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Abstract

:

For process control in engineering applications, the fewer the coding lines of optimization algorithms, the more applications there are. Therefore, this work develops a new straightforward metaheuristic optimization algorithm named the propagation search algorithm (PSA), stirred by the wave propagation of the voltage and current along long transmission lines. The mathematical models of the voltage and current are utilized in modeling the PSA, where the voltage and current are the search agents. The propagation constant of the transmission line is the control parameter for the exploitation and exploration of the PSA. After that, the robustness of the PSA is verified using 23 famous testing functions. The statistical tests, comprising mean, standard deviation, and p-values, for 20 independent optimization experiments are utilized to confirm the robustness of the PSA to find the best result and the significant difference between the outcomes of the PSA and those of the compared algorithms. Finally, the proposed PSA is applied to find the optimum design parameters of four engineering design problems, including a three-bar truss, compression spring, pressure vessel, and welded beam. The outcomes show that the PSA converges to the best solutions very quickly, which can be applied to those applications that require a fast response.
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1. Introduction


Metaheuristic optimization algorithms have been extensively utilized in several engineering applications to reduce costs. They have used either an optimal design or online process control. For optimal design problems, it does not pose a significant problem if the optimization algorithm is complex and takes a long time to find the best design parameters. However, for online process control, it is required that optimization algorithms have a fast response and less computation complexity. For example, energy harvesting from solar and wind resources or the optimal power flow in large electrical networks require fast online tracking of power variations, which increases system efficiency. Therefore, particle swarm optimization (PSO) has been utilized in most engineering applications because of its simplicity of coding and capability to find an optimum local or global solution. However, many metaheuristic algorithms with high computational complexity and long codes have recently emerged to achieve optimum solutions, which can be applied to optimal design problems but not in online control processes. Therefore, proposing new metaheuristic algorithms with less computational complexity is very much welcome for engineering applications.



In the literature review, many metaheuristic optimization algorithms have been stimulated by nature, biological behavior, or physical actions. For biological behavior, algorithms are inspired by different behaviors, either social communities, reproduction, food finding, or survival instinct. In 1975, Holland invented the genetic algorithm (GA), the first metaheuristic algorithm version that uses random searches to produce a new set of offspring [1]. After that, in 1995, Kennedy and Eberhart presented a new simple algorithm, the PSO algorithm, stimulated by the swarming performance of birds and fish [2]. Then, in 1995, Dorigo and Caro proposed the ant colony optimization (ACO) algorithm, which is motivated by the manners of ants to find a straight path between the colony and food position [3]. After that, many optimization algorithms emerged, such as the artificial bee colony (ABC) [4], which is stimulated by the swarming deeds of honeybees; firefly algorithm (FA) [5], which is stimulated by the blinking light of fireflies for communicating and attracting prey; and cuckoo search (CS) algorithm [6], which is stimulated by the levy walk and intrusions on the nests of other birds.



Furthermore, there are many recent metaheuristic algorithms that have been stimulated by alive creatures’ behaviors, such as the grey wolf optimizer (GWO), which was stimulated by the hierarchy of guidance and hunting [7]; the whale optimization algorithm (WOA), which was stimulated by producing spiral bubbles around a school of fish [8]; the salp swarm algorithm (SSA), which was stimulated by the teeming of salps to track food [9]; Harris hawk optimization (HHO), which was stimulated by the teeming work of many hawks to attack prey [10]; the mantis search algorithm (MSA), which was inspired by the foraging process of mantises [11]; the nutcracker optimization algorithm (NOA), which was stimulated by the seasonal deeds of nutcrackers in finding, storing, and memorizing food [12]; the Aquila optimizer (AO), which was stimulated by the hunting style of Aquila [13]; the black widow optimizer (BWO), which was stimulated by the mating and flesh-eating of black widow spiders [14]; and the Tunicate swarm algorithm (TSA), which was stimulated by the swarming manners of tunicates in tracking food [15]. Consequently, many algorithms are stimulated by the conduct of living creatures, for example, dolphins [16], white sharks [17], vultures [18], orcas [19], starlings [20], rabbits [21], frogs [22], butterflies [23], hyenas [24], reptiles [25], coati [26], leopards [27], and eagles [28].



Physicists such as Newton, Einstein, etc., were attracted by the physical phenomena in the universe, which led them to find mathematical laws and paradigms after a long study. Therefore, many algorithms have been proposed based on their physical models, such as the annealing process of metals [29]; the law of gravity by Newton [30]; the law of gas by William Henry [31]; the heat transfer between materials and ambient [32]; the collision of bodies [33]; the pull and repulsion forces between atoms [34]; the laws of electrostatic and dynamic charges by Coulomb and Newton [35]; the migrant light between mediums with different intensities [36]; the transient behavior of first- and second-order electrical circuits [37]; the motion and speed of planets by Kepler [38]; the electrical trees and figures of lightning by Lichtenberg [39]; the electromagnetic field [40]; circles geometry [41]; and the electrical field [42]. Moreover, many metaheuristic algorithms were inspired by the gravity effect on the motion of planets and stars [43]; the centrifugal forces and gravity relations [44]; ion motions [45]; and the orbits of electrons around the nucleus inside atoms [46].



The research gap is defined by the no-free lunch theorem, which states that there is no single algorithm that can succeed in solving all optimization problems. In addition, the mathematical modeling and program coding of some recent metaheuristic algorithms are complex and cannot be easily applied to the online process control of engineering applications. Moreover, some models of algorithms are not investigated by related scientists. Therefore, using a studied mathematical model, simple software code, and fast convergence motivated us to propose a new metaheuristic optimizer called the propagation search algorithm (PSA), stimulated by the propagation of the waveforms of the electrical voltage and current along long transmission lines. Scientists previously offered mathematical voltage and current models at any transmission line section. Then, we adapted these models to be randomized models for random transmission lines with random impedances and admittances. The voltage and current are considered the search agents of the PSA, where they propagate based on their previous values and the propagation constant of the transmission line. These search agents rely on each other’s values, which helps them to encircle the best solution.



The main contributions of this paper are summarized below:




	
Developing a new physics-based metaheuristic algorithm called the propagate search algorithm (PSA), inspired by voltage and current waveform propagation along long transmission lines.



	
Testing the PSA using the 23 famous testing functions and comparing the outcomes with eight famous metaheuristic algorithms.



	
Applying the PSA to find the optimum design of four famous engineering problems and comparing it with other metaheuristic algorithms.








The remainder of this paper is designed as follows: Section 2 describes the background, the mathematical modeling, and the flowchart of the proposed PSA; Section 3 describes the testing results; Section 4 shows the application of the proposed PSA to different engineering applications; and Section 5 presents a brief conclusion about the contribution and the results of this paper.




2. Propagation Search Algorithm


The PSA is a physics-based metaheuristic optimization algorithm that is stimulated by the propagation of electrical voltage (V) and current (I) waveforms along long transmission lines, as shown in Figure 1. The parameters of the transmission line, series impedance (z), and shunt admittance (y) play essential roles in the propagation of the voltage and current. For y > z, V(x + Δx) is higher than I(x + Δx); however, for y < z, V(x + Δx) is lower than I(x + Δx), and for y = z, V(x + Δx) is equal to I(x + Δx), as shown in Figure 2. In this work, we will introduce the mathematical modeling of the presented PSA based on the mathematical modeling of the propagation of the voltage and current along the transmission line.



2.1. Background


For a long transmission line, its impedance (z) and admittance (y) are uniformly distributed along its length and cannot be lumped. Therefore, the voltage (V) and current (I) can be calculated at each line section (Δx), as shown in Figure 1. The voltage at any distance can be calculated using Kirchhoff’s voltage law as follows [47]:


   V ( x + Δ x ) = ( z Δ x ) I ( x ) + V ( x ) ⇒   V ( x + Δ x ) − V ( x )   Δ x   = z I ( x )     ⇒   lim   Δ x → 0     V ( x + Δ x ) − V ( x )   Δ x   =   d V ( x )   d x   = z I ( x )   



(1)







For electrical current calculation, Kirchhoff’s current law can be applied as follows:


   I ( x + Δ x ) = ( y Δ x ) V ( x + Δ x ) + I ( x ) ⇒   I ( x + Δ x ) − I ( x )   Δ x   = y V ( x + Δ x )     ⇒   lim   Δ x → 0     I ( x + Δ x ) − I ( x )   Δ x   =   d I ( x )   d x   ≈ y V ( x )   



(2)




where V(x + Δx) ≈ V(x), by taking the differential of (1) and substituting it in (2), we can obtain the following:


     d 2  V ( x )   d  x 2    = z   d I ( x )   d x   = z y V ( x ) ⇒    d 2  V ( x )   d  x 2    − z y V ( x ) = 0  



(3)







Then, the second-order linear differential equation in (3) can be solved to find V(x), as follows [47]:


  V ( x ) =  A 1   e    z y   x   +  A 2   e  −   z y   x    



(4)







Then, to find the current expression, we will differentiate (4) and compare it with (1), as follows:


    d V ( x )   d x   =  A 1    z y    e    z y   x   −  A 2    z y    e  −   z y   x   = z I ( x )  



(5)






  I ( x ) =     z y      A 1   e    z y   x   −  A 2   e  −   z y   x      z  =    A 1   e  γ x   −  A 2   e  − γ x      Z c     



(6)




where Zc is the characteristic impedance of the transmission line,     Z   c   =   z    z y     , γ is the propagation constant,   γ =  z y   , and A1 and A2 are constants that can be obtained by solving (6) and (4) for V(0) =VR and I(0) = IR, where VR and IR are the receiving end voltage and current, respectively. Then, we achieve A1 and A2 as follows:


   A 1  =    V R  +  Z c   I R   2     &     A 2  =    V R  −  Z c   I R   2   



(7)







Then, substitute (7) into (4) and (6) to obtain the following:


  V ( x ) =      V R  +  Z c   I R   2     e  γ x   +      V R  −  Z c   I R   2     e  − γ x   =  V R       e  γ x   +  e  − γ x    2    +  Z c   I R       e  γ x   −  e  − γ x    2     



(8)






  I ( x ) =      V R  +  Z c   I R    2  Z c       e  γ x   −      V R  −  Z c   I R    2  Z c       e  − γ x   =    V R     Z c         e  γ x   −  e  − γ x    2    +      e  γ x   +  e  − γ x    2     I R   



(9)







Then, the hyperbolic functions can be used to represent the exponential expressions as follows:


  V ( x ) =  V R  cosh ( γ x ) +  Z c   I R  sinh ( γ x )  



(10)






  I ( x ) =    V R     Z c    sinh ( γ x ) +  I R  cosh ( γ x )  



(11)







For long transmission lines, the series and shunt resistances can be neglected, and only inductance (L) and capacitor (C) are considered. Therefore, z = jωL and y = jωC, so   Z c =  L / C    and   γ = j ω  L C   .




2.2. PSA Inspiration


The PSA is a physics-based metaheuristic optimization algorithm stimulated by the propagation performance of the voltage and current waveforms through a long transmission line. The search agents of the PSA imitate the behavior of the voltage and current. The mathematical model of the PSA is developed based on Equations (10) and (11) with some modifications, as in (12) and (13). The modifications assumed that L = C then Zc = 1 and γ = C, the propagation constant γ is expressed as a random number as in (14), the voltage VR is expressed as Xv, and the current IR is expressed as Xi. The length of the transmission line (l) is the shrinking variable that decreases from 1 to 0, as described in (14).


   X v  ( t + 1 ) =     X v *  ( t ) −  X v  ( t )  ⏞    V R    cosh ( γ l ) +    (  X i *  ( t ) −  X i  ( t ) )  ⏞    I R    sinh ( γ l )  



(12)






   X i  ( t + 1 ) =     X i *  ( t ) −  X i  ( t )  ⏞    I R    cosh ( γ l ) +    (  X v *  ( t ) −  X v  ( t ) )  ⏞    V R    sinh ( γ l )  



(13)






   l =     1 −   t / T           t < 0.5 T       1 − t / T           t ≥ 0.5 T         &   γ =      r 1    π  r 2            t < 0.5 T      r n     π 2   r 3            t ≥ 0.5 T       



(14)




where t is the current iteration; T is the total iterations; r1, r2, and r3 are random numbers uniformly distributed between 0 and 1; and rn is a random number generally distributed with a mean of zero. The search agents of the PSA algorithm are Xv and Xi, and the best agents are     X   v   *     and     X   i   *    .



2.2.1. Search Agents Initialization


The PSA first initializes the vector of the search agent randomly between the lower and upper bounds (LB and UB) with the dimension (1 × D) of a cost function. Initialization plays a vital part in successfully helping the proposed algorithm find the global optimum solution. There are two types of initialization: symmetrical and nonsymmetrical methods. For symmetrical initialization, all elements of the search agent vector are multiplied by the same random number. For the nonsymmetrical initialization, every element is multiplied by a different random number. For the PSA, there are two search agent vectors, Xv and Xi, which can be initialized by any initialization method or by both initialization methods, as in (15).


    X  v  =  L B  + r × (  U B  −  L B  )  



(15)






    X  i  =  L B  +  R  × (  U B  −  L B  )  



(16)




where Xv = [xv1, xv2, xv3, … xvd]T, Xi = [xi1, xi2, xi3, … xid]T, UB = [ub1, ub2, ub3, … ubd]T, LB = [lb1, lb2, lb3, … lbd]T, and R = [r1, r2, r3, … rd]T. The initialization can be conducted for a number n of search agents, so the dimension of all search agents is (N × D).




2.2.2. Exploration and Exploitation of PSA


For better exploration, firstly, the search agents Xv and Xi are initialized differently, as in (15) and (16), which will widen the search areas of the PSA. Secondly, these agents are updated using (12) and (13), where they search in opposite directions for VR ≠ IR, as shown in Figure 3. For exploitation of the PSA, the changes of both search agents converge to zero for VR = IR, as shown in Figure 3. Moreover, both search agents are designed to encircle the best solution due to the presence of VR =  −   X   v     in (12) and IR =  −   X   i     in (13). The balance between exploration and exploitation is managed by (14), where the first half of total iterations is used for exploitation, and the second half of iterations is utilized for exploration, where the search agents can be diverted using normally distributed random numbers.



For more explanation about exploitation and exploration, two common functions, the Rosenbrock and Rastrigin functions, are used to test the exploration and exploitation of the PSA. Figure 4 shows how the search agents found the best voltage immediately after 10 iterations for the Rastrigin function; however, they were stuck in a local solution for the Rosenbrock function. After t ≥ 0.5 T (at t = 300), the exploration capability of the PSA was activated, and the search agents moved to the best voltage.




2.2.3. Encircling Behavior of PSA


Even though the search agents Xv and Xi of the PSA go in opposite directions, as shown in Figure 3, in the end, they encircle the best solution (X*) because each agent relies on the update step of the other best agent, as shown in (12) and (13). We can notice that the term VR exists in the search agent Xi and the term IR exists in the search agent Xv. Therefore, both search agents encircle the best position, X*. The flowchart of the proposed PSA is depicted in Figure 5.




2.2.4. Computational Complexity of PSA


The complexity of the algorithms varies with the number of loops, the number of search agents (N), and the number of fitness function evaluations. Big O Notation is utilized to measure the computational complexity of PSA. As shown in Figure 4, it starts with the loop of initialization for two kinds of search agents, Xv and Xi, and then the PSA has O(2N) complexity. For the update process and function evaluations, the PSA has O(T × 2N). Therefore, the total complexity of the PSA is O(2N + 2T × N), which can be reduced to the term with the largest order, such as O(2T × N).






3. Optimization Results of Testing Functions


First of all, the robustness of the proposed PSA should be tested using the 23 well-known testing functions. These functions are utilized to verify the exploration and exploitation behaviors of all previously published algorithms. Some of these functions are utilized to test the exploitation ability of the algorithms because they are convex and have one lowest solution, such as the unimodal functions (F1–F7) displayed in Table 1. Other functions are utilized to verify the exploration capability of algorithms to escape being trapped in a local minimum solution because they have different local minimum solutions rather than the global minimum solution, such as the multimodal functions (F8–F23) displayed in Table 2 and Table 3. Then, the minimum values of these functions found by the PSA are compared with those of other renowned algorithms.



In this section, we used eight metaheuristic optimization algorithms besides the PSA. These are the particle swarm optimization (PSO), grey wolf optimizer (GWO), whale optimization algorithm (WOA), sine-cosine algorithm (SCA), transient search optimization (TSO), salp swarm algorithm (SSA), cuckoo search algorithm (CS), and artificial electric field algorithm (AEFA). These algorithms are carefully selected based on the most popular algorithms applied in different engineering applications, such as PSO, GWO, and the WOA. Some of these algorithms are selected because they are inspired by physical behaviors, such as TSO and the AEFA. The remaining algorithms are selected randomly for more comparisons. The values of the algorithms’ parameters are displayed in Table 4.



In this work, the testing experiments are implemented using MATLAB R2023a on Windows 10 64 bits on a Core i7, 16 GB RAM laptop. For an unbiased evaluation, all compared algorithms have a similar number of search agents, N = 30, and the same total number of iterations, T = 500, and all algorithms have the same initialized search agents.



3.1. Statistical Analysis


Due to the random operation of all metaheuristic algorithms, we need to test these algorithms in many independent optimization experiments. Therefore, all optimization algorithms are executed 20 times for each testing function in this paper. Then, the robustness of an algorithm is confirmed by applying different statistical methods, for example, mean (m) and standard deviation (σ) and nonparametric testing methods. Table 5 displays the m and σ of 20 independent runs for all 23 testing functions using the offered PSA and other compared algorithms. The outcomes proved that the offered PSA is competitive with different algorithms and obtained the optimum outcomes for 16 functions out of 23. However, the second competitive algorithm is the CS algorithm, which achieves 9 best functions out of 23 functions.



The exploitation of the algorithms is measured using unimodal functions (F1–F8), where the proposed PSA achieved the best outcomes for seven out of eight functions, which proved the exploitation capability of the PSA among other algorithms. On the other side, the exploration capability of the PSA is measured using the multimodal functions (F9–F23). The results show that the PSA obtained the 10 best results out of 15, whereas the CS algorithm achieved second place with the 9 best results out of 15. To check the equilibrium between exploration and exploitation, Rosenbrock (F5) and Rastrigin (F9) are used because they are contrasted, and no algorithm can solve both of them successfully. The results verified that the PSA succeeded in obtaining better results than other algorithms in both types of functions.



Additionally, the Wilcoxon signed-rank test with a 5% significance level is utilized to verify the significance of the PSA among other compared algorithms. This test is a null hypothesis test, which hypothesizes that the results of the PSA and other algorithms are the same if the p-value is higher than 0.05. Table 6 shows the p-values and the denial of the null hypothesis (h = true) or acceptance of it (h = false). We can notice that the most dominant decision is h = true, meaning a significant difference exists between the PSA and other algorithms.



Finally, a boxplot is used for further statistical analysis to verify the performance of the PSA during 20 independent experiments. Figure 6a–f shows the boxplot for six benchmark functions (F2, F4, F8, F10, F12, and F21). The boxplot analysis shows that the PSA has obtained a very small deviation between the maximum and minimum values of 20 experiments. Moreover, it is noticeable that there are outlier points, which are labeled by (+), for all compared algorithm except PSA. Therefore, the boxplot proved the robustness of the PSA over other algorithms.




3.2. Optimization Convergence


The speed of finding the best solution plays a critical role in control systems, so we need to check the behavior of algorithms with each increment of iterations. Table 7 displays the total elapsed time for all compared algorithms during each independent experiment. However, Figure 7 shows the convergence behavior for all compared algorithms toward the best minimum solution. It is noticeable that all algorithms start from the same initial point for unbiased comparison. The proposed PSA shows fast convergence for the testing functions F1–F8, and then at the middle of total iterations (t = 250) it becomes slower because of changes in the values of the propagation constant (γ). For the remaining functions, the PSA competes with the other algorithms in searching for global solutions; particularly, at t = 250 the PSA escapes being trapped in a local solution.





4. Renowned Engineering Problems


In this section, the offered PSA and other algorithms are utilized to obtain the optimum design of four famous engineering problems, including a three-bar truss structure, a compression spring, a pressure vessel, and a welded beam. The optimization experiments are conducted on MATLAB 2023a on a Windows 10 Core-i7 laptop. The number of search agents is 200, and the total number of iterations is 1000. The mean and standard deviation are calculated for 20 independent code runs.



4.1. Three-Bar Truss Design


Figure 8 depicts the structure of this truss, which is constructed of three bars with different cross-sectional areas (A1, A2, and A3), where A1 = A3. These bars meet at a common node, where a P load is connected to this node. The dimensions between the supporting points of the three bars are equal, which is l, and the vertical dimension between the supporting points and the common node is l too. Reducing the weight of the truss structure is the chief objective, and the design parameters are A1 and A2. The objective function is shown in (17), and the subjected constraints are shown in (18). The PSA is applied to obtain the optimal cross-sectional areas that result in the minimum weight of the three-bar truss. Table 8 displays the outcomes of the optimal areas and the minimum weights obtained using eight algorithms. The statistical results (m and σ) show that the offered PSA has a performance that is comparable with other algorithms, and even better. Moreover, Figure 9 indicates that the PSA converges to the minimum result after only 85 iterations, which is quicker than most of the compared algorithms.


  min f ( x = [  A 1  ,  A 2  ] ) =   2  2   A 1  +  A 2    × l  



(17)






     g 1  ( x ) =   2  2   A 1  +  A 2     2   A 1    2  + 2  A 1   A 2    P − σ ≤ 0    &     g 2  ( x ) =    A 2     2   A 1    2  + 2  A 1   A 2    P − σ ≤ 0      g 3  ( x ) =  1   A 1  +  2   A 2    P − σ ≤ 0    ,    P = 2    kN ,    σ = 2     kN / cm  2  ,   l = 100    cm     



(18)








4.2. Compression Spring Design


The structure of the compression spring, which is made of steel wire in a spiral form with several coils (N), a material diameter (d), and outer diameter of coil (D), is depicted in Figure 10. Reducing the weight of the compressional spring is the chief objective, where the controlling design parameters are D, d, and N. However, there are constraints to minimizing the weight of the spring, such as the torsional stress, deflection, traveling waves, and dimension. The objective function and the constraint functions of the compression spring design are expressed in (19) and (20). The PSA and other algorithms are applied to find the minimum weight of the compression spring, and the optimal outcomes are presented in Table 9. Furthermore, Figure 11 compares the PSA’s convergence speed with other algorithms, showing that the PSA offers a quicker convergence than most of the compared algorithms, and the PSA converges to the minimum solution after 10 iterations only.


  min f ( x = [ D , d , N ] ) =  D 2  d ( N + 2 )  



(19)






     g 1  ( x ) = 1 −    d 3  N   71785  D 4    ≤ 0    and     g 2  ( x ) =   4  d 2  − D d   12566  D 3  ( d − D )   +  1  5108  D 2    − 1 ≤ 0      g 3  ( x ) = 1 −   140.45 D   N  d 2    ≤ 0    and     g 4  ( x ) =   D + d   1.5   − 1 ≤ 0     0.05 ≤ D ≤ 2   &   0.25 ≤ d ≤ 1.3   &   2.00 ≤ N ≤ 15    



(20)








4.3. Welded Beam Design


The structure of the welded beam, which is made by welding a beam to a rigid support member, is depicted in Figure 12. Therefore, reducing the fabrication cost of the welded beam, including labor and material costs, is the main objective, where the controlling design parameters are the dimensions of welding (h) and (l) and the dimensions of the member bar (t) and (b), as shown in Figure 10. However, there are constraints to lessening the cost of the welded beam, such as the weld stress (τ), bending stress (σ), and bar buckling load (Pc). The objective function and the constraint functions of welded beam design are expressed in (21) and (22). The PSA and other algorithms are utilized to find the minimum cost of the welded beam design, and the optimal outcomes are shown in Table 10. Furthermore, Figure 13 compares the PSA algorithm’s convergence speed with other algorithms, showing that the PSA offers a faster convergence speed than most different algorithms, and the PSA converges to the best minimum after only 40 iterations.


  min f ( x = [ h   l   t   b ] ) = 1.10471 ×  h 2  × l + 0.04811 t × b ( 14.0 + l )  



(21)






     g 1  ( x ) = τ −  τ  max   ≤ 0    and     g 2  ( x ) = σ −  σ  max   ≤ 0      g 3  ( x ) = δ −  δ  max   ≤ 0    and     g 4  ( x ) = h − b ≤ 0      g 5  ( x ) = P −  P c  ≤ 0    and     g 6  ( x ) = 0.125 − h ≤ 0      g 7  ( x ) = 0.10471 ×  h 2  + 0.04811 × l × b × ( 14.0 + l ) − 5.0 ≤ 0     0.1 ≤ h ≤ 2   &   0.1 ≤ l ≤ 10   &   0.1 ≤ t ≤ 10   &   0.1 ≤ b ≤ 2    



(22)




where


    P = 6 , 000   l b ; L = 14   i n ; E = 30 ×  10 6    p s i ; G = 12 ×  10 6    p s i      τ  max   = 13 , 600   p s i ;  σ  max   = 30 , 000   p s i ;  δ  max   = 0.25   i n     M = P ( L +  l 2  ) ; R =      l 2   4  +   (   h + t  2  )  2    ;  τ ’  =  P    2 h × l     ;  τ "  =   M R  J     










    J = 2  2  h × l (    l 2    12   +   (   h + t  2  )  2  ) ; τ =    τ ’    2  +  τ ’   τ "   l R  +  τ "    2         P c  = 4.013  E   L 2         t 2  ×  b 6    36     ( 1 −  t  2 L      E  4 G     )     σ =   6 P L   b ×  t 2    ; δ =   4 P  L 3    E × b ×  t 2       












4.4. Pressure Vessel Design


The structure of the pressure vessel, which is made of stainless steel plates that are welded to form a cylindrical shape, is depicted in Figure 14. Therefore, reducing the weight of the pressure vessel is the chief objective, where the controlling design parameters are the dimensions of the vessel, comprising the thickness of the shell (ts), thickness of the head (th), inner radius (r), and length of the vessel (l). However, there are constraints to minimizing the cost of the pressure vessel design, such as the inner volume and the overall size of the vessel. The cost function and the constraint functions of pressure vessel design are expressed in (23) and (24). The PSA and other algorithms are utilized to find the lowest weight of the pressure vessel, and the optimal outcomes are shown in Table 11. Additionally, Figure 15 compares the convergence curve of the PSA with other algorithms, where the PSA offers a quicker convergence than the most of compared algorithms, and the PSA converges to the best minimum after only 50 iterations.


  min f ( x = [  T s  ,  T h  , R , L ] ) = 0.6224  T s   T h  L + 1.7781  T h   R 2  + 3.1661  T s    2  L + 19.84  T s    2  R  



(23)






     g 1  ( x ) = −  T s  + 0.0193 R ≤ 0    &     g 2  ( x ) = −  T h  + 0.00954 R ≤ 0      g 3  ( x ) = − π  R 2  L −  4 3  π  R 3  + 1 , 296 , 000 ≤ 0    &     g 4  ( x ) = L − 240 ≤ 0     0 ≤  T s  ≤ 99    &    0 ≤  T h  ≤ 99    &    10 ≤ R ≤ 200    &    10 ≤ L ≤ 200    



(24)









5. Conclusions


In this work, a new physics-based metaheuristic optimization algorithm named the propagation search algorithm (PSA) is offered and utilized to optimize different engineering design problems. First, the exploration and exploitation capabilities of the PSA are confirmed using 23 famous testing functions. The obtained outcomes for the Rosenbrock and Rastrigin functions have confirmed that the PSA has a balanced capability between exploration and exploitation in the optimization procedure. The propagation constant of the PSA controls this balancing capability. The statistical tests are applied to verify the superiority of the PSA among other compared algorithms. The PSA has succeeded in finding the optimal solution for 17 functions out of 23; however, the second-ranked algorithm solved only 9 functions. The Wilcoxon signed-ranked test is applied to confirm the significance level of the outcomes of the PSA compared with those of other algorithms, where 90% of the computed p-values are less than 5%. The PSA and the compared algorithms are utilized to obtain the optimum design of four famous engineering problems, including the three-bar truss, compression spring, welded beam, and pressure vessel. The PSA has succeeded in finding competitive results and fast convergence to the minimum fitness values. The optimization results have shown that the proposed PSA is a promising optimizer that can be easily applied in engineering fields. Finally, the simple form of the PSA limits its performance in some engineering applications. Therefore, the future work will present different enhancements to the PSA and will apply it in power systems.
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Figure 1. Line section of a long transmission line. 
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Figure 2. Effect of z and y on the trajectories of voltage and current. 
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Figure 3. Exploration and exploitation of PSA. 
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Figure 4. Examples of exploitation and exploration of PSA as in (a,b). 
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Figure 5. The flowchart of the PSA. 
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Figure 6. Statistical analysis using boxplot for all compared algorithms. 
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Figure 7. The optimization convergence of testing functions using different algorithms. 
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Figure 8. Three-bar truss structure. 
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Figure 9. Convergence speed of algorithms to the minimum weight of the three-bar truss design. 
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Figure 10. Compression spring structure. 
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Figure 11. Convergence speed of algorithms to the minimum weight of the compression spring design. 
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Figure 12. Welded beam structure. 
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Figure 13. Convergence speed of algorithms to the minimum cost of the welded beam design. 
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Figure 14. Cylindrical pressure vessel structure. 
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Figure 15. Convergence speed of algorithms to the minimum weight of the pressure vessel design. 
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Table 1. Unimodal testing functions with unfixed dimensions (d).






Table 1. Unimodal testing functions with unfixed dimensions (d).





	No.
	Name
	Formula
	Dimension
	[LB, UB]
	Minimum





	F1
	Sphere
	     ∑  i = 1  d    y i    2      
	d = 30
	[−100, 100] d
	0



	F2
	Shwefel

2.22
	     ∑  i = 1  d      y i      +   ∏  i = 1  d      y i        
	d = 30
	[−10, 10] d
	0



	F3
	Shwefel

1.2
	     ∑  i = 1  d     (   ∑  j = 1  i    y j    )  2      
	d = 30
	[−100, 100] d
	0



	F4
	Schwefel

2.21
	     max  i  {    y i    , 1 ≤ i ≤ d }   
	d = 30
	[−100, 100] d
	0



	F5
	Rosenbrock
	     ∑  i = 1  d   [ 100   (  y  i + 1   −  y i    2  )  2  +   (  y i  − 1 )  2  ]     
	d = 30
	[−30, 30] d
	0



	F6
	Step
	     ∑  i = 1  d     (  y i  + 0.5 )  2      
	d = 30
	[−100, 100] d
	0



	F7
	Quartic

Noise
	     ∑  i = 1  d   i .  y i    4  + r a n d o m [ 0 , 1 )     
	d = 30
	[−1.28, 1.28] d
	0










 





Table 2. Multimodal testing functions with unfixed dimensions (d).
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	No.
	Name
	Formula
	Dimension
	[LB, UB]
	Minimum





	F8
	Schwefel 2.26
	     ∑  i = 1  d    y i  sin (      y i      )     
	d = 30
	[−500, 500] d
	−418.98 × d



	F9
	Rastrigin
	     ∑  i = 1  n   [  y i    2  − 10 cos ( 2 π  y i  )   + 10 ]   
	d = 30
	[−5.12, 5.12] d
	0



	F10
	Ackley
	   − 20 exp ( − 0.2    1 d    ∑  j = 1  d    y j      ) − exp (  1 n  cos ( 2 π  y j  ) ) + 20 + e   
	d = 30
	[−32, 32] d
	0



	F11
	Griewank
	    1  4000     ∑  i = 1  d    y i    2    −   ∏  i = 1  d   cos (    y i     i    )   + 1   
	d = 30
	[−600, 600] d
	0



	F12
	Penalized
	      π d  { 10 sin ( π  y 1  ) +   ∑  i = 1  d     (  y i  − 1 )  2  [ 1 + 10   sin  2  ( π  y  i + 1   ) ] +   (  y d  − 1 )  2  }       +   ∑  i = 1  d   u (  x i  , 10 , 100 , 4 )        y i  = 1 +    x i  + 1  4     &    u (  x i  , a , k , m ) =     k   (  x i  − a )  m                     x i  > a     0                                                 − a <  x i  < a     k   ( −  x i  − a )  m               x i  < − a         
	d = 30
	[−50, 50] d
	0



	F13
	Generalized Penalized
	     0.1 × { 10  sin 2  ( 3 π  y 1  ) +   ∑  i = 1  d     (  y i  − 1 )  2  [ 1 +   sin  2  ( 3 π  y i  + 1 ) ]       +   (  y d  − 1 )  2  [ 1 +  sin 2  ( 2 π  y d  ) ] } +   ∑  i = 1  d   u (  y i  , 5 , 100 , 4 )       
	d = 30
	[−50, 50] d
	0










 





Table 3. Fixed-dimension (d) multimodal testing functions.
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	No.
	Name
	Formula
	Dimension
	[LB, UB]
	Best Solution





	F14
	De Jong Fifth
	   (  1  500   +   ∑  i = 1   25     1  i +   ∑  j = 1  2     (  y i  −  a  i j   )  6       )  − 1       
	d = 2
	[−65, 65] d
	1



	F15
	
	     ∑  i = 1   11      [  a i  −    y i  (  b i    2  +  b i   y 2  )    b i    2  +  b i   y 3  +  y 4    ]  2      
	d = 4
	[−5, 5] d
	0.00030



	F16
	Six-Hump Camel
	   4  y 1    2  − 2.1  y 1    4  +   1 3    y 1    6  +  y 1   y 2  − 4  y 2    2  + 4  y 2    4    
	d = 2
	[−5, 5] d
	−1.0316



	F17
	Branins
	     (  y 2  −    5.1   4  π 2      y 1    2  +   5 π    y 1  − 6 )  2  + 10 ( 1 −   1  8 π    ) cos (  y 1  ) + 10   
	d = 2
	[−5, 5] d
	0.398



	F18
	Goldstein–Price
	     [ 1 +   (  y 1  +  y 2  + 1 )  2  ( 19 − 14  y 1  + 3  y 1    2  − 14  y 2  + 6  y 1   y 2  + 3  y 2    2  ) ] ×                                 [ 30 +   ( 2  y 1  − 3  y 2  )  2  × ( 18 − 32  y 1  + 12  y 1    2                                  + 48  y 2  − 36  y 1   y 2  + 27  y 2    2  ) ]     
	d = 2
	[−2, 2] d
	3



	F19
	Hartmann 3D
	   −   ∑  i = 1  4    c i  exp   ( −   ∑  j = 1  3    a  i j   (  y j  −  p  i j     )  2  )     
	d = 3
	[1, 3] d
	−3.86



	F20
	Hartmann 6D
	   −   ∑  i = 1  4    c i  exp   ( −   ∑  j = 1  6    a  i j   (  y j  −  p  i j     )  2  )     
	d = 6
	[0, 1] d
	−3.32



	F21
	Shekel 5
	   −   ∑  i = 1  5     [ ( Y −  a i  )   ( Y −  a i  )  T  +  c i  ]   − 1       
	d = 4
	[0, 10] d
	−10.1532



	F22
	Shekel 7
	   −   ∑  i = 1  7     [ ( Y −  a i  )   ( Y −  a i  )  T  +  c i  ]   − 1       
	d = 4
	[0, 10] d
	−10.4028



	F23
	Shekel 10
	   −   ∑  i = 1   10      [ ( Y −  a i  )   ( Y −  a i  )  T  +  c i  ]   − 1       
	d = 4
	[0, 10] d
	−10.5363










 





Table 4. The setting of the compared algorithms.
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	Algorithm
	Parameters





	Proposed PSA
	l decrease from 1 to 0



	PSO
	weight ω varies between [0.5, 0.3] c1 = c2 = 2



	GWO
	The variable a changes between [2, 0]



	SSA
	The probability is 0.5



	SCA
	a = 2 and p = 0.5



	CS
	Pa = 0.25, tolerance is 1 × 10−5, beta = 1.5,



	WOA
	l = 1, a decrease from 2 to 0, a2 decrease from −1 to −2



	TSO
	t decreases from 2 to 0, K = 1, probability update is 0.5



	AFEA
	Alfa = 30, K0 = 500;










 





Table 5. Mean and standard deviations of 20 independent trials.
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No.

	

	
GWO

	
SCA

	
SSA

	
CS

	
WOA

	
PSO

	
TSO

	
AEFA

	
PSA






	
F1

	
m

	
2.954E−38

	
4.401E−11

	
1.204E−07

	
6.780E−01

	
1.845E−75

	
3.772E−07

	
2.037E−77

	
1.818E+00

	
3.507E−81




	
σ

	
4.217E−38

	
7.184E−11

	
7.488E−08

	
3.424E−01

	
8.119E−75

	
5.262E−07

	
9.038E−77

	
4.526E+00

	
1.568E−80




	
F2

	
m

	
1.798E−22

	
4.088E−08

	
1.919E−01

	
4.904E−01

	
4.471E−52

	
9.866E−04

	
7.933E−40

	
9.613E+00

	
2.814E−42




	
σ

	
2.141E−22

	
9.436E−08

	
1.990E−01

	
1.785E−01

	
1.355E−51

	
3.135E−03

	
3.353E−39

	
5.891E+00

	
8.774E−42




	
F3

	
m

	
1.465E−08

	
1.942E−08

	
1.891E+02

	
3.220E+02

	
2.092E+00

	
9.432E+02

	
2.050E−72

	
8.880E+02

	
5.964E−81




	
σ

	
5.082E−08

	
4.062E−08

	
3.092E+02

	
2.957E+02

	
5.104E+00

	
1.118E+03

	
9.161E−72

	
4.508E+02

	
2.536E−80




	
F4

	
m

	
1.022E−01

	
8.313E−01

	
7.620E−01

	
1.083E+00

	
1.833E−02

	
2.120E+00

	
9.245E−40

	
1.486E+00

	
6.223E−43




	
σ

	
2.591E−01

	
1.103E+00

	
6.087E−01

	
6.512E−01

	
3.710E−02

	
2.301E+00

	
4.122E−39

	
1.199E+00

	
1.474E−42




	
F5

	
m

	
2.161E+01

	
5.604E+01

	
1.991E+01

	
5.693E+01

	
7.043E+00

	
2.968E+01

	
4.282E+01

	
6.921E+02

	
2.507E−02




	
σ

	
1.056E+01

	
8.190E+01

	
1.286E+01

	
4.234E+01

	
1.228E+01

	
2.689E+01

	
1.308E+02

	
1.143E+03

	
4.152E−02




	
F6

	
m

	
5.181E−01

	
5.225E+00

	
1.006E−06

	
5.647E−01

	
6.694E−03

	
6.793E−07

	
5.687E−01

	
1.379E+00

	
4.303E−02




	
σ

	
3.616E−01

	
1.234E+00

	
3.178E−06

	
3.298E−01

	
1.232E−02

	
1.157E−06

	
6.711E−01

	
3.051E+00

	
1.902E−01




	
F7

	
m

	
1.701E−03

	
5.580E−04

	
2.901E−02

	
1.043E−02

	
7.335E−04

	
3.340E−02

	
6.114E−03

	
2.270E−01

	
6.207E−05




	
σ

	
1.196E−03

	
7.296E−04

	
2.039E−02

	
1.271E−02

	
6.587E−04

	
2.274E−02

	
1.298E−02

	
1.791E−01

	
6.558E−05




	
F8

	
m

	
−1.176E+04

	
−1.173E+04

	
−1.239E+04

	
−1.243E+04

	
−1.239E+04

	
−1.234E+04

	
−1.247E+04

	
−1.226E+04

	
−1.257E+04




	
σ

	
1.174E+03

	
1.161E+03

	
7.945E+02

	
2.125E+02

	
7.951E+02

	
8.072E+02

	
2.035E+02

	
4.015E+02

	
2.810E−02




	
F9

	
m

	
5.013E+01

	
2.966E+01

	
5.970E+00

	
1.652E+01

	
0.000E+00

	
1.323E+01

	
4.601E−05

	
3.100E+01

	
0.000E+00




	
σ

	
4.214E+01

	
4.088E+01

	
1.225E+01

	
1.156E+01

	
0.000E+00

	
1.463E+01

	
1.111E−04

	
1.977E+01

	
0.000E+00




	
F10

	
m

	
1.910E−14

	
2.723E−05

	
8.452E−01

	
1.482E+00

	
3.997E−15

	
1.493E+00

	
9.446E−04

	
1.379E+00

	
4.441E−16




	
σ

	
3.972E−15

	
7.773E−05

	
1.101E+00

	
8.255E−01

	
2.577E−15

	
1.916E+00

	
1.101E−03

	
1.058E+00

	
0.000E+00




	
F11

	
m

	
1.215E−03

	
6.158E−09

	
1.418E−02

	
6.696E−01

	
0.000E+00

	
1.746E−02

	
8.731E−02

	
6.641E−01

	
0.000E+00




	
σ

	
3.741E−03

	
1.751E−08

	
1.305E−02

	
1.297E−01

	
0.000E+00

	
1.371E−03

	
1.968E−02

	
4.874E−01

	
0.000E+00




	
F12

	
m

	
4.925E−01

	
1.218E+00

	
4.070E−02

	
8.174E−02

	
1.105E−04

	
1.371E+00

	
1.219E−02

	
2.001E+00

	
1.433E−05




	
σ

	
1.417E+00

	
1.462E+00

	
1.183E−01

	
7.730E−02

	
2.800E−04

	
2.738E+00

	
2.050E−02

	
1.659E+00

	
2.472E−05




	
F13

	
m

	
3.058E−01

	
2.085E+00

	
1.750E−01

	
3.605E−01

	
1.707E−02

	
4.397E−03

	
4.041E−01

	
1.017E+01

	
1.076E−02




	
σ

	
2.599E−01

	
8.328E−01

	
6.583E−01

	
4.287E−01

	
5.871E−02

	
5.525E−03

	
9.038E−01

	
1.078E+01

	
4.679E−02




	
F14

	
m

	
1.978E+00

	
1.652E+00

	
1.048E+00

	
9.980E−01

	
1.486E+00

	
9.980E−01

	
9.980E−01

	
3.074E+00

	
1.147E+00




	
σ

	
2.643E+00

	
9.196E−01

	
2.223E−01

	
7.675E−16

	
2.184E+00

	
0.000E+00

	
4.434E−08

	
2.259E+00

	
4.857E−01




	
F15

	
m

	
1.354E−03

	
5.678E−04

	
9.093E−04

	
3.141E−04

	
3.131E−04

	
4.319E−04

	
3.889E−04

	
1.045E−02

	
4.438E−04




	
σ

	
4.475E−03

	
3.540E−04

	
6.895E−04

	
6.6833E−06

	
6.186E−06

	
1.139E−04

	
1.244E−04

	
6.900E−03

	
2.274E−04




	
F16

	
m

	
−1.032E+00

	
−1.032E+00

	
−1.032E+00

	
−1.032E+00

	
−1.032E+00

	
−1.032E+00

	
−1.032E+00

	
−1.032E+00

	
−1.032E+00




	
σ

	
8.071E−08

	
9.936E−05

	
1.929E−14

	
8.823E−17

	
8.258E−10

	
2.161E−16

	
7.439E−06

	
2.038E−16

	
2.783E−06




	
F17

	
m

	
3.979E−01

	
4.020E−01

	
3.979E−01

	
3.979E−01

	
3.979E−01

	
3.979E−01

	
3.979E−01

	
3.979E−01

	
3.979E−01




	
σ

	
2.293E−06

	
4.196E−03

	
9.744E−15

	
0.000E+00

	
1.453E−05

	
0.000E+00

	
4.011E−05

	
0.000E+00

	
3.393E−05




	
F18

	
m

	
3.000E+00

	
3.000E+00

	
3.000E+00

	
3.000E+00

	
3.000E+00

	
3.000E+00

	
3.107E+01

	
3.056E+00

	
3.000E+00




	
σ

	
1.935E−05

	
6.407E−05

	
1.253E−13

	
1.585E−15

	
8.710E−05

	
9.557E−16

	
1.209E+00

	
2.518E−01

	
2.115E−04




	
F19

	
m

	
−3.860E+00

	
−3.850E+00

	
−3.863E+00

	
−3.863E+00

	
−3.857E+00

	
−3.862E+00

	
−3.731E+00

	
−3.862E+00

	
−3.862E+00




	
σ

	
3.312E−03

	
4.917E−03

	
9.363E−11

	
2.040E−15

	
1.049E−02

	
1.762E−03

	
3.073E−01

	
1.102E−03

	
1.400E−03




	
F20

	
m

	
−3.298E+00

	
−2.696E+00

	
−3.255E+00

	
−3.322E+00

	
−3.294E+00

	
−3.286E+00

	
−3.275E+00

	
−3.322E+00

	
−3.223E+00




	
σ

	
7.242E−02

	
3.335E−01

	
1.025E−01

	
4.843E−09

	
7.383E−02

	
6.652E−02

	
1.799E−01

	
4.556E−16

	
8.357E−02




	
F21

	
m

	
−8.318E+00

	
−7.132E+00

	
−1.015E+01

	
−1.015E+01

	
−9.898E+00

	
−8.373E+00

	
−1.013E+01

	
−7.285E+00

	
−1.015E+01




	
σ

	
2.229E+00

	
2.255E+00

	
3.153E−11

	
1.500E−08

	
1.140E+00

	
2.488E+00

	
3.212E−02

	
2.158E+00

	
6.068E−04




	
F22

	
m

	
−8.548E+00

	
−7.536E+00

	
−9.612E+00

	
−1.040E+01

	
−1.014E+01

	
−8.289E+00

	
−1.038E+01

	
−9.712E+00

	
−1.040E+01




	
σ

	
2.445E+00

	
2.342E+00

	
1.932E+00

	
1.765E−08

	
1.188E+00

	
2.656E+00

	
5.051E−02

	
1.703E+00

	
8.270E−04




	
F23

	
m

	
−8.912E+00

	
−7.562E+00

	
−1.027E+01

	
−1.054E+01

	
−9.995E+00

	
−8.923E+00

	
−1.051E+01

	
−1.054E+01

	
−1.054E+01




	
σ

	
2.200E+00

	
2.216E+00

	
1.199E+00

	
1.223E−07

	
1.664E+00

	
2.528E+00

	
2.716E−02

	
1.578E−15

	
2.631E−03











 





Table 6. Wilcoxon signed-rank test.






Table 6. Wilcoxon signed-rank test.





	
No.

	

	
GWO

	
SCA

	
SSA

	
CS

	
WOA

	
PSO

	
TSO

	
AEFA






	
F1

	
p-value

	
6.683E−05

	
6.683E−05

	
6.683E−05

	
6.683E−05

	
6.683E−05

	
6.683E−05

	
6.683E−05

	
6.683E−05




	
h

	
true

	
true

	
true

	
true

	
true

	
true

	
true

	
true




	
F2

	
p-value

	
6.683E−05

	
6.683E−05

	
6.683E−05

	
6.683E−05

	
1.03E−04

	
6.683E−05

	
6.683E−05

	
6.683E−05




	
h

	
true

	
true

	
true

	
true

	
true

	
true

	
true

	
true




	
F3

	
p-value

	
6.683E−05

	
6.683E−05

	
6.683E−05

	
6.683E−05

	
6.683E−05

	
6.683E−05

	
6.683E−05

	
6.683E−05




	
h

	
true

	
true

	
true

	
true

	
true

	
true

	
true

	
true




	
F4

	
p-value

	
6.683E−05

	
6.683E−05

	
6.683E−05

	
6.683E−05

	
6.683E−05

	
6.683E−05

	
6.683E−05

	
6.683E−05




	
h

	
true

	
true

	
true

	
true

	
true

	
true

	
true

	
true




	
F5

	
p-value

	
6.683E−05

	
6.683E−05

	
6.683E−05

	
6.683E−05

	
1.32E−03

	
1.03E−04

	
6.683E−05

	
6.683E−05




	
h

	
true

	
true

	
true

	
true

	
true

	
true

	
true

	
true




	
F6

	
p-value

	
6.81E−04

	
6.683E−05

	
6.683E−05

	
1.20E−04

	
3.04E−02

	
1.03E−04

	
7.80E−04

	
2.82E−03




	
h

	
true

	
true

	
true

	
true

	
true

	
true

	
true

	
true




	
F7

	
p-value

	
6.683E−05

	
2.54E−04

	
6.683E−05

	
6.683E−05

	
2.19E−04

	
6.683E−05

	
1.20E−04

	
6.683E−05




	
h

	
true

	
true

	
true

	
true

	
true

	
true

	
true

	
true




	
F8

	
p-value

	
6.683E−05

	
6.683E−05

	
1.51E−03

	
6.683E−05

	
9.11E−01

	
7.31E−02

	
1.03E−04

	
6.683E−05




	
h

	
true

	
true

	
true

	
true

	
true

	
true

	
true

	
true




	
F9

	
p-value

	
1.32E−04

	
4.38E−04

	
6.683E−05

	
6.683E−05

	
trueE+00

	
6.683E−05

	
6.683E−05

	
6.683E−05




	
h

	
true

	
true

	
true

	
true

	
false

	
true

	
true

	
true




	
F10

	
p-value

	
6.81E−05

	
6.683E−05

	
6.683E−05

	
6.683E−05

	
6.10E−05

	
6.683E−05

	
6.683E−05

	
6.683E−05




	
h

	
true

	
true

	
true

	
true

	
true

	
true

	
true

	
true




	
F11

	
p-value

	
5.00E−01

	
6.683E−05

	
6.683E−05

	
6.683E−05

	
trueE+00

	
6.683E−05

	
6.683E−05

	
6.683E−05




	
h

	
false

	
true

	
true

	
true

	
false

	
true

	
true

	
true




	
F12

	
p-value

	
6.683E−05

	
6.683E−05

	
2.19E−04

	
6.683E−05

	
5.75E−01

	
6.01E−01

	
6.683E−05

	
6.683E−05




	
h

	
true

	
true

	
true

	
true

	
false

	
false

	
true

	
true




	
F13

	
p-value

	
2.19E−04

	
6.683E−05

	
1.32E−03

	
6.683E−05

	
1.52E−02

	
4.78E−01

	
3.90E−04

	
6.683E−05




	
h

	
true

	
true

	
true

	
true

	
true

	
false

	
true

	
true




	
F14

	
p-value

	
4.38E−02

	
7.80E−04

	
1.16E−03

	
6.683E−05

	
3.33E−02

	
6.683E−05

	
5.02E−01

	
3.38E−04




	
h

	
true

	
true

	
true

	
true

	
true

	
true

	
false

	
true




	
F15

	
p-value

	
1.79E−01

	
9.30E−02

	
1.11E−02

	
2.19E−04

	
7.80E−04

	
7.94E−01

	
5.02E−01

	
6.683E−05




	
h

	
false

	
false

	
true

	
true

	
true

	
false

	
false

	
true




	
F16

	
p-value

	
2.54E−04

	
6.683E−05

	
6.683E−05

	
6.683E−05

	
1.03E−04

	
6.683E−05

	
1.87E−02

	
6.683E−05




	
h

	
true

	
true

	
true

	
true

	
true

	
true

	
true

	
true




	
F17

	
p-value

	
3.04E−02

	
6.683E−05

	
6.683E−05

	
6.683E−05

	
1.56E−01

	
6.683E−05

	
2.28E−02

	
6.683E−05




	
h

	
true

	
true

	
true

	
true

	
false

	
true

	
true

	
true




	
F18

	
p-value

	
1.52E−02

	
1.79E−01

	
6.683E−05

	
6.683E−05

	
3.33E−02

	
6.683E−05

	
6.683E−05

	
1.51E−03




	
h

	
true

	
true

	
true

	
true

	
false

	
true

	
true

	
true




	
F19

	
p-value

	
3.32E−01

	
6.683E−05

	
6.683E−05

	
6.683E−05

	
2.28E−02

	
1.32E−03

	
2.19E−04

	
2.04E−01




	
h

	
false

	
true

	
true

	
true

	
true

	
true

	
true

	
false




	
F20

	
p-value

	
6.42E−03

	
6.683E−05

	
2.63E−01

	
6.683E−05

	
2.20E−03

	
1.24E−02

	
4.55E−03

	
6.683E−05




	
h

	
true

	
true

	
false

	
true

	
true

	
true

	
true

	
true




	
F21

	
p-value

	
6.683E−05

	
6.683E−05

	
6.683E−05

	
6.683E−05

	
8.52E−01

	
6.01E−01

	
6.683E−05

	
1.03E−04




	
h

	
true

	
true

	
true

	
true

	
false

	
false

	
true

	
true




	
F22

	
p-value

	
6.683E−05

	
6.683E−05

	
7.31E−02

	
6.683E−05

	
2.63E−01

	
3.13E−01

	
6.683E−05

	
trueE+00




	
h

	
true

	
true

	
false

	
true

	
false

	
false

	
true

	
false




	
F23

	
p-value

	
6.683E−05

	
6.683E−05

	
1.51E−03

	
6.683E−05

	
4.33E−01

	
trueE+00

	
1.63E−04

	
6.683E−05




	
h

	
true

	
true

	
true

	
true

	
false

	
false

	
true

	
true











 





Table 7. Elapsed time in seconds for algorithm execution.
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	GWO
	SCA
	SSA
	CS
	WOA
	PSO
	TSO
	AEFA
	PSA





	F1
	0.19396
	0.12807
	0.12076
	0.32297
	0.07844
	0.10489
	0.07901
	0.70572
	0.14529



	F3
	0.28908
	0.25333
	0.21823
	0.59093
	0.21227
	0.24697
	0.20247
	0.5662
	0.21162



	F5
	0.22024
	0.14419
	0.11669
	0.37283
	0.09557
	0.12428
	0.09445
	0.74423
	0.18258



	F7
	0.25270
	0.27462
	0.17785
	0.52765
	0.18240
	0.20720
	0.15772
	0.58886
	0.23347



	F9
	0.21667
	0.14238
	0.10190
	0.35608
	0.09275
	0.12364
	0.07937
	0.70294
	0.15709



	F11
	0.21608
	0.15083
	0.11007
	0.39285
	0.09911
	0.13238
	0.09883
	0.75162
	0.18998



	F13
	0.43091
	0.37946
	0.34172
	0.89211
	0.32739
	0.34480
	0.31621
	0.71861
	0.45095



	F15
	0.08482
	0.06125
	0.04754
	0.24100
	0.04562
	0.04603
	0.04342
	0.19139
	0.07792



	F17
	0.04381
	0.05114
	0.03805
	0.20785
	0.03501
	0.02629
	0.03271
	0.14607
	0.05805



	F19
	0.05045
	0.05739
	0.05281
	0.22891
	0.05190
	0.04391
	0.04880
	0.17714
	0.12969



	F21
	0.06674
	0.06795
	0.06347
	0.25504
	0.05845
	0.05484
	0.06027
	0.21141
	0.10314



	F23
	0.08750
	0.08496
	0.08194
	0.29582
	0.07910
	0.07160
	0.07826
	0.22082
	0.14134



	Sum
	2.15295
	1.79558
	1.47103
	4.68403
	1.35800
	1.52684
	1.29151
	5.72502
	2.08111










 





Table 8. Optimal weight and parameters of three-bar truss design.
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	GWO
	SCA
	SSA
	CS
	WOA
	PSO
	TSO
	AEFA
	PSA





	Best
	263.8959846
	263.9090923
	263.9195433
	263.8958434
	263.8959030
	263.8958434
	263.8969047
	263.9195433
	263.8958824



	m
	263.8964313
	263.9553596
	264.0115258
	263.8958434
	263.9431231
	263.8958439
	265.5472387
	264.0115258
	263.8984017



	σ
	4.11448E−04
	4.21400E−02
	9.00459E−02
	0.00000E+00
	6.82155E−02
	7.34918E−07
	1.49798E+00
	9.00459E−02
	2.21516E−03



	x1
	0.789005319
	0.789674131
	0.788484498
	0.788675136
	0.788960013
	0.788681652
	0.787476956
	0.788484498
	0.789351215



	x2
	0.407315799
	0.405555191
	0.408787881
	0.408248286
	0.407443127
	0.408229858
	0.411647866
	0.408787881
	0.406573046










 





Table 9. Optimal weight and parameters of compression spring design.
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	GWO
	SCA
	SSA
	CS
	WOA
	PSO
	TSO
	AEFA
	PSA





	Best
	0.0177757
	0.0127331
	0.0178723
	0.0126721
	0.0127984
	0.0178487
	0.0126668
	0.0196575
	0.0127226



	m
	0.0177873
	0.0128085
	0.0219118
	0.0126977
	0.0136459
	0.0179014
	0.0139309
	0.0336801
	0.0132851



	σ
	0.0000080
	0.0000546
	0.0082340
	0.0000195
	0.0011371
	0.0000373
	0.0015793
	0.0137893
	0.0006535



	D
	0.0689962
	0.0500000
	0.0691542
	0.0515176
	0.0544458
	0.0690812
	0.0519697
	0.0572892
	0.0500000



	d
	0.9335070
	0.3172711
	0.9404314
	0.3525262
	0.4267345
	0.9370252
	0.3635050
	0.5068545
	0.3174241



	N
	2.0000000
	14.0532354
	1.9739055
	11.5439263
	8.1174138
	1.9914889
	10.9019563
	9.8167597
	14.0323211










 





Table 10. Optimal cost and parameters of welded beam design.
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	GWO
	SCA
	SSA
	CS
	WOA
	PSO
	TSO
	AEFA
	PSA





	Best
	1.7261166637
	1.7789887672
	2.4719864210
	1.7318832346
	1.7332745737
	1.7248523086
	1.7338377644
	2.4719864210
	1.7250306573



	m
	1.7267581063
	1.8287256087
	3.0407655957
	1.7378652824
	1.7947045480
	1.7248523088
	1.7835502505
	3.0407655957
	1.7327229652



	σ
	5.19265E−04
	2.34891E−02
	3.96367E−01
	4.99296E−03
	3.61117E−02
	5.07366E−10
	4.43964E−02
	3.96367E−01
	5.14617E−03



	h
	0.2057226591
	0.2074198677
	0.1534791096
	0.2060105624
	0.2002029004
	0.2057296398
	0.1824037798
	0.1534791096
	0.2056551204



	l
	3.4718445411
	3.6040616975
	6.8582665831
	3.4837895853
	3.5923940636
	3.4704886656
	4.5358535044
	6.8582665831
	3.4718699729



	t
	9.0382895241
	9.0678166725
	9.5571430874
	9.0294913594
	9.0419370726
	9.0366239104
	8.8276280063
	9.5571430874
	9.0373416776



	b
	0.2058352914
	0.2093402452
	0.2391445616
	0.2065207396
	0.2057031460
	0.2057296398
	0.2155863505
	0.2391445616
	0.2057274905










 





Table 11. Optimal weight and parameters of pressure vessel design.
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	GWO
	SCA
	SSA
	CS
	WOA
	PSO
	TSO
	AEFA
	PSA





	Best
	5889.3161636
	6084.9664550
	6288.2580937
	5886.5458106
	6033.9780276
	5942.1267062
	6713.1969272
	26533.6320741
	5886.9897087



	m
	5894.1446757
	6307.2406394
	7009.5719313
	5893.2120452
	6631.8600064
	6101.1999200
	7102.4268313
	96354.3822355
	6077.8295567



	σ
	6.1000446
	139.9687665
	874.9974107
	3.8547414
	493.3610049
	140.4149521
	893.3723107
	44235.2712807
	308.1664002



	ts
	0.7784311
	0.7895409
	0.9652823
	0.7782347
	0.7910326
	0.8100689
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