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Abstract: Bird voice classification is a crucial issue in wild bird protection work. However, the existing
strategies of static classification are always unable to achieve the desired outcomes in a dynamic data
stream context, as the standard machine learning approaches mainly focus on static learning, which
is not suitable for mining dynamic data and has the disadvantages of high computational overhead
and hardware requirements. Therefore, these shortcomings greatly limit the application of standard
machine learning approaches. This study aims to quickly and accurately distinguish bird species by
their sounds in bird conservation work. For this reason, a novel concept-cognitive computing system
(C3S) framework, namely, PyC3S, is proposed for bird sound classification in this paper. The proposed
system uses feature fusion and concept-cognitive computing technology to construct a Python version
of a dynamic bird song classification and recognition model on a dataset containing 50 species of
birds. The experimental results show that the model achieves 92.77% accuracy, 92.26% precision,
92.25% recall, and a 92.41% F1-Score on the given 50 bird datasets, validating the effectiveness of our
PyC3S compared to the state-of-the-art stream learning algorithms.

Keywords: bird song recognition; concept-cognitive learning; concept-cognitive computing; data
stream; data stream mining; dynamic learning

MSC: 68T05

1. Introduction

Accurately identifying birds helps to better protect birds and ecology. Especially in the
wild, identifying birds through sound is the most economical and convenient method. With
the overuse of the natural environment by humans, a large number of birds have lost their
habitats, leading to the extinction of many rare birds. Therefore, in complex terrain and
vast areas, bird conservationists need to monitor changes in the population size of species,
which requires an effective method to assess the existence and richness of species and
evaluate the impact of their works on species conservation [1]. Birds often sing, which can
be an effective means of monitoring individuals or populations [2]. Therefore, bird song is
often used to detect, monitor, and quantify species, as individuals can still be effectively
identified through bird song even if they are not within sight. Generally, only a few species
of birds can be identified by humans through audiovisual means, while experts can identify
thousands of species of birds by their songs alone. However, traditional identification
methods are time-consuming and laborious [3]. Compared to standard classification tasks,
bird voice recognition has two main characteristics: dynamic and high-dimensional. The
frequency range of bird sound can reach over 15 KHz, basically covering the human ear’s
discernible sound range of 20 to 20 KHz, which determines the high-dimensional nature
of bird sound characteristics. The dynamic variability of bird songs is related to learning
behavior, vocal organs, neural nuclei, and environmental factors. When birds are stimulated
or their environment suddenly changes, such as seasons, sunshine length, and temperature
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changes, or when they are happy, sad, foraging, flying, occupying areas, nesting, courting,
and defending, they will emit corresponding sounds (calls or songs).

Machine learning is a discipline that makes model assumptions about research prob-
lems, uses computers to learn model parameters from training data, and ultimately predicts
and analyzes the data. According to different learning modes, it can be divided into su-
pervised learning, semi-supervised learning, unsupervised learning, and reinforcement
learning. The current popular method is to use standard machine learning methods to
identify birds, which can not only save a lot of time and labor costs but can also effectively
identify birds. For example, Jarcovic et al. [4] developed a hybrid deep neural network-
hidden Markov model based on individual vocalization elements for the recognition of
bird species from audio field recordings. Salamon et al. [5] investigated the automatic
classification of bird species from flight calls and implemented an audio classification model
based on unsupervised feature learning. Pahuja et al. [6] designed a more efficient and
flexible bird sound-based recognition system. Using the well-labeled feature data of sound
records, a multi-layer perceptron artificial neural network (MLP-NN) classifier model was
designed and trained using a feedforward-backpropagation supervised learning algorithm.
In [7], using the angular radial transform (ART) descriptor and a Gaussian mixture model
for the feature extraction of 3 s and 5 s bird songs, the accuracy rates for 28 bird species
were 86.30% and 94.62%, respectively. In machine learning, deep learning models, such as
convolutional neural networks (CNN) [8–10], recurrent neural networks (RNN) [8], and
binary neural networks (BNN) [10], have received widespread attention in the construction
of automatic bird sound classification systems due to their high performance and have been
widely used for bird sound detection and classification. In addition, data enhancement
and preprocessing techniques have also been used to further improve the performance of
bird sound classification, e.g., MMSE STSA for denoising [11], pre-processing spectrogram
parameters [12], and two-dimensional cepstral coefficients [13]. Zhang et al. [14] used short-
time Fourier transform (STFT) and other methods to convert bird calls into a frequency
spectrum and used convolutional neural networks to classify bird calls. Unlike using
simple convolutional neural networks, Sankupelly et al. [15] used ResNet50 to classify
the time threshold spectrum of bird songs. Huang et al. [16] used Densenet to extract
time-threshold spectral features and classify them, thereby improving the classification
effect and further improving recognition accuracy. Sheng et al. [17] used one-dimensional
CNN-LSTM, two-dimensional VGG, and three-dimensional DenseNet models as feature
extractors to extract advanced features, and then used a shallow classifier to identify
43 bird sounds, achieving a bird sound recognition accuracy of 93.89% on a balanced
dataset. Undoubtedly, using ResNet50, DenseNet, Inceptionv3, Xception, and EfficientNet
can also effectively extract and identify audio signals from different birds, with accurate
prediction effects.

However, bird voice has two main characteristics: dynamic and high-dimensional;
these standard machine learning methods focus mainly on static learning and are difficult to
directly apply to dynamically changing data forms. In other words, deep learning replaces
complex feature extraction algorithms with large parameter space network models, but
a large number of parameters can also reduce the computing speed of the device, and
complex models are difficult to apply to low-cost CPUs. Running these models on low-cost
embedded devices is still unrealistic.

Generally speaking, a deep learning model requires large sample datasets for training,
making it difficult to adapt to rapidly changing dynamic data stream learning, and the
models do not have scalability and rotational invariance. Especially in high-dimensional
dynamic datasets, the resource cost of model training will be greater, which also seriously
hinders its large-scale application. Bird song classification and recognition is a high-
dimensional dynamic process, so deep learning needs to be further tested in the application
of bird song classification tasks. In addition, the interpretability of the deep learning model
is poor. At the same time, there are fundamental differences between deep learning models
and the way humans think and learn. In other words, deep learning models lack the
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common sense to conclude cross-domain border areas. The concept-cognitive computing
(CCC) method [18] simulates the learning process of humans, who not only learn from
personal experience but also integrate known concepts to represent things they have never
experienced before, learning in natural increments.

Therefore, this paper proposes an efficient incremental learning method for identifying
birds. In this study, the aim is to use feature fusion and the concept-cognitive computing
method to quickly and accurately identify birds based on bird songs. Specifically, using the
method of combining static and dynamic features of sound to obtain corresponding bird
song features, and using our method can improve the system performance and achieve an
accuracy rate of 92.77%, a precision rate of 92.26%, and a recall rate of 92.25% on a public
dataset of 50 bird species. At the same time, an F1-Score of 92.41% is obtained, which has
significant advantages compared to other mainstream models.

The main contributions of this article are as follows: (1) applying the dynamic data
stream model to bird song classification for the first time; it is a novel method to use
CCC in bird song classification, and we have obtained very good classification results;
(2) designing a feature fusion method to improve the effectiveness of the algorithm, obtain-
ing key features that can better characterize bird sounds, and improving the sensitivity of
these features to bird song classification; and (3) assessing the effectiveness of the PyC3S
widely adopted benchmark dataset. Comparative analysis with other proposed algorithms
(CSMOTE, RebalanceStream, and IKNNwithPAW) reveals that PyC3S outperforms them.

2. Material and Methods
2.1. Dataset

The bird audio dataset in this study comes from xeno-canto (https://www.xeno-
canto.org (accessed on 20 May 2023)), a website dedicated to sharing wildlife sounds from
all over the world. Xeno-canto currently contains 789,761 recordings of approximately
11,026 species (12,359 subspecies). Thus, the balanced, medium-sized subset Bird Songs
from Europe, consisting of 50 discrete European bird species with 43 high-quality natural
recordings per species, was used for bird song classification in this work [19].

The data curation mainly includes the following steps: (1) original audio preprocessing,
which includes resampling, conversion of the original audio format, audio truncation, bird
song detection, audio merging, spectrogram generation, accurate data annotation, and
data partitioning for training, verification and evaluation; and (2) feature extraction. Using
Librosa (https://librosa.org/ (accessed on 20 May 2023)) to extract features and mixing the
Mel spectrum and Mel frequency cepstrum coefficient (MFCC) [20] with dynamic features
to enhance the effectiveness of bird song features (as shown in Figure 1).
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2.1.1. Data Preprocessing

First, 16 kHz audio is resampled to 22.05 kHz and converted from MP3 to WAV format.
Then, we divide the wave file into 2 s files, which plays an important role in increasing the
amount of training data. After pre-emphasis, the sound clip is adjusted to the same length,

https://www.xeno-canto.org
https://www.xeno-canto.org
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i.e., sample alignment. To be precise, we align the sample duration by truncating the length
of the wave file and using silent filling or discarding for samples less than 2 s; thereby, the
size of all the audio samples is adjusted to the same length.

2.1.2. Feature Extraction

Subsequently, the Librosa library is used for the feature extraction of the Mel spec-
trum and MFCC. The system sets the frame length to 11.4 ms, frameshift to 1.42 ms, and
40 Mel bands. Although the MFCC conforms to the auditory perception characteristics
of the human ear, the standard MFCC reflects the static characteristics brought about by
voice data. In comparison, the human ear is more sensitive to the dynamic characteristics
of speech. Therefore, the introduction of the MFCC’s first-order difference (Formula (1))
and second-order difference (Formula (2)) can better extract the dynamic characteristics
of speech to improve classification accuracy [21]. Therefore, first, the row information of
the Mel spectrum and MFCC are scalarized into the basic features of bird sound, and then
their first- and second-order differential coefficients are scalarized to obtain their dynamic
characteristics. Then, these four types of features are combined into bird sound feature
vectors (denoted by Formula (3)). Finally, a total of 148,021 samples were obtained. The
data preprocessing process is shown in Figure 1.

∆M(n) =
1√

∑k
i=−k i2

∑k
i=−k i ·M(n + 1) (1)

∆2M(n) =
1√

∑k
i=−k i2

∑k
i=−k i · ∆M(n + 1) (2)

Mn = M + ∆M + ∆2M (3)

2.2. Proposed Model

Concept-cognitive learning (CCL) [22] originated from formal concept analysis and
learning and was formed through the intersection of formal concept analysis, machine
learning, granular computing, and dynamic learning, involving incremental concept learn-
ing and dynamic knowledge processing in dynamic environments. A very important and
obvious feature of concept-cognitive learning is dynamic [22]. A concept-cognitive learning
model was first proposed for dynamic data in [23]; this could integrate the contributions of
new data to concept learning into the model in a dynamic environment for incremental
learning. Subsequently, to solve different problems, a relevant series of models has been
proposed. For example, to accelerate concept learning performance, a new C3LM model for
concurrent computing is proposed in [24]. In order to adapt to dynamic data stream mining,
a concept-cognitive computing system (C3S) is proposed in [18]. In this paper, our work
mainly refers to the idea of the C3S model in [18]. Its author has released a Java version
of the model (https://github.com/YunlongMi/streamC3S_release (accessed on 20 May
2023)), but for the application and research of machine learning, Python is more popular
with researchers, so we have developed the Python version of the C3S model, named
PyC3S. Because people can usually dynamically and quickly complete concept learning
(CL) from different types of data, this study simulates human cognitive processes for learn-
ing, effectively storing and utilizing early acquired knowledge, and naturally integrating
the contributions of new data to concept cognition into later concept learning. Unlike most
stream learning methods and incremental learning algorithms based on data feature space,
PyC3S is designed based on concept space, which is a structured knowledge representation
topology. As shown in Figure 2, this model consists of three parts: knowledge storage,
dynamic concept learning, and concept space update. In addition, PyC3S also has efficient
computing power and can accurately complete classification tasks in a short time.

https://github.com/YunlongMi/streamC3S_release
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2.2.1. Knowledge Storage

Knowledge storage is the first problem that needs to be solved. Generally, the concept
is the basic unit of human cognition, which consists of B and Ã, recorded as

(
B, Ã

)
.

B = {xi} is the sample object set, and Ã = F̃ c
(xi) is the sample attribute set, where xi is a

sample and F̃ c
is considered to be mapping in a fuzzy formal context, i.e., F̃ c

: 2B → LÃ,
where 2B is a power set of B and LÃ denotes the set of all fuzzy sets on Ã. Therefore,
this article uses concepts as the basic carrier of knowledge, first converting samples into
concepts and then forming a concept space through concept clustering, thereby establishing
the relationship between concepts and concept spaces. Here, the concept space corresponds
to the class t to which the sample belongs. Given an initial dataset I, λ(i) is the sample
space Ω = {λ(1), λ(2), . . . , λ(n)}. (.)’ is an induced operator that converts the sample

into a concept. The initial concept space formed (denoted by GSλ(i),∗
I,t ) is used to store early

knowledge and serves as a basis for subsequent concept learning. In addition, to avoid
the generation of excessive concept space, a parameter (maxSize) is set to control its size
to avoid consuming excessive computing costs and storage space. Therefore, when the
sample size of a class is greater than the given maxSize, a virtual concept is generated for

the concept space and converted into a compressed concept space (denoted as GSλ(i),�
I,t ).

2.2.2. Dynamic Concept Learning

Next, when new data streams are input, incremental learning is performed based on
the existing concept space, and the concept space is optimized. During the learning process,
the data in the data stream are divided into different independent subblocks, as shown in
Figure 1. Considering the impact of data block size on the parallel computing efficiency of
PyC3S, it is assumed that these data block sizes are fixed in this paper.

The concept space to which a new concept belongs is calculated using similarity
indicators. This model uses an attribute-oriented concept similarity method to calculate
the similarity between a new concept and all concepts in a concept space and takes the
maximum similarity value as the similarity between the new concept and the concept space.
Similarly, the similarity between the new concept and all concept spaces is calculated, and
the concept space corresponding to the maximum similarity value is used as the prediction
concept space for the new concept. Specifically, for any newly entered object xr. The
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corresponding concept can be obtained as follows: Cr =
(
{xr}, F̃

c
(xr)

)
. The similarity

sim(.) between concepts and concept spaces is calculated using Equation (4):

sim
(

Cr,G
Sλ(i),∗
k,t

)
=
{

sim
(

Cr,
(

Xj, Ãj

))}m

j=1
=
{

sim
(
F̃ c

(xr), Ãj

)}m

j=1
=
{

θα
k,j

}m

j=1
, (4)

where
(

Xj, Ãj

)
∈ GSλ(i),∗

k,t and m =
∣∣∣GSλ(i),∗

k,t

∣∣∣.
Let θ̂α

k,j = argmax
j∈J

{θα
k,j}, where j represents the j-th concept

(
Xj, Ãj

)
, J = {1, 2, . . . , m}.

Then, in the entire space, the class vector corresponding to the maximum value can be
obtained, denoted by (θ̂α

1,j, θ̂α
2,j, . . . , θ̂α

k,j)
T. And we can output the maximum value as the

final prediction as follows:
l̂ = argmax

l∈L

{
θ̂α

l,j

}
, (5)

where L = {1, 2, . . . , k}. This represents the instance (or object) xr classification to l̂ of
classes. If the final prediction is inconsistent with the ground truth, we can add the concept
to a counteractive concept space E, and if the opposite is true, we can add the concept to an
active concept space C.

Given the concept similarity threshold β ∈ [0, 1], the β-concept neighborhood regard-
ing the concept

(
B, Ã

)
can be defined as follows:

Nβ,t

(
B, Ã

)
=
{(

B1, Ã1

)
∈ GSλ(i),∗

k,t

∣∣∣sim
(

Ã1, Ã
)
≥β
}

.

The virtual concept introduced in this model is based on the β-concept neighborhood

concerning real concepts, denoted by
(

B�, Ã
�
)

. Given the threshold δ, then δ real concepts

selected from GSλ(i),∗
k,t can be used for constructing a new virtual concept. Furthermore, we

can also conclude δ ∈
[
1,
∣∣∣GSλ(i),∗

k,t

∣∣∣]. A concept space using the local β-concept neighbor-

hood is called a compressed concept space, denoted by GSλ(i),�
k,t . Due to |GSλ(i),�

k,t |≤|G
Sλ(i),∗
k,t

∣∣∣,
for a given data block, the compressed concept space can reduce the computational cost
and improve the efficiency of the concept learning.

2.2.3. Updating Concept Space

Through the dynamic optimization of the concept space, continuous learning updates
on the data streams are achieved. The update process performs the following three steps:
(1) for any sample (xr, yr), we convert it into a corresponding concept; (2) we assign the
same weight to all attributes, calculate the similarity between the concept and the original
cluster, and obtain the maximum similarity between the concept and different concept
spaces; and (3) if the calculated concept space (l̂) does not match the ground truth (yr)
to which it belongs, that is, l̂ 6= yr, then we adjust the weights and update the concept
space; otherwise, we update the concept space directly. It should be noted that only those
concepts that conform to order similarity in the concept space are updated here.

The concept space updates can be formally described as follows: given a new object xj,

the corresponding concept can be obtained as
({

xj
}

, F̃ c(
xj
))

. For convenience, the intent

of the concept is expressed as F̃ c(
xj, a

)
(∀a ∈ M). Set CSλ(n)

j−1 is the concept space in phase j

− 1, and for any
(

Xj−1, Ãj−1

)
∈ CSλ(n)

j−1 , the following update rules are followed.

If Ãa ≤ F̃
c(

xj, a
)
(∀a ∈ M), that is, if the intent of the new concept is better than that

of the original concept, then we have(
Xj, Ãj

)
= (Xj−1 ∪

{
xj
}

, Ãj−1).
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If Ãa > F̃ c(
xj, a

)
(∀a ∈ M), that is, if the original concept intent is superior to the new

concept intent, then we have(
Xj, Ãj

)
=
(

Xj−1 ∪
{

xj
}

, F̃ c(
xj, a

))
.

Otherwise, when the intent of the new concept is out of order with that of the original

concept,
({

xj
}

, F̃ c(
xj
))

can be added into CSλ(n)
j . Formally, it can be denoted as

CSλ(n)
j ←

({
xj
}

, F̃ c(
xj
))

.

2.3. System Construction

The construction of the bird song classification system is shown in Figure 3. The system
will first extract a portion of sample data and use induction operators to form concepts,
followed by forming an initial concept space. Specifically, a portion of the instance samples
of each type of bird will be selected, and the instances will be converted into initial concepts
by calculating their intent and extent. Then, the initial concept set will be clustered into
the initial concept space. The process of constructing the initial concept space is shown in
Algorithm 1 and Figure 4.

Algorithm 1. Constructing Initial Concept Space

1: Input: An initial dataset I, two required parameters λ(i) and maxSize.

2: Output: The concept space GSλ(i),∗
I,t .

3: while a data sample xi in I being available do

4:
(
{xi}, F̃

c
(xi)

)
← (xi)

′

5: GSλ(i),∗
I,t ←

(
{xi}, F̃

c
(xi)

)
6: end while
7: if

∣∣∣GSλ(i),∗
I,t

∣∣∣ ≥ maxSize then

8: Construct the virtual concepts from GSλ(i),∗
I,t

9: Construct the compressed concept space GSλ(i),�
I,t

10: GSλ(i),∗
I,t ← GSλ(i),�

I,t
11: end if
12: return GSλ(i),∗

I,t .
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The system will continuously input the song data stream of different birds and con-
tinuously update the model. During this process, the model will continuously optimize
the existing concept space to achieve higher accuracy. As shown in Figure 2, Figure 5, and
Algorithm 2, during the learning process, the data blocks in the data stream are divided
into different independent subblocks. On these data blocks, an attribute-oriented similarity
algorithm is used to calculate the similarity between the instance and each concept space,
and the concept space with the highest similarity is used as the prediction result. If the
prediction is correct, the instance will be transformed into new concepts to optimize the
existing concept space. If the prediction is incorrect, the model will remove the incorrect
concepts from the concept space and update the existing concept space with the resulting
new concepts. At the same time, technologies such as virtual concept, compressed concept
space, and concurrent computing are introduced into the high-cost computing processes
of the system, such as the prediction of different data blocks in data streams and the opti-
mization of concept space updates. These effectively reduce computational complexity and
improve system computational efficiency and performance.

Suppose the time complexity of constructing a concept space and its corresponding
compressed concept space is O(t1) and O(t2), respectively. Then, we can get a time com-
plexity of Algorithm 1 of O(t1 + t2). Meanwhile, for Algorithm 2, given a data chunk Dt+1,
let the time complexity of making predictions and constructing concept spaces Et+1 and
Ct+1 be O(t3), O(t4), and O(t5), respectively. Based on the above analysis, it is easy to verify
that the time complexity of PyC3S is O(t1 + t2 + L(t2 + t3 + t5+|Et+1| + |Ct+1|)), where L
denotes the number of data chunks.
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Algorithm 2. Dynamic Concept Learning

1: Input: An initial concept space GSλ(i),∗
k,t , a data stream S, four parameters maxSize, β, δ, and γw.

2: Output: The class labels of the data stream S.
3: while a data chunk Dt+1 in S being available do
4: Make predictions by Equation (5).
5: if the concept warning level γw has occurred then
6: Construct two concept spaces Et+1 and Ct+1 based on the data chunk Dt+1.
7: Get Ck,t+1 and Ek,t+1 with the k-th class.
8: while (Et+1 ! = ∅ and Ct+1 ! = ∅)do

9: GSλ(i),∗
k,t ← GSλ(i),∗

k,t −
{(

Xi, Ãi

)}
, for any concept

(
Xi, Ãi

)
∈ Ek,t+1.

10: GSλ(i),∗
k,t ← GSλ(i),∗

k,t ∪
{(

Xj, Ãj

)}
, for any concept

(
Xj, Ãj

)
∈ Ck,t+1.

11: end while
12: if

∣∣∣GSλ(i),∗
k,t

∣∣∣ ≥ maxSize then
13: Construct the virtual concepts based on the param δ

14: Construct the compressed concept space GSλ(i),�
k,t based on the param β

15: GSλ(i),∗
k,t ← GSλ(i),�

k,t
16: end if
17: end if
18: end while
19: return the class information.
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2.4. Evaluation Rule

The 10-fold cross-validation method is a commonly used model evaluation technique,
which has the advantages of fully utilizing data, high reliability of evaluation results, and
avoiding overfitting. Therefore, we used the 10-fold method to test the model, repeating
the process 10 times and reporting the average classification results. The method proposed
in this paper was evaluated using a dataset of 50 bird sounds collected in [19]. We divide
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the dataset into 10 roughly identical subsets (except for the last one), with 1 subset used as
the initial set for constructing the initial concept space and 9 subsets used as the training set
for updating the concept spaces. The performance of the bird song classification system is
evaluated using average accuracy, weighted precision, weighted sensitivity, and weighted
F1 scores, which are defined as follows:

Accuracy =
1
n ∑n

c=1
TP(c) + TN(c)

Sc
(6)

Precision = ∑n
c=1

TP(c)
TP(c) + FP(c)

∗ rc (7)

Recall = ∑n
c=1

TP(c)
TP(c) + FN(c)

∗ rc (8)

F1− score =
n

∑
c=1

2 · Precision(c) · recall(c)
Precision(c) + recall(c)

∗ rc (9)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative;
c is the class index, rc is the ratio of the number of samples in a class c to the total number
of samples in all classes, and Sc is the sample size of class c.

In this paper, PyC3S is compared with three stream learning algorithms, namely,
CSMOTE, RebalanceStream, and IKNNwithPAW [25–27]. According to Section 2.2, we
know that the construction of a concept space is influenced by the clue λ(i). In theory, it is
of great importance to adjust an approximate optimal λ(i) for each dataset, and this has
detailedly been analysed and discussed in Mi et al. [18]. According to the discussion in [18],
our parameters λ(i), maxSize, β, δ, and γw should always be set to 0.8, 300, 0.6, 5, and −0.2,
respectively. CSMOTE, RebalanceStream, and IKNNwithPAW all use the default settings
of MOA. Moreover, for a fair comparison, all the experiments have been independently
implemented 20 times, and the average performance is recorded in this paper.

3. Results and Discussion

All the experimental conditions are listed as follows: Intel(R) Core(TM) i7-9750H CPU
@ 2.60 GHz CPU, 4 GB main memory, Python 3.9.13, and PyCharm Professional 2022.2.4
for windows 10. And we implement our system in Python.

3.1. Result of Comparison Experiment with Stream Learning Algorithms

The results of the performance comparison experiment with CSMOTE, RebalanceS-
tream, and IKNNwithPAW are shown in Table 1 and Figure 6.

Table 1. Classification results of different approaches using 10-fold cross-validation method.

Model Accuracy Precision Recall F1-Score Running Time

CSMOTE 88.23% 89.73% 88.24% 85.69% 167.75 (s)
RebalanceStream 81.25% 84.79% 81.25% 82.68% 1.635 (s)
IKNNwithPAW 75.31% 74.76% 75.21% 73.12% 13.27 (s)

PyC3S 92.77% 92.26% 92.25% 92.41% 2.43 (s)
The accuracy in bold means the best results of the compared methods.

3.2. Result of Ablation Experiment

To further verify the effectiveness of the two methods used in this paper, an ablation
experiment was conducted by combining Mel + MFCC to represent the Mel spectrum and
MFCC features, and Delta1 + Delta2 to represent the first- and second-order differential
features. The experimental comparison results are shown in Table 2.
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Table 2. Result of ablation experiment.

Method Accuracy Precision Recall F1-Score

Mel + MFCC 66.83% 68.33% 68.69% 55.40%
Delta1 + Delta2 56.25% 77.83% 56.25% 61.65%

PyC3S 92.77% 92.26% 92.25% 92.41%
The accuracy in bold means the best results of the compared methods.

3.3. Discussion

From the evaluation indicators in Table 1, the PyC3S performed best, achieving an
accuracy rate of 92.77%, a precision rate of 92.26%, and a recall rate of 92.25%. At the same
time, it obtained 92.41% the F1-Score. It can be seen that the overall performance of PyC3S
is excellent. This result also indicates that fusion features can well characterize various
types of acoustic components. Figure 6 shows the classification results for each type of
bird, and it is obvious that there are good results for each type of bird. From Figure 6, we
can also observe that the F1-Score of each bird species is greater than 85%, indicating that
our PyC3S model is very robust in classification performance on the balanced dataset. It
can be seen that the F1-score, as a harmonic mean that overall considers precision and
sensitivity (recall rate), can comprehensively evaluate the prediction accuracy and recall
rate of the classifier. Compared with CSMOTE, RebalanceStream, and IKNNwithPAW, the
proposed method PyC3S can improve the average accuracy by 4.54%, 11.52%, and 17.46%,
respectively. In particular, the method in our work runs efficiently on the dataset. From
the table, we can see that the CSMOTE algorithm runs in 167.75 s and IKNNwithPAW
takes 13.27 s, while the PyC3S algorithm needs only 2.43 s. PyC3S is much faster than
the comparison algorithms. Although the time cost of PyC3S is 0.75 s higher than that
of RebalanceStream, the accuracy of classification has improved by 11.52%. The results
further demonstrate that the proposed method can work in a fast and efficient manner
while achieving good classification performance. The excellent classification performance
of PyC3S mainly benefits from the following three aspects: (1) using cognitive concepts
(including intent and extent) instead of feature vectors as basic information carriers to
input the system enables the method in this paper to utilize both object and attribute
information; (2) the compressed concept spaces constructed based on concept space and
concept clustering technology improve the dynamic classification accuracy; and (3) a new
CL mechanism and model updating method have been adopted in the system. All in all, the
strategy of constructing a compressed concept space and removing counteractive concepts
can significantly improve computational efficiency.

Unfortunately, in the process of dynamic learning, those existing concept-cognitive
computing algorithms do not consider concept drift [28]. Hence, their performance may
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dramatically drop when concept drift occurs in a dynamic learning process, especially
for the abrupt concept drift. In our work, frequent changes in bird song can lead to
frequent conceptual drift. Therefore, to avoid the adverse impact of concept drift on system
performance, we will consider concept drift in our future work.

In this study, a feature fusion method was used to represent the characteristics of
each bird. Firstly, the Mel spectrum and MFCC were combined, achieving an accuracy of
66.83%. After that, we added first-order differential features and second-order differential
features (Delta MFCC and Double Delta MFCC). Because the human ear is more sensitive
to the dynamic characteristics of speech [21] than to static ones of it, we successfully
improved the accuracy rate to 92.77% after adding dynamic features. It can be seen that
PyC3S is optimal in all four index values, and this ablation experiment fully verifies the
effectiveness of the algorithm in this paper. PyC3S does not simply use the MFCC directly,
but instead accumulates the energy of each Mel filter and then serves as a feature vector.
This processing method not only effectively reduces the amount of computation and saves
time overhead but also maintains an ideal accuracy rate. In [29], the authors conducted
research on feature extraction techniques for speech recognition and classification, and
focused on comparing and analyzing different types of MFCC feature extraction methods;
after discussing the statistical results of different MFCC techniques, it was concluded that
the Double Delta MFCC feature extraction technique is superior to other feature extraction
techniques. This is one of the reasons why Delta MFCC and Double Delta MFCC were
added to this study.

Currently, a large number of bird song classification studies are using increasingly
large deep learning models for classification to achieve better accuracy. However, the
reality is that a large number of wildlife reserves and environmental agencies cannot
use such devices, which require significant computing power to help them with their
work. PyC3S can dynamically and quickly complete concept learning (CL) and also has
excellent performance compared to the most advanced incremental learning and data
stream learning algorithms. In summary, the reasons for the excellent computing efficiency
of PyC3S are generally as follows: (1) the design of PyC3S enables it to effectively perform
parallel computing, with each sub-concept space being able to perform calculations without
interference with each other; and (2) PyC3S will compress each sub-concept space at an
appropriate time to achieve simplification and accuracy of concepts in the concept space.

In addition, the continuous improvement of the model is also considered. Modern
deep neural network models can achieve excellent performance in static data through
batch training, but this can cause catastrophic forgetting in incremental learning scenarios
because the distribution of new data is unknown and the new data have a highly different
probability from the former data. Therefore, the model must be both adaptable to acquire
new knowledge and stable to consolidate existing knowledge [30]. Unlike traditional
machine learning, the data streams processed by incremental learning will continue to be
available over time. Therefore, traditional assumptions about the availability of represen-
tative training data can be abandoned during training to establish decision boundaries.
In the scenario of the data stream, massive raw data streams will be transformed into
information and knowledge representations, and experience will be accumulated over time
to support future decision-making processes [31]. The PyC3S can precisely meet the needs
of incremental learning to ensure the accuracy of long-term bird song recognition.

4. Conclusions

In this study, based on the static features of the MFCC, the fusion method of fea-
tures of bird songs is used to integrate the first- and second-order differential dynamic
features of the MFCC, obtaining key features that can better characterize bird sounds and
improving the sensitivity of these features to bird song classification. At the same time,
scalar processing is performed on these two types of MFCC features, transforming the
high-dimensional MFCC feature matrix into one-dimensional feature vectors. This effective
feature dimensionality reduction process can reduce subsequent computational costs and



Mathematics 2023, 11, 4298 13 of 14

spatial overhead, enabling the method in this paper to achieve ideal benefits in terms of
time and space. Later, to address the dynamic continuity of bird sounds and the difficulty
of classical learning algorithms adapting to continuously arriving new samples, this study
proposed a novel concept-cognitive computing system framework (PyC3S) for dynamic
changes in bird sounds. The adopted concept-cognitive computing technology mimics the
human cognitive learning process, effectively storing early acquired knowledge and utiliz-
ing the object and attribute information of concepts; it can integrate the contributions of
new data into the original concept space in a dynamic environment for effective incremental
learning. In addition, the implementation of virtual concepts, compressed concept space,
automatic updating of concept space, and parallel concept computing in PyC3S effectively
reduces the time and space overhead of the system and improves system performance. The
experimental results show that the method achieves a recognition accuracy of 92.77%, a
precision rate of 92.26%, a recall rate of 92.25%, and an F1-Score rate of 92.41% on 50 bird
datasets in about one minute, all higher than the comparison model. From the experimental
environment of this paper, it can be seen that this system has low hardware requirements
and is suitable for use in large-scale dynamic bird song classification tasks.

In the future, our work aims to establish a more effective classification framework
for birds. In addition, only 50 bird samples were used in this study. This number will be
increased to include more bird samples from different countries to test the robustness of
the methods proposed in this paper. At the same time, We are often faced with a highly
unbalanced sample of species to be classified in research works. Therefore, unbalanced
learning is worthy of in-depth research. Moreover, deep learning is known as a very useful
mechanism for feature extraction and knowledge representation and has been successfully
applied to different scenarios such as image recognition, speech recognition, and image
generation, but how to incorporate deep learning into dynamic CL or stream learning is
still an open question. For different modal datasets such as sound datasets, text datasets,
and image datasets, a more general feature extraction method is also a challenging issue,
which is a key factor limiting the application field of CCL.
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