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Abstract: Utilizing latent heat thermal energy storage (LHTES) units shows promise as a potential
solution for bridging the gap between energy supply and demand. While an LHTES unit benefits
from the latent heat of the high-capacity phase change material (PCM) and experiences only minor
temperature variations, the low thermal conductivity of PCMs hinders the rapid adoption of LHTES
units by the market. In this regard, the current work aims to investigate the thermal behavior of a
semi-cylindrical LHTES unit with various copper fin configurations (including horizontal, inclined,
and vertical fins) on the melting flow. The novelty of this research lies in the fact that no prior studies
have delved into the impact of various fin structures on the thermal performance of a semi-cylindrical
LHTES system. The nano-enhanced phase change material (NePCM) fills the void within the unit.
The warm water enters the semicircular channel and transfers a portion of its thermal energy to the
solid NePCM through the copper separators. It is found that the system experiences the highest
charging capability when the fins are mounted horizontally and close to the adiabatic upper wall.
Moreover, the presence of dispersed graphite nanoplatelets (GNPs) inside the pure PCM increases
the charging power and temperature of the LHTES unit.

Keywords: copper fin; enthalpy–porosity technique; graphite nanoplatelet; latent heat thermal
energy storage unit; melting flow; nano-enhanced phase change material; semi-cylindrical unit

MSC: 76R10; 80A22; 80M10

1. Introduction

Phase change materials (PCMs) have garnered significant attention for various appli-
cations due to their exceptional capability to store substantial thermal energy. PCMs find
applications in diverse areas, such as battery cooling [1], solar power systems [2,3], heating
and cooling of buildings [4,5], cooling of electronic equipment [6], and food drying [7].
These applications leverage the unique thermal energy storage properties of PCMs to en-
hance performance and efficiency in various industries. Despite the numerous advantages
of latent heat thermal energy storage (LHTES) systems, it is important to note that many
commercially available PCMs suffer from certain limitations. These limitations include
low thermal conductivity, high susceptibility to corrosion, and low thermal stability. These
factors can affect the overall performance and durability of LHTES systems, necessitating
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careful consideration and selection of suitable PCMs for specific applications. The inef-
ficient thermal energy transfer caused by low thermal conductivity can result in slower
heat absorption or release, impacting the overall performance and effectiveness of the
LHTES system. It becomes crucial to address this issue and explore strategies to enhance
the thermal conductivity of PCMs to ensure optimal charging. In the literature, various
techniques have been explored to enhance the performance of LHTES systems:

1. The addition of high-thermal-conductivity materials to PCMs [8]: This method in-
volves incorporating materials with high thermal conductivity, such as metal nanopar-
ticles [9], carbon nanotubes [10], and graphite nanoplates [11], into the PCM matrix.
By doing so, the overall thermal conductivity of the composite material is increased,
leading to improved heat transfer and enhanced performance of the LHTES system.

2. The insertion of extended surfaces into PCMs [12,13]: Extended surfaces, such as
fins or heat transfer plates, are inserted into the PCM to increase the effective surface
area for heat transfer. This helps enhance the heat transfer rate between the PCM
and the surrounding environment, resulting in an improved performance of the
LHTES system.

3. Embedded heat pipes [14,15]: Heat pipes, which are highly efficient heat transfer
devices, can be embedded within the PCM. These heat pipes facilitate heat transfer
over longer distances, allowing for more efficient heat exchange and an improved
thermal performance of the LHTES system.

4. The utilization of porous materials combined with PCMs [16,17]: Porous materials,
including metallic foams, can be combined with PCMs to create composite structures.
These porous materials provide additional surface area and interconnected pathways
for heat transfer, enhancing the overall thermal conductivity and performance of the
LHTES system.

These techniques represent some of the approaches that have been investigated in
the literature to enhance the performance of LHTES systems. By implementing these
techniques, researchers aim to overcome the limitations associated with PCMs and optimize
the efficiency of thermal energy storage.

In the experimental investigation conducted by Aqib et al. [10], the focus was on study-
ing the effect of incorporating nanoparticles, specifically alumina and carbon nanotubes,
on the performance of LHTES systems. The study’s findings revealed that adding either
alumina or carbon nanotubes resulted in an increase in the maximum temperature attained
by the system. Furthermore, the investigation indicated that among the nanoparticles
studied, a concentration of 6 wt% of nanosized carbon tubes resulted in the highest increase
in the peak temperature compared with the alumina nanoparticles. Al-Waeli et al. [8]
experimentally investigated the impact of utilizing nanofluid and nano-PCM in a photo-
voltaic thermal (PVT) system. The study’s objective was to examine how the integration
of nanofluid and nano-PCM can influence the system’s thermal and electrical efficiencies.
Through their experiments, the authors demonstrated that the proposed PVT system,
incorporating nanofluid and nano-PCM, improved thermal and electrical efficiencies.

Motahar et al. [18] conducted an experimental study to investigate the influence of
TiO2 nanoparticles on the solidification process of PCMs. The experimental findings re-
vealed that the inclusion of TiO2 nanoparticles in the PCM had a noticeable impact on
the solidification process. The authors observed that as the mass fraction of nanoparticles
increased, the solidification volume of the PCM also increased. In their numerical investi-
gation, Kant et al. [19] examined the impact of incorporating graphene nanoparticles into
PCMs for thermal energy storage applications. The findings of their study demonstrated
that the addition of nanoparticles resulted in an increase in the melting rate of the PCM.
Furthermore, the numerical investigation revealed that the incorporation of nanoparticles
led to a reduction in convection heat transfer inside the large enclosure.

Arshad et al. [12] conducted a 2D numerical study to analyze the impact of embedded
fins in a PCM on the cooling performance of electronic devices. The authors showed that the
melting time of the PCM depended strongly on the fins’ thickness. The results suggested
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that increasing the thickness of the fins resulted in a longer melting time for the PCM. This
implies that the presence of thicker fins hindered the heat transfer process, leading to a
slower melting rate. On the other hand, reducing the thickness of the fins enhanced the
heat transfer capabilities, thereby decreasing the melting time of the PCM. A numerical
investigation was conducted by Bondareva and Sheremet [20] to analyze the combined flow
and heat transfer phenomenon of a finned copper profile integrated within a heat storage
system using PCMs. The results of their study indicated that the duration needed for the
PCM to melt completely is influenced by the dimensions of the fins, including their length
and width. The impact of different pin fin heat sink designs (triangular, rectangular, and
circular) on the cooling of an electronic device with PCMs was experimentally examined
by Ali et al. [13]. The results of their investigation revealed that the triangular pin fins
exhibited the highest efficiency level among the tested configurations.

The performance of heat pipe solar collectors integrated into an LHTES system was
experimentally examined by Essa et al. [21], with a specific focus on the impact of using
helical fins versus conventional fins. The findings of their study showed that the imple-
mentation of helical fins resulted in superior thermal performance when compared with
conventional fins. Mahdavi et al. [9] numerically investigated the combined influence of
nanoparticles and heat pipes on the thermal performance of LHTES systems. The study
revealed that the utilization of heat pipes significantly impacted the performance of LHTES
systems compared with the dispersion of nanoparticles.

The literature review shows that no study has investigated the effect of different config-
urations of metal fins on the thermal performance of a semi-cylindrical LHTES system. The
primary goal of this study is to conduct a numerical analysis of various configurations of an
LHTES system, taking into consideration both pure PCMs and NePCMs. The investigation
focuses on evaluating the influence of graphite nanoparticles at different mass fractions.
Furthermore, various designs of finned structures are assessed to identify an optimal fin-
enhanced configuration for the energy storage system. The configuration with the shortest
charging time is selected for further enhancement using nano-additives. Additionally, a
comprehensive analysis and discussion are carried out regarding the distribution of energy
storage (sensible or latent) in different storage system components, including the PCM, fins,
and walls, providing detailed insights into their respective contributions.

2. Problem Definition

Figure 1 depicts various configurations of the LHTES system containing the NePCM.
As shown, warm water with a temperature THTF enters the semicircular channel and
transfers a portion of its thermal energy to the solid NePCM via the copper separators.
Consequently, the NePCM undergoes a phase change from solid to liquid as it absorbs
thermal energy from the warm water. It is important to highlight that in each configuration,
the total volume of the fins remains constant. This implies that as the length of the fins
changes from one case to another, the thickness of the fins also varies accordingly. This
ensures that the overall volume occupied by the fins remains constant throughout the
different configurations. Additionally, it should be noted that the vertical fin (middle fin)
remains unaltered in cases 2 through to 10. The additives, which are uniformly mixed with
the base medium (pure 1-Tetradecanol), include nanosized graphite plates. Tables 1 and 2
provide detailed specifications of the materials involved in the LHTES unit. These tables
outline the specific characteristics and properties of the various materials utilized within
the system, providing valuable information about their composition, thermal conductivity,
phase change temperatures, and other relevant parameters.

The NePCM container in the LHTES unit has a radius of 50 mm. Additionally, a
copper separator is attached to the channel with a thickness of 2 mm. The cross-sectional
size of the channel, through which the heat transfer fluid (HTF) flows, is W = 3 mm. The
volume changes of the NePCM during the melting process can be disregarded.
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Figure 1. Schematic view of the problem and the design of the finned cases.

The Reynolds number of the HTF based on the thermo-physical properties of the HTF
(Table 1), vHTF = 0.01 m/s, and the cross-sectional size of the channel (W = 3 mm) is
42.28. Additionally, the Rayleigh number for NePCM with the mass fraction 3% based on
the radius of the semi-cylindrical LHTES unit is 4.19 × 105. Based on the Reynolds and
Rayleigh numbers, the flow regimes within the HTF channel and the chamber housing the
molten liquid are characterized as laminar.

Table 1. Thermo-physical properties of water and copper separators [22,23].

Properties ρ(kgm−3) µ(Nsm−2) cp(Jkg−1K−1) λ(Wm−1K−1)

Water 993.7 0.705 × 10−3 4178 0.623

Copper 8900 - 386 401

3. Governing Equations
3.1. Governing Equations of the Velocity and Temperature Fields of the NePCM Domain

To model the progressive melting front, the well-known enthalpy–porosity approach
with a fixed mesh is used. Considering the assumptions presented in Section 2, the
equations describing the melting flow can be derived as the following [24,25]:

(I) Continuity equation

∇ ·→u = 0 (1)
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(II) Momentum equations

ρlNePCM
∂u
∂t

+ ρlNePCM

(→
u · ∇

)
u = −∂p

∂x
+∇ · ( f (µNePCM, T)∇u) + Fmx (2)

ρlNePCM
∂v
∂t

+ ρlNePCM

(→
u · ∇

)
v = −∂p

∂y
+∇ · ( f (µNePCM, T)∇v) + Fby + Fmy (3)

To suppress the velocity components in the solid NePCM region, volume forces Fmx
and Fmy are imposed on the momentum equations as follows [26]:

(
Fmx, Fmy

)
= −Bmush(1− η(T))2

η3(T) + ε
(u, v) (4)

The values of Bmush and ε are 5 × 105 and 10−3. H (T) is defined as follows [26]:

η(T) =


0 T ≤ Tme − 0.5∆Tme
2(T−Tme)+∆Tme

2∆Tme
Tme − 0.5∆Tme < T < Tme + 0.5∆Tme

1 T ≥ Tme + 0.5∆Tme

(5)

η (T) can also be employed to introduce the overall dynamic viscosity of the NePCM
as follows:

f (µNePCM, T) = µNePCM(1 + η(T)) (6)

Moreover, the buoyancy force resulting from the gravity acceleration is:

Fby = −ρlNePCMgβlNePCM(T − Tme) (7)

Table 2. Thermo-physical properties of NePCM samples at various mass fractions of nanosized
graphite plates [27].

Properties 0.0 wt% 0.50 wt% 1.0 wt% 3.0 wt%

ρsNePCM
(
kgm−3) 891.4 894.1 896.9 907.9

ρlNePCM
(
kgm−3) 821.6 824.3 826.9 837.6

µNePCM(mPas) 13.23 23.45 59.5 194.01

cp,sNePCM

(
Jkg−1K−1

)
2040 2020 1990 1910

cp,lNePCM

(
Jkg−1K−1

)
2360 2330 2300 2190

Tme (◦C) 37 37 37 37

L
(

kJkg−1
)

227.8 219.5 212.2 183.5

βlNePCM

(
K−1

)
0.001018 0.001018 0.001008 0.000987

λsNePCM

(
Wm−1K−1

)
0.252 0.350 0.451 0.540

λlNePCM

(
Wm−1K−1

)
0.159 0.180 0.260 0.320

(III) Energy equation

ρNePCMcp,NePCM
∂T
∂t

+ ρNePCMcp,NePCM

(→
u · ∇

)
T = ∇ · (λNePCM∇T) (8)

where
λNePCM(T) = λlNePCM + (1− η(T))λsNePCM (9)
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ρNePCM(T) = ρlNePCM + (1− η(T))ρsNePCM (10)

cp,NePCM = cp,sNePCM + η(T)
[
cp,lNePCM − cp,sNePCM

]
+ LNePCMD(T) (11)

in which D (T) is a Gaussian function as follows:

D(T) =
exp
(

(T−Tme)
2

( ∆Tme
4 )

2

)
√

π

( ∆Tme
4 )

2

(12)

3.2. Governing Equations of the Velocity and Temperature Fields for Water Flow in the Channel

The governing equations of the velocity and temperature of the heat transfer fluid
inside the channel are as follows:

(I) Continuity equation

∇ ·→u = 0 (13)

(II) Momentum equations

ρHTF
∂u
∂t

+ ρHTF

(→
u · ∇

)
u = −∂p

∂x
+∇ · (µHTF∇u) (14)

ρHTF
∂v
∂t

+ ρHTF

(→
u · ∇

)
v = −∂p

∂y
+∇ · (µHTF∇v)

(III) Energy conservation

(
ρcp
)

HTF
∂T
∂t

+
(

ρcp)HTF

(→
u · ∇

)
T = ∇ · (λHTF∇T) (15)

3.3. Energy Conservation for the Copper Wall and Fins

The equation describing energy conservation in the copper wall and fins is as follows:

(
ρcp
)

c
∂T
∂t

= ∇ · (λc∇T) (16)

3.4. Boundary Conditions

The outer border of the half-cylinder is well insulated, and the no-slip boundary
condition is valid on the channel surfaces. Therefore, the mathematical form of the thermal
and hydro-dynamics boundary conditions on these bounds is expressed as

u = 0, v = 0 and
∂T
∂n

= 0 (17)

At the interface of the copper wall and the channel of heat transfer fluid, the conditions are

u = 0, v = 0 and
(

λ∂T
∂n

)
c
−
(

λ∂T
∂n

)
HTF

= 0 (18)

The thermal and hydro-dynamic conditions at the channel inlet are

uHTF = 0.0, vHTF = 0.01 m/s, THTF = 50◦C (19)
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The initial condition at the whole domain is as follows:

u = 0, v = 0 and T − 25◦C = 0 (20)

At the interface of phase change material and copper fins, we have

u = 0, v = 0 and
(

λ∂T
∂n

)
c
−
(

λ∂T
∂n

)
NePCM

= 0 (21)

Furthermore, the diameter of the cylinder as an external wall is thermally insulated
and the no-slip boundary condition is valid on it:(

λ∂T
∂y

)
NePCM

= 0, u = v = 0 (22)

3.5. Characterizing the Stored Energy

The total stored energy in the LHTES system, including the sensible and latent compo-
nents, is as follows:

Total Stored Energy

=

Sensible energy stored in the NePCM︷ ︸︸ ︷∫
ANePCM

ρNePCMCp,NePCM(T − T0) dA

+

Latent energy︷ ︸︸ ︷∫
ANePCM

ρNePCMLNePCMdA +
∫

A f ins

ρ f inCp, f in(T − T0) dA︸ ︷︷ ︸
Sensible energy stored in the copper wall and f ins

(23)

The melted volume fraction (MVF) of NePCM is defined as follows [28]:

MVF(t) =
[∫

A
η(T)dA

]
A−1 (24)

At the end, charging power as a measure of the system performance parameter is
calculated as follows:

Charging power =
Total Stored Energy

t(s)
(25)

4. Employed Numerical Method, Mesh Independence Test, and Validation

Based on the enthalpy–porosity approach, the NePCM region is modeled by taking
into consideration the modified energy and momentum source terms. In the analysis, we
treat the phase transition zone as a porous medium, representing it as a mushy zone with
porosity defined by the liquid fraction η(T). Through the mushy zone, a high-velocity
gradient is developed since both solid and liquid NePCMs coexist. Moreover, a slight
difference between the solidification and melting temperatures is considered (∆Tme). The
non-linear governing equations are solved using the finite element approach within version
5.6 of the COMSOL Multiphysics computational fluid dynamics module [29]. Since the
problem is transient, one of the best implicit methods is employed, which is the free
step backward differentiation formula. The coupled algebraic system is solved using the
iterative parallel direct solver [30], coupled with the Newton method. The convergence plot
is monitored, and the process continues until the residual error reaches 10−6. A damping
factor of 0.8 is utilized in the iterative Newton approach to prevent divergence. Figure 2
shows a convergence plot of the coupled numerical solution.
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Figure 2. Convergence plot of the coupled numerical solution.

Recognizing the importance of the mesh density in ensuring the accuracy of numerical
results, meticulous grid independence tests were conducted. To achieve this objective,
the corresponding MVF for the five different mesh densities, as presented in Table 3, are
compared to ensure that the accuracy of the iterative solution is maintained (see Figure 3).
It can be noticed that all cases are consistent. However, a slight difference is seen for
Case (I), when a relatively small grid size is considered. Consequently, Case (III) (7043
elements) is chosen to retain an acceptable accuracy while minimizing calculation cost as
much as possible.

Table 3. Grid test cases.

Cases Case I Case II Case III Case IV Case V

Number of elements 1635 4050 7043 10,632 14,926
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Validating the current model’s findings is crucial for quality and reliability. To vali-
date the findings of the current model, both experimental and numerical data from prior
research [31] were compared to the predictions of the current model. Kamkari et al. [31]
used computational and experimental approaches to study PCM melting within a rectan-
gular chamber. As demonstrated in Figure 4, the numerical and experimental data for the
liquid fraction contours during PCM melting for Ra = 8.3 × 108 at different time intervals
(10–20–30–40 min) were successfully reproduced in the present model, which indicates
its great consistency with the literature. It is worth noting that Ra is the Rayleigh number

and is defined as Ra = ρlPCM gβlPCM(Tw−Tme)H3

µlPCMαlPCM
. Here, ρlPCM is the density of the liquid PCM,

βlPCM is the thermal expansion coefficient of the liquid PCM, Tw is the temperature of the
hot wall, H is the height of the enclosure, µlPCM is the dynamic viscosity, and αlPCM is the
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thermal diffusivity of the liquid PCM. The values of these thermo-physical properties can
be found in [31].

Mathematics 2023, 11, x FOR PEER REVIEW 9 of 21 
 

 

the thermal diffusivity of the liquid PCM. The values of these thermo-physical properties 
can be found in [31]. 

t = 10 min t = 20 min 

      
A1 B1 C1 A2 B2 C2 

t = 30 min t = 40 min 

      
A3 B3 C3 A4 B4 C4 

Figure 4. Comparison between the melting fields available in [31] and those obtained by the present 
study; (A1–A4): numerical results [31], (B1–B4): experimental results in [31], and (C1–C4): the pre-
sent study. 

5. Results and Discussion 
The results of the current study are presented in two separate sections. In the first 

section, the melting process of the ten cases with different fin configurations is studied 
and discussed. The second part is then devoted to the nano-enhancement of the case with 
the optimum result (out of the finned cases) with graphite nanoplatelets (GNPs). 

5.1. Finned Configurations 
The contours of melt fraction, velocity, and temperature of the PCM for the above-

discussed cases at three different times of 1000, 3000, and 5000 s of simulation are shown 
in Figures 5–7. The HTF flows through the curved channel a ached to the storage and 
melts the PCM. The HTF has a higher temperature at the entrance, and its temperature 
decreases as it transfers its thermal energy to the PCM via the wall. Hence, for all cases, 
the melting process proceeds faster near the HTF entrance area. As discussed earlier, ex-
cluding Case 1, the volume of the employed fins in all the cases is constant, and hence, the 
volume of the phase change materials is set as constant for Cases 2–10 to ease the assess-
ment of the role of fin configuration. 

Case 1 has no fin, and hence, a lower melting rate is anticipated due to the low ther-
mal conductivity of the Tetradecanol (Table 1). All the other cases have a higher melting 
rate compared with the unfinned case. As discussed before, the vertical fin, called the fixed 
fin hereafter, in the middle of the storage remains unchanged and divides the storage into 
two equal quarter cylinders. The locations of the other two fins (called variable fins) are 
therefore quite important to improving the storage’s melting rate, as they divide each 

Figure 4. Comparison between the melting fields available in [31] and those obtained by the present
study; (A1–A4): numerical results [31], (B1–B4): experimental results in [31], and (C1–C4): the
present study.

5. Results and Discussion

The results of the current study are presented in two separate sections. In the first
section, the melting process of the ten cases with different fin configurations is studied and
discussed. The second part is then devoted to the nano-enhancement of the case with the
optimum result (out of the finned cases) with graphite nanoplatelets (GNPs).

5.1. Finned Configurations

The contours of melt fraction, velocity, and temperature of the PCM for the above-
discussed cases at three different times of 1000, 3000, and 5000 s of simulation are shown in
Figures 5–7. The HTF flows through the curved channel attached to the storage and melts
the PCM. The HTF has a higher temperature at the entrance, and its temperature decreases
as it transfers its thermal energy to the PCM via the wall. Hence, for all cases, the melting
process proceeds faster near the HTF entrance area. As discussed earlier, excluding Case 1,
the volume of the employed fins in all the cases is constant, and hence, the volume of the
phase change materials is set as constant for Cases 2–10 to ease the assessment of the role
of fin configuration.
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Figure 6. Velocity magnitude contours and streamlines of the liquid PCM for the studied cases at
different simulation times.
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Case 1 has no fin, and hence, a lower melting rate is anticipated due to the low thermal
conductivity of the Tetradecanol (Table 1). All the other cases have a higher melting rate
compared with the unfinned case. As discussed before, the vertical fin, called the fixed fin
hereafter, in the middle of the storage remains unchanged and divides the storage into two
equal quarter cylinders. The locations of the other two fins (called variable fins) are therefore
quite important to improving the storage’s melting rate, as they divide each quarter cylinder
into two non-equal smaller storages. Hence, the angle and vertical placement of the fins
have been varied (shown in Cases 2–10) to assess the proper configuration during the
charging process of the storage.

As shown in Figure 5, after 3000 s of charging, in most cases, the PCM near the
horizontal wall remains unmelted, as the mentioned wall is adiabatic. In other words, the
attachments of the other fin (in each quarter cylinder) can determine the charging time
of the storage. The angle of the variable fins is changed from vertical (Case 5) to inclined
(Cases 2, 3, 4, 6, and 7) and finally vertical (Cases 8, 9, and 10) to evaluate the role of the
angle of the fin. According to Figure 6, the velocity magnitude at the initial stages of the
charging is low, indicating that the conduction mode of the heat transfer mainly governs
the charging process. This can also be understood from the temperature contours (Figure 7).
The role of fin placement can be easily seen in Figure 7, as it elevates the temperature
around it through conducting thermal energy to the PCM. With the progression of the
charging, the convection mechanism increases, and the magnitude of velocity (Figure 6)
and temperature (as per Figure 7) of the liquid PCM increases.

Using a symmetric fin configuration (Case 2) can significantly improve the melting
process (compared with Case 1). However, the charging process in the portions in the
vicinity of the insulated top wall is obviously lower than in the remaining portions (see
the blue region in Figure 6 and the bulk red region in Figure 7, showing the not melted
PCM). To address this issue, the variable fins in Cases 3, 4, and 5 were directly attached
to the insulated wall to conduct heat from the copper wall to the PCM near the insulated
wall. This strategy, as can be seen in Figures 6 and 7, leads to a more significant segment
on the left- and right-hand sides of the fixed fin, increasing the overall melting time of the
whole storage.

In Cases 6–10, the variable fins are attached to the fixed fin. The variable fins are
inclined for Cases 6 and 7, while for Cases 8–10, they are attached horizontally to the
fixed fin. The upper portion of the storage near the insulated wall remains unmelted. The
attachment height has been changed for the last three cases. It is evident that by decreasing
the distance between the variable fins and the insulated surface, according to Figure 7, the
overall temperature of the PCM increases, leading a reduction in the amount of solid PCM,
and an enhancement in the melting rate.

Figure 8a,b illustrate the time variation of the stored energy and the liquid fraction
of the PCM during the charging process. Case 1 (without fin) has the lowest melting rate,
and after 5000 s of charging, only 60% of the PCM in the storage is charged. Case 10 has
the highest charging rate throughout the melting process. The variable fins in Case 10 are
closer to the insulated wall, so a higher amount of heat is conducted to the PCM. Figure 9
depicts the detail of the different types of thermal energy stored in the PCM (either latent
or sensible) and the fins (sensible). It is clear that the stored energy in the storage is mainly
in the form of latent energy.

The sensible energy in the PCM increases very sharply at the beginning of the charging
process as walls transfer the heat and the fins store this in the form of sensible heat (the
initial temperature of the PCM is below the melting point, as shown in Equation (20) and
Table 2). The rate of storing sensible energy decreases after about 600 s, as the energy is
mainly stored in the form of latent heat. After around 2600 s of simulation, the rate of
sensible energy accumulation increases again, as most of the PCM has been melted (about
70%, as shown in Figure 8b), and the rate of energy storage in the form of latent heat shows
a downward trend (Figure 9a).
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Figure 8. (a) Total energy stored and (b) liquid fraction for Cases 1–10.

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 21 
 

 

or sensible) and the fins (sensible). It is clear that the stored energy in the storage is mainly 
in the form of latent energy. 

 
Time (s)

L
F

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Case 1
Case 2
Case 3
Case 4
Case 5
Case 6
Case 7
Case 8
Case 9
Case 10

M
V

F

 

(a) (b) 

Figure 8. (a) Total energy stored and (b) liquid fraction for Cases 1–10. 

   
(a) (b) (c) 

Figure 9. Details of the total energy stored in the storage for cases 1–10: (a) latent heat stored in 
PCM, (b) sensible heat stored in PCM, and (c) sensible heat stored in the wall and fins. 

The sensible energy in the PCM increases very sharply at the beginning of the charg-
ing process as walls transfer the heat and the fins store this in the form of sensible heat 
(the initial temperature of the PCM is below the melting point, as shown in Equation (20) 
and Table 2). The rate of storing sensible energy decreases after about 600 s, as the energy 
is mainly stored in the form of latent heat. After around 2600 s of simulation, the rate of 
sensible energy accumulation increases again, as most of the PCM has been melted (about 
70%, as shown in Figure 8b), and the rate of energy storage in the form of latent heat shows 
a downward trend (Figure 9a). 

The sensible energy in the fins (Figure 9c) remains approximately constant after a 
short time of the charging process has passed, indicating that the (average) fins’ tempera-
ture remains roughly constant due to their high conductive heat transfer feature. Note 
that at the late stages of the charging process, where most of the PCM is melted, the sen-
sible energy of the fins slightly increases, meaning that the (average) fins’ temperature 
increases when the storage is almost charged (80% or above, according to Figure 8b). 

Time (s)

T
ot

al
S

to
re

d
E

ne
rg

y
(M

J/
m

)

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

Case 1
Case 2
Case 3
Case 4
Case 5
Case 6
Case 7
Case 8
Case 9
Case 10

Time (s)

L
at

en
t

S
to

re
d

E
ne

rg
y

(M
J/

m
)

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

Case 1
Case 2
Case 3
Case 4
Case 5
Case 6
Case 7
Case 8
Case 9
Case 10

Time (s)

S
en

si
b

le
S

to
re

d
E

ne
rg

y
in

P
C

M
(k

J/
m

)

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

Case 1
Case 2
Case 3
Case 4
Case 5
Case 6
Case 7
Case 8
Case 9
Case 10

Time (s)

S
en

si
b

le
S

to
re

d
E

ne
rg

y
in

W
al

l&
F

in
s

(k
J/

m
)

0 1000 2000 3000 4000 5000

5

10

15

20

25

Case 1
Case 2
Case 3
Case 4
Case 5
Case 6
Case 7
Case 8
Case 9
Case 10

Figure 9. Details of the total energy stored in the storage for cases 1–10: (a) latent heat stored in PCM,
(b) sensible heat stored in PCM, and (c) sensible heat stored in the wall and fins.

The sensible energy in the fins (Figure 9c) remains approximately constant after a short
time of the charging process has passed, indicating that the (average) fins’ temperature
remains roughly constant due to their high conductive heat transfer feature. Note that
at the late stages of the charging process, where most of the PCM is melted, the sensible
energy of the fins slightly increases, meaning that the (average) fins’ temperature increases
when the storage is almost charged (80% or above, according to Figure 8b).

Figure 10 shows the charging power for Cases 1–10. The charging power at the
beginning of the charging process is very high, mainly because of the temperature difference
between the HTF and the storage (PCM and fins). As time elapses, the charging power
decreases steadily. As the melting rate of Case 10 is higher than that of the other cases,
a higher charging power is also anticipated for this case. In addition, a closer look at
Figure 10 reveals that although Case 9 has the second-highest charging power after around
900 s of the charging process, at the late stages of charging, the charging power of Case 3
overtakes Case 9. The presented results also confirm that attention should be paid when
designing an LHTES, as it might undergo a partial charging process. For more details about
the partial/full charging process of the LHTES, interested readers are referred to Hashem
Zadeh et al. [32].
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5.2. Nano-Enhancing the Best Case with GNP

In the previous section, the role of different configurations of the fins on the charging
process of the storage was studied and analyzed in detail. It was found that Case 10 has the
highest charging power. In this part, we have surveyed the effects of graphite nanoplates
on the melting characteristics of the selected case (i.e., Case 10).

Figures 11 and 12 compare, respectively, the melting fraction contours and temperature
files of the nano-enhanced cases with the case of a pure PCM. It is evident that the melting
rate and temperature of the PCM significantly increases when the nano-enhanced particles
are added to the PCM. Adding nano-additives to the PCM slightly decreases the total
capacity of the storage, as a portion of the storage is occupied by the nano-additives. On
the other hand, with dispersing nanoparticles, the effective thermal conductivity of the
medium increases considerably (as presented in Table 2, only by adding 3% of the analyzed
nano-additive, the thermal conductivity of the solid nano-PCM almost doubles). As a
result, a higher amount of thermal energy can be transferred and the melting rate increases.

Figure 13 shows the total amount of thermal energy stored in the LHTES and the
liquid portion of the PCM during charging. Figure 13a shows that the total thermal energy
stored accelerates with dispersing nanosized particles. However, as discussed before, the
total amount of energy decreases with increasing nanoparticle concentration. It is evident
that the liquid fraction of the nano-enhanced PCM increases as the concentration of the
nanoparticles increases (Figure 13b).

Figure 14 presents different forms of thermal energy in the storage. By increasing
the GNP concentration, the sensible form of energy in the fins, wall, and the nano-PCM
increases. Concerning the nano-enhanced PCM, this is plausible, as the energy stored
in the nanoparticles is only sensible energy and increases as the mass fraction of the
nanoparticles increases.

Figure 15 shows the instantaneous charging power of the cases enhanced with the
GNP nanoparticle. As discussed before, the charging power increases by dispersing the
GNP nanoparticles, meaning that the storage charges faster. Nonetheless, as can be seen,
the instantaneous charging power of the storage (time-based charging power defined
in [32]) may be non-monotonic and vary during the charging process. In other words, the
storage’s full charging power is higher for script phi, of which ϕ = 3.0%. However, in
terms of partial charging power, the charging power for the case of ϕ = 1.0% is slightly
higher at the last stages of the charging process (the magnified area in Figure 15).
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Figure 13. (a) Total energy stored and (b) liquid fraction for different mass fractions of
GNP nanoparticles.
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Figure 14. Details of the total energy stored in the storage for different concentrations of GNP
nanoparticles: (a) latent heat stored in PCM, (b) sensible heat stored in PCM, and (c) sensible heat
stored in the wall and fins.
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6. Conclusions

The charging behavior of a half-cylinder-shaped latent heat thermal energy storage is
studied. The storage medium is Tetradecanol. The results are divided into two sections.
The first section selects ten different fin configurations (including horizontal, inclined,
and vertical fins) for analysis. The volume of the fins for all the cases is kept constant
for the sake of comparison. The second part selects the case with the highest charging
power for nano-enhancement with graphite nanoplatelets (GNPs). The stored energy in the
PCM/NePCM (sensible and latent heat) and the fins and walls (sensible heat) are discussed
in detail. The outcomes of the two parts can be summarized as follows:

1. For the finned cases, the highest charging power can be achieved only when the
variable fins are horizontally attached to the fixed fin and close to the insulated wall.

2. The sensible energy in the PCM increases very sharply at the beginning of the charging
process and then decreases as the melting process starts. The sensible energy increases
again when the storage charges to about 70%.

3. The sensible energy in the fins remains approximately constant after a short time
of the charging process has passed, indicating that the (average) fins’ temperature
remains roughly constant.

4. Adding nano-additives to the PCM slightly decreases the total capacity of the storage,
as a portion of the storage is occupied by the nano-additives. In addition, the total
thermal energy stored (and the liquid fraction of the NePCM) accelerates with the
dispersal of nanosized particles.

5. By increasing the concentration of the GNPs, the sensible form of energy in the fins,
wall, and nano-PCM increases.

6. By dispersing the GNP nanoparticles, the charging power increases, meaning the
storage charges faster.

To summarize, this study attempts to find out how the configuration of fins (for
a constant volume of fins) in a half-cylinder LHTES can affect the charging process of
storage. The case with minimum charging time was used for the nano-enhancement. In
addition, although the full charging power of the storage is analyzed here, the results of
the simulations confirm that the charging power of the LHTES system (as surveyed in our
previous research) is non-monotonic, and the best case for full charging power may not
necessarily work well during partial charging.
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Nomenclature
Latin symbols
Bmush Mushy zone parameter
cp Sensible heat capacity (Jkg−1K−1)
D(T) Gaussian function
Fby Buoyancy force (Nm−3)
Fmx Sink term in x-momentum equation (Nm−3)
Fmy Sink term in y-momentum equation (Nm−3)
g Gravity acceleration (ms−2)
L Latent heat (kJkg−1)
p Pressure (Pa)
T Temperature (K)
t Time (s)
u Velocity component in x direction (ms−1)
v Velocity component in y direction (ms−1)
W Channel width of heat transfer fluid
x, y Cartesian coordinates (m)
Greek symbols
β Volumetric thermal expansion coefficient (K−1)
∆Tme Melting temperature window (K)
ε Numerical constant
η(T) Numerical step function
λ Thermal conductivity (Wm−1K−1)
µ Dynamic viscosity (Nsm−2)
ρ Density (kgm−3)
Subscripts
c Copper
HTF Heat transfer fluid
lNePCM Liquid nano-enhanced phase change material
sNePCM Solid nano-enhanced phase change material
me Melting point
Abbreviations
GNPs Graphite nanoplates
LHTES Latent heat thermal energy storage
MVF Melted volume fraction
NePCM Nano-enhanced phase change material
PCM Phase change material
PVT Photovoltaic thermal
Ra Rayleigh number
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