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Abstract: This study proposes a nonlinear mathematical model of virus transmission. The interaction
between viruses and immune cells is investigated using phase-space analysis. Specifically, the work
focuses on the dynamics and stability behavior of the mathematical model of a virus spread in a
population and its interaction with human immune system cells. The endemic equilibrium points are
found, and local stability analysis of all equilibria points of the related model is obtained. Further,
the global stability analysis, either at disease-free equilibria or in endemic equilibria, is discussed
by constructing the Lyapunov function, which shows the validity of the concern model. Finally, a
simulated solution is achieved, and the relationship between viruses and immune cells is highlighted.
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1. Introduction

Mathematical modeling of biological processes is a field of research that facilitates our
understanding of complex biological systems and variables by simulating and analyzing
several biological scenarios through specific models based on mathematical theories [1–3].
It provides a robust approach to describe mechanisms behind the dynamics occurring in
biological processes by melting mathematical theories and models in the same pot with
biological simulations [1]. This approach is playing a crucial role in predicting the spread
rates of various major public health problems caused by viral diseases such as Ebola [4],
influenza [5], cancer [6], Zika [7], Usutu [8], and COVID-19 [9].

Simultaneously, the field of mathematical modeling and simulations has gained con-
siderable attention in various areas of human physiology, e.g., the analysis of muscle
structure [10] and the study of brain activity [11,12]. Furthermore, mathematical modeling
is also actively used to optimize medication usage and treatment processes [13–15]. In
this study, we focused mainly on modeling and simulating the spread of viruses and the
behavior of cells in the human immune system through the dynamical modeling approach.
Dynamic models are widely recognized for their pivotal role in describing the interactions
among uninfected cells, free viruses, and immune responses [16–19]. The latest study
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findings highlighted the ability of complex models to describe human biology. For in-
stance, Nowak et al. proposed a three-dimensional dynamic model for viral infection,
which utilized numerical methods from autonomous dynamical systems [17–19]. Giesl and
Wendland characterized a Lyapunov function as a solution of a suitable linear first-order
partial differential equation, approximating it using radial basis functions [20]. Yang and
Wang formulated a mathematical model employing non-constant transmission rates, which
varied with environmental conditions and the epidemiological status and reflected the
impact of the ongoing disease control measures [21]. Despite significant efforts in designing
mathematical models for virus dynamics, characterizing their behavior remains challeng-
ing. Even though several models have been proposed over the past two decades, their
results bring different outcomes [22–26].

Kahajji et al. conducted a study focusing on the transmission dynamics of viruses,
developing a separate mathematical model to describe the spread of the virus among ani-
mals in different regions. Their study highlights the importance of implementing effective
campaigns to prevent individuals from moving between regions, promoting participation
in quarantine centers, utilizing awareness campaigns targeted at virus prevention, and im-
plementing security measures and health protocols within the region [27]. They estimated
outbreak dynamics through mathematical modeling and provided decision guidelines
for successful outbreak control. Furthermore, their model provided a valuable tool for
estimating vaccination effectiveness and quantifying the impact of relaxing political mea-
sures, such as total lockdowns, shelter-in-place orders, and travel restrictions, for both
low-risk subgroups and the population as a whole [28]. Moreover, Wang and Feng explored
the combined effects of cell-free infection and cytokine-enhanced viral infection using a
spatially heterogeneous PDE model considering cell reproduction, free-virus infection, and
cytokine-enhanced viral infection [29]. Numerous studies have highlighted the importance
of models and simulations in understanding complex biological phenomena and tackling
emerging diseases. However, the diversity of biological factors affecting human health and
the emergence of new diseases warrants further exploration.

Moreover, the mathematical approaches identified by the World Health Organization
(WHO) can be essential in providing evidence-based information to healthcare decision-
makers and policymakers [30].

In this study, we have theorized a nonlinear mathematical model of virus transmission.
We consider the following mathematical model concerning the initial value problem for the
following nonlinear systems:

Ṫ(t) = a− β1V(t)T(t)− d1T(t),

İ(t) = qT(t)V(t)− β2E(t)I(t)− d2 I(t),

Ė(t) = β3 I(t)E(t)− d3E(t),

V̇(t) = bI(t)− cV(t)

(1)

T(t0) = T0, I(t0) = I0, E(t0) = E0, (2)

V(t0) = V0, t0 ∈ [0, a),

where T = T(t), I = I(t), E(t), and V(t) denote the concentration of uninfected cells,
infected cells, effector immune cells, and free viruses at time t ∈ (0, a), respectively.

Uninfected cells are supplied at a rate a, and uninfected hepatocytes (target cells, T)
are infected by virus V at decrease at rate β1. The coefficients di (i = 1, 2, 3) take into
account the natural death of T(t), I(t), and E(t). The q coefficient is the rate constant
characterizing infection. Therefore, q considers the number of uninfected cells coping with
the virus, increasing infected cells’ quantity. In the literature, many authors considered β1
equal to q [18]. However, in this study, we hypothesize that the rate of uninfected cells that
are infected by the virus can be, in general, different from the rate of the decrease of the
uninfected cells coping with the virus (i.e., β1 6= q). It can be due to other mechanisms such
as the administration of drugs or other processes [31].
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Effector cells mediate infection by eliminating productively infected cells. At the
beginning, effector immune cells E are supplied to the presence of a tumor, which is
responsible for starting the immune response [32]. For the sake of clarity, the tumor
dynamic is out of the scope of this study because of its complexity and debatable dynamics.
Here, we considered tumors only as an example of an immune system onset system. In
fact, during the early stages of tumor development, cytotoxic immune cells such as natural
killer (NK) and CD8+ T cells recognize and eliminate the more immunogenic cancer cells.
This first phase of elimination could select the proliferation of cancer cell variants that are
less immunogenic and, therefore, invisible to immune detection. The variable E(t) denotes
the magnitude of the immune response, that is, the amount of virus-specific effector cells.
Their rate of proliferation in response to an antigen is given by β3V(t)E(t). In the absence
of stimulation, E(t) decay at rate d3. Infected cells are killed by E(t) at rate β2E(t)I(t).
These simple dynamics are derived from the kinetic interaction between effector immune
and infected cells. The parameter β3 denotes the immune system responsiveness, defined
earlier as the growth rate of specific effector cells after encountering infected cells. The
parameter β2 specifies the rate at which effector cells kill infected cells. The infected cells
produce new viruses at the rate of b. The constant c > 0 is the rate at which the viruses are
cleared [33–35].

2. Boundedness and Dissipativity

In this section, we showed that the model is bounded by negative divergence, pos-
itively invariant with respect to a region in R4

+, and dissipative. Since we aim to obtain
biologically significant system solutions, the next results indicate that the positive octant is
invariant and that the upper limits of the trajectories depend on the parameters.

We define

T(t) = x1(t), I(t) = x2(t), E(t) = x3(t), V(t) = x4(t).

Then, problems (1) and (2) are reduced to the following form:

ẋ1(t) = a− β1x4(t)x1(t)− d1x1(t), (3)

ẋ2(t) = qx1(t)x4(t)− β2x3(t)x2(t)− d2x2(t),

ẋ3(t) = β3x2(t)x3(t)− d3x3(t),

ẋ4(t) = bx2(t)− cx4(t),

x1(t0) = x10, x2(t0) = x20, x3(t0) = x30, (4)

x4(t0) = x40, t0 ∈ [0, a).

Let
x = x(t) = (x1, x2, x3, x4), xj = xj(t), j = 1, 2, 3, 4, (5)

f1(x) = a− β1x4(t)x1(t)− d1x1(t)

f2(x) = qx1(t)x4(t)− β2x3(t)x2(t)− d2x2(t)

f3(x) = β3x2(t)x3(t)− d3x3(t), f4(x) = bx2(t)− cx4(t).

Here,
R4
+ =

{
x = (x1, x2, x3, x4) ∈ R4, xk > 0

}
,

Ω =
{

x ∈ R4
+: β3x2 − β1x4 − β2x3 ≤ d1 + d2 + d3 + c}

Consider problems (3) and (4) with t0 = 0.
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Condition 1. Assume the following assumption is satisfied

β1, β2, d1, d2, d3, c > 0, β3 < 0.

Theorem 1. Let Condition 1 hold. Then, system (3) has negative divergence and is dissipative in
the domain Ω ⊂ R4

+.

Proof. Indeed, from (3) and (4), we have

∂ f1

∂x1
+

∂ f2

∂x2
+

∂ f3

∂x3
+

∂ f4

∂x4
= −(β1x4 + d1)−

β2x3(t)− d2 + β3x2(t)− d3 − c.

Hence, by Condition 1, system (3) is dissipative on the domain Ω. However, there is
no definition of Condition 1.

3. The Local Stability of Equilibria Points

In this section, we derive the stability properties of equilibria points of system (1). Let

R4
+ =

{
x ∈ R4: xi ≥ 0, i = 1, 2, 3, 4

}
, Br(x̄) =

{
x ∈ R4, ‖x− x̄‖R3 < r

}
.

Condition 2. Let

bd3

c
6= d1, bd3 6= d1c,

ba33a24 + a32a23c + a33a21a14b
a21a14b + ba33a24 − a32a23

< 0, d3 > β3 x̄2. (6)

Theorem 2. Assume that Condition 2 is satisfied. There is a point P(x1, x2, x3, x) that is an
equilibrium point of system (1) in R4

+.

Proof. It is sufficient to find the solution of the following system of algebraic equations in
x1, x2, x3, x4:

a− (β1x4 − d1)x1 = 0, qx1x4 − β2x3x2 − d2x2 = 0,

β3x2x3 − d3x3 = 0, bx2 − cx4 = 0. (7)

From the first and second equations, we have

x̄1 =
a

(β1x4 − d1)
, qx1x4 − β2x3x2 − d2x2 = 0. (8)

From the third and fourth equations, we obtain

(β3x2 − d3)x3 = 0, x4 =
b
c

x2. (9)

If x3 6= 0, we obtain that x̄2 = d3
β3

. By (9), we deduced that x̄4 = bd3
cβ3

. Hence, from (8),
we have

x̄1 =
a(

bd3
c − d1

) ,

x̄3 =
1

β2 x̄2
[qx̄1 x̄4 − d2 x̄2] =

abq
(bd3 − d1c)β2

− d2

β2
.

Thus, we obtain that system (1) has a unique equalibrium point P(x̄1, x̄2, x̄3, x̄4), where

x̄1 =
a(

bd3
c − d1

) , x̄2 =
d3

β3
, x̄3 =

abq
(bd3 − d1c)β2

− d2

β2
, x̄4 =

bd3

cβ3
. (10)



Mathematics 2023, 11, 4226 5 of 15

Remark 1. For the point to have the biological meaning of stability point P(x̄1, x̄2, x̄3, x̄4), it
should be:

d1 <
bd3

c
, bd3 − d1c > 0, β2 x̄3 + d2 > 0. (11)

We show here, the following results:

Theorem 3. Assume that Condition 2 is satisfied. Suppose estimate (11) holds. Then, the point
P(x̄1, x̄2, x̄3, x̄4) is a locally stable point for the system of (1).

Proof. Consider the linearized matrix of (1), i.e., the Jacobian matrıx according to system (1)
at point P(x̄1, x̄2, x̄3, x̄4), which is the following:

A =
D f
Dx

=


∂ f1
∂x1

∂ f1
∂x2

∂ f1
∂x3

∂ f1
∂x4

∂ f2
∂x1

∂ f2
∂x2

∂ f2
∂x3

∂ f2
∂x4

∂ f3
∂x1

∂ f3
∂x2

∂ f3
∂x3

∂ f3
∂x4

∂ f4
∂x1

∂ f4
∂x2

∂ f4
∂x2

∂ f4
∂x3

 =


a11 0 0 a14
a21 a22 a23 a24
0 a32 a33 0
0 b 0 −c

, (12)

where β3x2(t)x3(t)− d3x3(t)

a11 = −(β1 x̄4 + d1), a14 = −β1 x̄1, a21 = qx̄4, a22 = −(β2 x̄3 + d2),

a23 = −β2 x̄2, a24 = qx̄1, a32 = β3 x̄3, a32 = β3 x̄3, a33 = β3 x̄2 − d3. (13)

The eigenvalues of matrix A can be found as the solutions of the following equations:

A− λI =


a11 − λ 0 0 a14

a21 a22 − λ a23 a24
0 a32 a33 − λ 0
0 b 0 −(c + λ)

 =

[a11 − λ]

 a22 − λ a23 a24
a32 a33 − λ 0
b 0 −(c + λ)

−
a21(i)

 0 0 a14
a32 a33 − λ 0
b 0 −(c + λ)

 = (14)

(a11 − λ)[ − (c + λ)(a22 − λ)(a33 − λ)−

ba24(a33 − λ) + a32a23(c + λ)] + a21a14b(a33 − λ) = 0.

Let
(c + λ)(a22 − λ)(a33 − λ) = 0,

i.e., λ1 = −c, λ2 = a22, and λ3 = a33 are the eigenvalues of A. Then, other solutions of A
can be obtained by solving the equation

ba24(a33 − λ) + a32a23(c + λ)] + a21a14b(a33 − λ) = (15)

(a21a14b + ba33a24 − a32a23)λ = ba33a24 + a32a23c + a33a21a14b = 0

By solving Equation (15), we obtain the fourth eigenvalue of matrix A

λ4 =
ba33a24 + a32a23c + a33a21a14b

a21a14b + ba33a24 − a32a23
.
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For local stability of system (1), it is sufficient to show that all eigenvalues of matrix
A are negative. Indeed, by (10) and (11), we have

λ1 = −c < 0, λ2 = a22 = −(β2 x̄3 + d2) < 0, (16)

λ3 = a33 = β3 x̄2 − d3 < 0, λ4 =
ba33a24 + a32a23c + a33a21a14b

a21a14b + ba33a24 − a32a23
< 0.

By assumption (11), and by (10), we see that,

x̄1 ≥ 0, x̄2 ≥ 0, x̄3 ≥ 0, x̄4 ≥ 0.

Hence, by (16), we obtain

λ1 < 0, λ2 < 0, λ3 < 0.

Moreover, it should be

λ4 =
bβ3qx̄1 x̄2 − cβ2β3 x̄2 x̄3 − bβ1β3qx̄1 x̄2x4

−bβ1qx̄1 x̄4 + bβ3qx̄1 x̄2 + β2β3 x̄2 x̄3
< 0. (17)

Estimate (17) is satisfied if:

bβ3qx̄1 x̄2 − cβ2β3 x̄2 x̄3 − bβ1β3qx̄1 x̄2 x̄4 < 0, (18)

−bβ1qx̄1 x̄4 + bβ3qx̄1 x̄2 + β2β3 x̄2 x̄3 > 0.

or
bβ3qx̄1 x̄2 − cβ2β3 x̄2 x̄3 − bβ1β3qx̄1 x̄2 x̄4 > 0, (19)

−bβ1qx̄1 x̄4 + bβ3qx̄1 x̄2 + β2β3 x̄2x3 < 0.

Since xk ≥ 0, the second inequality in (18) is satisfied for all x ∈ R4
+ when

bβ3qx̄1 x̄2 − cβ2β3 x̄2 x̄3 − bβ1β3qx̄1 x̄2 x̄4 < 0,

i.e., by (10), if
bqad3c

bd3 − d1c
<

cd3abq + bβ1qad2
3b

(bd3 − d1c)
.

By assumption (11), the above inequality is satisfied when

d3c < cd3 + β1d2
3b,

and it is clear that it holds for all x ∈ R4
+. Since bβ1qx̄1 x̄4 + bβ3qx̄1 x̄2 + β2β3 x̄2 x̄3 ≥ 0 for

all x ∈ R4
+, inequality (19) is not satisfied in R4

+ . Hence, we obtained that all eigenvalues
of the matrix are negative under our assumptions.

In Figure 1, we compare the number of viruses with the number of infected cells.
Both the number of viruses and the number of infected cells decrease over time. Figure 2
compares the number of viruses with the number of uninfected cells. In this case, the rates
of change between the two are in inverse proportion to each other. Finally, Figure 3 shows
a comparison between the number of infected cells and the number of effector immune
cells. It is noticeable that both the infected cells and the immune cells in this figure rapidly
decrease over time.
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Figure 1. We compare infected cells (I(t)) and free viruses (V(t)). They are V(0) > 0 and I(0) = 0.

Figure 2. We compare uninfected cells (T(t)) and free viruses (V(t)). They are T(0) > 0 and
V(0) = 0.

Figure 3. We compare effector immune cells (E(t)) and infected cells (I(t)). They are E(0) > 0 and
I(0) > 0.



Mathematics 2023, 11, 4226 8 of 15

4. Lyapunov Stability of Equilibria Points

Let E(x̄) be an equilibrium point, where x̄ = (x̄1, x̄2, x̄3, x̄4) ∈ R4
+ is defined by (10).

In this section, we show the following results: let A = A(x̄) be the linearized matrix with
respect to the equilibrium E(x̄) point defined by (12), i.e.,

A =


a11 0 0 a14
a21 a22 a23 a24
0 a32 a33 0
0 b 0 −c

,

where aij are defined by (13). We consider the Lyapunov equation

BA + AT B = −I, B = B(x̄) =


b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44

, bij = bji. (20)

It is clear that

BA =


b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44




a11 0 0 a14
a21 a22 a23 a24
0 a32 a33 0
0 b 0 −c

 =


−a11b11 + a21b12 a22b12 + a32b13 + bb14 a23b12 + a33b13 a14b11 + a24b12 − cb14
a11b21 + a21b22− a22b22 + a32b23 + bb24 a23b22 + a33b23 a14b21 + a24b22 − cb24
a11b31 + a21b32− a22b32 + a32b33 + bb34 a23b32 + a33b33 a14b31 + a24b32 − cb34
a11b41 + a21b42− a22b42 + a32b43 + bb44 a23b42 + a33b43 a14b41 + a24b42 − cb44

,

AT B =


−a11 a21 0 0

0 a22 a32 b
0 a23 −a33 0

a14 a24 0 −c




b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44

 =


a11b11 + a21b21 a11b12 + a21b22 a11b13 + a21b23 a11b14 + a21b24

a22b21 + a32b31 + bb41 a22b22 + a32b32 + bb42 a22b23 + a32b33 + bb43 a22b24 + a32b34 + bb44
a23b21 + a33b31 a23b22 + a33b32 a23b23 + a33b33 a23b24 + a33b34

−a14b11 + a24b21 − cb41 a14b12 + a24b22 − cb42 a14b13 + a24b23 − cb43 a14b14 + a24b24 − cb44

.

(20) reduced to the following equation

BA + AT B =


g11 g12 g13 g14
g21 g22 g23 g24
g31 g32 g33 g34
g41 g42 g43 g44

 = −I, (21)

where
g11 = 2a11b11 + 2a21b12 = −1,

g12 = (a11 + a22)b12 + a32b13 + bb14 + a21b22 = 0,

g13 = a23b12 + (a11 + a33)b13 + a21b23 = 0,

g14 = a14b11 + a24b12 + (a11 − c)b14 + a21b24 = 0,

g22 = 2a22b22 + 2a32b23 + 2bb24 = −1,

g23 = a23b22 + (a22 + a33)b23 + a32b33 + bb34 = 0, (22)

g24 = a14b12 + a24b22 + (a22 − c)b24 + a23b34 + bb44 = 0,
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g33 = 2a23b23 + 2a33b33 = −1,

g34 = a14b13 + a24b23 + (a33 − c)b34 + a23b24 = 0,

g44 = 2a14b14 + 2a24b24 − 2cb44 = −1.

Main and associated determinants of system (22) in b11, b12, b13, b14, b22, b23, b24, b33, b34,
b44 are the following

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2a11 2a21 0 0 0 0 0 0 0 0
0 a11 + a22 a11 + a33 a21 0 0 0 0 0 0
0 a23 a11 + a33 0 0 a21 0 0 0 0

a14 a24 0 (a11 − c) 0 0 a21 0 0 0
0 0 0 0 2a22 2a32 2b 0 0 0
0 0 0 0 a23 a22 + a33 0 a32 b 0
0 a14 0 0 a24 0 (a22 − c) 0 a23 b
0 0 0 0 0 2a23 0 2a33 0 0
0 0 a14 0 0 a24 a23 0 (a33 − c) 0
0 0 0 2a14 0 0 2a24 0 0 −2cb

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

∆1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 2a21 0 0 0 0 0 0 0 0
0 a11 + a22 a11 + a33 a21 0 0 0 0 0 0
0 a23 a11 + a33 0 0 a21 0 0 0 0
−0 a24 0 (a11 − c) 0 0 a21 0 0 0
−1 0 0 0 2a22 2a32 2b 0 0 0
0 0 0 0 a23 a22 + a33 0 a32 b 0
0 a14 0 0 a24 0 (a22 − c) 0 a23 b
−1 0 0 0 0 2a23 0 2a33 0 0
0 0 a14 0 0 a24 a23 0 (a33 − c) 0
−1 0 0 2a14 0 0 2a24 0 0 −2cb

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

∆2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2a11 −1 0 0 0 0 0 0 0 0
0 0 a11 + a33 a21 0 0 0 0 0 0
0 0 a11 + a33 0 0 a21 0 0 0 0

a14 0 0 (a11 − c) 0 0 a21 0 0 0
0 −1 0 0 2a22 2a32 2b 0 0 0
0 0 0 0 a23 a22 + a33 0 a32 b 0
0 0 0 0 a24 0 (a22 − c) 0 a23 b
0 −1 0 0 0 2a23 0 2a33 0 0
0 0 a14 0 0 a24 a23 0 (a33 − c) 0
0 −1 0 2a14 0 0 2a24 0 0 −2cb

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

...

∆10 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2a11 2a21 0 0 0 0 0 0 0 −1
0 a11 + a22 a11 + a33 a21 0 0 0 0 0 0
0 a23 a11 + a33 0 0 a21 0 0 0 0

a14 a24 0 (a11 − c) 0 0 a21 0 0 0
0 0 0 0 2a22 2a32 2b 0 0 −1
0 0 0 0 a23 a22 + a33 0 a32 b 0
0 a14 0 0 a24 0 (a22 − c) 0 a23 0
0 0 0 0 0 2a23 0 2a33 0 −1
0 0 a14 0 0 a24 a23 0 (a33 − c) 0
0 0 0 2a14 0 0 2a24 0 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

We assume that ∆ 6= 0. Then, by solving (22) with respect to bıj by the Kramer
method, we obtain

b11 =
∆1

∆
, b12 = b21 =

∆2

∆
, ..., b44 =

∆n

∆
. (23)
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Theorem 4. Assume Condition 2 holds, ∆ 6= 0. Suppose aij such that bii > 0, i = 1, 2, 3, 4,
bij ≥ 0 for i, j = 1, 2, 3, 4, when i 6= j. Then, system (3) is asymptotically stable at the equilibrium
point E(x̄) in the sense of Lyapunov.

Proof. By assumptions, the function PA(x) is associated with matrix A, defined by

PB(x) = xT Bx =
4

∑
i,j=1

bijxixj,

which is positively defined in R4. Hence, all eigenvalues λ1, λ2, λ3, λ4 of the matrix
B = B(x̄) are positive in R4, i.e., PB(x) is a positive defined Lyapunov function candi-
date (see, e.g., [22,23]) by Corollary 8.2 [12]. We need now to determine a domain Ω on
which ṖB(x) is negatively defined. By assuming xk ≥ 0, k = 1, 2, 3, 4, we will find the
solution set of the following inequality

f1(x) = a− β1x4(t)x1(t)− d1x1(t)

f2(x) = qx1(t)x4(t)− β2x3(t)x2(t)− d2x2(t)

f3(x) = β3x2(t)x3(t)− d3x3(t), f4(x) = bx2(t)− cx4(t).

ṖB(x) =
4

∑
j=1

∂ṖB
∂xj

f j(x) =

2(b11x1 + b12x2 + b13x3 + b14x4)(a− β1x4x1 − d1x1)+

2(b21x1 + b22x2 + b23x3 + b24x4)(qx1x4 − β2x3x2 − d2x2)+

2(b31x1 + b32x2 + b33x3 + b34x4)(β3x2x3 − d3x3)+ (24)

2(b31x1 + b32x2 + b33x3 + b34x4)(bx2 − cx4) ≤ 0.

Hence, system (3) is asymptotically stable at E(x̄) in the Lyapunov sense when

a− β1x4x1 − d1x1 ≤ 0, qx1x4 − β2x3x2 − d2x2 ≤ 0,

β3x2x3 − d3x3 ≤ 0, bx2 − cx4,

i.e., system (3) is asymptotically stable at E(x̄) in the Lyapunov sense in the following domain:

Ω1 =
{

x ∈ R4
+: (β1x4 + d1)x1 ≥ a, (β2x3 + d2)x2 ≥ qx1x4,

β3x2 ≤ d3, x4 ≥
b
c

x2

}
. (25)

Theorem 5. Assume Condition 2 holds, ∆ 6= 0. Suppose aij such that bii > 0, i = 1, 2, 3, 4 and
bij ≤ 0 for i, j = 1, 2, 3, 4 when i 6= j. Then, system (3) is asymptotically stable at the equilibrium
point E(x̄) in the sense of Lyapunov.

Proof.

PB(x) = xT Bx =
4

∑
i,j=1

bijxixj =

1
4

b11

(
x1 +

4b12

b11
x2

)2
+

[
1
3

b22 −
4b2

12
b11

]
x2

2 +
1
4

b11

(
x1 +

b13

b11
x3

)2
+
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[
1
3

b33 −
4b2

13
b11

]
x2

3 + b11

(
x1 +

b14

b11
x4

)2
+

[
1
3

b44 −
4b2

14
b11

]
x2

4+

1
3

b22

(
x2 + 3

b23

b22
x3

)2
+

[
1
3

b33 −
9b2

23
b22

]
x2

3 +
1
3

b22

(
x2 +

3b24

b22
x4

)2
+

[
1
3

b44 −
9b2

24
b22

]
x2

4 +
1
3

b33

(
x3 +

3b34

b33
x4

)2
+

[
1
3

b44 −
9b2

34
b33

]
x2

4 ≥ 0,

when
1
3

b22 ≥
4b2

12
b11

,
1
3

b33 ≥
4b2

13
b11

,
1
3

b44 ≥
4b2

14
b11

,
1
3

b33 ≥
9b2

23
b22

,

1
3

b44 ≥
9b2

24
b22

,
1
3

b44 ≥
9b2

34
b33

.

Then, by reasoning as in Theorem 4, we obtain the conclusion.

Remark 2. Assume Condition 2 holds, ∆ 6= 0. Suppose aij such that bii > 0, i = 1, 2, 3, 4, bij ≥ 0
for i, j = 1, 2 and bij ≤ 0 for i, j = 3, 4 when i 6= j or bij ≤ 0 for i, j = 1, 2 and bij ≥ 0 for
i, j = 3, 4 when i 6= j.

In a similar way as in Theorem 4, we obtain that system (3) is asymptotically stable at
the equilibrium point E(x̄) in the sense of Lyapunov.

Remark 3. Here, Theorems 2 and 3 show that the system has local stability under certain conditions.
Theorems 4 and 5 show that the system is Lyapunov stable under certain conditions.

5. Discussion

The results of our study revealed a pattern between infected cells, virus, uninfected
cells, and effector immune cells. At the onset of infection, the virus is conspicuously
absent from the host organism, while a finite number of infected cells are present. Over
time, however, there is a marked increase in the presence of the virus and a decrease
in the number of infected cells. This phenomenon leads to a convergence of these two
parameters. Moreover, a consistent trend emerges when comparing viral cell populations
with uninfected ones: the number of infected cells consistently decreases over time, in
contrast to the escalating number of viral cells. This dynamic highlights a direct and
proportional relationship between immune and infected cells. In summary, as the number
of immune cells decreases, the number of infected cells also decreases.

The spread rate of the virus in the population and its interaction with immune system
cells were examined through a nonlinear mathematical model. Stability analysis was
performed by finding the equilibrium points of the nonlinear model created with four
variables. Specifically, these variables, T(t), I(t), E(t), and V(t), were the concentration of
uninfected cells, infected cells, effector immune cells, and free viruses, respectively. An
approximate solution has been pursued since theoretical nonlinear equations usually have
no deterministic solution. Here, the coefficient of the variables is considered equal to 0.1.

In this study, we achieved both local and global stability. In addition, global stability
analysis was discussed by constructing the Lyapunov function, which validates the robust-
ness of the dynamic model in disease-free equilibrium or endemic equilibrium. Lyapunov
stability guarantees that all solutions that start out near an equilibrium point converge to
the equilibrium point, obtaining an asymptotically stable solution. It guarantees a minimal
rate of decay and gives information on how quickly the solutions converge. The Lyapunov
stability highlights that disturbances not only return to equilibrium but also approach it
over time, ensuring a stronger form of stability. This analysis provides an understanding of
the long-term behavior of the model and its impact on the progression of viral infections.



Mathematics 2023, 11, 4226 12 of 15

Figures 1 and 2 show the interaction of the virus between infected cells and normal
uninfected cells. Figure 1 shows a direct proportionality between the dynamics of the cells,
while Figure 2 shows an inversion of the dynamics of the cells. Finally, Figure 3 shows the
interaction between immune and infected cells. This figure shows a direct proportionality
between the dynamics of immune and infected cells.

The nonlinear model aimed to capture the interaction between virus cells in different
conditions, i.e., when virus cells are in contact with infected cells, when the virus is in
contact with uninfected cells, or when there are only infected and uninfected cells. It is
worth noting that these relationships were obtained under certain mathematical conditions,
which may affect the model results. Real life conditions may be more complex than those
represented in this study. However, this model could provide a remarkably well-structured
nonlinear mathematical way of analyzing how virus cells interact with other cells in the
human body. It also provides interesting information about the dynamics of the process
over time, i.e., from the past to the future.

Furthermore, it is crucial to highlight the delay in transmission of the virus. It refers
to factors or conditions that can slow or prevent the spread of infectious diseases from
one person to another [36]. These delays are noteworthy, as they can majorly manage
virus spread and avert epidemics or pandemics [37,38]. Several factors can contribute to
transmission delays due to a combination of biological, behavioral, and logistical compo-
nents [39]. Transmission delays demonstrate the importance of proactive public health
measures [40], early detection [41], effective testing [42], contact tracing [43], live tracking
systems [44], and effective communication [45] to minimize the impact of viral outbreaks.

Our dynamic model can play a critical role in advancing disease management pro-
tocols. It can provide a bridge between theoretical insights and practical applications,
allowing us to gain deeper insights into the dynamics of viral infections and to convert
this knowledge into practical guidelines for healthcare professionals. By closely tracking
changes in the complex interplay between infected cells, viruses, and the host immune
response, our model can be helpful to make more informed treatment decisions. The core of
our model is a fundamental understanding of the complex biology of viral infection. One of
the key biological principles it captures is the dynamic relationship between infected cells,
viruses, and the host immune response. Typically, the number of infected cells increases
or decreases in direct proportion to the number of virus cells, which can be crucial in
determining the course of an infection [46,47]. This dynamic is complicated by an inverted
relationship between viral replication and the population of uninfected cells. As the viral
level increases, the number of uninfected cells often decreases.

Moreover, in this model, we indicate the interactions between normal cells and the
immune system when confronted with viral invasion of the healthy human body. Within
the existing literature, many different models have been presented and studied to explain
the mechanisms that define cellular responses to different type of viral diseases [48,49].
In contrast to the majority of studies in the literature, our study takes an approach by
formulating a dynamic model of the virus within a healthy human cell. In particular,
our model shows a limited tendency towards negative divergence, a distinctive feature.
Furthermore, we highlight a comprehensive analysis of the local stability of equilibrium
points and establish the Lyapunov stability of these critical points.

Overall, our description appears to be the typical course of a viral infection. Initially,
the virus infects host cells, leading to an increase in the virus population. However, the
host’s immune response kicks in, leading to a reduction of infected cells and potential
control of infection. This dynamic interaction between the virus, infected cells, and the
immune system is a common feature of viral infections.

Future studies need to focus on the results of the model and validate them through
experimental studies and physical observations. Although the model provides important
insights into the interaction dynamics between virus cells and other cells in the human
body, it is a pure mathematical approach, and real-life conditions are more complex than
those represented in this study. Therefore, empirical studies would be crucial to validate
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the accuracy and applicability of the model in a more real-world scenario. In addition,
future studies should extend our model understanding of viral transmission by comparing
the models proposed in this paper with existing models. Our current study explores the
complex dynamics between uninfected cells, infected cells, effector immune cells, and
free virus from the perspective of mathematical modeling. However, there is potential for
further exploration in the context of models of virus transmission.

6. Conclusions

In this work, the interaction between viruses and immune cells was investigated.
Cases of normal cells infected with the virus were also included in the model. A four-
variable dynamic model of normal cells, infected cells, effector immune cells, and free
viruses was constructed. Equilibrium points of this mathematical model were found, and
Lyapunov stability analyses were performed. Relationships among the virus, infected cells,
and uninfected cells were discussed, as reported in Figures 1–3.

A directly proportional relationship between viruses and infected cells was found in
the decrease and increase of the cells’ dynamics, as shown in Figure 3. In Figure 2, virus
and uninfected cells were compared. Rates of change are inversely proportional to each
other. Infected and immune cells are proportionally reduced rapidly in Figure 3.

This model, which could be validated by clinical trials, poses itself as a possible
aid for decision-makers to structure their health policies according to evidence-based
mathematical models.
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