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Abstract: Integrity, tenacity, binding number, and toughness are significant parameters with which
to evaluate network vulnerability and stability. However, we hardly use the definitions of these
parameters to evaluate directly. According to the methods, concerning the spectral radius, we show
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this way, the vulnerability and stability of networks can be easier to characterize in the future.
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1. Introduction

The graphs herein are all finite, undirected, and simple. Let G be a graph. The vertex
set of G is denoted by V(G) and the order of G is |V(G)|; the edge set is E(G) and the size is
|E(G)|. In this paper, we use e(G) to denote the size of G. Let v ∈ V(G). The degree of v in
G, denoted by dG(v), is the number of vertices adjacent to v. If X⊆V(G), the neighbor set of
X in G, denoted by NG(X), is the set of all vertices in G adjacent to at least one vertex in X.
When appropriate, we use d(v) and N(X) for short, respectively. The complement of G is
denoted by G. In particular, Kn is the complete graph of order n, and the complement of Kn
is the empty graph En. Given two vertex-disjoint graphs G and H, their joint and disjoint
union are denoted as G ∨ H and G + H, respectively. Furthermore, the complete bipartite
graph Ks,t is Es ∨ Et and K1,t is the star graph with t edges.

Computers or communication networks are built in such a way that they are difficult
to disrupt under external assault and, if they are, are simple to restore. Toughness, integrity,
tenacity, and binding number are just a few of the parameters that can be used to evaluate
a network’s desirable qualities, such as vulnerability and stability. For instance, a network
with a large tenacity generally performs better under external attack. We can refer to [1–3]
for more details. Let G be a graph. We utilize the symbols I(G) to represent the integrity
of G, T(G) to represent its tenacity, bind (G) to represent its binding number, and τ(G) to
represent its toughness. According to [4–6], they are defined in the following formulas:

I(G) = min{|X|+ m(G− X) |X ⊂ V(G) and ω(G− X) ≥ 2};

T(G) = min
{
|X|+ m(G− X)

ω(G− X)

∣∣∣X ⊂ V(G) and ω(G− X) ≥ 2
}

;

bind (G) = min
{
|N(X)|
|X|

∣∣∣∅ 6= X⊆V(G), N(X) 6= V(G)

}
;

τ(G) = min
{

|X|
ω(G− X)

∣∣∣X ⊂ V(G) and ω(G− X) ≥ 2
}

,

(1)
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where m(G − X) is the order of the largest component of G − X and ω(G − X) is the
number of components of G− X. As in [7], a graph G is k-integral if I(G) ≥ k, k-tough if
τ(G) ≥ k, k-tenacious if T(G) ≥ k, and k-binding if bind (G) ≥ k.

The study and the relationships between certain pairs of vulnerability parameters can
be found in [4–6,8–11]. Moreover, it is NP-hard to determine the integrity, toughness, or
tenacity of a graph, in terms of computational complexity; we can refer to [12–14] for detail.
Moreover, Cunningham [15] has shown that the binding number bind (G) is tractable. In
particular, Yatauro [7] recently obtained the stability theorems for the properties of G being
k-integral, k-tough, k-tenacious, or k-binding. In general, we hardly determine integrity,
tenacity, binding number, or toughness by the definitions of these parameters, i.e., the
equations in (1). Therefore, we need some other tools with which to characterize graphs
with these properties. In this paper, we connect these vulnerability parameters with the
spectral radius. This is the motivation of the paper.

Let G be a graph. The adjacency matrix of G is denoted by A(G), where the entries of
A(G) is aij and aij = 1 if vivj ∈ E(G), or aij = 0 otherwise. The characteristic polynomial of
G is PG(x) = det(xI − A(G)), where I is the identity matrix. The roots of PG(x) are the
eigenvalues of G. We call the largest eigenvalue of G the spectral radius of G and denote it by
λ(G). The stability of graphs was first studied by Bondy and Chvátal in [16]. Let P be a
property defined on all graphs of order n and let k be a non-negative integer. If whenever
G + uv for uv /∈ E(G) has property P and

dG(u) + dG(v) ≥ k,

then P is k-stable and G itself has property P. The k-closure of G, indicated by clk(G), is the
smallest one in terms of graph size among all the graphs H of order n such that G⊆H and

dH(u) + dH(v) < k

for all uv /∈ E(H). By combining two non-adjacent vertices such that their degree sum is at
least k, it is implied that clk(G) can be derived recursively from G. We can refer to [17] for a
list of problems in structural graph theory where it is crucial. If a graph G exists that has
the integer sequence π as its vertex degree sequence, then G is referred to as a realization
of π. An integer sequence π = (d1 ≤ d2 ≤ · · · ≤ dn) is called graphical in this situation. If
P is a graph property, such as integrity or toughness, we refer to a graphical sequence as
having the property P forcibly if it appears in every realization of the sequence. In [18], a
survey on degree sequences of graphs may be found.

The investigation of the connection between eigenvalues and graph properties has
garnered a lot of interest. This is largely because of the issue that Brualdi and Solheid
stated in [19]: Find an upper bound on the spectral radii of the graphs in the given set S and then
describe the graphs for which the maximum spectral radius is reached. For graphs with a specified
number of cut vertices, chromatic number, matching number, etc., this topic is investigated;
see [20–26]. For more information, see Stevanović’s recent thorough monograph [27]. Initi-
ated by Brouwer and Haemers [28], the study of eigenvalues and the matching number
was later advanced by Cioabǎ and numerous other academics [29,30]. In the past, a graph’s
vertex degrees have been used to establish the necessary conditions for the graph to have
specific properties. Li et al. explored the spectral conditions for various stable aspects of
graphs [31,32]. After that, Feng et al. [33] considered some graph properties with the spec-
tral radius, including k-connected, k-edge-connected, k-Hamiltonian, k-edge-Hamiltonian,
β-deficient, and k-path-coverable. Recently, the degree sequence is also used in a graph
to determine if it is k-integral [34], k-tenacious [11], k-binding [35], or k-tough [36]. In this
paper, according to the methods in [33], we shall utilize the degree sequence and the closure
concepts to get several sufficient conditions of graphs with certain properties, including
k-integral, k-tenacious, k-binding, and k-tough.
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2. Preliminaries

In this section, some lemmas will be presented for later use. First of all, we collect
several results in the following lemma, each of which contains a sufficient graphical degree
sequence condition implying the existence of a certain graph being k-integral, k-tenacious,
k-tough, or k-binding.

Lemma 1. Let π = (d1 ≤ d2 ≤ · · · ≤ dn) be a graphical degree sequence.

1. [34] Let n ≥ k and k ≥ 1. If dn−k+2 ≥ k− 1, then G is k-integral.
2. [36] Let k ≥ 1 and n ≥ dke+ 2. If dbi/kc ≤ i ⇒ dn−i ≥ n− bi/kc, for k ≤ i < kn

k+1 , then
G is k-tough.

3. [11] Let n ≥ k ≥ 2
n−1 with n ≥ 2. If db n−k

k+1 c+2 ≥ n−
⌊

n−k
k+1

⌋
− 1, then G is k-tenacious.

4. [35] Let n ≥ k + 1 and k ≥ 1. If

(a) di ≤ n−
⌊

n−i
k

⌋
− 1⇒ db n−i

k c+1 ≥ n− i, for 1 ≤ i ≤
⌊

n
k+1

⌋
,

(b) db n
k+1c+1 ≥ n−

⌊
n

k+1

⌋
,

then G is k-binding.

Next, we consider stability results for the same graph properties, which are obtained
by Yatauro in [7].

Lemma 2 ([7]). For graphs of order n, we have the following stability results.

1. Given an integer k ≥ 2, the property of being k-integral is (2k− 3)-stable.

2. Given k ≥ 1, the property of being k-tough is
⌈

2kn
k+1

⌉
-stable.

3. The property of being k-tenacious is
⌈

2(kn−1)
k+1

⌉
-stable.

4. Let n ≥ k+ 1 and k ≥ 1. The property of being k-binding is max
{⌈

2kn
k+1

⌉
,
⌈
(2k−1)n+1

k

⌉
− 2
}

-
stable.

We have the following lemma by the definition of the k-closure of a graph.

Lemma 3 ([16]). Let P be a property of a graph G. If P is k-stable and clk(G) has property P, then
G itself has property P.

The following result obtains the bounds on the spectral radius of a graph.

Lemma 4 ([25]). Let G be a graph of order n with m edges and with no isolated vertices. Then, the
spectral radius of G satisfies

λ(G) ≤
√

2m− n + 1. (2)

Equality holds if and only if G consists of c components for some c ≥ 1, where c− 1 components
are single edges, and the remaining component is either a complete graph or a star graph.

The next lemma is essential to the proof of our main results later.

Lemma 5 ([33]). Let H be a graph of order n and G be any spanning subgraph of H. If for any
pair of non-adjacent vertices u, v ∈ V(H) we have dH(u) + dH(v) ≤ `, then

e(H) ≥
(

n
2

)
− nλ2(G)

2n− 2− `
.

At last, we give the spectral radius of the graph Ks + Et.
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Lemma 6 ([33]). For s, t ≥ 1, we have

λ(Ks ∨ Et) =
s− 1 +

√
(s− 1)2 + 4st

2
.

In particular, for the star graph K1,t, we have λ(K1,t) =
√

t.

3. Main Results
3.1. Integral and Tenacious

In this section, we consider the spectral conditions of graphs to be k-integral or
k-tenacious.

Theorem 1. Let n ≥ k ≥ 2 and G be a graph of order n.

1. If G has no isolated vertices, and λ(G) ≥
√

2nk− k2 + 3k− 5n− 1, then G is k-integral,
unless k = 3 and G = K1,n−1.

2. If λ(G) ≤ (n− k + 1)
√

n−k+2
n , then G is k-integral, unless k = 2 and G = En.

Proof. First of all, we prove the claim as follows.
Claim. Let G be a graph of order n ≥ k ≥ 1. If e(G) ≥ 1

2 (2n− k + 1)(k− 2), then G is
k-integral, unless e(G) = 1

2 (2n− k + 1)(k− 2) and G = Kk−2 ∨ En−k+2.

Proof of Claim. Suppose that G is not k-integral. Then, from Lemma 1 (1), we have
dn−k+2 ≤ k− 2, and thus

2e(G) =
n

∑
i=1

di ≤ (n− k + 2)(k− 2) + (k− 2)(n− 1) = (2n− k + 1)(k− 2). (3)

Hence, by the assumption of the claim, e(G) = 1
2 (2n − k + 1)(k − 2) and all the

inequalities above must be equalities. We have d1 = · · · = dn−k+2 = k− 2 and dn−k+3 =
· · · = dn = n− 1. It follows that G = Kk−2 ∨ En−k+2. However, I(G) = (k− 2) + 1 = k− 1,
thus G is not k-integral.

(I). With Lemma 4 and the fact that G has no isolated vertices, we get√
2nk− 5n− k2 + 3k− 1 ≤ λ(G) ≤

√
2e(G)− n + 1,

which yields

e(G) ≥ 1
2
(2n− k + 1)(k− 2).

By Lemma 4, Kk−2 ∨ En−k+2 cannot be one of the graphs attaining equality in (2), unless
k = 3. When k = 3, the inequality in (3) is equality, i.e., e(G) = n− 1 and G = K1,n−1.
Then, G is 2-integral, not 3-integral. Therefore, by Lemma 4 and the claim above, we have
e(G) > 1

2 (2n− k + 1)(k− 2), and G is k-integral.

(II). Assume that G is not k-integral. By Lemma 2, we consider the closure H := cl2k−3(G).
According to Lemma 3, H is not k-integral and H 6= Kn. Thus for any two non-adjacent
vertices u and v in H, we have dH(u) + dH(v) ≤ 2k− 4. Therefore, by Lemma 5 and
the assumption, it implies that

e(H) ≥
(

n
2

)
− nλ2(G)

2n− 2k + 2
≥ 1

2
(2n− k + 1)(k− 2).
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Since H is not k-integral, according to the claim, we have H = Kk−2 ∨ En−k+2. Moreover,
because G⊆H, we can see that G contains the complete graph Kn−k+2. Therefore,

λ(G) ≥ λ(Kn−k+2) = n− k + 1 ≥ (n− k + 1)

√
n− k + 2

n
.

By the assumption, we have equality above. Thus, k = 2 and G = H = En. This completes
the proof.

Remark 1. Though the bounds of λ(G) and λ(G) are sharp in Theorem 3.1, we think it is hard to
find the extremal graphs when the equalities occur. For example, we explain the equality about λ(G)
below. Let G be a graph with no isolated vertices. If λ(G) =

√
2nk− k2 + 3k− 5n− 1 occurs in

Theorem 1, according to the inequalities in the proof, that is,√
2nk− 5n− k2 + 3k− 1 ≤ λ(G) ≤

√
2e(G)− n + 1, (4)

we divide the discussion into two cases.
Case 1. λ(G) =

√
2e(G)− n + 1.

In this case, we have e(G) = 1
2 (2n − k + 1)(k − 2) by (1). Furthermore, if

λ(G) =
√

2e(G)− n + 1, according to Lemma 4 in Section 2, then G consists of c compo-
nents for some c ≥ 1, where c − 1 components are single edges, and the remaining compo-
nent is either a complete graph or a star graph, according to Lemma 4 in Section 2. It follows
that e(G) = (c − 1) + [n−2(c−1)][n−2(c−1)−1]

2 or e(G) = (c − 1) + (n − 2(c − 1) − 1) =
n− (c− 1)− 1 = n− c. Therefore, if extremal graph G exists, then we have

1
2
(2n− k + 1)(k− 2) = (c− 1) +

[n− 2(c− 1)][n− 2(c− 1)− 1]
2

, (5)

or
1
2
(2n− k + 1)(k− 2) = n− c. (6)

We consider Equation (6) first. We can see that k ≥ 3. If c = 1, then G = K1,n−1, it is not
k-integral. Thus, c ≥ 2 and k ≥ 4, otherwise k = 3 and c = 1, which is a contradiction. Therefore,
1
2 (2n− k + 1)(k− 2) ≥ 2n− k + 1. Then, n− c ≥ 2n− k + 1. Therefore, k− c− 1 ≥ n. Note
that n ≥ k. Hence, we have k− c− 1 ≥ k, a contradiction. Therefore, Equation (6) cannot occur.

Now we consider Equation (5). To simplify the equation, we have

k2 − (2n + 3)k + n2 − 4nc + 7n + 4c2 − 4c = 0.

The discriminant is ∆ = 16nc− 16n + 16c− 16c2 + 9 = 16(n− c)(c− 1) + 9 > 0. It follows
that the equation has two real roots, and the roots are

k1,2 =
2n + 3±

√
16(n− c)(c− 1) + 9

2
.

Since n ≥ k, we have k =
2n+3−

√
16(n−c)(c−1)+9

2 . However, it is hard to determine three parameters
k, n, r with only one equation. We need some other conditions.

Case 2. λ(G) <
√

2e(G)− n + 1
By Lemma 4, this case may occur as well. In this case, the extremal graphs should satisfy

two conditions:

1. λ(G) =
√

2nk− k2 + 3k− 5n− 1,
2. e(G) > 1

2 (2n− k + 1)(k− 2).

We think the graphs are not easy to construct just with the above two conditions.
Above all, we believe that the extremal graphs exist. However, some other conditions are

necessary, such as the structure of the graphs. Otherwise, the extremal graphs are not easy to



Mathematics 2023, 11, 4264 6 of 18

construct just by several equations. The theorems in the left of the paper have the same difficulty
with the extremal graphs when the equality occurs.

Theorem 2. Let n ≥ k ≥ 2
n−1 with n ≥ 2 and G be a graph of order n.

1. If G has no isolated vertices, and λ(G) ≥
√
(n− 1)2 −

(⌊
n−k
k+1

⌋
+ 2
)(⌊

n−k
k+1

⌋
+ 1
)

, then

G is k-tenacious.

2. If λ(G) ≤
√
d2( n+1

k+1 )e−1
n (b

n+1
k+1 c+1

2 ), then G is k-tenacious.

Proof. First of all, we prove the claim as follows.
Claim. G be a graph of order n such that n ≥ k ≥ 2

n−1 and n ≥ 2. If e(G) ≥ (n
2)−

(b
n−k
k+1 c+2

2 ), then G is k-tenacious, unless e(G) = (n
2)− (b

n−k
k+1 c+2

2 ) and G = Kn−b n−k
k+1 c−2 ∨

Eb n−k
k+1 c+2.

Proof of Claim. Assume that G is not k-tenacious for some k in n ≥ k ≥ 2
n−1 . By Lemma 1,

we know that db n−k
k+1 c+2 ≤ n−

⌊
n−k
k+1

⌋
− 2. Thus,

2e(G) ≤
(⌊

n− k
k + 1

⌋
+ 2
)(

n−
⌊

n− k
k + 1

⌋
− 2
)
+

(
n−

⌊
n− k
k + 1

⌋
− 2
)
(n− 1)

=

(
n−

⌊
n− k
k + 1

⌋
− 2
)(

n +

⌊
n− k
k + 1

⌋
+ 1
)

= n(n− 1)−
(⌊

n− k
k + 1

⌋
+ 2
)(⌊

n− k
k + 1

⌋
+ 1
)

.

Hence, e(G) = (n
2) − (b

n−k
k+1 c+2

2 ) and all the inequalities above must be equalities.

Therefore, d1 = d2 = · · · = db n−k
k+1 c+2 = n−

⌊
n−k
k+1

⌋
− 2 and db n−k

k+1 c+3 = · · · = dn = n− 1.

It follows that G = Kn−b n−k
k+1 c−2 ∨ Eb n−k

k+1 c+2. However,

T(G) =
(n−

⌊
n+1
k+1

⌋
− 1) + 1⌊

n+1
k+1

⌋
+ 1

=
n− (

⌊
n+1
k+1

⌋
+ 1) + 1⌊

n+1
k+1

⌋
+ 1

<
n− n+1

k+1 + 1
n+1
k+1

= k,

i.e., G is not k-tenacious.

(I). With Lemma 4 and the fact that G has no isolated vertices, we get√
(n− 1)2 −

(⌊
n− k
k + 1

⌋
+ 2
)(⌊

n− k
k + 1

⌋
+ 1
)
≤ λ(G) ≤

√
2e(G)− n + 1,

implying that

e(G) ≥
(

n
2

)
−
(⌊ n−k

k+1

⌋
+ 2

2

)
.

Because Kn−b n−k
k+1 c−2 ∨ Eb n−k

k+1 c+2 cannot achieve equality in inequality (2), the aforemen-

tioned claim and Lemma 4 lead to the conclusion that e(G) > (n
2)− (b

n−k
k+1 c+2

2 ), and G is
k-tenacious.

(II). Assume that G is not k-tenacious. By Lemma 2, we consider the closure
H := cl⌈ 2(kn−1)

k+1

⌉(G). According to Lemma 3, H is not k-tenacious and H 6= Kn.



Mathematics 2023, 11, 4264 7 of 18

Thus, for any two non-adjacent vertices u and v in H, we have dH(u) + dH(v) ≤⌈
2(kn−1)

k+1

⌉
− 1. Therefore, by Lemma 5 and the assumption, it follows that

e(H) ≥
(

n
2

)
− nλ2(G)

2n−
⌈

2(kn−1)
k+1

⌉
− 1
≥
(

n
2

)
−
(⌊ n−k

k+1

⌋
+ 2

2

)
.

Since H is not k-tenacious, according to the claim, we have H = Kn−b n−k
k+1 c−2 ∨ Eb n−k

k+1 c+2.

Moreover, because G⊆H, we can see that G contains Kb n−k
k+1 c+2. We have

λ(G) ≥ λ(Kb n−k
k+1 c+2) =

⌊
n + 1
k + 1

⌋
>

√√√√⌊
n+1
k+1

⌋(⌊
n+1
k+1

⌋
+ 1
)(⌊

2(n+1)
k+1

⌋
− 1
)

2n
,

because of k ≥ 2
n−1 and

(⌊
n+1
k+1

⌋
+ 1
)(⌊

2(n+1)
k+1

⌋
− 1
)

2n
≤

⌊
n+1
2

n−1+1

⌋
+ 1

2
·

⌊
2(n+1)

k+1

⌋
− 1

n

=
n
2
·

⌊
2(n+1)

k+1

⌋
− 1

n

≤ n
2
·

2
⌊

n+1
k+1

⌋
n

=

⌊
n + 1
k + 1

⌋
,

(7)

and all the inequalities in (7) cannot be equalities simultaneously.

3.2. Binding Number

In this section, we consider the spectral conditions of graphs to be k-binding.

Theorem 3. Let G 6= Kn be a graph on n vertices. Let n ≥ 2(k + 1) if k ≥ 2 or n ≥ 9 if
1 ≤ k < 2.

1. If G has no isolated vertices, and

λ(G) ≥ max

{√
(n− 1)2 − 2

⌊
n− 1

k

⌋
,

√
(n− 1)2 −

⌊
n

k + 1

⌋(⌊
n

k + 1

⌋
+ 1
)}

,

then G is k-binding;
2. If

λ(G) ≤ min


√√√√⌊

n
k+1

⌋(⌊
n

k+1

⌋
+ 1
)(⌈

2n
k+1

⌉
− 1
)

2n
,

√√√√⌊
n−1

k

⌋(
2n−

⌈
(2k−1)n+1

k

⌉
+ 1
)

n

,

then G is k-binding.

Proof. First of all, we prove the claim as follows.
Claim. Let G be a graph of order n such that n ≥ 2(k + 1) if k ≥ 2 or n ≥ 9 if

1 ≤ k < 2. If

e(G) ≥ max


(

n
2

)
−
⌊

n− 1
k

⌋
,
(

n
2

)
−
(⌊ n

k+1

⌋
+ 1

2

),
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then G is k-binding, unless e(G) = (n
2)−

⌊
n−1

k

⌋
and G = Kn−b n−1

k c−1 ∨
(

K1 + Kb n−1
k c
)

, or

e(G) = (n
2)− (b

n
k+1c+1

2 ) and G = Kn−b n
k+1c−1 ∨ Eb n

k+1c+1.

Proof of Claim. Assume that G is not k-binding. Then π(G) must fail either (a) of Lemma 1
(4) for some i or (b) of Lemma 1 (4). Thus, the proof will be divided into two cases as follows.

Case 1. First assume that π(G) fails (a) of Lemma 1 (4), so

di ≤ n−
⌊

n− i
k

⌋
− 1 and db n−i

k c+1 ≤ n− i− 1 for 1 ≤ i ≤
⌊

n
k + 1

⌋
.

Thus

2e(G) ≤ i
(

n−
⌊

n− i
k

⌋
− 1
)
+

(⌊
n− i

k

⌋
+ 1− i

)
(n− i− 1)

+

(
n−

⌊
n− i

k

⌋
− 1
)
(n− 1)

= i2 − i
(

2
⌊

n− i
k

⌋
+ 1
)
+ n(n− 1)

< i2 − i
(

2
(

n− i
k
− 1
)
+ 1
)
+ n(n− 1)

=

(
k + 2

k

)
i2 −

(
2n− k

k

)
i + n(n− 1).

Suppose f (x) =
(

k+2
k

)
x2 −

(
2n−k

k

)
x with 1 ≤ x ≤ n

k+1 . We find that f (x) is a concave up

parabola with vertex at x = 2n−k
2(k+2) . Since n ≥ 2(k + 1), we have 2n−k

2(k+2) ≥
4(k+1)−k

2(k+2) > 1. It
implies that the maximum value of f (x) occurs at either x = 1 or x = n

k+1 . Then it is easy

to check that f (1)− f ( n
k+1 ) =

(n−(k+1))(kn−2(k+1)2)
k(k+1)2 ≥ 0 if n ≥ 2(k+1)2

k .

When n ≥ 2(k+1)2

k , then fmax(x) = f (1) and we have

2e(G) < f (1) + n(n− 1) = n(n− 1)− 2(n− 1)
k

+ 2.

Therefore,

e(G) ≤
(

n
2

)
−
⌊

n− 1
k

⌋
.

Hence, e(G) = (n
2)−

⌊
n−1

k

⌋
, and all the inequalities above must be equalities. There-

fore, d1 = n−
⌊

n−1
k

⌋
− 1, d2 = · · · = db n−1

k c+1 = n− 2 and db n−1
k c+2 = · · · = dn = n− 1.

It follows that G = Kn−b n−1
k c−1 ∨

(
K1 + Kb n−1

k c
)

. Let S = V
(

K1 + Kb n−1
k c
)

. Then

bind (G) =
|N(S)|
|S| =

n− 1⌊
n−1

k

⌋
+ 1

<
n− 1

n−1
k

= k,

i.e., G is not k-binding.

Thus, if 1 ≤ k < 2 and n ≥ 9 > 2(k+1)2

k or k ≥ 2 and n ≥ 2(k+1)2

k , we are done.

Otherwise, assume k ≥ 2 and 2(k + 1) ≤ n < 2(k+1)2

k . Then 1 ≤ i ≤ n
k+1 < 2(k+1)

k ≤ 3,
i.e., i = 1 or 2. Let

P(i) =
(

n
2

)
+

1
2

(
i2 − i

(
2
⌊

n− i
k

⌋
+ 1
))

.

Therefore, we have e(G) ≤ max{P(1), P(2)}.
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Since 2 ≤ n−2
k < n−1

k < 4, we have the following possibilities: (i)
⌊ n−2

k
⌋
=
⌊

n−1
k

⌋
= 2

or 3; (ii)
⌊ n−2

k
⌋
= 2 and

⌊
n−1

k

⌋
= 3. Note that P(2)− P(1) = −2

⌊ n−2
k
⌋
+
⌊

n−1
k

⌋
+ 1, which

is negative for every possibility indicated above. Therefore, max{P(1), P(2)} = P(1), and
e(G) ≤ P(1) = (n

2)−
⌊

n−1
k

⌋
.

Case 2. Assume that π(G) fails (b) of Lemma 1 (4). We have

db n
k+1c+1 ≤ n−

⌊
n

k + 1

⌋
− 1.

Then

2e(G) ≤
(⌊

n
k + 1

⌋
+ 1
)(

n−
⌊

n
k + 1

⌋
− 1
)
+

(
n−

⌊
n

k + 1

⌋
− 1
)
(n− 1)

= n(n− 1)−
⌊

n
k + 1

⌋(⌊
n

k + 1

⌋
+ 1
)

.

Hence, e(G) = (n
2)− (b

n
k+1c+1

2 ) and all the inequalities in this case must be equalities.

Therefore, d1 = · · · = db n
k+1c+1 = n−

⌊
n

k+1

⌋
− 1 and db n

k+1c+2 = · · · = dn = n− 1. It

follows that G = Kn−b n
k+1c−1 ∨ Eb n

k+1c+1. Let S = V
(

Eb n
k+1c+1

)
. Then

bind (G) =
|N(S)|
|S| =

n−
⌊

n
k+1

⌋
− 1⌊

n
k+1

⌋
+ 1

<
n− n

k+1
n

k+1
= k,

i.e., G is not k-binding.

(I). With Lemma 4 and the fact that G has no isolated vertices, according to the claim, if

e(G) ≥ (n
2)−

⌊
n−1

k

⌋
, we get

√
(n− 1)2 − 2

⌊
n− 1

k

⌋
≤ λ(G) ≤

√
2e(G)− n + 1,

which yields

e(G) ≥
(

n
2

)
−
⌊

n− 1
k

⌋
.

Because Kn−b n−1
k c−1 ∨

(
K1 + Kb n−1

k c
)

cannot achieve equality in (2), the aforementioned

claim and Lemma 4 lead to the conclusion that e(G) > (n
2)−

⌊
n−1

k

⌋
, and G is k-binding.

On the other hand, if e(G) ≥ (n
2)− (b

n
k+1c+1

2 ), from Lemma 4, we have√
(n− 1)2 −

⌊
n

k + 1

⌋(⌊
n

k + 1

⌋
+ 1
)
≤ λ(G) ≤

√
2e(G)− n + 1,

which yields

e(G) ≥
(

n
2

)
−
(⌊ n

k+1

⌋
+ 1

2

)
.

Because Kn−b n
k+1c−1 ∨ Eb n

k+1c+1 cannot achieve equality in the inequality (2), the aforemen-

tioned claim and Lemma 4 lead to the conclusion that e(G) > (n
2)− (b

n
k+1c+1

2 ), and G is
k-binding.
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(II). Suppose that G is not k-binding. According to Lemma 2 (4), the proof will be divided
into two cases as follows.

Case 1: The property of being k-binding is
⌈
(2k−1)n+1

k

⌉
− 2-stable.

In this case, (4) (a) of Lemma 1 fails and we consider the closure H := cl⌈ (2k−1)n+1
k

⌉
−2

(G).

According to Lemma 3, H is not k-binding and H 6= Kn. Thus, for any two non-adjacent
vertices u and v in H, we have dH(u) + dH(v) ≤

⌈
(2k−1)n+1

k

⌉
− 3. Therefore, by Lemma 5

and the assumption, it follows that

e(H) ≥
(

n
2

)
− nλ2(G)

2n−
⌈
(2k−1)n+1

k

⌉
+ 1
≥
(

n
2

)
−
⌊

n− 1
k

⌋
.

Since H is not k-binding, according to the claim, we have

H = Kn−b n−1
k c−1 ∨

(
K1 + Kb n−1

k c
)

.

Moreover, because G⊆H, we can see that G contains the star K1,b n−1
k c. Using Lemma 6,

we have

λ(G) ≥ λ(K1,b n−1
k c) =

√⌊
n− 1

k

⌋
≥

√√√√⌊
n−1

k

⌋(
2n−

⌈
(2k−1)n+1

k

⌉
+ 1
)

n
.

By the assumption, we have the equality above. Thus, k = 1 and G = K1 + Kn−1, which is
not binding.

Case 2: The property of being k-binding is
⌈

2kn
k+1

⌉
-stable.

In this case, (4) (b) of Lemma 1 fails, and we consider the closure H := cld 2kn
k+1e(G).

According to Lemma 3, H is not k-binding and H 6= Kn. Thus for any two non-adjacent
vertices u and v in H, we have dH(u) + dH(v) ≤

⌈
2kn
k+1

⌉
− 1. Therefore, by Lemma 5 and

the assumption, it follows that

e(H) ≥
(

n
2

)
− nλ2(G)

2n−
⌈

2kn
k+1

⌉
− 1
≥
(

n
2

)
−
(⌊ n

k+1

⌋
+ 1

2

)
.

Since H is not k-binding, according to Claim 1, we have H = Kn−b n
k+1c−1 ∨ Eb n

k+1c+1.

Moreover, because G⊆H, we can see that G contains the complete graph Kb n
k+1c+1. Fur-

thermore, we have

λ(G) ≥ λ(Kb n
k+1c+1) =

⌊
n

k + 1

⌋
>

√√√√⌊
n

k+1

⌋(⌊
n

k+1

⌋
+ 1
)(⌊

2n
k+1

⌋
− 1
)

2n
,

because of k ≥ 1 and n ≥ 2(k + 1), and(⌊
n

k+1

⌋
+ 1
)(⌊

2n
k+1

⌋
− 1
)

2n
<

2n
k+1

(⌊
n

k+1

⌋
+ 1
)

2n
<

⌊
n

k + 1

⌋
.

3.3. Toughness

In this section, we consider the property of k-tough. First, we obtain a lemma
as follows.
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Lemma 7. Let k ≥ 1 and n ≥ dke+ 2. If a graph G of order n is not k-tough, then there exists i
such that k ≤ i ≤ kn

k+1 and

e(G) ≤
(

n
2

)
− T(i)

2
,

where T(i) =
⌊

i
k

⌋(
2n− 2i−

⌊
i
k

⌋
− 1
)

.

Proof. Assume that G is not k-tough. Then by Lemma 1, there exists integer i such that
k ≤ i ≤ kn

k+1 , dbi/kc ≤ i and dn−i ≤ n− bi/kc − 1. We have

2e(G) ≤
⌊

i
k

⌋
i +
(

n− i−
⌊

i
k

⌋)(
n−

⌊
i
k

⌋
− 1
)
+ i(n− 1)

= n(n− 1)−
⌊

i
k

⌋(
2n− 2i−

⌊
i
k

⌋
− 1
)

= n(n− 1)− T(i).

(8)

This completes the proof.

To calculate the minimum of T(i) in Lemma 7, for fixed values of k and n ≥ dke+ 2,
define

p(n, k) =
⌈

kn
k + 1

⌉
− 1, q(n, k) =

⌊ p
k

⌋
.

It implies that p(n, k) =
⌈

n(k+1)−n
k+1

⌉
− 1 = n −

⌊
n

k+1

⌋
− 1. Since k ≤ i ≤ kn

k+1 , we have
Table 1 as follows.

Table 1. Tmin(i) on each interval.

Interval T(i) Tmin(i)

i ∈ [k, 2k) 2n− 2i− 2 d2ke − 1
i ∈ [2k, 3k) 2(2n− 2i− 3) d3ke − 1

...
...

...
i ∈ [qk, kn

k+1 ] q(2n− 2i− q− 1) p

In the rest of this section, we will divide into three cases of q(n, k). For convenience,
let p = p(n, k) and q = q(n, k). Therefore, Tmin(i) = min{T(i1), · · · , T(iq−1), T(p)}, where
is = d(s + 1)ke − 1 for 1 ≤ s ≤ q− 1.

Situation 1. q = 1
If q = 1, then p ∈ [k, 2k). Furthermore, Tmin(i) = T(p) = 2n− 2p− 2.
Situation 2. q = 2
When q = 2, we have

Tmin(i) = min{T(i1), T(p)} = min{2n− 2d2ke, T(p)},

where T(p) = 2(2n− 2p− 3).
By the definition of toughness, k is rational. It follows that integers a and b exist, in the

lowest terms, such that k = a
b . Let r be the remainder when bn is divided by a + b, so that

0 ≤ r ≤ a + b− 1 and bn = (a + b)
⌊

n
k+1

⌋
+ r. Thus,

n = (k + 1)
⌊

n
k + 1

⌋
+

r
b

. (9)

In the next, we will discuss the situation of r.
Case 1. 0 ≤ r < b.
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In this case, we have

p =

⌈
kn

k + 1

⌉
− 1 >

kn
k + 1

− 1⇒ p
k
>

n
k + 1

− 1
k
≥ n

k + 1
− 1.

By Equation (9), we have n < (t + 1)
⌊ n

t+1
⌋
+ 1, it follows that p = n−

⌊
n

k+1

⌋
− 1 < k

⌊
n

k+1

⌋
.

Thus, p
k <

⌊
n

k+1

⌋
. Therefore,

⌊
n

k+1

⌋
− 1 ≤

⌊ p
k
⌋
<
⌊

n
k+1

⌋
, and q =

⌊ p
k
⌋
=
⌊

n
k+1

⌋
− 1.

If q =
⌊

n
k+1

⌋
− 1 = 2, then we have p = n− 4 and T(p) = 10. Furthermore,

⌊
n

k+1

⌋
= 3,

it follows that 4(k + 1) > n ≥ 3(k + 1). If k ≥ 3, then

2n− 2d2ke > 2n− 2(2k + 1) = 2n− 4k− 2 ≥ 2(3k + 3)− 4k− 2 = 2k + 4 ≥ 10,

and Tmin(i) = T(p) = 10 =
(⌊

n
k+1

⌋
− 1
)(⌊

n
k+1

⌋
+ 2
)

.
If k ≤ 2 and n ≤ 2k + 5, then 2n − 2d2ke ≤ 2n − 4k ≤ 10, and Tmin(i) = T(i1) =

2n− 2d2ke.
Case 2. b ≤ r ≤ a + b− 1.
If b = r, we have n = (k + 1)

⌊
n

k+1

⌋
+ 1, then p = n −

⌊
n

k+1

⌋
− 1 = k

⌊
n

k+1

⌋
and

q =
⌊ p

k
⌋
=
⌊

n
k+1

⌋
.

If b < r, we have n > (k + 1)
⌊

n
k+1

⌋
+ 1 and p > k

⌊
n

k+1

⌋
, it implies that p

k >
⌊

n
k+1

⌋
.

Note that p =
⌈

kn
k+1

⌉
− 1 < kn

k+1 and p
k < n

k+1 . Therefore, q =
⌊ p

k
⌋
=
⌊

n
k+1

⌋
.

When q = 2, we have p = n− 3 and T(p) = 6. Furthermore,
⌊

n
k+1

⌋
= 2, it follows

that 3(k + 1) > n ≥ 2(k + 1). If n ≥ 3k + 2 and k ≥ 2, then

2n− 2d2ke > 2n− 2(2k + 1) = 2n− 4k− 2 ≥ 2(3k + 2)− 4k− 2 = 2k + 2 ≥ 6,

and Tmin(i) = T(p) = 6 =
⌊

n
k+1

⌋(⌊
n

k+1

⌋
+ 1
)

.
If n ≤ 2k + 3, then 2n− 2d2ke ≤ 2n− 4k ≤ 6, and Tmin(i) = T(i1) = 2n− 2d2ke.
Situation 3. q ≥ 3
Note that

T(is) = s(2n− 2(d(s + 1)ke − 1)− s− 1) = s(2n− 2d(s + 1)ke − s + 1),

where s ∈ [1, q − 1] is an integer. Thus, Tmin(i) = min1≤s≤q−1{T(is), T(p)}. Let
f (s) = s(2n − 2((s + 1)k + 1) − s + 1) and h(s) = s(2n − 2(s + 1)k − s + 1). Then,
f (s) < T(is) ≤ h(s). Moreover, f (s) = −(2k + 1)s2 + (2n− 2k− 1)s and h(s) = −(2k +
1)s2 + (2n− 2k + 1)s. Since q ≥ 3 and q =

⌊ p
k
⌋
, we have 3k ≤ p =

⌈
kn

k+1

⌉
− 1 < kn

k+1 . Thus,
n ≥ 3k + 4. Note that f (s) and h(s) are concave down parabolas with vertex at

2n− 2k− 1
2(2k + 1)

≥ 4k + 7
2(2k + 1)

> 1 and
2n− 2k + 1
2(2k + 1)

≥ 4k + 9
2(2k + 1)

> 1,

respectively. Thus, f (s) and h(s) achieve the minimum value at s = 1 or s = q− 1. Therefore,
T(is) also achieves its minimum value at s = 1 or s = q− 1, where T(i1) = 2n− 2d2ke and
T(iq−1) = (q− 1)(2n− 2dkqe − q + 2). Therefore, if q ≥ 3,

Tmin(i) = min{T(i1), T(iq−1), T(p)}
= min{2n− 2d2ke, (q− 1)(2n− 2dkqe − q + 2), T(p)}.

In the rest, we divide into two cases as follows.
Case 1. 0 ≤ r < b.
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In this case, q =
⌊

n
k+1

⌋
− 1 and p = n− q− 2, it implies that

T(iq−1)− T(i1) = (q− 1)(2n− 2dkqe − q + 2)− (2n− 2d2ke)
> (q− 1)(2n− 2(kq + 1)− q + 2)− 2n + 4k

= (q− 2)[2n− (2k + 1)(q + 1)]− 2 ≥ 2n−
⌊

n
k + 1

⌋
(2k + 1)− 2

≥ 2n− n
k + 1

(2k + 1)− 2 =
n

k + 1
− 2 ≥ 0

if n ≥ 2(k + 1), and

T(i1)− T(p) = 2n− 2d2ke − q(2n− 2p− q− 1)

= 2n− 2d2ke − q(q + 3)

= 2n− 2d2ke −
(⌊

n
k + 1

⌋
− 1
)(⌊

n
k + 1

⌋
+ 2
)

> 2n− 2(2k + 1)−
(

n
k + 1

− 1
)(

n
k + 1

+ 2
)

=
−n2 + (2k2 + 3k + 1)n− 4k3 − 8k2 − 4k

(k + 1)2 ≥ 0

if n ≤ (2k2+3k+1)+(k+1)
√

4k2−12k+1
2 . Note that 4k2− 12k+ 1− (2k− 5)2 = 8k− 24 ≥ 0 if k ≥ 3,

it implies that if k ≥ 3 and 3k + 4 ≤ n ≤ (2k2+3k+1)+(k+1)(2k−5)
2 , i.e., 3k + 4 ≤ n ≤ 2k2 − 2,

then T(i1)− T(p) > 0. Thus, Tmin(i) = T(p).
Case 2. b ≤ r ≤ a + b− 1.
In this case, q =

⌊
n

k+1

⌋
and p = n− q− 1. It implies that

T(iq−1)− T(p) = (q− 1)(2n− 2dkqe − q + 2)− q(2n− 2p− q− 1)

= (q− 1)(2n− 2dkqe − q + 2)− q(q + 1)

= 2(q− 1)(n− dkqe+ 1)

> 4(n− (kq + 1) + 1)

= 4(n− kq) > 0

as n
k > n+1

k+1 > n
k+1 ≥

⌊
n

k+1

⌋
. Furthermore,

T(i1)− T(p) = 2n− 2d2ke − q(2n− 2p− q− 1)

= 2n− 2d2ke − q(q + 1)

> 2n− 2(2k + 1)− n
k + 1

(
n

k + 1
+ 1
)

=
−n2 + (2k2 + 3k + 1)n− 4k3 − 10k2 − 8k− 2

(k + 1)2 ≥ 0

if n ≤ 2k2+3k+1+(k+1)
√

(2k−7)(2k+1)
2 . Meanwhile, by simple computation, if k ≥ 4, then

(2k− 7)(2k + 1) ≥ (2k− 5)2. Therefore, if n ≤ 2k2− 2, then n ≤ 2k2+3k+1+(k+1)
√

(2k−7)(2k+1)
2

and T(i1)− T(p) ≥ 0. Thus, Tmin(i) = T(p).
As a conclusion, we have the following result.

Theorem 4. Let k = a
b ≥ 1 and n ≥ dke+ 2, where a and b are integers such that a ≥ b ≥ 1. Let

G be a graph of order n. Let p =
⌈

kn
k+1

⌉
− 1, q =

⌊ p
k
⌋
, and r be the remainder when bn is divided

by a + b.
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1. If q = 1, then

(a) If G has no isolated vertices, and λ(G) ≥
√

n2 − 4n + 2d2ke+ 1, then G is k-tough.

(b) If λ(G) <

√
(n−d2ke)(2n−d 2kn

k+1e−1)
n , then G is k-tough.

2. If q = 2, 0 ≤ r ≤ b, and k ≥ 3; or q ≥ 3, 0 ≤ r < b, k ≥ 3 and 3k + 4 ≤ n ≤ 2k2 − 2, then

(a) If G has no isolated vertices, and λ(G) ≥
√
(n− 1)2 −

(⌊
n

k+1

⌋
− 1
)(⌊

n
k+1

⌋
+ 2
)

,

then G is k-tough.

(b) If λ(G) ≤
√

(b n
k+1c−1)(b n

k+1c+2)(2n−d 2kn
k+1e−1)

2n , then G is k-tough.

3. If q = 2, b ≤ r ≤ a + b− 1, n ≥ 3k + 2, and k ≥ 2; or q ≥ 3, b ≤ r ≤ a + b− 1, k ≥ 4,
and n ≤ 2k2 − 2, then

(a) If G has no isolated vertices, and λ(G) ≥
√
(n− 1)2 −

⌊
n

k+1

⌋(⌊
n

k+1

⌋
+ 1
)

, then

G is k-tough.

(b) If λ(G) ≤
√
b n

k+1c(b n
k+1c+1)(2n−d 2kn

k+1e−1)
2n , then G is k-tough.

Proof.

(I). First of all, we prove the claim as follows.

Claim 1. Let G be a graph of order n ≥ dke+ 2. If e(G) ≥ n(n−3)
2 + d2ke, then G is

k-tough, unless e(G) = n(n−3)
2 + d2ke and G = Kd2ke−1 ∨

(
K1 + Kn−d2ke

)
.

Proof of Claim 1. Suppose that G is not k-tough, according to the discussion in
Situation 1, Tmin = 2n− 2p− 2. Since q = 1, we have p < 2k. According to Lemma 7,
it follows that e(G) ≤ n(n−1)

2 − (n− p− 1) = n(n−3)
2 + p + 1. Therefore,

e(G) ≤ n(n− 3)
2

+ d2ke.

Since e(G) = n(n−3)
2 + d2ke, we have i = p = d2ke − 1 and all the inequalities in

Equation (8) must be equalities. Thus, d1 = d2ke − 1, d2 = · · · = dn−d2ke+1 = n− 2

and dn−d2ke+2 = · · · = dn = n− 1. It follows that G = Kd2ke−1 ∨
(

K1 + Kn−d2ke

)
. Let

S = V(Kd2ke−1). Then

τ(G) =
|S|

ω(G− S)
=
d2ke − 1

2
<

2k
2

= k,

i.e., G is not k-tough.

(a). With Lemma 4 and the fact that G has no isolated vertices, we get√
n2 − 4n + 2d2ke+ 1 ≤ λ(G) ≤

√
2e(G)− n + 1,

which yields

e(G) ≥ n(n− 3)
2

+ d2ke.

Because Kd2ke−1 ∨
(

K1 + Kn−d2ke

)
cannot achieve equality in the inequal-

ity (2), the aforementioned claim and Lemma 4 lead to the conclusion that
e(G) > n(n−3)

2 + d2ke, and G is k-tough.
(b). Assume that G is not k-tough. By Lemma 2, we consider the closure

H := cld 2kn
k+1e(G). According to Lemma 3, H is not k-tough and H 6= Kn. Thus
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for any two non-adjacent vertices u and v in H, we have dH(u) + dH(v) ≤⌈
2kn
k+1

⌉
− 1. Therefore, by Lemma 5 and the assumption, it follows that

e(H) ≥
(

n
2

)
− nλ2(G)

2n−
⌈

2kn
k+1

⌉
− 1
≥ n(n− 3)

2
+ d2ke.

Since H is not k-tough, according to the claim, we have H = Kd2ke−1 ∨(
K1 + Kn−d2ke

)
. Moreover, because G⊆H, we can see that G contains the

star K1,n−d2ke. With Lemma 6, we have

λ(G) ≥ λ(K1,n−d2ke) =
√

n− d2ke >

√√√√ (n− d2ke)(2n−
⌈

2kn
k+1

⌉
− 1)

n
,

because of k ≥ 1 and 2n−
⌈

2kn
k+1

⌉
=
⌊

2n
k+1

⌋
< 2n

k+1 ≤ n.

(II). When q = 2 and 0 ≤ r ≤ b, we first prove the claim as follows.

Claim 2. Let q = 2, 0 ≤ r ≤ b, and k ≥ 3. If e(G) ≥ (n
2)−

1
2

(⌊
n

k+1

⌋
− 1
)(⌊

n
k+1

⌋
+ 2
)

,

then G is k-tough, unless e(G) = (n
2) −

1
2

(⌊
n

k+1

⌋
− 1
)(⌊

n
k+1

⌋
+ 2
)

and

G = Kn−b n
k+1c−1 ∨

(
K2 + Eb n

k+1c−1

)
.

Proof of Claim 2. Suppose that G is not k-tough, according to the discussion in
Situation 2, Tmin(i) = T(p). Since q = 2 and 0 ≤ r < b, then we have T(p) =(⌊

n
k+1

⌋
− 1
)(⌊

n
k+1

⌋
+ 2
)

. It follows that e(G) ≤ (n
2)−

1
2

(⌊
n

k+1

⌋
− 1
)(⌊

n
k+1

⌋
+ 2
)

.

Hence, e(G) = (n
2)−

1
2

(⌊
n

k+1

⌋
− 1
)(⌊

n
k+1

⌋
+ 2
)

, and from the proof of Lemma 7, we

have i = p = n−
⌊

n
k+1

⌋
− 1, q =

⌊
i
k

⌋
=
⌊

n
k+1

⌋
− 1. Thus, d1 = · · · = db n

k+1c−1 =

n −
⌊

n
k+1

⌋
− 1, db n

k+1c = db n
k+1c+1 = n −

⌊
n

k+1

⌋
, db n

k+1c+2 = · · · = dn = n − 1.

Therefore, G = Kn−b n
k+1c−1 ∨

(
K2 + Eb n

k+1c−1

)
. Let S = V(Kn−b n

k+1c−1). Then,

τ(G) =
|S|

ω(G− S)
=

n−
⌊

n
k+1

⌋
− 1⌊

n
k+1

⌋
+ 1

<
n− n

k+1
n

k+1
= k,

i.e., G is not k-tough.

(a). With Lemma 4 and the fact that G has no isolated vertices, we get√
(n− 1)2 −

(⌊
n

k + 1

⌋
− 1
)(⌊

n
k + 1

⌋
+ 2
)
≤ λ(G) ≤

√
2e(G)− n + 1,

which yields

e(G) ≥
(

n
2

)
− 1

2

(⌊
n

k + 1

⌋
− 1
)(⌊

n
k + 1

⌋
+ 2
)

.

Because Kn−b n
k+1c−1 ∨

(
K2 + Eb n

k+1c−1

)
cannot achieve equality in the in-

equality (2), the aforementioned claim and Lemma 4 lead to e(G) > (n
2) −

1
2

(⌊
n

k+1

⌋
− 1
)(⌊

n
k+1

⌋
+ 2
)

, and G is k-tough.

(b). Assume that G is not k-tough. By Lemma 2, we consider the closure
H := cld 2kn

k+1e(G). According to Lemma 3, H is not k-tough and H 6= Kn. Thus,
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for any two non-adjacent vertices u and v in H, we have dH(u) + dH(v) ≤⌈
2kn
k+1

⌉
− 1. Therefore, by Lemma 5 and the assumption, it implies

e(H) ≥
(

n
2

)
− nλ2(G)

2n−
⌈

2kn
k+1

⌉
− 1
≥
(

n
2

)
− 1

2

(⌊
n

k + 1

⌋
− 1
)(⌊

n
k + 1

⌋
+ 2
)

.

Since H is not k-tough, according to the claim, we have H = Kn−b n
k+1c−1 ∨(

K2 + Eb n
k+1c−1

)
. Moreover, because G⊆H, we can see that G contains E2 ∨

Kb n
k+1c−1. With Lemma 6, we have

λ(G) ≥ λ(K2 + Kb n
k+1c−1) =

⌊
n

k+1

⌋
− 2 +

√⌊
n

k+1

⌋2
+ 4
⌊

n
k+1

⌋
− 4

2

>

√√√√(⌊
n

k+1

⌋
− 1
)(⌊

n
k+1

⌋
+ 2
)(

2n−
⌈

2kn
k+1

⌉
− 1
)

2n

as
2n−d 2kn

k+1e−1
2n <

2n− 2kn
k+1

2n = 1
k+1 and k ≥ 3.

If q ≥ 3, 0 ≤ r < b, k ≥ 3, and 3k + 4 ≤ n ≤ 2k2 − 2, then we can see that
Tmin(i) = T(p) according to Situation 3, Case 1. Thus, the proof is the same as the
case of q = 2 above in (II).

(III). When q = 2 and b ≤ r ≤ a + b− 1. We first prove the claim as follows.
Claim 3. Let q = 2, b ≤ r ≤ a + b − 1, n ≥ 3k + 2 and k ≥ 2. If e(G) ≥ (n

2) −
1
2

⌊
n

k+1

⌋(⌊
n

k+1

⌋
+ 1
)

, then G is k-tough, unless e(G) = (n
2) −

1
2

⌊
n

k+1

⌋(⌊
n

k+1

⌋
+ 1
)

and G = Kn−b n
k+1c−1 ∨ Eb n

k+1c+1.

Proof of Claim 3. Suppose that G is not k-tough, according to the discussion in
Situation 2, Tmin(i) = T(p). Since q = 2 and b ≤ r ≤ a + b − 1, then we have
Tmin(i) =

⌊
n

k+1

⌋(⌊
n

k+1

⌋
+ 1
)

. It follows that e(G) ≤ (n
2)−

1
2

⌊
n

k+1

⌋(⌊
n

k+1

⌋
+ 1
)

.

Hence e(G) = (n
2)−

1
2

⌊
n

k+1

⌋(⌊
n

k+1

⌋
+ 1
)

, and from the proof of Lemma 7, we have

i = p = n −
⌊

n
k+1

⌋
− 1, q =

⌊
i
k

⌋
=
⌊

n
k+1

⌋
. Thus, d1 = · · · = db n

k+1c+1 = n −⌊
n

k+1

⌋
− 1, db n

k+1c+2 = · · · = dn = n− 1. Therefore, G = Kn−b n
k+1c−1 ∨ Eb n

k+1c+1. Let

S = V(Kn−b n
k+1c−1). Then,

τ(G) =
|S|

ω(G− S)
=

n−
⌊

n
k+1

⌋
− 1⌊

n
k+1

⌋
+ 1

<
n− n

k+1
n

k+1
= k,

i.e., G is not k-tough.

(a). With Lemma 4 and the fact that G has no isolated vertices, we get√
(n− 1)2 −

⌊
n

k + 1

⌋
(

⌊
n

k + 1

⌋
+ 1) ≤ λ(G) ≤

√
2e(G)− n + 1,

which yields

e(G) ≥
(

n
2

)
− 1

2

⌊
n

k + 1

⌋(⌊
n

k + 1

⌋
+ 1
)

.
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Because Kn−b n
k+1c−1 ∨ Eb n

k+1c+1 cannot achieve equality in the inequality (2),
the aforementioned claim and Lemma 4 lead to the conclusion that
e(G) > (n

2)−
1
2

⌊
n

k+1

⌋(⌊
n

k+1

⌋
+ 1
)

, and G is k-tough.

(b). Assume that G is not k-tough. By Lemma 2, we consider the closure
H := cld 2kn

k+1e(G). According to Lemma 3, H is not k-tough and H 6= Kn. Thus

for any two non-adjacent vertices u and v in H, we have dH(u) + dH(v) ≤⌈
2kn
k+1

⌉
− 1. Therefore, by Lemma 5 and the assumption, it implies

e(H) ≥
(

n
2

)
− nλ2(G)

2n−
⌈

2kn
k+1

⌉
− 1
≥
(

n
2

)
− 1

2

⌊
n

k + 1

⌋(⌊
n

k + 1

⌋
+ 1
)

.

Since H is not k-tough, according to the claim, we have H = Kn−b n
k+1c−1 ∨

Eb n
k+1c+1. Moreover, because G⊆H, we can see that G contains Kb n

k+1c+1. With
Lemma 6, we have

λ(G) ≥ λ(Kb n
k+1c+1) =

⌊
n

k + 1

⌋
>

√√√√⌊
n

k+1

⌋(⌊
n

k+1

⌋
+ 1
)(

2n−
⌈

2kn
k+1

⌉
− 1
)

2n

as
2n−d 2kn

k+1e−1
2n <

2n− 2kn
k+1

2n = 1
k+1 and k ≥ 2.

If q ≥ 3, b ≤ r ≤ a + b − 1, k ≥ 4, and n ≤ 2k2 − 2, then we can see that
Tmin(i) = T(p) according to Situation 3, Case 2. Thus, the proof is the same as
that for the case of q = 2 above in (III).

4. Conclusions

In this paper, concerning the spectral radius, for some positive k, we show sufficient
conditions for a graph to be k-integral, k-tenacious, k-binding, and k-tough, respectively.
These properties are important for network vulnerability and stability. In the future,
concerning the spectral radius, we may investigate some other parameters that have close
relationships with network vulnerability and stability.
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