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Abstract: This article presents a comprehensive review of the existing literature on the topic of data
assimilation for agent-based models, with a specific emphasis on pedestrians and passengers within
the context of transportation systems. This work highlights a plethora of advanced techniques that
may have not been previously employed for online pedestrian simulation, and may therefore offer
significant value to readers in this domain. Notably, these methods often necessitate a sophisticated
understanding of mathematical principles such as linear algebra, probability theory, singular value
decomposition, optimization, machine learning, and compressed sensing. Despite this complexity,
this article strives to provide a nuanced explanation of these mathematical underpinnings. It is
important to acknowledge that the subject matter under study is still in its nascent stages, and as such,
it is highly probable that new techniques will emerge in the coming years. One potential avenue for
future exploration involves the integration of machine learning with Agent-based Data Assimilation
(ABDA, i.e., data assimilation methods used for agent-based models) methods.

Keywords: real-time pedestrian simulation; data assimilation; crowd monitoring system simulation;
dynamic data-driven system; discrete choice; transport planning
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1. Introduction

As data become more widely available at high frequencies, the demand for connecting
offline simulation with live data is on the rise. However, there are various challenges
associated with linking an offline simulation engine to live data to create a real-time
simulation. Real-time simulation refers to a simulation that can be executed at the same rate
as a wall clock. These challenges can be broadly categorized into two groups: data-related
challenges and simulation engine-related challenges. Data-related challenges include
sparsity of data in time and space, the need for real-time data preparation and processing,
indirect data (e.g., qualitative data that must be translated into quantitative data), and
privacy issues. In addition to the simulation engine’s accuracy and modeling capability,
its computational efficiency is also a key concern. This is because some methods require
multiple runs of the simulation in real-time, making it essential for the engine to be
computationally effective [1].

Furthermore, considering the time required for data preparation, the simulation
engine needs to operate much faster than in real-time. This is a significant challenge for
agent-based simulations since they usually have high computational costs. The latter has
partially led to less attention being paid to real-time (or online ) agent-based simulations [2].
However, due to the increase in computational power and data availability, the research
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in this field is gaining momentum [1,3,4]. After upgrading the offline simulation to an
online one, key applications would be predicting desired attributes, online policy feedback,
and resource allocation. Ref. [5] describes how live simulations provide unprecedented
applications for disaster response, epidemiology, and computational social science. The
authors address various requirements for live simulations ranging from data collection to
methodological aspects.

There are various models for simulating pedestrians, and the reader is directed
to [6–10] for more information on each type. These models are divided into three main
categories: microscopic, mesoscopic, and macroscopic. Among them, microscopic models
have gained more attention. These models are programmed at different levels. Ref. [7]
specifies them as (a) global path-planning at the highest level, (b) path-following (deter-
mining preferred velocity), and (c) local navigation, such as collision avoidance and group
behaviour at the lowest level. The local navigation level has been extensively examined
in the literature. According to [7], local navigation models that focus on collision avoid-
ance can be categorized into four major types, which can be ordered chronologically as
force-based, velocity-based, vision-based, and data-driven-based. Agent-based models are
sometimes defined similarly to microscopic models, which is a general point of view. In a
more detailed classification, agent-based models are a type of microscopic model in that
the agent characteristics (e.g., age and desired velocity) are heterogeneous.

ABMs have been increasingly used in disciplines such as the social sciences, trans-
portation, and economics to simulate large-scale dynamic complex systems. These models
are suitable for addressing the emerging behaviours of complex systems. They are flexible
and provide a natural description of the system. In these types of models, the behaviour of
agents is usually evolved by some rules in a bottom-up approach [11,12]. Therefore, they
are a good choice for pedestrian modelling.

Data assimilation (DA), which is a framework created for integrating a model with real-
time data to make use of “all available information” [13], exactly addresses the challenges
for online agent-based simulation. DA has been extensively used during past decades in
Earth sciences (e.g., meteorology) and is incorporated in dynamic data-driven simulation
(DDDS) [14,15]. Recently, there have been efforts to replicate the approach for agent-
based simulations (e.g., pedestrian simulation) [2,16–20], however, far fewer attempts have
been made to move the existing methodology for application in a real-world scenario [1].
Hereafter, we call data assimilation methods used for agent-based models, agent-based
data assimilation (ABDA) methods.

In its general meaning, DA will shape the structure of this study by discussing relevant
fields to ABDA and examining how other areas can both benefit from and contribute to
ABDA techniques. As a result, the reader will understand how literature in (i) detecting and
tracking with filtering techniques, (ii) occupancy estimation, (iii) data-driven dynamic sys-
tems, and (iv) discrete choice modeling can benefit from each other. This multidisciplinary
literature review will widen the readers’ perspective about the underlying pillars of these
research areas and hopefully will lead to advancements in all aforementioned fields. Data
assimilation, which is a general framework to connect models with data, serves as the stem
to connect these leaves. We will start with traditional crowd monitoring systems, which are
purely data-based (not incorporating models), and compare them with DA methods so that
the reader will better understand the challenges that data assimilation will address. Many
of the current real-time pedestrian/passenger monitoring systems do not use simulation
engines for crowd monitoring and prediction and are purely data-based [21–23].

In a nutshell, the logic behind the review is to first discuss the traditional methods for
pedestrian monitoring and then move to the more recent framework, which is data assimi-
lation. Moreover, since pedestrian modelling mainly falls into the agent-based framework,
we aim to put focus on data assimilation for agent-based models. Finally, to showcase
the potential advantage of the well-established related literature to the relatively new
domain of ABDA, we will discuss the literature for that and demonstrate the importance of
intersectionality. This article is structured as follows: Section 2 explains the focus of this
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review, which is a real-time agent-based simulation, and provides statistical information
regarding the current publications in this domain. Section 3 elaborates on traditional
crowd monitoring systems, their application areas, data collection methods, assesses their
shortcomings, and offers the simulation method as an alternative, cutting-edge method, i.e.,
data assimilation, which can give more broad and detailed information about microscopic
pedestrian dynamics. Section 4 reviews the existing data assimilation works, mainly those
that incorporate agent-based models. Moreover, the mathematical backgrounds are pro-
vided in an integrated way. Section 5 provides a concise overview of research domains that
are intimately linked to real-time agent-based modeling and simulation. Section 6 provides
an illustration of the intersections between machine learning and data analysis. Section 7
summarizes the primary insights from the literature review. Lastly, the conclusions are
presented in Section 8.

2. Method, Scope, and Inclusion Criteria

This current review focuses mainly on real-time agent-based simulation. In this
regard, articles have been reviewed in many other fields, such as epidemiology, motorized
traffic, robotic navigation, crowd monitoring systems, pedestrian path, and flow prediction.
However, our primary aim in referencing them is to analyze contemporary trends in real-
time pedestrian monitoring and explore possible intersections. We refer specifically to
articles written in the field of crowd monitoring systems (CMS) because the methods for
data collection and feature extraction (e.g., flow, density, and velocity) in these articles will
eventually be needed to use data assimilation in a real-world scenario. However, most
current articles in the field of ABDA have focused more on developing filtering algorithms
and using ‘synthetic data’ to test their methods. In addition, the reader can evaluate, based
on the application required, whether paying the price to implement real-time simulation
is appropriate for them or whether using a traditional CMS technique will get them up
and running.

The keywords used in our search process varied for each method. Herein, a quite
broad range of keywords and their combinations were used to retrieve information from
the SCOPUS database, in addition to the common searches in Google Scholar. The major
keywords are summarized in Table 1. These keywords are systematically organized under
distinct heads, encapsulating the multifaceted aspects of ABDA. The “Method" category
includes terms such as “reinforcement learning”, “Kalman filter”, “particle filter”, “ex-
tended Kalman”, “game”, and “neural network”, indicative of the diverse methodologies
employed in ABDA research. The “Technique” category encapsulates keywords such as
“data assimilation”, “data association”, “modeling”, “agent-based”, and “multi-agent”,
showcasing the varied techniques pivotal for executing ABDA. Under “Concept”, terms
such as “data-driven dynamic”, “real-time pedestrian simulation”, and “dynamic data-
driven” are included, reflecting the fundamental conceptual frameworks underpinning
ABDA. Lastly, the “Application” category incorporates applications in “tracking pedes-
trian”, “route choice modeling”, and “behavior prediction”, exemplifying the practical
implementations of ABDA in real-world scenarios. Moreover, the retrieved query results
for the “data assimilation”, “agent-based”, and “agent based” keywords from the SCO-
PUS database are depicted in Figure 1, which clearly highlights the focus of research in
this domain.
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Table 1. Categorized summary of keywords used in SCOPUS and Google Scholar searches to identify
relevant literature in the field of agent-based data assimilation.

Category Keywords

Method reinforcement learning, Kalman filter, particle filter
extended Kalman, game, neural network

Technique data assimilation, data association, modeling, agent-based, multi-agent

Concept data-driven dynamic, real-time pedestrian simulation
dynamic data-driven

Application tracking pedestrian, route choice modeling, behavior prediction

Figure 1. Annual publication count, highlighting the intersection of “data”, “assimilation”, and
“agent-based” domains, retrieved from the SCOPUS database (title–abstract–keywords).

3. Traditional Crowd Monitoring Systems

Most traditional methods for online pedestrian monitoring and behavior prediction
do not take advantage of any simulation engine [23], and directly work on data and are
often coined with the term “Crowd Monitoring Systems (CMS)” in the literature [21]. CMS
usually focuses on real-time data collection, feature extraction, and pedestrian tracking.
They have been successfully applied in big events management where historical data
are usually unavailable. Camera systems [24–28], automatic counting systems [21], RFID
sensors [29], Wi-Fi/Bluetooth sensors [21,29–36], GPS sensors [37], social media [38], and
transaction cards (e.g., opal in NSW) [39–42] are among the data collection methods. Sensor
fusion methods can provide more insight into pedestrian behaviour [21,25]. Meanwhile,
although camera systems were more prevalent in the past, Wi-Fi/Bluetooth sensors have
become the preferred method for data collection. They are cheap, easy to implement,
have limited privacy issues, provide good-quality data, and work indoors and outdoors.
Moreover, the number of people using smartphones is increasing (larger penetration rate).
Pedestrian density, velocity, flow, and path are among the features and parameters that are
extracted from data [23].

These features can be used for the prediction of pedestrian variables. For exam-
ple, refs. [22,39,43–49] have predicted flow using artificial intelligence and machine learn-
ing algorithms. In [50,51], the authors have predicted the pedestrian path using bayesian
inference. Although CMSs provide useful tools for real-time crowd management, they do
not leverage the power of a sophisticated simulation engine along with real-time data to
produce enhanced and comprehensive results. Using a simulation engine can give more
broad and detailed information about the microscopic pedestrian dynamics if appropriately
combined with online data. This is known as data assimilation, which is currently one of



Mathematics 2023, 11, 4296 5 of 25

the cutting-edge lines of research in pedestrian/passenger simulation and modeling and
will be discussed later in Section 4. It is up to the user, based on the required monitoring
task, the availability of data and its quality, and the availability of computational resources,
to decide whether to choose traditional CMSs or newborn advanced ABDA methods.

The DA and CMS approaches are cross-compared in Table 2. Potentially, DA methods
are a better choice if the computational resource is not a concern. An important reason
agent-based data assimilation methods have rarely been used in practice is that this field of
research is extremely young. In reality, the necessary steps to implement these methods are
still incomplete and being completed. DA methods consider the noise in data and are thus
more convenient for real-world scenarios. Moreover, DA methods are well-equipped to
tackle spatiotemporal data sparsity systematically, which is something missing in CMSs.

Table 2. CMS vs. DA.

DA CMS

Computaional cost >CMS DA>
Systemic data noise

consideration X ×

Detailed pedestrian dynamic X ×
Handling spatiotemporal

sparsity in data X ×

Application in practice Not Common Common method

4. Data Assimilation: Integrating Real-Time Data with Simulation Engine
4.1. Dynamic Data Driven Simulation: Data Assimilation Method

The Dynamic Data-Driven Application Simulation (DDDAS) paradigm was first intro-
duced by [52] as a framework to incorporate additional data into an executing application.
These data can be archival or collected online and in reverse, have the ability of applications
to dynamically steer the measurement process. DDDS is a branch of DDDAS focused on
integrating real-time data into simulations. A common method used in DDDS is DA. In
general, DA is a framework to utilize both a model and data to take advantage of both to
predict the current and future state of the system.

DA is well known for addressing data sparsity in time and space. By using a computer
model, data assimilation aims to infer the system state based on incomplete, ambiguous,
and uncertain sensor data. A standard data assimilation framework consists of a computer
model, a series of sensors, and a “melding” scheme [53]. The Kalman filter, particle
filter, and their variants (sequential methods), as well as variational methods such as
3D-Var, and 4D-Var, are among the melding schemes for data assimilation [54]. DA has
been widely used for weather prediction, oil and gas pipeline, and ocean and climate
modeling [14]. However, more attention should be paid to data assimilation techniques
for agent-based models (ABMs) such as pedestrian models. While recent efforts for ABMs
are promising, more work should be done to implement them in a complex real-world
scenario [2,16–20,55].

4.2. DA for Agent-Based Pedestrian/Passenger Simulations

Due to various reasons, there has been less attention paid toward using DA in agent-
based models. First of all, low data availability for agent-based models seems to be
the most important. Even for the initialization and offline calibration of agent-based
models, adequate data have rarely been available, let alone for use in data assimilation [56].
However, due to advances in real-time data collection methods (Section 3), a more suitable
platform has been provided for the implementation of DA methods. Second, the high
dimensionality of the state space and the resultant computational cost of ABMs. For this
second challenge, due to advances in computational power and the ability to execute DA
algorithms in multiple computational nodes, implementing DA methods will be more
facilitated in the near future. Just assume that quantum computers are available for use
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(which is not too far off the mark), then there will be a revolution in implementing these
methods. Furthermore, integrating DA with machine learning methods may result in a
more efficient performance (Section 5).

EnKF [3,17,20] and particle PF [4,18,57] are the most used methods for ABDA, partly
because both methods do not require an analytical form of the state transition model, which
is something typical in ABMs. ABMs usually move the system state forward in a black-
box fashion, and the analytical formulation may not be feasible due to the ruled-based
components of the model. Therefore, methods such as the classical Kalman filter, which
requires the analytical form of the transition matrix, could only be used if they are modified
for use in ABMs. In Section 1, we will discuss the Bayes filter as a general framework where
various ABDA approaches are branched to envision a mathematical big-picture. Almost all
ABDA methods fall into the class of sequential data assimilation; therefore, they are based
on the prediction (forecast)-correction (update) cycle. VarDA such as three-dimensional
variation (3D-VAR) and four-dimensional variation (4D-VAR) have been rarely used with
agent-based models, perhaps due to their mathematical complexity. Customizing VarDA
methods for ABDA can be a potential direction for future research. In Sections 4.4–4.5.2,
we will discuss particle filter and Kalman filter-based approaches with their applications
in ABDA.

4.3. Bayes Filters

Derived from Bayes’ theorem, the equation is given by:

P(sk|yk) ∝ P(yk|sk)P(sk), (1)

where sk represents the system state at the kth timestep, and yk signifies the observation
received at the same timestep. The term P(yk|sk) represents the measurement likelihood
(which is not necessarily a probability density function), while P(sk) denotes the probability
distribution of the state obtained by projecting the agent-based model over time. The
product of these two terms results in the posterior probability distribution P(sk|yk), which
is the primary aim of data assimilation.

In the context of Kalman filters, both terms are assumed to follow a Gaussian distri-
bution. With the Markov assumptions and the linearity of the transition matrix in place,
closed-form matrix expressions can be deduced for both the prediction and update phases.
The linearity assumption can be relaxed using variants such as the extended Kalman filter,
unscented Kalman filter, or ensemble Kalman filter, as discussed in Section 4.5.2. Particle
filters, in contrast, make no assumptions about the distribution’s probability and linearity.
This robust, “brute-force” method is apt for agent-based models that employ nonlinear tran-
sition matrices and non-Gaussian (categorical) state variables. Such categorical parameters,
such as an agent’s destination, are frequently observed in ABMs and present challenges for
the standard Kalman filter and its variants [2]. One significant limitation of particle filters
for real-time applications is the large number of particles needed, leading to substantial
computational costs. Ensemble Kalman filters are another popular approach in agent-based
data assimilation. Unlike particle filters, ensemble Kalman filters draw ensembles from a
normal distribution.

The particle filter, the unscented Kalman filter (UKF), and the ensemble Kalman filter
are explored further in Sections 4.4, 4.5.1 and 4.5.2, respectively, representing the major
methodologies in current literature. Notably, [58] introduced a pioneering method for
agent-based data assimilation by applying quantum mechanics field theory to reinterpret
Equation (1) using annihilation and creation operators. The integration of reinforcement
learning and other machine learning strategies can also be fruitful, as indicated by [59,60].
However, as of our latest understanding, no machine learning method has been firmly
established with consistent outcomes for ABDA.
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4.4. Particle Filter

Particle filtering has been extensively employed in geophysical systems. Each particle
represents an instance of the model. Denoting the number of particles as Np, the particle
set as Mk, the state of the ith particle at timestep t = k as xi

k, and its weight as wi
k such that

∑N
i=1 wi

k = 1, we can express the particle set as:

Mk = {< xi
k, wi

k >| i = 1, . . . , N} (2)

Particles aim to estimate the posterior distribution of the system state, xk, based on
a Monte Carlo method combined with a first-order Markov process. These particles are
essentially samples from the probability distribution. They are advanced in time by the
transition model, and their weights are updated when a new system observation becomes
available. These weights are influenced by the proximity of the particles to the received
observations (sensor data). Higher weight is given to particles, which more accurately
estimate the true state variables. Subsequent to weight adjustment, particles are resampled,
leading to the modification or deletion of low-performing particles [1]. To avert particle
collapse, random noise (such as Gaussian white noise) is typically introduced. Particle
collapse refers to situations where only a handful of particles have substantial weights,
rendering most of the particles ineffective and lacking in diversity.

Various particle filter algorithms have been proposed and applied to different tasks.
The basic particle filter with importance sampling neither resamples particles nor modifies
them; it solely updates the particle weights. Such an approach is beneficial when there is
substantial prior knowledge about the true state residing within the set of particles [61].
Sequential Importance Resampling (SIR) is an extension of the basic importance sampling
algorithm and is commonly used for agent-based data assimilation. However, challenges
such as divergence can arise even with resampling [1]. Addressing these issues, researchers
have proposed enhancements and new methods. For instance, Ref. [4] introduced a particle
filter with a mixed component set resampling to tackle particle deprivation. Ref. [57], in-
spired by both [4,62], employed SIR PF and introduced “jittering” (adding white Gaussian
noise to particles) to counteract particle deprivation [63]. Ref. [1] modified the resampling
method to retain certain inferred parameters of low-weight particles. A noteworthy integra-
tion is presented by [64], who combined the PF algorithm with a behavior pattern detection
model, which was executed by a Hidden Markov Model (HMM). This model recognizes
behavior patterns at each data assimilation step, allowing for a more nuanced sampling.

Several parameters play a pivotal role in the construction of the particle filter algorithm,
such as the number of particles Np, data assimilation frequency (or DA “window”), and
the distribution of particle noise. The number of particles, in particular, is crucial for
performance and computational efficiency. Ref. [65] proposed a threshold, as follows:

N � exp
(

τ2

2

)
(3)

with a comprehensive proof available in their paper. As an approximation, τ2 can be viewed
as the number of independent observations, a metric backed by numerous studies [61].
This formula indicates that as state dimensionality grows, particle requirements increase
exponentially. Moreover, particle filters have seen applications in traffic estimation [66]
and epidemiology [67,68], among others. In epidemiology, [69] initiated the application of
particle filters, while [70] introduced the Smart Beam Particle Filter (SBPF) for epidemic
forecasting.

4.5. Kalman Filter

The Kalman filter, rooted in state–space analysis, is a linear, discrete, and recursive
estimation approach. It extends the Weiner filter to handle non-stationary scenarios [71].
This filter relies solely on the previous step’s information to recursively estimate the state
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in a noisy linear dynamical system, aiming to minimize the mean squared error. For a
discrete-time dynamical system [72], the model can be defined by:

xk = Fkxk−1 + Gkuk + wk (4)

yk = Hkxk + vk, (5)

where xk ∈ Rn is the state, yk ∈ Rq the measurements, and uk ∈ Rp represents a known
sequence of inputs. wk and vk denote uncorrelated zero-mean random noise processes. The
matrices Qk and Rk serve as positive–definite covariance matrices for process and sensor
noise, respectively. The transition function F originates from the discrete representation of the
physical model, and H is the observation function relating the true state to the observations.
The system’s initial state is defined as x0 = µ0 + w0, where µ0 ∈ Rn is known.

Upon minimizing pertinent cost functions, we derive the following formulas for the
forecast and update steps:

Pk|k−1 = FkPk−1FT
k + Qk (6)

x̂k|k−1 = Fk x̂k−1 + Gkuk (7)

Kk = Pk|k−1HT
k (HkPk|k−1HT

k + Rk)
−1 (8)

x̂k = x̂k|k−1 + Kk(yk − Hk x̂k|k−1), (9)

Pk = (I − Kk Hk)Pk|k−1 (10)

For nonlinear systems characterized by:

xk = fk(xk−1, uk) + wk (11)

yk = hk(xk) + vk, (12)

extensions of the classical Kalman filter, such as the unscented and ensemble Kalman filters,
are utilized in ABDA [2]. The unscented Kalman filter (UKF) bridges the gap between the
low computational cost of the ensemble Kalman filter and the high performance of the
particle filter.

4.5.1. Unscented Kalman Filter (UKF)

Introduced by [73], the UKF utilizes weighted sigma points (ensembles) propagated
to the next timestep by the non-linear transition function. A Gaussian distribution is then
optimally fitted to these sigma points. The steps of this algorithm can be outlined as [2,74]:

1. Prediction: From the state distribution at t = k− 1, sigma points (χ[i]
k−1, i = 0, . . . , 2n)

and their weights (w[i]
k−1) are deterministically computed. For the detailed mathematical

formula concerning the selection of sigma points and their weights, refer to [73,74].
2. Update: Similar to the classical Kalman filter, the update step assimilates observa-

tions with the model prediction.
Moreover, several advancements and applications of the UKF in the context of agent-based
data assimilation are discussed in [2,75].

4.5.2. Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) was pioneered by [76]. Compared to the computa-
tional complexity of the extended Kalman filter or the unscented Kalman filter, EnKF offers
simplicity. The primary computational challenge might arise from matrix inversion, par-
ticularly when addressing large datasets [77,78]. Despite its widespread use in pedestrian
trajectory prediction, there is still potential for its application in ABDA [50]. EnKF and PF
both employ the Monte Carlo method and address the non-linearity of the ABMs. EnKF,
however, is more computationally efficient than PF due to the smaller number of ensembles
required for real-time simulation. Given its intuitive implementation, it often serves as
the starting point for many researchers [56]. This simplicity stems from the Monte Carlo
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sampling approach for pdf estimation, which allows the classic Kalman filter formulas (as
illustrated in Equations (8) and (9)) for linear systems to be extended to non-linear ones
by substituting the covariance matrix with the sample covariance. One limitation is its
inherent Gaussian approximation [79].

The EnKF methodology consists of two primary stages: prediction and update, as follows:
1. Prediction: during this phase, the state of the system evolves with assistance

from the simulation engine. Contrasted with the forecast step of the classic Kalman filter
(illustrated in Equations (6) and (7)), where there is no analytical formulation for the state
transition matrix F, the ensemble mean approximates the system’s true state. The associated
covariance denotes uncertainty [56]:

x̂k =
1
N

N

∑
i=1

xk(i) (13)

Pk =
1

N − 1

N

∑
i=1

(xk(i)− x̂k)[(xk(i)− x̂k)]
T , (14)

here, N represents the number of ensembles, xk(i) each ensemble forecast, x̂k the ensem-
ble forecast average, and Pk the ensemble covariance. It is logical for the covariance to
decrease when new observations become available, especially in agent-based models with
a consistent agent count. The update or DA step incorporates observations with ensemble
predictions.

2. Update: for this step, the formulas employ a matrix representation akin to
Equations (8) and (9) for each ensemble:

Kk = Pk HT
k (HkPk HT

k + Rk)
−1 (15)

x̂a
k(i) = x̂k(i) + Kk(yk − Hk x̂k(i)), (16)

here, x̂a
k(i) represents the assimilated state for the ith ensemble, and x̂k(i) denotes the

predicted state obtained by advancing the simulation engine from the previous timestep
(k− 1). The updated ensemble mean x̂a

k and covariance Pa
k post-data assimilation are:

x̂a
k =

1
N

N

∑
i=1

xa
k(i) (17)

Pa
k =

1
N − 1

N

∑
i=1

(xa
k(i)− x̂k)[(xa

k(i)− x̂k)]
T (18)

This procedure continues until the final observation is processed.
In their work, [56] explored EnKF for agent-based data assimilation. However, the

foundational model they presented was notably simplistic and might not meet specific
criteria for an agent-based model [57]. They assessed the performance of EnKF on two
models, namely the “box” and “WHIRS”. For the box-model, EnKF was applied on pseudo-
truth data aiming to estimate population counts. In contrast, the WHIRS-model, an agent-
based one, was used to estimate a fixed-size state vector, employing real-world data to train
the EnKF. To address the limitation of fixed state size, they suggest setting the state size
equivalent to the maximum feasible agent count. Ref. [17] employed EnKF in a train station
atrium scenario but excluded categorical parameters, indicating ongoing research to adapt
EnKF for such parameters. Ref. [80] used real-world data to estimate the parameters of the
PEDFLOW [81] model, namely for a unidirectional experiment and the Maataf in Kaaba.
They highlighted the need for varying parameter values across scenarios, underscoring the
role of data assimilation for ABMs. Finally, Ref. [3] utilized EnKF for both model parameter
optimization and state estimation. However, they found the EnKF’s performance wanting
in terms of state estimation, attributing this partly to the randomness level of their model.
A quick summary is provided in Tables 3 and 4.
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Table 3. Summary of previous works of data assimilation for pedestrian movement.

Paper Method Estimated Variables Number of Agents
Number of
Ensembles
(Particles)

Sampling/Resampling
Method Efficacy Metric Observation Source Main Finding or

Application

[2] RJUKF Agents’ location,
Destination 10, 20, 30 — N.A

Grand median L2 norm between
estimated and true locations, Indicator

function(for destination)
Synthetic data Combining

RJMCMC with UKF

[75] UKF Agents’ location 10, 20, 30 — N.A Grand median L2 norm between
estimated and true locations Synthetic data

Applying UKF for
ABDA for the first
time

[4] PF Agents’ location,
Destination 1–6 800–2000 Standard +mixed

component Average of L2 norm Synthetic data New resampling
method

[62] PF
Agents’
location+behavior
(both integer)

100 50 Metropolis-Hastings
(M-H)

Absolute distance between normalized
particle count and true count(summed

over all nodes)
Synthetic data

PF for evacuation
scenario + mapping
method for efficient
measurement update

[57] PF Agents’ location 2–40 1–10,000 SIR Median of mean L2 norm between
estimated and true Agnets’ locations Synthetic data

Attempting to apply
data assimilation to a
system that exhibits
emergence—
Performing
extensive
experiments to
assess PFs for DA

[57] PF
Agents’ parameters,
variables and global
model parameter

2–40 1–10,000 SIR Median of mean L2 norm between
estimated and true Agents’ state Synthetic data

Performing
extensive
experiments to
assess PFs for DA

[1] PF
Agents’ loca-
tion+destination+desired
speed

274 5000 SIR+ Adapted SIR Mean distance CCTV camera

Adapted resampling
method + testing PF
on real world
scenario (proof of
concept)

[18] PF Trajectory 323–2299 108–640 Custom RMSE of destinations Real world trajectory
Model based method
for estimating people
flow

[64] PF Agents’ loca-
tion+destination+velocity —- — — — —

Behavior pattern
informed data
assimilation
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Table 3. Cont.

Paper Method Estimated Variables Number of Agents
Number of
Ensembles
(Particles)

Sampling/Resampling
Method Efficacy Metric Observation Source Main Finding or

Application

[17] EnKF Agents’ location 20 10 N.A Distances Synthetic Data Applying EnKF to
ABM

[3] EnKF Agents’ location
+model parameters 600 30 N.A RMSE Synthetic data AMB parameter

optimization

[56] EnKF Num. of people
+model parameters (0, 19,820) 1, 100, 1000 N.A RMSE Synthetic data +

camera counts
Applying EnKF to
ABM

[80] EnKF Model parameters middle to high (more
than 1000) 20,32 N.A costume cost function Camera Applying EnKF for

ABM calibration

[16] Genetic
algorithm

parameter
estimation 10 k–100 k N.A N.A Nash–Sutcliffe model efficiency

coefficient (NSE) Camera count + GPS
78.1% accuracy for
22100 parameter
space
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Table 4. Comparison of different data assimilation methods.

Characteristic PF EnKF RJUKF UKF

Computational cost High Less than PF Less than EnKF Less than EnKF
Categorical variables X × X ×

Non-linearity X X X X
Closed form formula × X × X

Assumption on pdf form × X X X

5. Relevant Fields

In this section, a concise overview of research domains that are intimately linked to
real-time agent-based modeling and simulation is provided, including:

1. Tracking and predicting pedestrian trajectories.
2. Occupancy estimation in smart buildings.
3. Integration of machine learning and data assimilation, often referred to as “data

learning” [82].
4. Discrete choice models.

It is worth noting that the methodologies employed in tracking and predicting pedes-
trian trajectories bear a striking resemblance to the state-of-the-art techniques in ABDA.
Enthusiastic readers might find inspiration from studies in this domain for applications in
ABDA (Section 5.1). Pioneers in the realm of smart buildings have been instrumental in
the advancement of agent-based data assimilation [64] (Section 5.2). In Section 5, several
publications have delved into the confluence of machine learning and data assimilation.
However, a standardized framework for integrating machine learning into ABDA is still
in its infancy. The amalgamation of machine learning and data assimilation in alternative
modeling paradigms might offer valuable insights.

5.1. Detecting and Tracking Using Filtering Techniques

The study of detecting, tracking, and predicting pedestrian paths in areas with a
network of sensors, predominantly CCTV cameras, predates the real-time simulation of
pedestrian movements. A myriad of articles delve into this topic, substantially outnumber-
ing those on real-time pedestrian simulations. Remarkably, several methods applied for
pedestrian tracking echo those used in real-time simulations, such as the use of Bayes filters
and pedestrian motion models. Consequently, real-time pedestrian simulations utilizing
data assimilation can be viewed as expanded versions of tracking methods. Although
pedestrian tracking encompasses diverse techniques, those methods that incorporate a
pedestrian motion model, especially agent-based models, alongside real-time data for
tracking and path prediction are directly relevant. Noteworthy methods in this domain are
discussed to provide insight. For a comprehensive survey of other tracking methodologies,
the reader is directed to [8,83].

In [84], an algorithm merging a particle filter with the environment’s Voronoi graph
is proposed for pedestrian tracking. The study utilizes two distinct types of ID sensors:
73 Versus infrared receivers and 3 Cricket ultrasound receivers, both notorious for pro-
ducing false-negative readings. Leveraging the Voronoi graph, the authors implement the
Expectation-Maximization (EM) algorithm for clustering pedestrian movement patterns.
Contrary to trackers that employ rudimentary motion models based on constant velocities
or accelerations, Ref. [85] amalgamates the social force model with a Kalman filter-based
multi-hypothesis tracker.

The contributions of Bera et al. stand out in this field [28,50,86,87]. Particularly, Ref. [50]
is salient for its incorporation of intricate pedestrian motion models in real-time tracking.
The researchers exploit both EnKF and EM for real-time pedestrian path prediction, utiliz-
ing global and local movement patterns (GLMP). Their comprehensive approach, which
does not necessitate prior learning, reportedly outperforms conventional models by 12–18%.
The various works discuss the amalgamation of different pedestrian movement models
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with particle filter trackers, demonstrating advancements in accuracy and computational
efficiency.

5.2. Occupancy Estimation

Modeling and analyzing pedestrian behavior serves a plethora of objectives. In trans-
portation contexts, the focal concerns are pedestrian safety, decision-making regarding exit
choices, and overarching parameters imperative for pedestrian management. Contrastingly,
engineers striving to optimize energy consumption in edifices view pedestrian dynamics
from a unique lens, primarily encapsulated by “occupancy estimation”. Such studies
predominantly emphasize the interplay between occupants and the infrastructure to foster
intelligent energy consumption. Precise occupancy information can, for instance, enable the
fine-tuning of heating or cooling systems. In evacuation scenarios, the paradigms of trans-
portation and occupancy estimation converge as evacuative movements in smart buildings
and transportation nodes exhibit analogous patterns. As defined by [88], occupancy not
only pertains to human presence but also encapsulates actions undertaken to influence the
indoor environment.

Ref. [89] is a trailblazing study that leveraged the extended Kalman filter (EKF) for oc-
cupancy estimation during egress and a simple Bayes filter for conventional building modes.
Their methodology, tested on both agent-based simulations and real-world fire alarms,
exemplifies the potential of these techniques. Ref. [90] introduces a real-time occupancy
estimation algorithm capitalizing on environmental sensors. These sensors, measuring
parameters such as CO2, temperature, and humidity, offer the advantage of being non-
intrusive and pose minimal privacy concerns. A series of investigations by researchers
at Georgia State University delve into occupancy estimation in smart environments via
ABDA [4,53,64,91,92], with a detailed exploration provided in Section 4.

5.3. Data-Driven Dynamic Systems

Data-driven dynamic systems aim to understand the underlying dynamics of systems
using data. Integrating these with traditional DA methods can enhance the assimilation
process. Broadly, these methods fall into two categories:

• Machine learning-based methods, which largely operate within a black-box frame-
work.

• Analytical approaches that strive to derive the governing equations of the dynamical
system.

The latter methods have been pioneered by works such as [93], which introduced the
Sparse Identification of Nonlinear Dynamics (Sindy) to determine the equations governing
a dynamical system. This method leans heavily on the sparsity assumption, previously
introduced in compressed sensing [94,95]. It has been effectively applied in areas such as
fluid dynamics, even reproducing the Navier–Stokes equations [96,97]. Notably, Sindy
offers explicit law-based generalisation, a feature elusive to AI and machine learning
techniques. Another notable method in this domain is symbolic regression. Ref. [98], for
instance, combined symbolic regression with deep learning to tackle challenges such as
high-dimensionality and generalisation. We believe a sparsity-based formulation may
assist the model in updating as new data arrive [99]. Machine learning-based methods will
be further explored in the following section.

Machine learning (ML) techniques have found applications in data assimilation, es-
pecially within the realm of earth sciences. However, its use in ABDA remains relatively
uncharted, suggesting promising avenues for future research. Both ML and DA fundamen-
tally rely on optimization, and given ML’s adeptness at approximating nonlinear functions,
a collaboration between the two seems intuitive [82]. Applications vary; some researchers
replace components of the DA process, such as the likelihood calculation, with ML algo-
rithms [100], while others entirely overhaul the DA procedure [101]. Yet another approach
involves substituting the state transition function with an artificial neural network (ANN),
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referred to as a surrogate function [102]. One of ML’s main contributions to DA is its
potential to expedite the assimilation process.

Regarding network architectures, recurrent neural networks (RNNs), such as LSTM
and Elman networks [103], along with feed-forward networks such as MLP, are dominant
in merging ML with DA. These methods typically employ supervised learning, using
targets generated by the assimilation process. ANNs, when applied to DA, essentially
approximate functions [104]. Both feed-forward and RNNs have been mathematically
validated as effective approximators [105,106].

While RNNs excel at handling sequence-dependent problems owing to their inherent
memory, LSTMs shine in recognizing long-term dependencies and addressing the vanishing
gradient issue prevalent in standard RNNs. An LSTM unit features three primary gates:
update, forget, and output. Ref. [107] noted that the E-NN model outpaces the MLP in
terms of speed and offers reduced complexity (fewer neurons). However, the MLP remains
superior in accuracy. Being a traditional neural network, MLP can aptly fit any measurable
function and is frequently used to emulate the DA process.

Initial attempts to incorporate ML in the DA process are captured in works such
as [108–110]. For example, Ref. [109] highlighted the parallels between variational data
assimilation and neural networks, particularly in their mutual goal of cost function mini-
mization. Subsequent studies [101,102,111–118] further built on these initial insights, each
introducing innovative methods and algorithms to further the integration of ML and DA.
Interested readers are directed to the comprehensive studies by Arcucci et al. at the data
mining lab at Imperial College London. Overall, with the development of efficient and
powerful machine learning techniques, along with abundant data availability, the future
perspective for DA is expected to be based on autonomous and smart ML models. The
machine learning methods for DA are summarized in Table 5.

Table 5. Machine learning methods for data assimilation.

Paper NN Type Integrated DA Method Dynamical Model

[108] MLP KF Lorenz model
[119] - Statistical Interpolation(SI) Wave model
[111] MLP PF Lorenz model
[120] MLP KF Three-wave model
[121] MLP Variational Lorenz model
[122] MLP Variational Wave model
[107] Elman KF Shallow water 1D model (DYNAMO-1D)
[104] RBF KF Shallow water 1D model (DYNAMO-1D)
[112] MLP LETKF Atmospheric general circulation model (FSUGSM)
[123] MLP LETKF Atmospheric general circulation model (SPEEDY)
[124] Mixed Type KF Satellite-Derived Sea Surface Temperature data
[125] Fully Connected Variational , KF Dot system and Lorenz models
[117] LSTM Variational (3DVAR) CFD model (Fluidity)
[114] Elman Variational Dot system and Lorenz models
[102] LSTM KF CFD model (Fluidity)
[101] MLP Variational Lorenz model
[126] LSTM Variational Lorenz model
[127] MLP Variational and EnKF Lorenz model
[118] LSTM KF Oxygen diffusion across the Blood–Brain Barrier model

5.4. Discrete Choice Models

A discrete choice model can be expressed as [128]:

y = h(x, ε) (19)

where x denotes observed factors, ε represents unobserved factors, and y signifies the choice
model outcome. Given the observed factors, the probability of y can be articulated as:

P(y|x) =
∫

I[h(x, ε) = y] f (ε)dε, (20)
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here, I is an indicator function that assumes a value of 1 when h(x, ε) = y and 0 otherwise.
Imposing specific assumptions on h and f leads to diverse choice models. For instance, by
assuming an i.i.d extreme value distribution for f (ε), and defining h(x, ε) as

h(x, ε) = ∑
i∈{1,2,...,J}

i× I[Uni > Unj]

with y belonging to {1, 2, . . . , J}, we obtain the closed-form logit choice probability:

Pni =
eVni

∑j eVnj
(21)

In this context, B = {1, 2, . . . , J} denotes the alternative set, while Vni is the sum of
observed Uni and unobserved εni components of the utility.

Though the logit model precludes the integration of individual-level parameters,
certain discrete choice models, such as the mixed logit, alleviate this constraint. However,
integrating these parameters can complicate the estimation process. When viewed through
the lens of a data assimilation framework, this approach empowers modelers to estimate
individual-level parameters, creating avenues to incorporate other state variables in the
estimation process. This becomes particularly valuable when considering time-dependent
(or dynamic) networks.

Ref. [129] demonstrates that a logit model could be viewed as an ANN. According
to [118], we know that data assimilation has the potential be formulated as ANN, which
paves the way to combine data assimilation with discrete choice models. Ref. [130] utilized
machine learning techniques for automatic “feature selection”. Using a Bayesian approach
and automatic relevance determination (ARD), they devised a data-driven method, DCM-
ARD, which can ascertain the optimal utility function [99]. This method assesses potential
variables in the function and provides relevant parameters for each. High values indicate
probable inclusion in the optimal utility function. This approach builds on machine learn-
ing’s regularization-based feature selection, notably the LASSO method and is suitable for
the live-stream of data (online learning).

6. Bridging Machine Learning and Data Assimilation: A Case Study on Particle Filters

In order to showcase an example of how the kind of literature discussed in Section 5
can contribute to the ABDA, in this section we shall borrow some concepts from learning
guarantees, as proposed by [131]. We aim to illustrate how these concepts can be integrated
into the particle filter, starting with the introduction of the PAC framework in Section 6.1,
and applying it to the particle filter in Section 6.2.

6.1. Probabilistically Approximate Correct (PAC) Framework

The PAC framework, as defined by [131], states that “a concept class C is PAC-learnable
if an algorithm exists, and a polynomial function poly(, , , ), such that for any ε > 0 and
δ > 0, for all distributions D on X and for any target concept c ∈ C, the following holds for
any sample size m > poly(1/ε, 1/δ, n, size(c))”:

PS∼Dm [R(hs) 6 ε] > 1− δ, (22)

where R(hs) represents the generalisation error of the hypothesis hs.
Consider the following theorem presented by [131]: Theorem (Learning bound; finite

H, consistent case): let H be a finite set of functions mapping from X to Y. Let A be
an algorithm that for any target concept c ∈ H and i.i.d. sample S returns a consistent
hypothesis hS : R̂S(hS) = 0. Then, for any ε, δ > 0, the inequality PS∼Dm [R(hs) 6 ε] > 1− δ
holds if:

m >
1
ε
(log|H|+ log

1
δ
) (23)
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This sample complexity result can be restated as a generalisation bound: for any
ε, δ > 0, with a probability of at least 1− δ:

R(hs) 6
1
m
(log|H|+ log

1
δ
) (24)

6.2. Particle Filter Derivation

Let us denote the hypothesis set by H, which in our case is the particle set M. We have:

m >
1
ε
(log|M|+ log

1
δ
), (25)

where |M| is the cardinality of the particle set and is finite. We have assumed a particle
(simulation instance) in the particle set, P∗, which results in zero error after some assimi-
lation windows (consistent case). In this setup, each assimilation window is viewed as a
training sample and the learning algorithm is seen as the method of likelihood calculation.

The formula above suggests that for a learning task with particles as its hypothesis
set, the data quantity required to achieve 1 − ε accuracy, and 1 − δ certainty (number
of assimilation steps in our case) is at least 1

ε (log|M| + log 1
δ ). Particle collapse can be

envisioned as a scenario where a particle is learned over some iterations. Under this
assumption, the number of iterations for particle collapse might be correlated to 1

ε (log|M|+
log 1

δ ). Hence, we can suggest, with 1− ε accuracy and 1− δ certainty, that the number of
iterations to particle collapse is related to log|M|. In other words, the particle collapse will
be delayed at a logarithmic rate with a larger particle set. However, the derivations above
are based on strong assumptions, and a genuine particle filter experiment without these
simplifications can either verify or contradict this proposition.

6.3. The Concept of Covering Number in Particle Filters

In this section, the concept of a covering number is introduced within the context of
particle filters. We consider a particle filter with a particle set M whose cardinality is |M|.
This filter is a mapping from X to Y. The covering number for this particle set, denoted as
N(M, ε), is defined as k. This definition implies that for any given particle within the set,
denoted as Mj, there exists another particle, Mi, within the subset M1, M2, . . . , Mk. This
latter particle satisfies the condition that maxx∈X |Mj(x)−Mi(x)| < ε.

The covering number serves as a metric that quantifies the diversity within the particle
set. As such, a particle set characterized by a larger covering number is generally more
desirable. Given the condition that maxx∈X |Mj(x)−Mi(x)| < ε must be upheld for all
x ∈ X, it follows logically that finding a pragmatic way to calculate the covering number is
imperative. One potential method for doing this involves taking a subset of X to compute
the covering number. It is noteworthy that covering numbers has been employed in the
field of machine learning to establish mathematical guarantees. These guarantees are aimed
at constraining the generalization error. Therefore, covering numbers not only provides a
measure of efficiency but may also be instrumental in developing mathematical assurances
for particle filters.

6.4. Online Learning and Its Implications for Particle Filtering

The fundamental construct of online learning can be succinctly described as follows: in
each round, an algorithm receives an input and formulates a prediction predicated on expert
advice. Following this, the actual labels are presented, and a loss function is computed.
The paramount objective is the minimization of the regret function. This is articulated
as the cumulative loss minus the least loss sustained by the leading expert. In the online
learning paradigm, data undergo processing during every round, offering advantages such
as computational efficiency, practicality, and straightforward implementation. Two primary
attributes differentiate online learning from other learning paradigms:
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1. It operates without distributional assumptions, eschewing the generalization con-
cept. Instead, algorithmic performance hinges on the regret notion.

2. The learning and testing phases are interspersed, a deviation from the assumptions
in Probably Approximately Correct (PAC) learning.

Drawing parallels between online learning and sequential data assimilation method-
ologies reveals some intriguing similarities. As an exemplar, consider the classical Expo-
nential Weighted Average (EWA) algorithm (Listing 1):

Listing 1. EWA algorithm.

1 For i = 1 to N
2 w1,i = 1
3 End
4

5 For t = 1 to T
6 Receive(yt)

7 ŷt = ∑N
i=1 wt,iyt,i

∑N
i=1 wt,i

8 Receive(yt)
9 For i = 1 to N

10 wt+1,i = wt,i × e−ηL(ŷt ,i,yt)

11 End
12 Return wT+1
13 End

The particle filter can be perceived as a variant of the EWA algorithm. By viewing
each particle forecast as expert advice, the state vector as input, and aligning the likelihood
calculation (alongside its subsequent update rule) with the weight update in line 9 of the
aforementioned algorithm, such a parallel becomes evident. As indicated by [132], the
weight update formula for the particle filter can be expressed as:

wj+1 = gj(v̂j+1)wj, (26)

where:
gj(v̂j+1) ∝ P(yj+1|vj+1) (27)

It is worth noting that mathematical guarantees prevalent in online learning might
be conducive for adaptation to the particle filter realm. Taking the theorem from [131] as
an illustration, it states that under conditions where the loss function L is convex with
regard to its primary argument and assumes values in the range [0, 1], the regret of the
EWA algorithm after T rounds is:

RT 6
log N

η
+

ηT
8

(28)

Specifically, when η =
√

8logN/T, the regret is capped at:

RT 6

√
T
2
· log N (29)
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Leveraging the above guarantee for particle filtering mandates us to redefine the loss
accrued by each particle in a manner that aligns with the theorem’s prerequisites. Upon
contrasting the weight update rules in both algorithms, we ascertain:

g = e−ηL (30)

Given that L ∈ [0, 1], it is logical to infer:

0 <
−1
η

ln(g) < 1, (31)

On the assumption that the g function (derived from the likelihood) satisfies:

e−η < g < 1 (32)

It can be deduced that the equation holds for the particle filter when the convex loss
function is articulated as:

L =
−1
η

ln(g) (33)

Examining the proof approach in [131] and revisiting the Hoeffding inequality [133],
one can broaden the loss function’s domain such that:

RT 6
log N

η
+

ηT
8
(b− a)2 (34)

Expanding the discourse to include another rendition of the EWA forecaster, we can
base our discourse on the work of [134] as it relates to geodesic spaces. A comprehensive
exploration of the notations is available in [134]. According to the same source, the primary
advantage of the geodesic interpretation of the EWA and its accompanying regret bound
for particle filters lies in the flexibility it provides in the utilization of diverse decision
spaces, all the while ensuring that regret remains bounded.

7. Results and Discussion

Even though many algorithms used in real-time pedestrian/passenger simulation
have been applied for decades in other fields, real-time simulation responding to live data
remains a nascent research area that has gained momentum recently. The principal methods
used so far for ABDA include particle filter, Kalman filter, and their extensions (Table 4).
Most methods have certain limitations for implementation in the real world; for example,
they assume that the system’s boundary conditions (input) are known over time. This can
be true in places such as train stations where people’s entrance is recorded via station gates,
but for other scenarios, appropriate arrangements must be made both for data collection
and methodology development in order to determine the input of the system even in a
situation where data cannot be obtained as easily as a train station over time and space.
Using ML and time series methods can be a good option for this purpose. Only some
attempts have been made to integrate ML methods in ABDA [135], and we believe there
will be more work on this topic in the near future.

Among the articles reviewed, it is rare to find an article that uses a sophisticated
model that includes algorithms for modelling the behaviour of pedestrians at different
levels. One of the reasons for using simple models of pedestrian behaviour is to create a
basis for transparently and effectively testing DA algorithms’ performances. If the model
is complex, it can be challenging to see how the algorithms work. For example, if the
model automatically specifies the destination, the role of filters in tracking the movement
of pedestrians toward their destination cannot be clearly identified. Another reason to use
simple models can be to save on computational costs. Some methods, such as particle filters,
have a high computational cost, and if the computational cost of complex agent-based
models is added to them, it will negatively affect their performance. This issue will become
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more prominent and decisive as the number of agents increases, significantly increasing
the computational cost. Future research could examine these methods on more advanced
models [136,137]. Moreover, the simultaneous use of different algorithms so that the most
optimal algorithm output is reported is another possible research topic.

8. Conclusions

The discussed material presents an insightful exploration into the implementation
of DA in ABMs. Historically, the utilization of DA in ABMs has been limited due to
significant challenges such as the lack of data availability and the computational intensity
arising from high-dimensional state spaces in ABMs. However, advancements in real-time
data collection methods and computational power, including the potential availability of
quantum computers, are paving the way for enhanced implementation of DA methods
in ABMs, promising a significant shift in the field. Different methods of ABDA such as
the ensemble Kalman filter and particle filter have been highlighted, each with its unique
applicability, advantages, and challenges. These methods, due to their adaptability to
the non-linear, stochastic nature and high dimensionality of ABMs, do not necessitate an
analytical form of the state transition model, making them preferable for ABDA.

The discourse also delves into the integration of DA with machine learning methods,
and introduces promising avenues where this synergy can lead to more efficient perfor-
mances in ABDA. The versatility of methods such as the particle filter has been emphasized,
with their extensive applications ranging from geophysical systems to epidemiology. How-
ever, the computational cost due to the large number of particles needed for real-time
applications and the challenges associated with particle deprivation remain crucial areas to
address. The EnKF is highlighted for its computational efficiency and simplicity, making it
a frequent starting point for researchers in ABDA, despite its inherent Gaussian approx-
imation. Real-world implementations and adaptations of these DA methods in various
models and scenarios underscore the practical applicability and evolving nature of ABDA,
reflecting ongoing research to refine and optimize these methods to suit varying needs and
contexts, such as the inclusion of categorical parameters and the addressing of fixed state
size limitations.

In the context of the Kalman filter and its variants, the exploration provides a detailed
portrayal of their application in systems characterized by linearity and Gaussian distribu-
tions, with extensions such as the unscented Kalman filter being introduced for nonlinear
systems, serving as a middle ground between computational cost and high performance.
Moreover, the utilization of VarDA methods such as 3D-VAR and 4D-VAR is suggested as
a potential direction for future research due to their minimal current use in ABMs, largely
due to their mathematical complexity. The seamless integration of DA methods such as
the particle filter with behavioral pattern detection models, such as Hidden Markov Mod-
els, opens up avenues for more nuanced sampling and refined ABDA implementations,
acknowledging the pivotal role of different parameters such as the number of particles and
data assimilation frequency in the construction of DA algorithms.

In conclusion, the ongoing advancements in computational methodologies, data
collection techniques, and integrative approaches between DA and machine learning
illustrate a progressive trajectory in the domain of agent-based data assimilation. The
continuous exploration, adaptation, and optimization of these methods are crucial for
navigating the complexities of ABMs and will likely lead to revolutionary developments in
the practical application of ABDA across diverse disciplines and domains.
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Abbreviations
The following abbreviations are used in this manuscript:

DDDAS Dynamic Data-Driven Application Simulation
SMC Sequential Monte Carlo
DDDS Dynamic Data-Driven Simulation
DA Data Assimilation
ABM Agent Based Model
ABDA Agent-based Data Assimilation
ML Machine Learning
SINDy Sparse Identification of Nonlinear Dynamics
PF Particle Filter
KF Kalman Filter
CS Compressed Sensing
MLP Multi-layer Perceptron
VarDA Variational Data Assimilation
CMS Crowd Monitoring System
SIR Sequential Importance Resampling
HMM Hidden Markov Model
SBPF Smart Beam Particle Filter
EnKF Ensemble Kalman Filter
EKF Extended Kalman Filter
RJUKF Reversed Jump Unscented Kalman Filter
CCTV Closed Circuit Television
EM Expectation Maximization
GLMP Global and Local Movement Pattern
RVO Reciprocal Velocity Obstacle
BRVO Bayesian Reciprocal Velocity Obstacle
LETKF Local Ensemble Transform Kalman filter
DDA Deep Data Assimilation
DNN Deep Neural Network
LSTM Long Short-term Memory
SSNN State Space Neural Network
DEKF Decoupled Extended Kalman Filter
FDA Fast Data Assimilation
FCNN Fully Connected Neural Network
RODDA Reduced Order Deep Data Assimilation
PCA Principal Component Analysis
NA Neural Assimilation
PBNN Patched-based Neural Network
E-NN Elman Neural Network
CFD Computational Fluid Dynamics
SVM Support Vector Machine
RNN Recurrent Neural Network
N.A Not Applicable
EWA Exponential Weight Algorithm
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