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Abstract: The requirements of high reliability for hybrid systems are urgent for engineers to maximize
the system reliability under the limited cost budget. The cost constraint importance measure (CIM)
is an important tool to achieve the local optimal solution by considering the relationship between
constraint conditions and objective functions in the optimization problem. To better consider the
contribution of the CIM, this paper considers three different cost function forms, including power
type, trigonometric type, and exponential type. Combining the global search ability of the arithmetic
optimization algorithm (AOA) with the local search ability of the CIM, a CIM-based arithmetic
optimization algorithm (CIAOA) is developed to analyze the contribution of the CIM. Through the
numerical experiments, the optimal system reliability and convergence generation of the CIAOA and
AOA under different cost function forms are regarded as the indexes to analyze algorithm perfor-
mance. The experimental results show that the average system reliability improvement percentages
under power type, trigonometric type, and exponential cost constraint are 8.07%, 0.14%, and 0.53%,
respectively, while the average convergence improvement percentages under three cost forms are
37.30%, 0.08%, and 1.66%, respectively. Therefore, the CIAOA performs the best under power cost
constraints. Finally, a numerical example of a hybrid power vehicle system is introduced to analyze
the contribution of the CIM under different cost functions by considering the reliability improvement
rate in the optimal solution and the ranking of the CIM. The higher prioritization components in the
two rankings are similar, which shows that the component with higher a CIM is selected to improve
its reliability.

Keywords: hybrid systems; importance measure; cost constraint; reliability optimization

MSC: 90B25

1. Introduction

As modern systems with hybrid structures become more and more complex, the
high-reliability requirement is increasing. Reliability design and optimization are becoming
increasingly important to ensure that systems operate stably. The importance measure
is an effective tool for reliability engineering and system reliability improvement, which
can identify the weakest points of a system and help reliability engineers quickly identify
solutions with high system reliability. Therefore, the contribution of importance measures
should be analyzed to improve the system reliability with limited resources effectively.

Importance measure (IM) theory is an important branch of reliability engineering,
which is mainly used to measure the change in system reliability when single or multiple
components in a system break down. IMs can provide theoretical guidance for the improve-
ment of system reliability. Many scholars have proposed different forms of importance
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measures, which are used for allocating resources or improving system reliability effec-
tively in different fields. In recent years, Si et al. [1] proposed the integrated importance
measure by considering the effect of different component states on the system performance.
Dui et al. [2] synthesized three importance measures and gave the representation and geo-
metric meaning of importance measures by slopes. At the same time, Si et al. [3] applied the
integrated importance measure of the components into a needle multi-state hybrid system.
Miziula et al. [4] proposed an extended Birnbaum importance measure for systems with
dependent components, which considered the effect of the dependent relationship between
components. Si et al. [5] proposed a generalized Birnbaum importance by considering the
reliability range, complexity, and feasibility of components. Do et al. [6] proposed the rela-
tive joint importance by considering the potential impact on system reliability for uncertain
systems. Ma et al. [7] suggested a multi-objective Birnbaum importance measure to quantify
the contribution of a component to system reliability for a consecutive k-out-of-n system.
Considering the strength degradation of components, Lyu et al. [8] proposed a dynamic
importance measure based on the stress interference model. Dui et al. [9] proposed joint im-
portance measures for the optimal component sequence of a consecutive k-out-of-n system.
Kirigin et al. [10] proposed node importance to evaluate the interconnection of nodes in
semi-local subgraphs. Moreover, importance measure theories are widely used in reliability
analysis and maintenance decision-making. Qiu et al. [11] applied IM to the maintenance
strategy for wind power generation systems, considering two dependent failure processes.
Xie et al. [12] utilized the importance of analyzing the key risk factors in the adjustment of
auto insurance rates. Bisht et al. [13] used IM in the reliability optimization of communi-
cation networks. Harnpornchai et al. [14] applied IM to stock forecasting. Zhu et al. [15]
applied IM to epidemic prevention and control. Li et al. [16] applied the multivariate
ensemble model and the hierarchical linkage technique to analyze the system reliability.
Li and Jia [17] discussed the construction of connection-based, performance-based, and
state-based reliability indicators for telecommunication networks. Bai et al. [18] determined
the maintenance priority for the power grid based on the resilience importance measure.
These existing IMs help to identify the weakest components of the system and provide
support for reliability improvement, but the existing IMs did not consider the relationship
between constraints and objective functions. If the component with the higher IM has
almost no space to improve its reliability, it is hard to improve the system reliability by
increasing the mentioned components. Therefore, it is necessary to construct an importance
measure by considering the reliability boundary, constraints, and objective function, which
can better improve the system’s reliability effectively.

System reliability analysis is the basis for reliability optimization, and some intelli-
gent algorithm is important to solve the system reliability optimization problem. Based
on various reliability optimization problems, the better performance of optimization al-
gorithms has been reported. Kumar et al. [19] proposed meta-heuristic algorithms to
address the limitations of traditional algorithms and obtained the optimal solutions for
various optimization problems. Intelligent optimization algorithms include exploration
and exploitation search strategies [20]. The performance of intelligent algorithms depends
on the balance between the exploration search strategy and the exploitation search strat-
egy [21]. Shen et al. [22] proposed a population-based optimization algorithm inspired by
human phenomena, collective intelligence, evolutionary concepts, and physical phenom-
ena. Cai et al. [23] designed a Birnbaum IM-based genetic algorithm to obtain the optimal
component arrangement for a consecutive k-out-of-n system. Wang et al. [24] suggested
a Birnbaum IM-based genetic algorithm and a DIM-based genetic algorithm to solve the
reliability optimization problem. Recently, Zhao et al. [25] proposed an importance-based
ant colony optimization algorithm to maximize the mission success probability for phased
mission systems. Ma et al. [26] proposed a greedy algorithm based on delta IM to solve
the component reassignment problem for reconfigurable systems. Si et al. [27] proposed
a general optimization framework for importance-driven system reliability optimization
problems. Kumar et al. [28] proposed a modified wild horse optimizer for system relia-
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bility optimization problems. Li et al. [29] applied a novel physics-informed distributed
modeling method to establish the system reliability model. Zhu et al. [30] developed a
particle swarm optimization-based harmony search algorithm for reliability optimization
problems. Fathollahi et al. [31] proposed improved simulated annealing algorithms to
optimize green home healthcare supply chain problems. According to the current research
status of optimization algorithms, the improved algorithms have been widely used in
reliability optimization problems, while the setting of algorithm parameters is the research
difficulty. Thus, it is important to study the algorithm with fewer parameters.

The arithmetic optimization algorithm (AOA) is a meta-heuristic optimization algo-
rithm that implements a global optimization search based on the distributional properties
of arithmetic operators, which has good results in solving challenging optimization prob-
lems and requires fewer given parameters [32]. Kathiravan and Rajnarayanan [33] reduce
network losses by using the AOA to solve the optimal way for electric vehicle charging
stations to be integrated into the grid. Dahou et al. [34] applied the AOA to the Internet
of Things data processing. The AOA solves the reliability optimization problem of the
hybrid system studied in this paper because the AOA has a strong global search capability
with simple principles, but the AOA has slow convergence and weak local search ability
during the solution process. The local search process also needs to be considered to find
the optimal results as soon as possible. The cost constraint importance measure (CIM) is
used to comprehensively consider the objective function and constraint conditions for the
cost-constrained reliability model [35]. Taking the general hybrid system as the research ob-
ject, this paper considers the CIM-based AOA (CIAOA) for the cost-constrained reliability
optimization model. The main contributions of this research work are as follows.

(1) Considering the objective function and cost constraints, the CIM is introduced to find
the optimal local search results for the reliability optimization of hybrid systems.

(2) A CIAOA combines the advantages of the AOA’s global search ability and the CIM’s
local search ability for optimal reliability improvement solutions.

(3) The contribution of the CIM under three cost function forms is analyzed by consider-
ing the consistency of reliability improvement rates ranking and CIM ranking.

The rest of this paper is organized as follows. Section 2 constructs the reliability
optimization model of hybrid systems under three different cost function forms. Section 3
describes the detailed process of the CIAOA. Section 4 evaluates the performance of the
CIAOA through numerical experiments under different system scales and cost forms. In
Section 5, a hybrid power vehicle system is introduced to further verify the contribution of
the CIM. Finally, Section 6 summarizes the research work of this paper.

2. Problem Description

Section 2 aims to define the reliability optimization of hybrid systems under limited
cost. The main content includes three key parts. Section 2.1 constructs the reliability opti-
mization model under limited cost. Section 2.2 describes the detailed reliability evaluation
method of hybrid systems by decomposition method for calculating the objective function
in Section 2.1. Section 2.3 gives three cost function forms to better express the relationship
between cost and component reliability in Section 2.1.

2.1. Reliability Improvement Model under Limited Cost

The cost-constrained reliability optimization model is a classical mathematical model
with the purpose of determining the reliability improvement solution of components to
maximize system reliability under limited resources [5]. For the specified complex system,
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the constraints consist of the functions that are related to component reliability, and the
cost-constrained reliability optimization model can be expressed as follows.

maxR = f
(

∆r1, ∆r2, · · · , ∆rn |
→
r
)

s.t.


C = g

(
∆r1, ∆r2, · · ·, ∆rn

∣∣∣→r ) ≤ C0

0 ≤ ∆ri ≤ ri,max − ri
i = 1, 2, · · ·, n

where
→
r = (r1, r2, · · ·, rn) represents the current reliability of n components; R is the

system reliability; C represents the total cost of system reliability improvement, which
should be no greater than the cost constraint C0; ri and ri,max are the current reliability and
reliability upper bound of component i respectively; ∆ri represents the reliability increment
of component i, which cannot exceed the upper bound ri,max − ri.

For the reliability improvement model of hybrid systems, two important problems
should be solved: (1) how to evaluate the reliability of the hybrid systems and (2) how to
determine the cost functions.

2.2. Reliability Evaluation of Hybrid Systems

A hybrid system [36] is a hybrid combination of series systems and (or) parallel
systems, so the reliability of a hybrid system can be evaluated by the equivalent series-
parallel systems or parallel-series systems. The hybrid system can be divided into several
subsystems or units by determining the structure and function of the system, and the
series–parallel relationship of each subsystem or unit is suggested according to the failure
logic relationship between the subsystems or units [37]. Therefore, the reliability evaluation
process of hybrid systems can be summarized as follows.

(1) Decompose the hybrid system into some subsystems, which are series–parallel sys-
tems or parallel–series systems.

(2) The series–parallel reliability can be evaluated by ∏n
i=1

{
1−∏mi

j=1

(
1− rij

)}
; the

parallel–series system reliability can be evaluated by 1−∏n
i=1

(
1−∏mi

j=1 rij

)
, where

rij is the reliability of the j-th component in the i-th subsystem.
(3) Analyze the logical relationship between subsystems, which can be simplified as a

series or parallel system.
(4) Calculate the simplified system reliability by reliability evaluation of a series system

or parallel system.

2.3. Three Cost Function Forms

To better express the relationship between cost and component reliability, the cost
function should be considered to construct the reliability optimization model. The general
forms of cost functions are the polynomial cost function, trigonometric cost function, and
exponential cost function [38]. The power type cost function can represent that the cost
increases sharply when the component reliability is higher, but the cost function has the
upper boundary. Trigonometric type cost function can consider the difficulty of reliability
improvement when the component reliability is high, so the cost will trend to infinity when
the component reliability is near 1. Exponential type cost function considers the boundary
of component reliability and improvement feasibility. Three forms of the cost function are
summarized as follows.

(1) Power type cost function
ci = Ki · p

ai
i (1)

where ci and pi are the cost and reliability of component i; Ki and ai are the constants
associated with component i; ai < 1.
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(2) Trigonometric type cost function

ci = ki ·
[
tan
(π

2
pi

)] f (pi)
(2)

where f (pi) = 1 + pxi
i , 0 < xi < 1, or f (pi) = mi, mi is a constant and 1 ≤ mi ≤ 2.

(3) Exponential type cost function

ci = exp
{
(1− fi)

ri − ri,min

ri,max − ri

}
(3)

where fi is the reliability of component i, ranging from 0 to 1. The larger the fi is, the
easier the reliability improves.ri,max and ri,min represent the upper and lower limits of
the reliability of component i, respectively.

3. Solving Method

The AOA is a new metaheuristic algorithm inspired by the problem of solving math-
ematical arithmetic operators’ addition, subtraction, multiplication, and division. The
algorithm mainly uses multiplication and division operators for global exploration and
addition and subtraction operators for local development and determines the best element
from a set of candidates that meets a specific criterion by using these simple operators as
mathematical optimization in the algorithm.

The main research purpose of this paper is to verify the effectiveness of the CIM under
three different forms of cost functions. Therefore, the selection reasons for the AOA are
summarized as follows.

(1) The AOA is a meta-heuristic optimization algorithm based on the distribution rela-
tionship of arithmetic operators, which has a better global search ability.

(2) There are only two parameters in the AOA, which just need to consider sensitive
parameters α and control parameters of the search process µ.

(3) The AOA has been widely used in various optimization problems and effectively
solves continuous nonlinear optimization problems.

To solve the optimization model effectively, CIM is introduced to perform the local
search better. The AOA has advantages in the global search ability. Therefore, the CIAOA
was developed to solve the reliability improvement model by considering the local search
advantage of the CIM and the global search advantages of the AOA.

3.1. Cost Constraint Importance Measure

Liu et al. [35] first proposed the CIM for the cost-constrained reliability optimization
problem. Based on the research work, this paper gives the general forms of CIM for
component i, which is shown in Equation (4).

ICRIM
i = lim

∆ri→0

R
(

ri + ∆ri,
→
r
)
− R

(
ri,
→
r
)

C
(

ri + ∆ri,
→
r
)
− C

(
ri,
→
r
) =

∂R
∂ri
· dri

dci
(4)

According to the definition of CIM, ICRIM
i represents the change rate of system relia-

bility with respect to the cost of component i. If the improvement cost of each component
is the same, the component with the largest CIM has the most contribution to improving
the system reliability. To make the best use of the limited cost, the component with the
maximum CIM should give priority to improving its reliability. Therefore, the reliability
boundary and the CIM should be considered in the local search process.

3.2. CIM-Based Local Search Method

The local search rule based on the CIM aims to determine the search direction for
the optimal local search by evaluating the CIM and reliability boundary. Once the re-
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liability improvement cost is determined, the component with the highest CIM should
be prioritized for reliability enhancement. If multiple components have the maximum
CIM simultaneously, the improvement space is considered during the local search process.
Birnbaum’s importance measure considers the impact of changes in component reliability
on changes in system reliability. The calculation formula is as follows [39].

IBIM
i = Pr(φ(X) = 1|Xi = 1 )− Pr(φ(X) = 1|Xi = 0 ) (5)

where φ(X) represents the structure function of the system, φ(X) = φ(X1, X2, . . . , Xn), Xi
represents the state of component i, 1 indicates normal, 0 indicates invalid.

A local search rule based on the CIM is proposed for solving the reliability improve-
ment model, and the detailed process of the CIM-based local search method is shown in
Figure 1. For a feasible solution, calculate the CIM of all components in the system and
save the components with the highest CIM in set S.
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(1) If the number of elements in set S is equal to 1, select this component to improve
system reliability; Otherwise, perform Step (3).

(2) Calculate the reliability increment ∆ri
Ci under the current available cost Ci for the

components in set S.
(3) Calculate the improvement of system reliability of component i in set S by

min
{

ri,max − ri, ∆ri
Ci
}
· Ii

BIM.
(4) Select the components i* with the largest improvement in system reliability using

i∗ = argmax
{

min
{

ri,max − ri, ∆ri
Ci
}
· Ii

BIM, i ∈ S
}

.
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3.3. Procedures of CIM-Based Arithmetic Optimization Algorithm

The CIM-based arithmetic optimization algorithm (CIAOA) leverages the strengths
of both the CIM and AOA in search capabilities. The detailed procedures of the CIAOA
are summarized as follows. The specific flow of the algorithm can be determined from the
principle of AOA, as shown in Figure 2.
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(1) Initialize the parameters of the CIAOA, including the control parameter µ and sensi-
tive parameter α.

(2) Generate N possible solutions based on the boundary of components’ reliability; the
pseudo-code of feasible solution generation is summarized as follows. Generate
feasible solutions in a population. Input population size pop, system scale n, and cost
function parameters. for i = 1: n

generate a pop× n random matrix, whose value is in [0, 1].
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determine the improvement cost for component i by total feasible cost multiply
the random matrix.
obtain the reliability improvement by selecting the minimum value obtained by
the feasible improvement cost and the boundary of the component reliability.

end for
output the feasible solution.

(3) Calculate the fitness function of each solution based on Equation (6) and save the
optimal solution with the best fitness value.

f itness(C_Iter) =
R(C_Iter)

1 + 100000000max(C(C_Iter)− C0, 0)
(6)

where C_Iter denotes the current iteration; f itness(•) represents the fitness function
of a possible solution; R(•) is the system reliability of a possible solution; C(•) is the
cost of achieving the possible solution.

(4) Update the mathematical optimization acceleration function (MOA) based on
Equation (7), and MOA is used to determine the search methods.

MOA(C_Iter) = Min + C_Iter×
(

Max−Min
M_Iter

)
(7)

where M_Iter is the maximum value of iterations. Min and Max denote the minimum
and maximum values of the accelerated function, respectively.

(5) Update the mathematical optimizer probability (MOP) based on Equation (8), which
is used to adjust the component reliability.

MOP(C_Iter) = 1− C_Iter
1
α /M_Iter

1
α (8)

(6) To adjust the component reliability, generate three random values in [0, 1] for r1, r2,
and r3.

(7) If r1 is larger than the MOA, perform the exploration phase and go to Step (8); other-
wise, go to Step (9) to perform the exploitation phase.

(8) If r2 is larger than 0.5, adjust the component reliability by the division math operator
(÷) based on Equation (9); otherwise, adjust the component reliability by Equation
(10) through the multiplication math operator (×).

xi,j(C_Iter + 1) = best
(

xj
)
÷ (MOP + ε)×

((
UBj − LBj

)
× µ + LBj

)
, Division operator (9)

xi,j(C_Iter + 1) = best
(

xj
)
×MOP×

((
UBj − LBj

)
× µ + LBj

)
, Multipli f ication operator (10)

(9) If r3 is larger than 0.5, adjust the component reliability using the subtraction math
operator (−) based on Equation (11); otherwise, adjust the component reliability by
Equation (12) through the addition math operator (+).

xi,j(C_Iter + 1) = best
(

xj
)
−MOP×

((
UBj − LBj

)
× µ + LBj

)
, Subtraction operator (11)

xi,j(C_Iter + 1) = best
(

xj
)
+ MOP×

((
UBj − LBj

)
× µ + LBj

)
, Addition operator (12)

(10) Calculate the fitness values of each solution after the math operator adjustment and
rank the solutions.

(11) Perform the CIM-based local search method for the top 10 solutions and save the
optimal solution.

(12) Judge termination conditions if the iteration generation C_Iter is larger than M_Iter
and output the optimal solution; otherwise, go to Step 4.
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For the AOA and CIAOA, the difference between these two algorithms is the local search
method implementation. The CIAOA performs the CIM-based local search method for the
top 10 solutions in Step (11), while the AOA does not perform this step. Therefore, the AOA
and CIAOA have the same process and parameters except for the local search process.

4. Experimental Analysis

To better analyze the effectiveness of the CIM, numerical experiments have been
designed for various hybrid system sizes, considering three types of cost functions. For a
specific cost function type, the hybrid system structure is randomly generated by different
n (10, 20, 30, 40, and 50) and cost budget C0. Once the parameters of the systems and
algorithms are determined, both the AOA and CIAOA are implemented 100 times. The
system reliability and convergence generations are then analyzed to assess the performance
of the CIAOA. The effectiveness of the CIM is discussed by summarizing the results
obtained from these numerical experiments.

4.1. Experimental Design

To better analyze the effectiveness of the CIM, the CIAOA and AOA are introduced
to compare the optimal system reliability and convergence of these two algorithms. The
comparison is performed by considering different system scales and parameters for three
different cost function forms.

(1) System parameters setting. The scales of hybrid systems include 5 types: The
structure of the hybrid system is randomly generated, considering the series or parallel
relationships between components.

(2) Algorithm parameters setting. The main parameters of the two algorithms (AOA
and CIAOA) are set as follows.

According to the similar mathematical models in Reference [32], the parameters of the
AOA and CIAOA are set as follows. The control parameter µ= 0.5, the sensitive parameter
α = 5, the minimum values of the accelerated function Min = 0.2, the maximum values
of the accelerated function Max = 1, the maximum number of iterations M_Iter = 500,
and the number of stable generations of the optimal solution mm = 100, which means that
the algorithm will be terminated once the optimal solution remains unchanged for mm
successive generations; and the population size pop = 100.

(3) Parameters setting of the three cost function forms.

(1) Parameters of power type cost function

The feasibility of component reliability improvement parameter Ki = 500pi + 1000,
the cost constraint is generated by C0 = min(0.2Ci, Cimax − Ci). To better illustrate different
cost situations, ai is generated randomly in the interval [0, 1] and pi is divided into three
types with different ranges: (0.3, 0.6), (0.6, 0.9)(0.3, 0.9).

(2) Parameters of trigonometric type cost function

The feasibility of component reliability improvement parameter Ki = 500pi + 1000,
the cost constraint is generated by C0 = min(0.5Ci, Cimax − Ci). To better illustrate different
cost situations, xi is generated randomly in the interval [0, 1] and pi is divided into three
types with different ranges: (0.3, 0.6), (0.6, 0.9)(0.3, 0.9).

(3) Parameters of exponential type cost function

ri,max is further divided into [0.9, 0.945] and [0.945, 0.99] and ri,min is divided into [0.5,
0.65] and [0.65, 0.8]. ci,b is set in the interval [1, 9] and fi is set in the interval [0.1, 0.9]. By
combining the boundary of ri,max and ri,min, there are four types of component reliability
by considering [ri,min, ri,max].

After the parameters are established, execute the AOA and CIAOA 100 times for each
scenario. Considering four system scales and the corresponding cost function parameters,
there are 12 situations for the power type experiment and trigonometric type experiment,
while the exponential type experiment includes 16 situations. Analyzing the system



Mathematics 2023, 11, 4283 10 of 21

reliability and convergence generation obtained by the AOA and CIAOA can be used to
illustrate the performance of the CIAOA, which can verify the effectiveness of the CIM in
the optimization process.

4.2. Experimental Results
4.2.1. Performance Analysis of the CIAOA under the Power Cost Constraint

Under the power cost constraint, Figure 3 shows the distribution of system reliability
obtained by the CIAOA for running 100 times. From the box plots, almost all the system
reliability obtained by the CIAOA is higher than that of the AOA except for the first
situation under n = 30. The system reliability obtained by the CIAOA is much better than
that of the AOA when n becomes larger, especially for n = 20, 30 and 40. Moreover, the
distribution of convergence generations is shown in Figure 4. It can be seen from the box
plots in Figure 4 that the convergence generations of the CIAOA in all situations are much
smaller than that of the AOA. Generally, the CIAOA can achieve higher system reliability
and lower convergence generation than the AOA, which illustrates the effectiveness of the
CIM in the local search process. Therefore, the CIM-based local search method can better
improve the performance of the CIAOA by analyzing the optimization results under the
power cost constraint.
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4.2.2. Performance Analysis of the CIAOA under the Trigonometric Cost Constraint

Under the trigonometric cost constraint, Figure 5 shows the distribution of system
reliability obtained by the CIAOA for running 100 times. From the box plots, the system
reliability obtained by the CIAOA is near to that of the AOA, which shows that the
difference in system reliability obtained by these two algorithms is very narrow. Moreover,
the distribution of convergence generations is shown in Figure 6. It can be seen from the
box plots that the convergence generations of the CIAOA in some situations are slightly
higher than that of the AOA, such as in the third situation under n = 30 and 40. Therefore,
the CIM-based local search method shows some contribution to the performance of the
CIAOA under the trigonometric type of cost constraint.
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4.2.3. Performance Analysis of the CIAOA under the Exponential Cost Constraint

Under the exponential cost constraint, Figure 7 shows the distribution of system
reliability obtained by the CIAOA for running 100 times. From Figure 7, the system
reliability obtained by the CIAOA is higher than that of the AOA, which shows that the
CIAOA has better effectiveness than the AOA. Moreover, the distribution of convergence
generations is shown in Figure 8. Figure 8 shows that the convergence generations of the
CIAOA are lower than that of the AOA under almost all situations except for the first and
third situations under n = 20. Therefore, the CIM-based local search method contributes
better to the performance of the CIAOA under the exponential cost constraint.
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4.2.4. Discussion of the CIM’s Contribution under Different Cost Forms

To better analyze the CIM’s contribution quantitatively, the improvement percentages
of system reliability and convergence generations for the experiments are summarized
in Table 1.

Table 1 shows that the improvement percentages of system reliability for the three cost
forms are larger than 0, while some of the improvement percentages of convergence genera-
tions are less than 0, which is near 0. The average percentage of the four system scales can be
obtained to better analyze CIM’s effectiveness. The average system reliability improvement
percentages for the three cost forms are 8.07%, 0.14%, and 0.53%, and the average convergence
generation improvement percentages for the three cost forms are 37.30%, 0.08%, and 1.66%.
According to the average improvement percentages, the CIAOA has better advantages in
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solving the optimization problem under power-type constraint forms, while the CIAOA
has limited contribution to solving the optimization problem under the trigonometric-cost
constraint. Therefore, the CIM can better contribute to solving the optimization problem under
power type and exponential cost constraint, while the advantage of solving the optimization
problem under the trigonometric cost constraint is limited.

Table 1. Average improvement percentages of system reliability and convergence generations.

Cost Forms
System Reliability Improvement Percentage Convergence Generation

Improvement Percentage

n = 10 n = 20 n = 30 n = 40 n = 10 n = 20 n = 30 n = 40

Power type 0.83% 18.39% 9.66% 3.39% 18.57% 52.16% 43.67% 34.80%

Trigonometric type 0.02% 0.15% 0.10% 0.29% 0.53% −0.25% −0.22% 0.24%

Exponential type 1.24% 0.11% 0.41% 0.37% 4.52% −2.85% 1.82% 3.15%

5. Numerical Example

To analyze the optimal solution for the system reliability improvement problem, a
hybrid power vehicle system is introduced to obtain the optimal reliability improvement
of components, which is a hybrid system. A hybrid power vehicle system can drive the
front and rear wheels through an electrical motor or gas engine, which includes the engine,
generator, electric motor, battery, fuel tank, front variator, and rear variator. There are
two driven systems: an electrically driven system (including generator, electric motor, and
battery) and a gas engine driven system (including engine and fuel tank). The simplified
structure of a hybrid power vehicle system is shown in Figure 9. One of the driven systems
works normally; the system will work normally. However, the front variator and rear
variator are in a series relationship because the failure of anyone will make the system
fail. According to the logicality of components in the hybrid power vehicle system, the
reliability diagram can be represented in Figure 10.
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5.1. Parameters Setting of Three Cost Function Forms

Assume that the reliability of the seven components in the hybrid power vehicle
system gradually degrades from the brand-new components, whose reliability is 1; after
a period of time, the initial reliability of the seven components is randomly generated,
so the initial reliability of the seven components may be different. The initial reliability
is generated randomly, and the boundary of component reliability for the hybrid power
vehicle system is determined by Reference [40]. The key parameters in different forms
of cost functions can be determined by Reference [5]. The parameters of components in
different forms of cost functions are listed in Tables 2–4.

Table 2. Parameters of components under the power cost constraint.

Parameters
Components

1 2 3 4 5 6 7

ri 0.8 0.77 0.8 0.79 0.76 0.8 0.77

ai 0.6 0.8 0.7 0.8 0.7 0.6 0.7

Ki 1000 1500 700 1100 1300 1600 1000

Table 3. Parameters of components under the trigonometric cost constraint.

Parameters
Components

1 2 3 4 5 6 7

ri 0.8 0.77 0.8 0.79 0.76 0.8 0.77

mi 1.7 1.6 1.6 1.7 1.8 1.8 1.7

Ki 1000 1500 700 1100 1300 1600 1000

Table 4. Parameters of components under the exponential cost constraint.

Parameters
Components

1 2 3 4 5 6 7

ri 0.8 0.77 0.8 0.79 0.76 0.8 0.77

ri,max 1 1 1 1 1 1 1

ri,min 0.65 0.65 0.5 0.5 0.65 0.65 0.5

ci,b 3 3 5 5 3 5 3

fi 0.53 0.63 0.38 0.4 0.66 0.53 0.63

5.2. Experimental Design of the Numerical Example

To illustrate the contribution of the CIM, the optimal solution obtained by the CIAOA
is analyzed by comparing the rankings of the components’ reliability improvement rate
and components’ CIM. The previous research has reported that the maintenance resources
should give priority to the components with higher importance measures. Therefore, in the
numerical example of the hybrid power vehicle system, the ranking of the improvement
rate of components’ reliabilities is obtained by analyzing the optimal solution obtained
by the CIAOA. At the same time, the importance ranking of components is obtained by
considering the CIM and cost constraint. The aim of this numerical example is to judge
whether the rankings of the CIM and reliability improvement rates are consistent. The
consistency of these two rankings can be used to verify the contribution of the CIM.
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5.3. Analysis of Optimal Solutions for the Hybrid Power Vehicle System

The optimal reliability improvement for components under different cost forms and
cost budgets can be obtained by the CIAOA, and the optimal results under different cost
forms and cost budgets are listed in Table 5.

Table 5. Optimal reliability improvement of components obtained by the CIAOA under different
cost forms.

Cost Forms Cost Budget
Optimal Reliability Improvement of Components

1 2 3 4 5 6 7

Power type

C0 = 0.2C 0.2000 0.2300 0.2000 0.1468 0.0000 0.0061 0.2300

C0 = 0.5C 0.2000 0.2300 0.2000 0.0613 0.1749 0.0577 0.2300

C0 = C. 0.2000 0.1653 0.2000 0.0000 0.0681 0.0690 0.2300

Trigonometric type

C0 = 0.2C 0.0296 0.0000 0.0293 0.0000 0.0000 0.0000 0.0809

C0 = 0.5C 0.0564 0.0411 0.0544 0.0000 0.0135 0.0000 0.1078

C0 = C 0.0996 0.0530 0.1179 0.0000 0.0159 0.0002 0.1181

Exponential type

C0 = 0.2C 0.1377 0.1101 0.0588 0.0000 0.0476 0.0384 0.1371

C0 = 0.5C 0.1339 0.1404 0.0438 0.0000 0.1041 0.0006 0.1683

C0 = C 0.1499 0.1349 0.0750 0.0002 0.0969 0.0776 0.1480

(1) Reliability improvement rate in optimal solutions

To better analyze the usage of limited cost, the reliability improvement rate of com-
ponents can be calculated using ∆pi/(1− pi). Thus, the reliability improvement rates of
components in the optimal solutions are evaluated in Table 6.

Table 6. Reliability improvement rate in optimal solutions under different cost forms and cost budgets.

Cost Forms Cost Budget
Reliability Improvement of Components in the Optimal Solutions

1 2 3 4 5 6 7

Power type

C0 = 0.2C 100.00% 100.00% 100.00% 69.91% 0.00% 3.05% 100.00%

C0 = 0.5C 100.00% 100.00% 100.00% 29.18% 72.87% 28.83% 100.00%

C0 = C 100.00% 71.87% 100.00% 0.00% 28.37% 34.51% 100.00%

Trigonometric type

C0 = 0.2C 14.80% 0.00% 14.63% 0.00% 0.00% 0.00% 35.17%

C0 = 0.5C 28.18% 17.89% 27.20% 0.00% 5.64% 0.00% 46.86%

C0 = C 49.80% 23.02% 58.97% 0.00% 6.62% 0.09% 51.33%

Exponential type

C0 = 0.2C 68.84% 47.87% 29.40% 0.00% 19.83% 19.20% 59.59%

C0 = 0.5C 66.95% 61.04% 21.92% 0.00% 43.38% 0.29% 73.17%

C0 = C 74.93% 58.64% 37.48% 0.08% 40.37% 38.81% 64.37%

(2) Components’ CIM under different cost forms

Under a specified cost form, the components’ CIM can be evaluated using Equation (4)
when the initial components’ reliabilities are known. The CIM under the power cost
constraint can be evaluated using Equations (1) and (4); the CIM under the trigonometric
cost constraint can be evaluated using Equations (2) and (4); the CIM under the exponential
cost constraint can be evaluated using Equations (3) and (4). The components’ CIM is listed
in Table 7.
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Table 7. CIM of components under three cost forms.

Cost Forms
CIM of Components

1 2 3 4 5 6 7

Power type (10−4) 1.8790 0.46586 0.94095 0.3274 0.36311 0.27061 1.9453

Trigonometric type (10−6) 2.0067 1.0887 1.3631 0.5094 0.6304 0.2439 3.4869

Exponential type (10−3) 7.0232 6.6124 0.50196 0.38774 4.9536 0.97100 9.0923

(3) Rankings analysis of reliability improvement rate and CIM.

The ranking of reliability percentage can be obtained by the data in Table 6, and
the ranking results under different cost forms and cost budgets are listed in Table 8. We
find that the ranking of improvement rate under different cost budget are different. The
components’ CIM under different cost budgets are the same once the cost form and initial
components’ reliabilities are determined. Thus, the ranking results of CIM can be obtained
based on Table 7, shown in Table 8.

Table 8. Rankings of the improvement rate and CIM for components under the three cost forms.

Cost Forms Cost Budget Ranking of Improvement Rate for
Component Reliability

Ranking of CIM for
Components

Power type

C0 = 0.2C 7-1-3-2-4-6-5 7-1-3-2-5-4-6

C0 = 0.5C 7-1-3-2-5-4-6 7-1-3-2-5-4-6

C0 = C 7-1-3-2-6-5-4 7-1-3-2-5-4-6

Trigonometric type

C0 = 0.2C 7-1-3-5-2-4-6 7-1-3-2-5-4-6

C0 = 0.5C 7-1-3-2-5-4-6 7-1-3-2-5-4-6

C0 = C 3-7-1-2-5-6-4 7-1-3-2-5-4-6

Exponential type

C0 = 0.2C 1-7-2-3-5-6-4 7-1-2-5-6-3-4

C0 = 0.5C 7-1-2-5-3-6-4 7-1-2-5-6-3-4

C0 = C 1-7-2-5-6-3-4 7-1-2-5-6-3-4

By comparing the order of the CIM and reliability improvement rate, it is easy to find
that the top three or four components in these two rankings are almost the same. For the
power type cost form, the top four components in these two rankings are components 7, 1, 3,
and 2. For the trigonometric type cost form, the top four components in these two rankings
when C0 = 0.5C or C are components 7, 1, 3, and 2, while the top three components
in these two rankings when C0 = 0.2C are components 7, 1, and 3. For the exponential
type cost form, the top four components in these two rankings when C0 = 0.5C or C
are components 7, 1, 2, and 5, while the top three components in these two rankings
when C0 = 0.2C are components 7, 1, and 2. It can be seen that the components with a
higher CIM are selected to allocate more limited costs in the optimal solutions. Therefore,
the contribution of the CIM is verified in this part by considering the consistency of the
reliability improvement rates ranking and the CIM ranking.

5.4. Insights

The numerical experiment results show that CIM can speed up the convergence and
improve the solution quality of intelligent algorithms. The contribution of the CIM to
complex optimization problems is analyzed by considering the consistency between the
reliability improvement rate and CIM’s ranking in the optimal solution. Therefore, we can
summarize some important insights for engineers as follows.
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(1) At a specific time, the components with the highest CIM should be repaired in priority
under the limited cost budget.

(2) For the reliability optimization with power type cost functions, the improvement of
components with higher CIM can reach 100%, which means the reliability of these
components can be improved to the maximum value.

(3) For the reliability optimization with trigonometric type or exponential type cost
functions, the improvement of components with higher CIM cannot reach 100%
because these cost function forms may use infinite cost, which means the limited cost
budget should determine the reliability of these components.

6. Conclusions

In this paper, CIAOA is proposed to solve the reliability improvement optimization
problem under three different cost function forms. The comparison results show that the
performance of CIAOA is better under the power type cost form; the system reliability
improvement rate is 8.07%, and the convergence generation improvement rate is 37.30%.
To analyze the contribution of the CIM, the ranking of reliability improvement rate and
CIM are introduced by considering the two rankings’ consistency. The higher prioritization
components in the two rankings are similar, showing that the CIM can serve as a useful tool
to guide the search process of intelligent algorithms effectively. However, the research work
just considered the CIM contribution to the AOA under deterministic risks. In the future,
the contribution of the CIM in other intelligent algorithms should also be considered, and
the complex optimization problems under uncertain risks should be explored.

Author Contributions: Conceptualization: J.Z.; Methodology: R.T.; Software: R.T. and M.L.; Valida-
tion: M.L. and R.T.; Formal analysis: R.T. and M.L.; Investigation: R.T. and Z.Z.; Resources: Z.Z. and
X.C.; Data curation: X.C. and Z.Z.; Writing-original draft preparation: R.T. and M.L.; Writing-review
and editing: J.Z. and X.C.; Supervision: X.C. Project administration: J.Z.; Funding acquisition: J.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China
(No. 72101202), China Postdoctoral Science Foundation (No. 2022MD713793), and the Outstanding
Youth Science Fund of Xi’an University of Science and Technology (No. 22002).

Data Availability Statement: The authors confirm that the data supporting the findings of this study
are available within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Notations Definition Notations Definition
→
r Current reliability of n components C_Iter Current iteration
R System reliability f itness(•) The fitness function of a possible solution

C
Total cost of the system by improving
components’ reliability

R(•) System reliability of a possible solution

C0 Cost constraint C(•) Cost consumption for the possible solution
ri Current reliability of component i M_Iter Maximum iterations
∆ri Reliability increments of component i γ1, γ2, γ3 Random values in the AOA
rij Reliability of the j-th component in the i-th subsystem µ Control parameter
ci Cost of component i α Sensitive parameter
pi Reliability of component i n Scales of hybrid systems
fi Reliability of component i pop Population size
ICRIM
i Change rate of system reliability xi, ai Random parameters in power type cost function

φ(X) Structure function of the system ri,max, ri,min
Reliability of upper (lower) boundary of
component i

IBIM
i Birnbaum’s importance measure of component i Ki

The parameters of component i under power or
trigonometric type cost function

Xi State of component i
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