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Abstract: For non-uniform control polygons, a parameterized four-point interpolation curve ternary
subdivision scheme is proposed, and its convergence and continuity are demonstrated. Following
curve subdivision, a non-uniform interpolation surface ternary subdivision on regular quadrilateral
meshes is proposed by applying the tensor product method. Analyses were conducted on the
updating rules of parameters, proving that the limit surface is continuous. In this paper, we present a
novel interpolation subdivision method to generate new virtual edge points and new face points of
the extraordinary points of quadrilateral mesh. We also provide numerical examples to assess the
validity of various interpolation methods.
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1. Introduction

With the rapid development of information technology, digital multimedia information
has penetrated into every corner of contemporary society, such as comics, point cloud
reconstruction, etc. Classical geometric modeling methods, such as Bezier surface, B-spline
surface, and NURBS surface models, have struggled to satisfy the needs of people. As
a discrete modeling design method for curves and surfaces, the subdivision method is
an organic combination of the polygonal mesh representation method and the parameter
representation method and has become a research hot spot in the field of computer graphics,
with its advantage of not being limited by topology. In 1978, Catmull and Clark [1] proposed
a subdivision method to extend B-spline surfaces to arbitrary topological meshes. In the
1980s, Doo and Sabin [2] analyzed the continuity of B-spline surface subdivision on irregular
meshes, marking the introduction of the surface subdivision technique in the field of surface
modeling design.

Surface subdivision is based on an initial mesh; by adding new vertices and adjusting
old vertices, a gradually denser mesh sequence is obtained. In this process, if the old
vertex position is not modified, it is called interpolation subdivision (Kobbelt [3], Li [4,5]);
otherwise, it is called approximation subdivision (Catmull-Clark, Loop [6],

√
2 [7],

√
3 [8],

Ni [9]). Approximation subdivision is associated with higher continuity and smoothness
than interpolation subdivision; however, it is easy to lose the geometric characteristics of
the mesh or obtain a large fitting effect error.

If the subdivision rules do not change throughout the process, the subdivision is
known as stationary subdivision (Catmull-Clark, Doo-Sabin, Chaikin [10], Dyn [11], Butter-
fly [12]); otherwise, it is known as non-stationary subdivision (NURSS [13], NURSSes [14],
NULISS [15], NUISS [16]). In engineering applications, the non-stationary subdivision
method is preferred relative to the stationary subdivision method for detail maintenance
and is more practicable, although it is not as efficient as the static subdivision method in
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computing. If the control mesh is relatively uniform (the difference between side lengths is
small) and has many control vertices, the designers tend is to use stationary subdivision.

In computer graphics and computer-aided design, geometric data parameterization
has become an important processing tool that has been widely utilized in data fitting,
grid operation, computer animation, and other fields [17–21]. In curve interpolation,
the parameter values (also called knots) of the vertices of a given control point have a
considerable influence on the generated curve because the knots can be regarded as the time
when a particle passes through the control points in sequence along the curve. If uniform
parameterization is adopted, the time for the particle to pass through each piecewise curve
is the identical. In a longer piecewise curve, particles move at a higher velocity; if the next
segment curve is shorter, the particle speed drops sharply, which causes the curve to self-
intersect. In 1999, Daubechies [17] introduced non-uniform parameterization and proposed
a non-uniform parameterized interpolation subdivision curve. In 2013, Beccari [15] applied
the parameterization method to a surface, proposed a non-uniform parameterized surface
subdivision method on regular quadrilateral meshes, and analyzed the continuity of the
limit surface. Unfortunately, the author did not account for the surface subdivision of
quadrilateral meshes with extraordinary points. In 2018, based on the relationship between
B-spline curve and four-point interpolation subdivision schemes, Li [16] presented a non-
uniform parameterized subdivision method for surface meshes with extraordinary points;
however, the specific mask expression not provided in the paper.

In Beccari and Li’s papers, the limit surfaces with C1 continuity were generated on the
basis of four-point binary curve subdivision. In the process of surface generation, owing
to the large number of vertices, edges, and faces involved, computer processing is more
complicated, with a longer time required to generate the limit surface. Four-point ternary
curve subdivision, as mentioned in [22–25], has a faster convergence speed, and the limit
curve has better continuity. In 2018, using a different geometric method, Omar et al. [26]
obtained subdivision schemes on quadrilateral mesh based on 2D Lagrange interpolation
polynomials.

The main idea of this paper is to calculate the mask of a subdivision scheme by using
the chord length parameter and Lagrangian basis function (polynomial-based, Similar
to [27]). The four-point ternary curve subdivision scheme is constructed according to the
mask. Surface subdivision is a natural generalization of curve subdivision on quadrilat-
eral mesh.

In this thesis, the following aspects are considered:

(1). A polynomial-based non-uniform four-point ternary interpolation curve subdivision
method is proposed, and we prove that the limit curve of this scheme C1 continuous;

(2). For regular quadrilateral meshes, using four-point ternary curve subdivision and
tensor product, we construct a ternary interpolation surface subdivision scheme on
non-uniform regular quadrilateral meshes and prove that the limit surface is C1 is
continuous at any point;

(3). By constructing virtual points for meshes with extraordinary points, a ternary inter-
polation method of new edge points and new face points of the extraordinary point is
proposed. Due to the lack of an effective method, the convergence and G1 continuity
of the limit surface are illustrated by analyzing the change trend of the angles between
normal vectors at the extraordinary points.

The remainder of this paper is organized as follows. In Section 2, we review the content
of curve parameterization, define a non-uniform four-point ternary curve subdivision
(NUFTCS) by parameterization, and prove the convergence of the subdivision scheme
and the continuity of the limit curve. In Section 3, using tensor product combined with
NUFTCS, a non-uniform local ternary interpolation surface subdivision (NULTISS) method
is proposed under a regular quadrilateral mesh, and the continuity of the limit surface is
analyzed. For extraordinary points, the rules of generating new edge points and new face
points, as well as the empirical analysis, are presented in Section 4. In Section 5, we present
some numerical examples of curve subdivision and surface subdivision, confirming the



Mathematics 2023, 11, 486 3 of 22

effectiveness of our proposed method. In Section 6, we summarize the study results and
the introduce concepts for follow-up works.

2. Non-Uniform Four-Point Ternary Curve Subdivision (NUFTCS)
2.1. Parameterization of the Data Points

With the data points of the initial control polygon denoted by {Pi(xi, yi), i = 0, 1, 2, · · ·},
we can construct a function (y = f (x)) by Lagrange polynomial interpolation to satisfy
f (xi ) = yi, i = 0, 1, 2, · · · . Parameterization of data points is the process of assigning
parameter values to a set of ordered data points, as shown in Figure 1 (left). The parameter-
ization of data points should reflect the nature of the interpolated data or the desired nature
of the designer to the greatest extent possible. Commonly used data point parameterization
methods include uniform parameterization, centripetal parameterization, and chordal
parameterization, e.g., {

t0 = 0,
ti = ti−1 + di, i = 0, 1, 2, · · · , n,

(1)

where di−1 = ‖Pi − Pi−1‖α; α = 0 results in uniform parameterization, α = 1 results
in chordal parameterization, and α = 1

2 corresponds to centripetal parameterization.
Chordal parameterization is generally considered to be the most effective method of curve
parameterization. In this study, it is used to construct the mask of curve subdivision.
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2.2. Non-Uniform Four-Point Ternary Curve Subdivision (NUFTCS) 
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Substituting 𝑡 = 𝑡∗ =  into  𝐿 , (𝑡) , obtain the mask of 𝑃 , denoted as 𝑎  (𝛼 ) = 𝐿 ,  (𝑡∗), 𝑘 = −1,0,1,2, such that 

Figure 1. Parameterization of the data points. Left: ti+k is the parameter of the initial control point, Pi+k,
k = −1, 0, 1, 2. Right: t∗1 , t∗2 are the parameters of the new control points, P3i+1 and P3i+2, respectively.

2.2. Non-Uniform Four-Point Ternary Curve Subdivision (NUFTCS)

As shown in Figure 1 (right), let P = {Pi},i ∈ Z be a set of data points and
T = {ti }, i ∈ Z be the associated parameter set; then, di = ti+1 − ti = ‖Pi+1 − Pi‖, i ∈ Z,
introduces the notation αi = [di−1, di, di+1] (called the mask parameter).

Using ti−1, ti, ti+1, ti+2 as interpolation nodes, we can construct Lagrange basis functions:

Li,k(t) = ∏−1≤j≤2,j 6=k
t− ti+k

ti+j − ti+k
, k = −1, 0, 1, 2, i ∈ Z. (2)

Substituting t = t∗1 =
2ti+ti+1

3 into Li,k(t), obtain the mask of P3i+1, denoted as ak (αi) =
Li,k

(
t∗1
)
, k = −1, 0, 1, 2, such that

a−1 (αi) =
−2(di )

2 (2di+3di+1)
27di−1 (di−1+di)(di−1+di+di+1)

,

a0 (αi ) =
2(3di−1+di )(2di+3di+1)

27di−1(di+di+1)
,

a1 (αi) =
(3di−1+di)(2di+3di+1)

27di+1 (di−1+di)
,

a2 (αi) =
−2(di )

2 (3di−1+di)
27di+1(di+di+1)(di−1+di+di+1)

.

(3)
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For example,

a−1(αi) = li,−1(t) =
(t−ti)(t−ti+1)(t−ti+2)

(ti−1−ti)(ti−1−ti+1)(ti−1−ti+2)

∣∣∣
t=

2ti+ti+1
3

= (ti+1−ti)·2(ti+1−ti)(3ti+2−ti+1−2ti)
27(ti−1−ti)(ti−1−ti+1)(ti−1−ti+2)

=
−2d2

i (2di+3di+1)
27di−1(di−1+di)(di−1+di+di+1)

.

Substituting t = t∗2 =
ti+2ti+1

3 into Li,k(t), we can obtain the mask of P3i+2, denoted as
ak (βi) = Li,k (t∗2), k = −1, 0, 1, 2, where βi = [di+1, di, di−1],

a−1 (βi) =
−2(di)

2 (di+3di+1)
27di−1 (di−1+di)(di−1+di+di+1)

,

a0 (βi ) =
2(3di−1+2di )(di+3di+1)

27di−1(di+di+1)
,

a1 (βi) =
(3di−1+2di)(di+3di+1)

27di+1 (di−1+di)
,

a2 (βi) =
−2(di)

2 (3di−1+2di)
27di+1(di+di+1)(di−1+di+di+1)

.

(4)

For all k ≥ 0, we can derive the k-level refinement rules of a non-uniform four-point
ternary curve subdivision scheme (NUFTCS) as

Pk+1
3i = Pk

i ,

Pk+1
3i+1 = a−1

(
αk

i

)
Pk

i−1 + a0

(
αk

i

)
Pk

i + a1

(
αk

i

)
Pk

i+1 + ai+2

(
αk

i

)
Pk

i+2,

Pk+1
3i+2 = a−1

(
βk

i

)
Pk

i−1 + a0

(
βk

i

)
Pk

i + a1

(
βk

i

)
Pk

i+1 + ai+2

(
βk

i

)
Pk

i+2.

(5)

2.3. Convergence and Continuity Analysis of NUFTCS

In Figure 2 (left), a set of the kth lever refinement control polygon
{

Pk
i−1, Pk

i , Pk
i+1, Pk

i+2

}
is given, and the associated parameter of the control points is {tk

i−1, tk
i , tk

i+1, tk
i+2}, let

⇀
e

k
i+1 =

Pk
i+1 − Pk

i ; then, dk
i+1 = ‖⇀e

k
i+1‖ = ‖Pk

i+1 − Pk
i ‖. f k(t) denotes piecewise linear functions

generated by Pk
i , k = −1, 0, 1, 2. The parameters t∗1 and t∗2 associated with new points (Pk+1

3i+1

and Pk+1
3i+2) are 2ti+ti+1

3 and ti+2ti+1
3 , respectively.
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Theorem 1. The NUFTCS scheme is convergent. 

Figure 2. Left: the orange solid line ( f (t)) is a polynomial function through Pk
i−1, Pk

i , Pk
i+1, Pk

i+2, and
the piecewise broken line ( f k(t)) is a line through Pk

i−1, Pk
i , Pk

i+1, Pk
i+2. Right: insertion of the new

points (Pk+1
3i+1 and Pk+1

3i+2).

Theorem 1. The NUFTCS scheme is convergent.
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Proof of Theorem 1. In order to prove this conclusion, a continuous function ( f (t)) is
introduced.

{
Pk

i−1, Pk
i , Pk

i+1, Pk
i+2

}
on the curve is associated with f (t). Let f (t) be a cubic

polynomial generated by nodes
{

tk
i−1, tk

i , tk
i+1, tk

i+2

}
; then,

f (t) = f
(

tk
i

)
+ f

[
tk
i , tk

i+1

](
t− tk

i

)
+ f

[
tk
i , tk

i+1, tk
i+2

](
t− tk

i

)(
t− tk

i+1

)
+ f
[
tk
i−1, tk

i , tk
i+1, tk

i+2

](
t− tk

i−1

)(
t− tk

i

)(
t− tk

i+1

)
.

Constructing f k(t) = f
(

tk
i

)
+ f
[
tk
i , tk

i+1

](
t− tk

i

)
as the chord passing through Pk

i and

Pk
i+1 yields

f (t)− f k(t)

= f
[
tk
i , tk

i+1, tk
i+2

](
t− tk

i

)(
t− tk

i+1

)
+ f

[
tk
i−1, tk

i , tk
i+1, tk

i+2

](
t− tk

i−1

)(
t− tk

i

)(
t− tk

i+1

)
=

(t−tk
i )(t−tk

i+1)
tk
i+2−tk

i−1

{
f
[
tk
i , tk

i+1, tk
i+2

](
t− tk

i−1

)
+ f

[
tk
i−1, tk

i , tk
i+1

](
tk
i+2 − t

)}
.

where f
[
tk
i−1, tk

i , tk
i+1, tk

i+2

]
=

f [tk
i ,tk

i+1,tk
i+2 ]+ f [tk

i−1,tk
i ,tk

i+1]
tk
i+2−tk

i−1
.

Substituting t∗1 =
2ti+ti+1

3 into f (t) and f k(t) yields

f
(
t∗1
)
− f k(t∗1) = − 2(tk

i+1−tk
i )

2

9(tk
i+2−tk

i−1)
×{

f
[
tk
i , tk

i+1, tk
i+2

](
tk
i+1−tk

i
3 +

(
tk
i − tk

i−1

))
+ f

[
tk
i−1, tk

i , tk
i+1

]( 2(tk
i+1−tk

i )
3 +

(
tk
i+2 − tk

i+1

))}
.

Let a =
tk
i−tk

i−1
tk
i+1−tk

i
, b =

tk
i+2−tk

i+1
tk
i+1−tk

i
; then,

f (t∗1)− f k(t∗1) = −
2
(

tk
i+1 − tk

i

)2

9(a + b + 1)

{
f
[
tk
i , tk

i+1, tk
i+2

](1
3
+ a
)
+ f

[
tk
i−1, tk

i , tk
i+1

](2
3
+ b
)}

. (6)

Let
⇀
λ

k

i and
⇀
λ

k

i+1 be the vectors

⇀
λ

k

i = Pk+1
3i+1 −

2Pk
i + Pk

i+1
3

,
⇀
λ

k

i+1 = Pk+1
3i+1 −

Pk
i + 2Pk

i+1
3

,

depicted in Figure 2 (right), and consider divided differences at Pk
i and Pk

i+1,

Pk,[1]
i =

Pk
i − Pk

i−1

tk
i − tk

i−1
, Pk,[1]

i+1 =
Pk

i+1 − Pk
i

tk
i+1 − tk

i
, Pk,[2]

i =
Pk,[1]

i − Pk,[1]
i−1

tk
i − tk

i−1
, Pk,[2]

i+1 =
Pk,[1]

i+1 − Pk,[1]
i

tk
i+1 − tk

i
.

Combining (6), yields

⇀
λ

k

i = Pk+1
3i+1 −

2Pk
i +Pk

i+1
3 = f

(
t∗1
)
− f k(t∗1)

= − 2(tk
i+1−tk

i )
2

9(a+b+1)

{
Pk,[2]

i

(
1
3 + a

)
+ Pk,[2]

i+1

( 2
3 + b

)}
= − 2(tk

i+1−tk
i )

9(a+b+1)

{(
a+1/3

1+a

(
Pk,[1]

i+1 − Pk,[1]
i

))
+
(

b+2/3
1+b

(
Pk,[1]

i+2 − Pk,[1]
i+1

))}
.

Because ‖Pk,[1]
i ‖ = 1 and dk

i+1 = tk
i+1 − tk

i , let a > b(> 0); then,

‖
⇀
λ

k

i ‖ ≤
2dk

i+1
9(a + b + 1)

(
2

a + 1/3
1 + a

+ 2
b + 2/3

1 + b

)
≤ 4

9
·

dk
i+1

1 + b
≤ 4

9
dk

i+1. (7)
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According to the definition of
⇀
e

k
i+1 and

⇀
λ

k

i ,
⇀
e

k+1
i+1 = 1

3
⇀
e

k
i+1 +

⇀
λ

k

i ; then,

dk+1
i+1 = ‖⇀e

k+1
i+1 ‖ ≤

1
3
‖⇀e

k
i+1‖ + ‖

⇀
λ

k

i ‖ =
1
3

dk
i+1 +

4
9

dk
i+1 =

7
9

dk
i+1 ≤ · · · ≤

(
7
9

)k+1
d0

i+1,

combined with Equation (7) yields lim
k→+∞

‖
⇀
λ

k

i ‖ = 0.

Similarly, substituting t∗1 =
ti+2ti+1

3 into f (t) and f k(t) yields lim
k→+∞

‖
⇀
λ

k

i+1‖ = 0.

Because

‖ f (k+1) (t)− f k(t)‖∞ = sup
t∈R
‖ f (k+1) (t)− f k(t)‖ = sup

t∈R
Max

{
‖
⇀
λ

k

i ‖, ‖
⇀
λ

k

i+1‖
}

,

lim
k→+∞

‖ f (k+1) (t)− f k(t)‖∞ = lim
k→+∞

sup
t∈R

Max
{
‖
⇀
λ

k

i ‖, ‖
⇀
λ

k

i+1‖
}

= 0;

then, the scheme is convergent. �

Theorem 2. Let P =
{

P0
i
}

i∈Z be a set of initial points, between P0
i , P0

i+1, i ∈ Z, the piecewise
limit curve generated by NUFTCS is C1.

Proof of Theorem 2. In the k-th refinement, the initial control points P0
i , P0

i+1 are replaced
by Pk

3k i, Pk
3k(i+1), i ∈ Z, and Pk

3k i+j, j = 1, 2, · · · , 3k − 1 is the new point generated by the

subdivision scheme (5). If k = 1, the mask parameter to generate P1
3i+1 and P1

3i+2 is[
d0

i−1, d0
i , d0

i+1
]
, the mask is non-uniform, as shown in Figure 3 (left). If k = 2, the mask

parameter to generate P2
9i+1 and P2

9i+2 is
[

d0
i−1
3 , d0

i
3 , d0

i
3

]
, so the mask is non-uniform too, but

the mask parameter to generate P2
9i+4 and P2

9i+5 is
[

d0
i

3 , d0
i

3 , d0
i

3

]
, so the mask is

{
· · · , 0, 0,− 5

81
,− 4

81
, 0,

10
27

,
20
27

, 1,
20
27

,
10
27

, 0,− 4
81

,− 5
81

, 0, 0, · · ·
}

.
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Regular Quadrilateral Mesh 

Regular mesh refers to a polyhedron shape consisting of points, edges, and surfaces 
among which the vertex 𝑃  is a three-dimensional space point with four and only four 
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1,2,3,4. Furthermore, each edge has two and only two connected faces, as shown in Figure 
4 (left). 

Figure 3. After 1 subdivision, the update of the mask parameters of the subdivision (5). Left: the
mask parameters to generate the P2

9i+1 and P2
9i+2. Right: the mask parameters to generate the P2

9i+4
and P2

9i+5.

Using the continuity proof method of uniform subdivision [11], the limit curve between
points P0

i , P0
i+1 is C1. �

Remark 1. The limit curve of the NUFTCS scheme is C1.

Proof of Remark 1. According to Theorems 1 and 2, the sequence
{

f k(t), k ∈ N
}

is a

Cauchy sequence, and among P0
i−1, P0

i+1, and it uniformly converges to a piecewise differ-
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entiable function f (t). Therefore, at point P0
i , the limit curve of NUFTCS is C1. Combination

Theorem 2, in arbitrary points, the limit curve of NUFTCS scheme is C1 . �

3. Non-Uniform Local Ternary Interpolation Surface Subdivision (NULTISS) on
Regular Quadrilateral Mesh

Regular mesh refers to a polyhedron shape consisting of points, edges, and surfaces
among which the vertex P0 is a three-dimensional space point with four and only four
connected edges, i.e., ei, i = 1,2,3,4. Each edge (ei) is a straight-line segment connecting two
vertices (P0, Pi, i = 1, 2, 3, 4). Each surface (Si) is composed of four edges, i.e., ei, i = 1,2,3,4.
Furthermore, each edge has two and only two connected faces, as shown in Figure 4 (left).
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 Edge points 

Figure 4. Left: notation for the initial mesh (consists of black dots (P0, Pi), solid lines (ei), and light-
pink shaded quadrilateral faces (Si, i = 1, 2, 3, 4)) and the new mesh after refinement (consists of P0

new edge points (purple diamonds), new face points (blue dots), dotted lines, and light-green shaded
quadrilateral faces). Right: the mask parameters of the interpolation points in the horizontal and
vertical directions.

In regular quadrilateral meshes, as an advantageous alternative to tensor product
construction, surface subdivision can better handle initial mesh with arbitrary topology.
The purpose of this section is to naturally expand NUFTCS (5) to regular quadrilateral mesh
and employ appropriate parameters to obtain a non-uniform surface subdivision scheme.
Hereafter, this scheme is referred to as NULTISS (non-uniform local ternary interpolation
surface subdivision).

3.1. Non-Uniform Parametric Surface Subdivision

Non-uniform parametric interpolation surface subdivision can be regarded as an
iterative process. Let Mk denote a kth lever regular quadrilateral mesh of 3D points; a mesh
with new parameters (Mk+1) is generated according to the steps outlined below; for each
refinement level k ≥ 1, it

1. Calculates the new edge points for each edge, as shown in Figure 4 (left; purple diamonds);
2. Calculates the new surface points for each face, as shown in Figure 4 (left; blue dots);
3. Constructs a new mesh, as shown in Figure 4 (left; light-green quadrangles).

• Creating new edges: Connecting new edge points on each edge, connecting new
edge points with the “nearest” vertex, circularly connecting four new face points, and
connecting new face points with the “nearest” new edge points;

• Create new faces: faces surrounded by four new edges.
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Let
{

Pk
i,j, i, j ∈ Z

}
be the vertex set of the mesh (Mk), and dk

i+1,j = Pk
i+1,j− Pk

i,j, ek
i+1,j =

Pk
i,j+1 − Pk

i,j; accordingly, the mask parameters in the horizontal direction are

αk
i,j =

[
dk

i−1,j, dk
i,j, dk

i+1,j

]
and βk

i,j =
[
dk

i+1,j, dk
i,j, dk

i−1,j

]
, whereas those in the vertical direc-

tion are ξk
i,j =

[
ek

i,j−1, ek
i,j, ek

i,j+1

]
and ηk

i,j =
[
ek

i,j+1, ek
i,j, ek

i,j−1

]
, as shown in Figure 4 (right).

Using the curve subdivision scheme (5),

� Vertex points

Pk+1
3i,3j = Pk

i,j,

� Edge points


Pk+1

3i+1,3j =
2
∑

l=−1
al

(
αk

i,j

)
Pk

i+l,j, Pk+1
3i+2,3j =

2
∑

l=−1
al

(
βk

i,j

)
Pk

i+l,j,

Pk+1
3i,3j+1 =

2
∑

l=−1
al

(
ξk

i,j

)
Pk

i,j+l , Pk+1
3i,3j+2 =

2
∑

l=−1
al

(
ηk

i,j

)
Pk

i,j+l .
(8)

For the face points, using the idea of tensor product, we define an average parameteri-
zation as

d
k
i =

∑
j∈Z

dk
i,j

#
{

dk
i,j, j ∈ Z

} , ek
i =

∑
i∈Z

ek
i,j

#
{

ek
i,j, i ∈ Z

} ,

so that
αk

i =
[
d

k
i−1, d

k
i , d

k
i+1

]
, β

k
i =

[
d

k
i+1, d

k
i , d

k
i−1

]
,

ξ
k
j =

[
ek

j−1, ek
j , ek

j+1

]
, ηk

i =
[
ek

j+1, ek
j , ek

j−1

]
,

are the mask parameters associated with the two mesh directions. Thus, the masks are
calculated according to Equations (3) and (4), as shown in Figure 5 (Left).
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Pk+1
3i+1,3j+1 =

2
∑

m=−1

2
∑

n=−1
am(α

k
i )an

(
ξ

k
j

)
Pk

i+m,j+n,

Pk+1
3i+2,3j+1 =

2
∑

m=−1

2
∑

n=−1
am(β

k
i )an

(
ξ

k
j

)
Pk

i+m,j+n,

Pk+1
3i+1,3j+2 =

2
∑

m=−1

2
∑

n=−1
am(α

k
i )an

(
ηk

j

)
Pk

i+m,j+n,

Pk+1
3i+2,3j+2 =

2
∑

m=−1

2
∑

n=−1
am(β

k
i )an

(
ηk

j

)
Pk

i+m,j+n.

(9)

3.2. Local Parametrization Surface Subdivision

Each subdivision step generates a refinement mesh with additional vertices, edges,
and faces, as a consequence of which a suitable parameterization should be set in correspon-
dence to the newly created edges. The method (tensor product) we choose to calculate the
knot interval parameter (average parameter) affects the characteristics of the limit surface.
In order to ensure that our subdivision rules can appropriately deal with non-uniform
mesh, we propose a local parameterization method.

As shown in Figure 5 (right), when generating a new face point on a quadrilateral
with Pk

i,j, Pk
i+1,j, Pk

i,j+1, Pk
i+1,j+1 as the vertex (the point may not be in the quadrilateral),

in order to avoid the influence of “farther” points, we only consider the six parameters
(dk

i+k,j+l , ek
i+k,j+l , k = −1, 0, 1, l = 0, 1) of the other four faces connected with one edge of

the quadrilateral and adjust the parameters locally, resulting in a local subdivision scheme
of the calculated face points.

As shown in Figure 5 (right), let

d̃k
i,j =

dk
i,j + dk

i,j+1

2
, ẽk

i,j =
ek

i,j + ek
i+1,j

2
, (10)

and four mask parameters in two directions are recorded as

Mk
i,j =

{
d̃k

i−1,j, d̃k
i,j, d̃k

i+1,j

}
, Nk

i,j =
{

d̃k
i+1,j, d̃k

i,j, d̃k
i−1,j

}
,

Hk
i,j =

{
ẽk

i,j−1, ẽk
i,j, ẽk

i,j+1

}
, Lk

i,j =
{

ẽk
i,j+1, ẽk

i,j, ẽk
i,j−1

}
,

so that the face points can be calculation as
Pk+1

3i+1,3j+1 = ∑2
m=−1 ∑2

n=−1 am

(
Mk

i,j

)
an

(
Hk

i,j

)
Pk

i+m,j+n , Pk+1
3i+2,3j+1 = ∑2

m=−1 ∑2
n=−1 am

(
Nk

i,j

)
an

(
Hk

i,j

)
Pk

i+m,j+n ,

Pk+1
3i+1,3j+2 = ∑2

m=−1 ∑2
n=−1 am

(
Mk

i,j

)
an

(
Lk

i,j

)
Pk

i+m,j+n Pk+1
3i+2,3j+2 = ∑2

m=−1 ∑2
n=−1 am

(
Nk

i,j

)
an

(
Lk

i,j

)
Pk

i+m,j+n .
(11)

3.3. Convergence and Continuity of NULTISS

According to the mask calculation formula of curve subdivision, we refer to dk
i as

the edge parameter. The mask parameter is composed of three adjacent edge parameters.
Local parameterization surface subdivision is a non-stationary subdivision, and the mask
changes with changes in the edge parameters. Furthermore, each subdivision generates
a refined mesh with more vertices, edges, and surfaces. In order to analyze the shape of
the limit surface according to the change rule of mask parameters, we redefine the vertex
subscript and edge parameter subscript of the initial mesh, as indicated in Figure 6 (left
and right) by the edge parameter subscript after two refinement steps.
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In particular, after one step of the subdivision algorithm, three different types of
regions are identified (see Figure 7), which we call
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1. Tensor product regions, as shown in Figure 7 (left);
2. Regions augmented across one edge, as shown in Figure 7 (middle);
3. Regions augmented around a vertex, as shown in Figure 7 (right).

3.3.1. Parameter Updating Rules

(1) Mask parameter updating rules for interior points in the region are generated by tensor product.

As shown in Figure 8 (left), let P0
0 , P0

1 , P0
2 , P0

37 be the four vertices of an initial quadrilat-
eral, and the parameters of its four edges are d0

1, d0
5, d0

3, d0
19. The points F1 and F2 are two

face points on the refinement mesh generated after two subdivisions and three subdivi-
sions, respectively. Because the subdivision scheme is a ternary interpolation subdivision,
after k subdivisions, the values of the edge parameters are 1

3 of the average value of
symmetrical edge parameters after k − 1 subdivisions. According to Formula (8), the
mask parameters in two directions used to generate F1 are [d1

1, d1
1, d1

1] and
[
d1

5, d1
5, d1

5
]
, as
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shown in Figure 8 (left), where d1
1 =

d0
1+d0

3
6 and d1

5 =
d0

18+d0
19

6 . According to mask com-
puter Formulas (3) and (4), we can replace the mask parameters with [1, 1, 1] and [1, 1, 1],
as shown in Figure 8 (right). Similarly, the mask parameters for F2 are

[
d2

1, d2
1, d2

1
]

and[
d2

5, d2
5, d2

5
]
, as shown in Figure 8 (left), where d1

1 =
d0

1+36d0
3

36 and d1
5 =

d0
5+3d0

19
36 can also be

replaced by [1, 1, 1] and [1, 1, 1], respectively.
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Figure 8. Updating of the mask parameters around the face point after two and three refinement
steps. Left: the mask parameters of the face point F1 and F2. Right: according to (4), the mask
parameters are replaced by [1, 1, 1] and [1, 1, 1].

Based on the above analysis, after several levels of refinement, for any point on the
limit surface in the internal regions, the mask parameters that generate this point are
uniform, as shown in Figure 8 (right).

(2) Mask parameter updating rules for points in the region augmented across one edge

As shown in Figure 9, P0
0 P0

19 and P0
0 P0

7 are two initial edges connected with P0
0 . E1 is

the point in the regions augmented across edge P0
0 P0

19, and E2 is the point in the regions
augmented across the edge P0

0 P0
7 , which were generated after two subdivisions and three

subdivisions, respectively. The mask parameters in the two directions used to generate

E1 are
[
d1

13, d1
1, d1

1
]

and
[

d1
5+d0

19
2 , d1

5+d0
19

2 , d1
5+d0

19
2

]
, where d1

13 =
d0

13+d0
23

2 and d1
1 =

d0
1+d0

3
2 . In a

similar way, the second mask parameter can be changed to [1, 1, 1]. The mask parameters
for E2 are

[
d2

13, d2
1, d2

1
]

and [1, 1, 1].
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Figure 9. Updating of the mask parameters around the edge point after two subdivisions and three
subdivisions. Left: after two subdivisions and three subdivisions, the mask parameters of E1 and E2.
Right: the mask parameters after several subdivisions.

Based on the above analysis, it can be seen that for any point on the limit surface in the
regions augmented across the edge, of the two mask parameters that generate this point,
one is uniform and the other is non-uniform, as shown in Figure 9 (right).

(3) Mask parameter updating rules for points in the region augmented around a vertex

As shown in Figure 10 (left), the initial mask parameters (α0
0 and β0

0) of P0
0 are[

d0
13 + d0

23
2

,
d0

1 + d0
3

2
,

d0
1 + d0

3
2

]
and

[
d0

7 + d0
9

2
,

d0
19 + d0

5
2

,
d0

19 + d0
5

2

]
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V1 is a face point generated after two subdivisions in the augmented region (Figure 10
(Left)) around vertex P0

0 . The mask parameters in two directions generated by Formula

(10) are
[

3d0
13+d0

23
4 , 3d0

1+d0
3

4 , 3d0
1+d0

3
4

]
and

[
3d0

7+d0
9

4 , 3d0
19+d0

5
4 , 3d0

19+d0
5

4

]
. If Vk is a surface point

generated after k subdivisions, the mask parameters in the two directions (αk
0 and βk

0) for
Vk are[ (

2k − 1
)
d0

13 + d0
23

2k ,

(
2k − 1

)
d0

1 + d0
3

2k ,

(
2k − 1

)
d0

1 + d0
3

2k

]
and

[ (
2k − 1

)
d0

7 + d0
9

2k ,

(
2k − 1

)
d0

19 + d0
5

2k ,

(
2k − 1

)
d0

19 + d0
5

2k

]
,

as shown in Figure 10 (right).

3.3.2. Convergence and Continuity of NULTISS

In order to analyze the continuity of the limit surface, we first divide it into three
patches, as shown in Figure 11 (left):

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 22 
 

 

  

Figure 10. Left: updating of the mask parameters around the vertex after two subdivisions. Right: 
the mask parameters around the vertex after 𝑘 subdivisions. 

3.3.2. Convergence and Continuity of NULTISS 
In order to analyze the continuity of the limit surface, we first divide it into three 

patches, as shown in Figure 11 (left): 
1. The surface patch corresponding to the tensor product region (denoted by 𝐹 , i.e., 

the internal region surrounded by red solid lines); 
2. The surface patch corresponding to the region augmented across one edge (denoted 

by 𝐹 , i.e., the internal region surrounded by blue dotted lines); 
3. The surface patch corresponding to the region augmented around a vertex (denoted 

by 𝐹 , i.e., the internal region surrounded by green dotted lines). 

  

Figure 11. Three kinds of patches of the limit surface. Left: three types of limit surface. Right: the 
schematic diagram of the tensor product regions after 1, 2, 3 and 4 subdivisions. 
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1. The surface patch corresponding to the tensor product region (denoted by Fin, i.e., the
internal region surrounded by red solid lines);

2. The surface patch corresponding to the region augmented across one edge (denoted
by Fe, i.e., the internal region surrounded by blue dotted lines);

3. The surface patch corresponding to the region augmented around a vertex (denoted
by Fv, i.e., the internal region surrounded by green dotted lines).

Figure 11 (right) shows the change in patches Fin and Fe upon subsequent subdivisions;
during the subdivision process, patch Fin expands to the region corresponding to the initial
quadrilateral, and patch Fe shrinks to a curve (denoted by Fe\Fin) corresponding to the
initial edge.

Theorem 3. For any point (F) inside of Fin, NULTISS generates a C1-continuous limit surface at
this point.

Proof of Theorem 3. Based on the analysis presented in Section 3.3.1 (1), we can see that the
mask parameters in two directions from a point (F) are uniform after several subdivisions.
Thus, in these regions, the scheme converges to the tensor product surface generated by a
C1 uniform four-point ternary scheme so that the limit surface at F is C1 continuous. �

Theorem 4. For any point (E) inside of Fe\Fin, the limit surface generated at E by NULTISS is
C1 continuous.
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Proof of Theorem 4. On the one hand, according to the analysis presented in Section 3.3.1
(2), the mask parameters for point E in one direction (along the direction of the intersection
of two inner surfaces) are uniform, so Fe\Fin is a limit curve obtained by a uniform four-
point ternary subdivision scheme. On the other hand, this curve is the intersection of
two C1 continuous surface patches corresponding to two adjacent initial quadrilaterals.
Accordingly, for any point (E) inside of Fe\Fin, the limit surface generated at this point by
NULTISS is C1 continuous. �

What follows is proof of the convergence and continuity of the limit surface at
the vertex.

In this paper, the Lagrange interpolation basis function (Li(t), i = −1, 0, 1, 2) is used to
obtain the mask. Because Li(t) is a cubic polynomial function, at any closed interval ([a, b]),
it is bounded and Lipschitz continuous; then, for any t1, t2 ∈ R, there exists a constant
M > 0 independent of a, b. Accordingly,

|Li(t1)− Li(t2)| ≤ M(t1 − t2).

Non-uniform tensor product stationary subdivision method: V0 is the initial vertex,
and α0 = [a, b, b] and β0 = [c, d, d] are the initial mask parameters; therefore, according to
Formulas (3) and (4), we can obtain the mask (al(α0), al(β0), l = −1, 0, 1, 2). Let Vk

1 (as
Pk

3i+1,3j+1) be the face points on the surface obtained after k subdivisions; the mask for Vk
1

is still al(α0), al(β0). It can be easily observed that the mask is independent of level k, and
this operator is a stationary subdivision operator on the initial mesh. Let the parameter
in the horizontal direction of V0 be t0,x and that in the vertical direction be t0,y; then, the
parameters of Vk

1 are denoted by tk
1,x, tk

1,y, and tk
1,x = t0,x +

b
3k , tk

1,y = t0,y +
d
3k . Thus, the

mask for Vk
1 can be expressed as

al(α
k
1) = al (α0) = Ll

(
tk
1,x

)
, al

(
βk

1

)
= al(β0) = Ll

(
tk
1,y

)
, l = −1, 0, 1, 2.

Non-uniform tensor product non-stationary subdivision method: Assume that Vk
2 is

a face with points generated after k subdivision by NULTISS. The mask parameters for
Vk

2 are denoted by αk
2 and βk

2 according to the instructions (3) presented in Section 3.3.1.

Then, αk
2 =

[
a + A

2k , b + B
2k , b + B

2k

]
, βk

2 =
[
c + C

2k , d + D
2k , d + D

2k

]
, where A, B, C, D ∈ R.

The horizontal direction parameter for Vk
2 is denoted by tk

2,x; then, tk
2,x = t0,x +

b
3k +

B
3·2k .

The vertical direction parameter is denoted by tk
2,y; then, tk

2,y = t0,y +
d
3k +

D
3·2k . Therefore,

the mask used to compute Vk
2 can be expressed as ai(α

k
2) = Li

(
tk
2,x

)
, ai

(
βk

2

)
= Li

(
tk
2,y

)
.

1. If tk
1,x, tk

2,x ∈ Ix :=
[
0, max

{
a + 2b, a + 2b + A

2 + B
}]

, then

∣∣∣ai

(
αk

2

)
− ai

(
αk

1

)∣∣∣ = ∣∣∣Li

(
tk
2,x

)
− Li

(
tk
1,x

)∣∣∣ ≤ M1·
|B|
3·2k ,

where M1 is a constant independent of k.
2. If tk

1,y, tk
2,y ∈ Iy :=

[
0, max

{
c + 2d, c + 2d + C

2 + D
}]

, then

∣∣∣ai

(
βk

2

)
− ai

(
βk

1

)∣∣∣ = ∣∣∣Li

(
tk
2,y

)
− Li

(
tk
1,y

)∣∣∣ ≤ M2·
|D|
3·2k ,

where M2 is a constant independent of k.
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Theorem 5. At any point (V) in the augmented region of the initial vertex, the local matrix
operator (Mk

2 =
(

m2
i,j

)
) of NULTISS is asymptotically equivalent to the local matrix operator

(M1 =
(

m1
i,j

)
) of the non-uniform tensor product stationary subdivision scheme.

Proof of Theorem 5. Let Vk
1 be a point generated by non-uniform stationary tensor product

surface subdivision and Vk
2 be the point generated by NULTISS; therefore,

Vk
1 = ∑2

s=−1 ∑2
l=−1 as

(
αk

1

)
al

(
βk

1

)
Pk−1

i+s,j+l = ∑2
s=−1 ∑2

l=−1 Ls

(
tk
1,x

)
Ll

(
tk
1,y

)
Pk−1

i+s,j+l ,

Vk
2 = ∑2

s=−1 ∑2
l=−1 as

(
αk

2

)
al

(
βk

2

)
Pk−1

i+s,j+l = ∑2
s=−1 ∑2

l=−1 Ls

(
tk
2,x

)
Ll

(
tk
2,y

)
Pk−1

i+s,j+l .

We obtain

Vk
1 −Vk

2

= ∑2
s=−1 ∑2

l=−1 Ls

(
tk
1,x

)
Ll

(
tk
1,y

)
Pk−1

i+s,j+l −∑2
s=−1 ∑2

l=−1 Ls

(
tk
2,x

)
Ll

(
tk
2,y

)
Pk−1

i+s,j+l

= ∑2
s=−1

{
∑2

l=−1[Ls

(
tk
1,x

)
Ll

(
tk
1,y

)
− Ls

(
tk
2,x

)
Ll

(
tk
2,y

)
]Pk−1

i+s,j+l

}
= ∑2

s=−1

{
∑2

l=−1[Ll

(
tk
1,y

)
(Ls

(
tk
1,x

)
− Ls

(
tk
2,x

)
)− Ls

(
tk
2,x

)
(Ll

(
tk
2,y

)
− Ll

(
tk
1,y

)
)]Pk−1

i+s,j+l

}
,

therefore,

∑j

∣∣∣m1
i,j −m2

i,j

∣∣∣
=
∣∣∣∑2

s=−1

{
∑2

l=−1[Ll

(
tk
1,y

)
(Ls

(
tk
1,x

)
− Ls

(
tk
2,x

)
)− Ls

(
tk
2,x

)
(Ll

(
tk
2,y

)
− Ll

(
tk
1,y

)
)]
}

≤ ∑2
s=−1

{
∑2

l=−1[Ll

(
tk
1,y

)∣∣∣Ls

(
tk
1,x

)
− Ls

(
tk
2,x

)∣∣∣+Ls

(
tk
2,x

)∣∣∣Ll

(
tk
2,y

)
− Ll

(
tk
1,y

)∣∣∣]}
≤ ∑2

s=−1 ∑2
l=−1[Ll

(
tk
1,y

)
·M1· |B|3·2k + Ls

(
tk
2,x

)
·M2· |D|3·2k ].

Let M = max{M1·|B|, M2·|D|}; the,

∑j

∣∣∣m1
i,j −m2

i,j

∣∣∣ ≤ M
3·2k ∑2

s=−1 ∑2
l=−1[Ll

(
tk
1,y

)
+ Ls

(
tk
2,x

)
] =

M
3·2k .

So

∑k∈Z ‖Mk
2 −M1‖∞ = Maxi ∑j

∣∣∣m1
i,j −m2

i,j

∣∣∣ ≤ M
3·2k .

This concludes the proof. �

Theorem 6. The NULTISS rule generates a C1 continuous limit surface at any point.

Proof of Theorem 6. As shown in Figure 12, Theorem 3 shows that within the initial
surface patch, any point (F) on the limit surface is C1 continuous, and four surface patches
surrounded by nine vertices P0

i,j, i, j = −1, 0, 1 are continuous.
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According to Theorem 4, at any point (E) on the intersection curves ( f0(s), f1(s)), the
limit surface is C1 continuous.

Theorem 5 shows that the local matrix operator of NULTISS at the initial vertex is
asymptotically equivalent to the local matrix operator of the non-uniform tensor product
scheme. Because the limit curve of four-point ternary curve subdivision is C1 continuous,
the limit surface generated by the tensor product is also C1 continuous, so the limit surface
of NULTISS is also C1 continuous at the vertex.

Synthesis of the above points shows that the limit surface is C1 continuous at any point.
�

4. NULTISS on Irregular Quadrilateral Mesh
4.1. Construction Method of Virtual Points

Let p0
j be an extraordinary point with valance n;

{
p1,k

j , k = 1, 2, · · · , n
}

is a set of

edge points connected to p0
j ,
{

q1,k
j , k = 1, 2, · · · , n

}
is the set of vertex points symmetrical

to p0
j on the quadrilateral mesh, and d1,k

j = ‖p1,k
j − p0

j ‖, d̃1,k
j = ‖q1,k

j − p0
j ‖, as shown

in Figure 13.
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To compute the edge points on the m-th edge (p0
j pm

j ) according to Formula (8) and the
face points in the m-th quadrilateral region according to Formula (11), we need to find a
virtual point (Vm

j ) similar to the method described in [3]. Therefore, let

Vm
j = 1

A

[
4
n

n
∑

k=1

(
d1,m−3+k

j · p1,1,m−3+k
j

)
−

1
∑

l=−1
d1,m+l

j · p1,m+l
j

]

+B

[
4
n

n
∑

k=1
d̃m−3+k

j · pm−3+k
j −

1
∑

l=−2
d̃1,m+l

j · q1,m+l
j

]
,

(12)

where

A = ∑n
k=1

4d1,m−3+k
j

n
− d1,m−1

j − d1,m
j − d1,m+1

j ,

and

B = −

(
d1,m

j

)2(
d1,m

j + d1,m−2
j

)
(

d2,m
j + d1,m

j

)(
3d2,m

j + d1,m
j

)(
d2,m

j + d1,m
j + d1,m−2

j

) .

Note: if n = 4, then Vm
j = pm−2

j .

4.2. Construction of New Edge Points and Face Points of the Extraordinary Point

As show in Figure 14 (Left), assume that p0
j p1,m

j is the m-th edge of the extraordinary

point (p0
j ). Vm,0

j is the initial virtual point calculated by (12) (Figure 14 (right)). The initial

chordal parameter is denoted by d0,m
j = ‖Vm,0

j − p0
j ‖, and the initial mask parameters are

denoted as
αm,0

j =
[
d2,m

j , d1,m
j , d0,m

j

]
, βm,0

j =
[
d0,m

j , d1,m
j , d2,m

j

]
.
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Then, the mask parameters of the kth subdivision are

αm,k
j =

[
d2,m,k

j , d1,m,k
j , d0,m,k

j

]
, βm,k

j =
[
d0,m,k

j , d1,m,k
j , d2,m,k

j

]
,
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Therefore, the new edge points (blue points, as shown in Figure 14 (right)) in the
k + 1-th subdivision scheme can be computed as

p2,m,k+1
j = a−1

(
αm,k

j

)
p2,m,k

j + a0

(
αm,k

j

)
p1,m,k

j + a1

(
αm,k

j

)
p0

j + a2

(
αm,k

j

)
Vm,k

j ,

p1,m,k+1
j = a−1

(
βm,k

j

)
p2,k

j + a0

(
βm,k

j

)
p1,m,k

j + a1

(
βm,k

j

)
p0

j + a2

(
βm,k

j

)
Vm,k

j .

Let

d
2,m+1,k
j =

d2,m+1,k
j + d2,n+4m−1,k

j

2
, d

1,m+1,k
j =

d1,m+1,k
j + d1,n+2m−1,k

j

2
, d

1,m−1,k
j =

d1,m−1,k
j + d1,n+2m−2,k

j

2
,

and

d
1,m+2,k
j =

d1,m+2,k
j + d1,n+2m+1,k

j

2
, d

1,m,k
j =

d1,m,k
j + d1,n+2m,k

j

2
, d

2,m,k
j =

d2,m
j + d2,n+4m−2,k

j

2
.

For the chordal parameter after k subdivisions, the mask parameters of (k + 1)th
subdivision are

αm,k
j =

[
d

2,m+1,k
j , d

1,m+1,k
j , d

1,m−1,k
j

]
, βm,k

j =
[
d

1,m−1,k
j , d

1,m+1,k
j , d

2,m+1,k
j

]
,

ξm,k
j =

[
d

1,m+2,k
j , d

1,m,k
j , d

2,m,k
j

]
, ηm,k

j =
[
d

2,m,k
j , d

1,m,k
j , d

1,m+2,k
j

]
,

And the new face points in the (k + 1)th subdivision can be computed as

p2,n+m,k+1
j =

→
a
(

αm,k
j

)
· A ·→a

(
ξm,k

j

)T
, p2,n+3m,k+1

j =
→
a
(

βm,k
j

)
· A ·→a

(
ξm,k

j

)T
,

p2,n+3m−2,k+1
j =

→
a
(

αm,k
j

)
· A ·→a

(
ηm,k

j

)T
, p2,n+3m−1,k+1

j =
→
a
(

βm,k
j

)
· A ·→a

(
ηm,k

j

)T
.

where
→
a (∗) = [a−1(∗), a0(∗), a1(∗), a2(∗)] is the mask,

A =


p2,n+3m−1,k

j p2,n+3m−2,k
j p2,m,k

j p2,n+3m−3,k
j

p2,n+3m,k
j p1,n+m,k

j p1,m,k
j p1,n+m−1,k

j

p2,m+1,k
j p1,m+1,k

j p0
j p1,m−1,k

j

p2,n+3m+1,k
j p1,n+m+1,k

j p1,m+2,k
j V0,0,k

j

.

4.3. The Continuity of NULTISS at the Extraordinary Point

Because the method proposed in this paper is parametric and non-uniform, it is
difficult to analyze the characteristics of the subdivision matrix at an extraordinary point.
According to the method described in [16], we provide a numerical analysis below using
specific examples.

At the extraordinary point (Pk
i ) obtained after k subdivisions, let

⇀
v

k
i,j be the normal

vector of the plane determined by Pk
i and the adjacent points (Pk

i,j, Pk
i,j+1), as shown in

Figure 15, i.e.,
⇀
v

k
i,j =

⇀

Pk
i Pk

i,j ×
⇀

Pk
i Pk

i,j+1.
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The angle θk
i,j of the two vectors

⇀
v

k
i,j and

⇀
v

k
i,j+1 can be calculated as

θk
i,j = arccos

∣∣∣∣⇀v k
i,j ·

⇀
v

k
i,j+1

∣∣∣∣
‖⇀v

k
i,j‖ · ‖

⇀
v

k
i,j+1‖

,

where θk
i = max

1≤j≤n
θk

i,j is the maximum angle of normal vectors at point Pk
i , and n is the

valance of Pk
i .

We assumed an initial mesh with the largest angle between the normal vectors for
the experiments. The initial mesh is the nail with cross-shape mesh, and the vertices with
valances of 3, 5, and 6 were tested after k subdivisions. The result is shown in Table 1. All
our experimentation shows that the limit surfaces are G1 at the extraordinary points.

Table 1. The maximum angle between normal vectors of the extraordinary points with different
valances.

Valance of n k=0 k=1 k=3 k=5 k=7 k=9

n = 3 1.5807 1.1219 0.6724 0.2132 0.0134 0.0062
n = 5 1.5807 1.4567 0.9290 0.2614 0.0241 0.0035
n = 6 1.5807 1.5628 1.0799 0.3132 0.0071 0.0021

5. Numerical Examples
5.1. Numerical Experiments on Subdivision with UNFTCS

We conclude by presenting some numerical experimentation in order to demonstrate
the quality of NUFTCS limit curves, as shown in Figure 16. We randomly selected six
control vertices on a unit circle and generated the limit curve using NUFTCS. The red curve
is the limit curve generated by NUFTCS, and the green curve is the real curve (left). We
applied NUFTCS to the curve control polygon of space with 40 points, and the limit curve
is shown in Figure 16 (right).
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17 and 18. The first is a tire with a regular but non-uniform quadrilateral mesh. After three 
subdivisions, the mesh is dense and has a good lighting effect. The second example is a 
mesh formed by taking some points on the sphere. 

Figure 16. Subdivision curve with different control polygons. Left: planar control polygon (blue
solid line); the red curve is the limit curve with NUFTCS, and the green curve is the real curve. Right:
the space control polygon with 40 points, and the limit curve of the space control polygon generated
by NUFTCS.

5.2. Numerical Experiments on Subdivision with NULTISS on Regular Quadrilateral Mesh

Below, we provide two examples of the NULTISS limit surface, as shown in Figures 17
and 18. The first is a tire with a regular but non-uniform quadrilateral mesh. After three
subdivisions, the mesh is dense and has a good lighting effect. The second example is a
mesh formed by taking some points on the sphere.
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5.3. Numerical Experiments on Subdivision with NULTISS on Irregular Quadrilateral Mesh

Below, we present an example of the NULTISS limit surface on irregular quadrilateral
mesh, as shown in Figure 19. The model is a nail with a cross shape; the extraordinary
points of the initial mesh of the model have three different valences, i.e., 3, 5, and 6; the
chord length is refined twice, and an adequate mesh shape is obtained.
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6. Discussion

In this paper, a novel method of curve subdivision based on non-uniform four-point
ternary interpolation is proposed. Compared with uniform interpolation, the limit curve
generated by our proposed method can avoid self-intersection and can effectively reflect
the geometric characteristics of the control polygon. Moreover, using a tensor product,
we also propose a non-uniform ternary surface subdivision scheme. In contrast to the
method proposed in [16], this scheme has specific subdivision rules and formats on regular
quadrilateral meshes, as well as mask calculation formula. In contrast to the method
described in [15], we propose specific subdivision rules for extraordinary points. The
effectiveness and superiority of our method are demonstrated by specific model examples.

Because subdivision rules are not limited by topology, we will further expand the
application of the methods proposed in this paper in practical problems, such as point
cloud reconstruction, grid optimization [28], etc. With respect to point cloud reconstruction,
we will utilize point cloud compression technology, feature extraction technology, and a
quadrilateral mesh generation method [29] to establish quadrilateral mesh, then use the
method proposed in this paper to generate a limit surface.
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