.42 0.00 329.17 1.78 0.33 324.13 0.22 326.23 0.87 1.18
D5 319.17 321.46 0.72 321.83 0.83 0.40 319.17 0.00 320.89 0.54 0.24 319.44 0.08 320.10 0.29 1.22
D6 313.11 313.21 0.03 313.65 0.17 0.49 313.11 0.00 314.13 0.33 0.28 314.03 0.29 314.99 0.60 1.18
D7 316.65 316.65 0.00 317.83 0.37 0.32 319.92 1.03 323.78 2.25 0.35 316.87 0.07 316.88 0.07 1.17
D8 289.48 293.76 1.48 296.51 2.43 0.58 289.48 0.00 292.39 1.01 0.33 289.48 0.00 294.65 1.79 1.20
D9 316.04 317.85 0.57 318.31 0.72 0.41 316.04 0.00 322.55 2.06 0.34 316.04 0.00 329.20 4.16 1.20
D10 301.79 305.51 1.23 305.54 1.24 0.41 303.09 0.43 308.70 2.29 0.33 301.79 0.00 301.88 0.03 1.19
Ave 0.352 0.733 0.532 0.235 1.976 0.371 0.143 0.811 1.170

A bold number indicates the best results obtained.



Mathematics 2023, 11, 4305 17 of 21

Table 7. The objective function values obtained by various heuristics for the second FSTSP dataset with N = 100.

Inst. BKS ILS HGA SA

Best Gap Ave. Gap Time (m) Best Gap Ave. Gap Time (m) Best Gap Ave. Gap Time (m)

E1 187.67 187.67 0.00 188.32 0.35 3.60 188.46 0.42 189.89 1.18 2.89 188.73 0.56 188.87 0.64 3.72
E2 187.21 187.21 0.00 188.01 0.43 5.60 187.59 0.20 189.62 1.29 3.53 187.82 0.33 188.61 0.75 3.56
E3 188.09 188.09 0.00 188.89 0.43 4.58 188.54 0.24 190.26 1.15 2.75 188.87 0.41 189.58 0.79 3.60
E4 186.23 186.23 0.00 186.99 0.41 4.69 187.32 0.59 188.78 1.37 2.61 186.51 0.15 187.06 0.45 3.57
E5 187.71 187.71 0.00 188.26 0.29 4.06 188.30 0.31 190.07 1.26 2.13 188.20 0.26 188.89 0.63 3.62
E6 189.16 189.16 0.00 189.44 0.15 4.84 189.83 0.35 192.11 1.56 2.63 189.67 0.27 191.85 1.42 3.60
E7 189.95 190.39 0.23 190.89 0.49 3.84 190.68 0.38 192.16 1.16 3.01 189.95 0.00 190.46 0.27 3.60
E8 189.02 189.02 0.00 189.54 0.28 4.22 189.46 0.23 190.85 0.97 3.10 189.14 0.06 189.43 0.22 3.59
E9 189.07 189.76 0.36 189.94 0.46 4.00 189.07 0.00 190.55 0.78 2.29 189.07 0.00 189.78 0.38 3.59

E10 188.96 189.45 0.26 189.91 0.50 3.40 188.96 0.00 190.00 0.55 1.96 189.20 0.13 189.49 0.28 3.52
F1 322.94 322.94 0.00 326.10 0.98 5.73 328.19 1.63 337.49 4.51 3.08 323.31 0.11 325.93 0.93 4.16
F2 308.15 308.74 0.19 310.89 0.89 5.24 311.50 1.09 319.35 3.63 2.95 308.15 0.00 312.68 1.47 4.03
F3 309.67 309.67 0.00 313.55 1.25 5.61 317.51 2.53 330.40 6.69 2.84 314.07 1.42 321.48 3.81 4.01
F4 311.37 311.37 0.00 314.96 1.15 6.06 316.86 1.76 323.86 4.01 2.66 312.29 0.30 316.90 1.78 3.99
F5 313.51 314.82 0.42 317.83 1.38 6.57 318.52 1.60 332.07 5.92 2.84 313.51 0.00 318.11 1.47 4.09
F6 294.38 294.38 0.00 297.47 1.05 4.70 296.65 0.77 313.77 6.59 3.08 295.34 0.33 297.14 0.94 4.00
F7 311.41 311.41 0.00 316.15 1.52 4.92 316.94 1.78 329.39 5.77 2.70 311.47 0.02 313.54 0.68 4.10
F8 323.74 323.74 0.00 326.40 0.82 5.21 329.22 1.69 336.00 3.79 2.87 324.60 0.27 327.52 1.17 4.04
F9 315.04 315.56 0.17 318.47 1.09 4.66 316.69 0.52 326.71 3.70 3.18 315.04 0.00 317.25 0.70 3.83

F10 312.37 312.70 0.11 315.13 0.88 3.94 321.89 3.05 327.84 4.95 3.00 312.37 0.00 314.20 0.59 3.32
G1 413.52 417.92 1.06 425.19 2.82 4.45 416.70 0.77 437.84 5.88 2.43 413.52 0.00 417.08 0.86 4.25
G2 389.46 389.64 0.05 390.14 0.17 2.40 394.82 1.38 405.97 4.24 2.85 389.46 0.00 390.96 0.39 4.14
G3 411.47 411.47 0.00 415.14 0.89 4.90 418.44 1.69 433.66 5.39 3.04 423.59 2.95 429.28 4.33 4.24
G4 429.47 433.09 0.84 435.56 1.42 4.67 443.99 3.38 457.26 6.47 2.71 429.47 0.00 435.83 1.48 4.00
G5 419.94 421.05 0.26 422.49 0.61 4.48 423.99 0.96 435.99 3.82 2.38 419.94 0.00 424.61 1.11 4.05
G6 415.46 415.46 0.00 420.84 1.29 5.51 420.91 1.31 436.48 5.06 2.87 421.30 1.41 426.96 2.77 4.21
G7 409.24 409.31 0.02 412.14 0.71 5.21 414.10 1.19 433.60 5.95 2.71 409.24 0.00 411.58 0.57 4.18
G8 402.76 406.51 0.93 407.89 1.27 5.08 411.63 2.20 426.55 5.91 2.84 402.76 0.00 417.30 3.61 4.11
G9 428.16 428.16 0.00 435.75 1.77 5.91 434.75 1.54 453.15 5.84 3.31 438.40 2.39 440.99 3.00 3.92

G10 426.82 426.82 0.00 430.94 0.97 5.40 437.87 2.59 453.32 6.21 2.92 426.96 0.03 430.17 0.78 3.44
Ave 0.16 0.89 4.78 1.21 3.85 2.81 0.38 1.27 3.87

A bold number indicates the best results obtained.
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To show that the SA heuristic is competitive with other solution approaches for the
FSTSP in the first problem set, the paired t-tests are performed based on ARPD. Table 8
demonstrates that, at a confidence level of α = 0.05, the proposed SA heuristic significantly
outperforms IP, Savings, Nearest, and Sweep, while there is no significant difference
between SA, HGA, and ILS, as can be seen from Table 8.

Table 8. Paired t-tests on RPD for the first FSTSP dataset.

SA vs. IP Savings Nearest Sweep HGA ILS

Difference 2.101 3.707 6.303 9.872 0.008 0.000
Degree of freedom 70 69 70 70 71 71

t-value −5.467 −6.479 −8.082 −9.228 −1.000 NA
p-value 0.000 0.000 0.000 0.000 * 0.321 NA

* Denotes that a significant difference exists.

Table 9 demonstrates that, at a confidence level of α = 0.05, the proposed SA heuristic
significantly outperforms ILS for both the best and average objective function value, at the
expense of more computing time. Furthermore, there is no significant difference between
SA and HGA. That is, the proposed SA is comparable with HGA.

Table 9. Paired t-tests on RPD for the second FSTSP dataset.

Best Obj. among 10 Runs Average Obj. among 10 Runs

SA vs. HGA ILS SA vs. HGA ILS

Difference 0.004 −0.459 Difference 0.231 −1.872
Degree of freedom 59 59 Degree of freedom 59 59

t-value 0.038 −3.961 t-value 1.898 −8.512
p-value 0.9702 0.0002 * p-value 0.0626 0.0000 *

* Denotes that a significant difference exists.

We further analyze the number of BKSs found by HGA, ILS, and SA for the second
FSTSP. The number of customers is set to be N = 50 and N = 100, and three cases of
customer locations are analyzed. The locations are generated at random in a square region
of 100 km2, 500 km2, and 1000 km2 for Case 1, Case 2, and Case 3, respectively. As shown
in Figure 9, ILS performs the best only for N = 50 (Case 3), while SA performs the best for
N = 50 (Case 2) and N = 100 (Case 3). HGA performs the best for N = 50 (Case 1), N = 100
(Case 1), and N = 100 (Case 2). Overall, SA can obtain the largest number of BKSs among
the three heuristics.
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6. Conclusions

The FSTSP is a relatively new distribution model in which a truck and a drone collabo-
rate to deliver goods. Several leading e-commerce and logistics companies have started to
test or offer this type of delivery service, making the FSTSP an important logistics model.
This study contributes to the ongoing research stream on truck–drone delivery systems in
both practice and theory.

The theoretical framework of this study can be summarized in three main points. First,
this study formulates a revised MILP model that outperforms the original MILP model
of Murray and Chu [26]. Second, the FSTSP extends the NP-hard TSP, thus inheriting
its NP-hard complexity. Consequently, exact solution approaches are only feasible for
small-scale FSTSP instances. To solve large-scale FSTSP instances, this study develops a
new SA-based heuristic, featuring a unique solution representation and a novel operator
tailored for the FSTSP. The solution representation accounts for not just the customer visit
sequence but also service types and rendezvous positions. The operator determines the
service type received by each customer. These unique features set our SA apart from other
SA algorithms. Third, recognizing the influence of parameter values on metaheuristic
performance, this study employs the Taguchi L16 orthogonal design to determine the best
parameter combination. This commonly used experimental design systematically explores
16 different parameter combinations on 6 randomly selected FSTSP instances. For statistical
validity, each combination is tested through 30 independent runs.

Experimental results indicate that the proposed SA outperforms the heuristics pro-
posed by Murray and Chu [26] and Ha, Vu, Le, and Hoang [35] in terms of solution quality.
Although there is no significant difference between SA and HGA on the first FSTSP bench-
mark dataset, the proposed SA is comparable to HGA and superior to ILS on the second
FSTSP benchmark dataset. Furthermore, the proposed SA heuristic obtains more BKSs than
both HGA and ILS in the comparative analysis.

There are some limitations of this study. First, the performance analysis of various
solution approaches may be improved. A more comprehensive experiment with more
benchmark instances of practical sizes may be conducted to analyze the performance of the
proposed SA and other state-of-the-art algorithms for the FSTSP. Second, the effect of the
new solution representation scheme and the new operator in the proposed SA algorithm
may be further analyzed before the algorithm can be used to solve similar problems or
large real-world problems.

Future studies may extend the problem to accommodate new distribution models that
utilize more trucks and drones and address other practical considerations such as delivery
time windows, mixed fleets of trucks, larger trucks that can carry multiple drones, and
larger drones that can deliver multiple packages.
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