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Abstract: The effects of the combined utilization of wavy wall and different nanoparticle shapes
in heat transfer fluid for a thermoelectric generator (TEG) mounted vented cavity are numerically
analyzed. A triangular wave form of the cavity is used, while spherical and cylindrical-shaped
alumina nanoparticles are used in water up to a loading amount of 0.03 as solid volume fraction. The
impacts of wave amplitude on flow and output power features are significant compared to those of
the wave number. The increment in the generated power is in the range of 74.48–92.4% when the
wave amplitude is varied. The nanoparticle shape and loading amount are effective in the rise of
the TEG power, while by using cylindrical-shaped nanoparticles, higher powers are produced as
compared to spherical ones. The rise in the TEG power by the highest loading amount is achieved
as 50.7% with cylindrical-shaped particles, while it is only 4% with spherical-shaped ones. Up to
a 194% rise of TEG power is attained by using the triangular wavy form of the wall and including
cylindrical-shaped nanoparticles as compared to a flat-walled cavity using only pure fluid.

Keywords: triangular wave; vented cavity; nanoparticle shape; thermoelectric; FEM

MSC: 76D25; 76D55; 80M10; 80M50; 76S05

1. Introduction

Alternative energy sources are needed nowadays due to the rising cost of energy
and other issues related to the environment. Thermal to electrical energy conversions are
obtained by using thermoelectric generators (TEGs). These devices offer many advantages
when integrated in thermal systems, and some applications include solar, refrigeration,
waste heat recovery and thermal management in heat transfer (HT) equipment. Their
compactness, low noise generation features and operating without any moving parts are
some of the advantages when used in energy-related systems. Many different applications
of TEGs have been reviewed in Ref. [1]. They also mentioned the material properties of
TEGs on the overall performance. They concluded that in heat exchanger devices, the
presence of structures had negative impacts on the system performance. In the study of
Karthick et al. [2], various applications of TEG devices were mentioned including pho-
tovoltaic panels and solar desalination systems. Some of the advantages of using TEG
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in those systems and their impacts on the overall performance increase were addressed
along with the available challenges. Champier [3] presented a comprehensive review for
the thermoelectricity principles, optimization and design systematic of generators. Many
different applications of TEG including microelectronics, solar power, working in extreme
environments and many more have been addressed. It was noted that TEG can be used
as a potential source almost anywhere in the industry. Considerations of TEG material
properties have been addressed in many studies [4,5].

The TEG devices can be installed in many systems including channels/cavities. In
between the channels, which carry hot and cold fluids, TEG devices can be mounted to
produce electricity. In between the cavities, where the temperature gradient occurs, thermo-
electric energy conversion is possible. To increase the effectiveness of using TEGs in those
systems, flow and convective HT features should be increased. Many different methods are
available to increase the HT performance of thermal systems. Some application examples
include the installation of objects in channels and forming the channel walls in various
shapes [6–13]. The presence of the wavy walls will increase the thermal mixing efficiency
and enhanced thermal transport. The flow and HT control can be achieved by using wavy
channels. The wave form and its parameters such as the frequency and amplitude of the
wavy pattern have been shown to be influential on convective HT features [14–18]. In
a vented cavity (VC), the flow pattern formation is very complicated, and using wavy
walls influences the flow and HT behavior. The VCs are used in different thermal science
applications such as in HVAC (heating/ventilation and air conditioning), electronic cool-
ing, heat exchangers and many more [19–23]. In another method of thermal performance
intensification, nano-sized particles can be used in HT fluid. The so-called nanofluids (NFs)
technology has been successfully used in diverse energy systems [24–29]. Over the years,
many advancements and efficient computational tools have been developed for accurately
predicting the NF impacts on performance enhancements. Different NFs have been con-
sidered, and many aspects of using NFs such as the shape effects of nanoparticles (NPs),
non-Newtonian behavior and different modeling strategies have been considered [30–34].
In TEG installed systems, the utilization of NFs has been addressed in many studies [35–42].
The NF type and its loading amount are among the important factors for controlling the
overall efficiency (energy/exergy) of the TEG- installed systems, while different perfor-
mance improvements were reported depending upon the NP type. The shape effects of
NPs in HT devices have been considered in many studies [24,43–45]. Along with the NP
loading, the shape effects of the NPs are important for the overall thermal performance of
HT equipment.

In this work, thermo-electric energy conversion from VC having triangular-shaped
wavy walls is numerically assessed. In the HT fluid, NP shape effects of alumina in water
are considered along with its loading amount in the base fluid. Triangular wavy wall param-
eters such as the number and height of the waves are used. Their impacts on the complex
flow field with the VCs and on the thermo-electric energy conversion characteristics are
analyzed. In the literature, some aspects of NF such as the non-Newtonian behavior of NFs
have been addressed by using FEMs such as in [46–48]. Even for the TEG mounted systems,
non-Newtonian NFs have been used. In the work of [49], a TEG module was mounted in
between the chaotic channels where non-Newtonian NF was considered in the channels.
In another work, Khedher et al. [50] performed an optimization of TEG performance by
using combined effects of shear thinning NFs and rotating cylinder in a VC. In both studies,
the TEG performance was found to be influenced by the power law index and NP loading
in the base fluid. However, in the literature, there is no study that considers the shape
factor effects of NPs in TEG installed systems. In addition to that, wavy wall parameters
of both VC that carry hot and cold NFs are considered to achieve the best performance,
while a flat wall VC case using only PF is the reference case. As many applications of
TEGs are available including diverse HT equipment and many energy-related products,
the outcomes of this work are useful for design optimization and further evaluation about
the potential of performance enhancement of TEG installed systems.
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2. Mathematical Model

Thermoelectric conversion from TEG installed corrugated cavities are considered when
NFs having differently shaped particles are utilized. A schematic view of the computational
system is given in Figure 1. Rectangular-shaped vented cavities (VCs) having one inlet and
one outlet port are considered, while triangular-shaped corrugation is used for the vertical
right walls. The inlet–outlet port sizes are wi = wo = 0.2xm, where xm denotes the height of
the cavities. The corrugation form is parametrized by using wave amplitude (xh) and wave
number (N). Up to 40% of the cavity wall is considered as the height of the corrugation,
while the wave number is varied between 1 and 8. The VCs carry hot and cold NFs with
different-shaped alumina NPs. In between the VCs, a TEG device is built. The TEG has
many legs (80) of 2 mm of length, height and width. For the conductor, the width, length
and height are 4.5 mm, 2 mm and 0.2 mm, respectively. A ceramic material with 0.3 mm
thickness is utilized. Table 1 shows the properties of the TEG material.

The NF is a single phase model which considers the shape effects of using NPs in PF.
The following effects are not considered: viscous dissipation, free convection and radiation.
Governing equations (GEs) for the hot and cold VCs:

∇.(ρu) = 0 (1)

∂ρu
∂t

+∇.(ρuu) = −∇p +∇.τ (2)

∂T
∂t

+∇.(uT) = α∇2T (3)

The shear stress is given by:

τ = µ
(
∇u + (∇u)T

)
, (4)

where dynamic viscosity is given by µ. Coupling of the electric and thermal field are
given as:

∇.J = 0, E = ρJ + α∇T, q = ΠJ − k∇T,

Π = αT, J = σ(E− α∇T), E = −∇V.
(5)

The Peltier coefficient is given by Π, while the heat flux and current density are given
by q and J. The GEs in the solid domain are given by [51]:

∇(k∇T) +
J2

σ
− TJ.∇α = 0 (6)

The figure of merit and Seebeck coefficient are described as:

ZT =
α2σ

k
T, α = −∆V

∆T
. (7)

The terms k and σ represent the thermal conductivity and electrical conductivity.
At the inlet of the hot and cold VCs, NF velocities are uh and uc, while hot and cold

temperatures are given by Th and Tc. Pressure outlet is used at the exit of the cavities. The
VC walls are considered to be adiabatic ( ∂T

∂n = 0). The ground (zero electrical potential,
V = 0) and current are zero at the terminal. At the solid surfaces, electrical insulation is
used except for the ceramics (n.J = 0).
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Figure 1. Schematic view of 3D model (a) and 2D model with boundary conditions (b).

Table 1. Material properties of the TEG module.

Symbol P Type Leg
(Bi2Te3)

N Type Leg
(Bi2Te3)

Electrode
(Copper)

Ceramic
(Alumina)

Thermal
conductivity k (W/m K) 1.6 1.6 400 27

Electric
conductivity σ (S/m) 0.8× 105 0.81× 105 5.9× 108 -

Seebeck
coefficient α (V/K) 2.1× 10−4 −2.1× 10−4 6.5× 10−6 -

Heat capacity Cp (J/kg K) 154 154 385 900
Density ρ (kg/m3) 7700 7700 8960 3900
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The Reynolds number (Re) based on the characteristics length, which is two times
the width of the inlet port, Dh = 2wi, is used. The Re values for hot and cold cavities are
given as:

Rec =
ρucDh

µ
, Reh =

ρuhDh
µ

. (8)

As the HT fluid, NF and PF are considered. NF considers alumina NPs up to SV of
0.03. We considered cylindrical-shaped NPs in water. Table 2 presents the the NP and PF
properties. The relation for the thermal conductivity and viscosity accounts for the shape
effects of NPs as [52]:

kn f

µ f
= 1 + Ckφ, (9)

µn f

µ f
= 1 + A1φ + A2φ2, (10)

where Ck, A1 and A2 denote the constants (values are in Table 3).
When spherical-shaped NPs are considered, the Brownian motion of the NPs is taken

into account. The relations for thermal conductivity and viscosity are [53]:

kn f = kstatic + kBrownian =
kp + 2k f − 2(k f − kp)

kp + 2k f + (k f − kp)φ
k f

+ 5× 104βφ f (Cp) f

√
kbT
ρpdp

f (T, φ)

(11)

µn f = µstatic + µBrownian

=
µ f

(1− φ)2.5 + 5× 104βφ f (Cp) f
µ f

k f Pr

√
kbT
ρpdp

f (T, φ).
(12)

Spherical NPs of 47 nm are used, and the function f and β are given as [53]:

f (T, φ) =
(

2.8217× 10−2φ + 3.917× 10−3
)( T

T0

)
+

+
(
−3.0669× 10−2φ− 3.91123× 10−3

)
, β = 8.4407(100φ)−1.07304

(13)

The density and specific heat are described as in the following:

ρn f = (1− φ)ρ f + φρp, (ρCp)n f = (1− φ)(ρCp) f + φ(ρCp)p. (14)

Table 2. Thermophysical properties of water and alumina [31].

Property Symbol Water Al2O3

Density (kg/m3) ρ 997 3970
Specific heat (J/kg K) cp 4179 765

Viscosity (mPa.s) µ 0.895 -
Thermal conductivity (W/m K) k 0.613 40

Table 3. Constant values for different shapes of Al2O3 NPs [52].

Shape Ck A1 A2

Blade 2.74 14.6 123.3
Cylinder 3.95 13.5 904.4

Bricks 3.37 1.9 471.4
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As for the solution method, Galerkin-weighted residual (GWR) finite element method
(FEM) is used. The basic procedures and most modeling aspects of FEM in flow and HT
problems can be found in the following sources [54–56]. Both in the VC and in the TEG
domain, flow variable (V) approximations are performed by using:

V =
N

∑
j=1

Φs
j gj (15)

where Φ denotes the shape function, while g is the nodal value. The resulting residual R is
set to be zero as: weight function (W):∫

V
WRdV = 0. (16)

by using weight function W. Lagrange FEMs of different orders are considered while the
value for convergence criteria is set to be as 10−7. The SUPG (Streamline-Upwind Petrov–
Galerkin) is considered for handling numerical instability in the solver, while BICGStab
(Biconjugate gradient stabilized method) is used as the solver.

Grid tests are conducted to obtain a suitable gird distribution of the computational
model, as computing time is expensive for the coupled 3D TEG embedded system. Figure 2a
shows the PW variations of the TEG module considering different grid sizes. Grid system
G4 with 3,624,115 elements is selected, and the grid distribution of the wavy VC with
embedded TEG is given in Figure 2b. Its variation is refined toward the walls and at the
TEG–cavity wall interfaces.

Element number ×10
6

0 1 2 3 4 5 6 7

P
W

0.6

0.8

1

1.2

1.4

1.6

1.8

G1

G1

G2

G2

G3

G3

G5

G5

G4=3624115

G4=3624115

(a)

(b)

Figure 2. Grid independence test (GIT) results: (a) PW variations with different grid sizes at two
different SvF using cylindrical NPs (N = 4, xh = 0.3xm) and grid distributions (b).
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The code is validated by using the available results in Ref. [57] where convection in a
VC was analyzed. The impacts of different port locations on the convective HT behavior
were analyzed. A comparison of streamline distributions at Re = 500 is shown in Figure 3a,b.
The vortex size and shape below the inlet port and on the top corner are captured well with
the present code. Average Nu comparisons for different Re values are shown in Figure 3c.
The average Nu is captured very well as compared to the results of Ref. [57].

At the outlet port (S= s /H= S0− 0.5W to S0 + 0.5W), the outflow
boundary condition was used for the velocity and temperature
fields.

Based on the above formulation, it is clear that the dimensionless
parameters governing this problem are Re, Pr, Gr, S0 and W. In this
study, the Prandtl number of the fluid is fixed to 5, the Reynolds num-
bers considered are 10, 40, 100 and 500, and the Richardson numbers
considered are 0, 1 and 10.

In order to evaluate the heat transfer enhancement along the walls,
it is necessary to observe the variations of the local and average Nusselt
numbers on the walls which are defined as follow:

Nui ¼ −
knf
k f

∂θ
∂n

����wall ð15Þ

Nui τð Þ ¼ −1
li

Zli
0

knf
k f

∂θ
∂n

����walldS ð16Þ

with the subscript i representing b, l, r and t that correspond to the
bottom, left, right and top walls, respectively. Also the dimensionless
pressure drop which is related to the difference between the average
pressures of the inlet and outlet ports is defined by the following
equation:

cp ¼ pin−pout
1=2ρu2

in

ð17Þ

where the average pressure is calculated by integrating the pressure
over the inlet and outlet ports.

Ri = 10Ri = 1Ri = 0

Fig. 3. Streamlines for Re= 500 and (a) Ri= 0, (b) Ri= 1, and (c) Ri= 10 for four positions of the outlet port (S0 = 3.125, 2.875, 2.5 and 2.125).

74 E. Sourtiji et al. / Powder Technology 262 (2014) 71–81

(a) (b)

Re10 40 100 500

N
u

m

5

10

15

20

present solver

Sourtiji et al. [2014]

(c)

Figure 3. Comparison of streamline distributions within the VC at Re = 500 available in the work of
Ref. [57] (a) and obtained with the present code (b); average Nu versus Re comparisons (c).

3. Results and Discussion

The combined utilization of wavy surface and shaped effects of NPs in base fluid on
the overall performance of a TEG mounted in between cavities carrying hot and cold NF
is numerically assessed. A triangular form of the wave corrugation is used with wave
number ranging from N = 1 to N = 8, while the height of the triangle is considered between
xh = 0.01xm and xh = 0.4xm. The corrugation of the right surfaces is considered for both
hot and cold cavities. Alumina–water NF with spherical and cylindrical-shaped NPs is
used in both cavities and the solid volume fraction (SV) of particles is taken between 0 and
0.03. Power generation of the TEG device considering different cavity surfaces (flat, wavy)
and different fluid types (water, NF with differently shaped particles) are explored.

Figure 4 shows the flow pattern formation considering different wave numbers and
corrugation amplitudes. Vortices are established near the top and bottom corner of the
upper and lower cavity for all amplitudes and wave numbers. At N = 2, an additional
vortex is formed in the pocket of the triangular cavity for both cavities. When N is further
increased, the flow stream from the inlet to exit port is deflected more. When the amplitude
is increased, the impacts become more pronounced, while in the mini-cavities, the vortex
sizes become larger. The temperature variations near the TEG interfaces are influenced
by the wavy configuration of the cavities and varying its parameters (amplitude and
wave number). The maximum value of the temperature increases with higher values of
corrugation amplitude (Figure 5). The maximum value of electric potential rises from 0.97
to 1.09 V when N is increased from N = 1 to N = 8. However, the impacts of wave amplitude
on the electric potential and temperature distributions are more compared to wave number.
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The maximum electric potential values rises from 0.91 to 1.2 V when amplitude is increased
from 0.01 to 0.4xm.

(a) N = 1 (b) N = 2 (c) N = 4 (d) N = 8

(e) xh = 0.01xm (f) xh = 0.1xm (g) xh = 0.2xm (h) xh = 0.4xm

Figure 4. Effects of wavy wall number (xh = 0.3xm) and amplitude of the wavy wall (N = 4) on the
flow pattern variations with the VCs by using cylinder-shaped NPs in PF (SvF = 0.03).

(a) N = 1 (b) N = 2 (c) N = 4 (d) N = 8

(e) xh = 0.01xm (f) xh = 0.1xm (g) xh = 0.2xm (h) xh = 0.4xm

(i) xh = 0.01xm (j) xh = 0.1xm (k) xh = 0.2xm (l) xh = 0.4xm

Figure 5. Electric potential distribution for different wavy wall numbers ((a–d), xh = 0.3xm), ampli-
tude of the wavy wall ((e–h), N = 4) and variations of temperature within the TEG for different wave
amplitudes (i–l) by using cylindrical-shaped NPs in PF (SvF = 0.03).

Distributions of interface temperatures (ITs) with varying wavy surface parameters
are shown in Figure 6. The cold IT drops and hot IT rises with higher wave numbers. The
favorable impacts of the wave amplitude on the rise of hot IT are shown in Figure 6c. As
the wave number and amplitude are increased, the main fluid stream deflects more, and
impingement on the the TEG interface becomes effective, which results in a temperature
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rise on the hot side and temperature drop on the cold side. This results in a performance
increment of the TEG device. The generated power (PW) versus wave number and am-
plitude of corrugation is shown in Figure 7 for NFs with two shapes of the NPs in the BF.
The NF effective properties are altered by using differently shaped NPs of the BF. When
cylindrical-shaped NPs are used, th PW value is higher as compared to spherical-shaped
ones. The amount of rise in the output power is obtained as 29.44% for NF-spherical
and 25.5% for NF-cylinder when N is increased from N = 1 to N = 8. Using NF-cylinder
instead of NF-spherical improved the generated PW by about 25% at N = 1 and 21.4% at
N = 8. When the amplitude of the wavy surface is increased from 0.01xm (nearly flat) to
xh = 0.4xm, the PW value rises by about 92.4% for NF-spherical and 74.48% for NF-cylinder.
The impact of amplitude is significant and more pronounced on the performance enhance-
ment as compared to wave number, while the potential of using NF-spherical is higher
even though the PW values for NF-cylindrical are higher. The wavy surface parameters are
effective in increasing the generated PW of the TEG device.

s
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T
c

296
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299
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301

302

N=1

N=2

N=4

N=8

(a)

s

0 0.005 0.01 0.015 0.02

T
h
 

334

335

336

337

338

339

340
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N=2

N=4

N=8

(b)

s

0 0.005 0.01 0.015 0.02

T
h

333
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336
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(c)

Figure 6. Variation of IT between TEG and VC for different wavy wall numbers ((a,b), xh = 0.3xm)
and amplitude of the wavy wall ((c), N = 4) by using cylindrical-shaped NPs in PF (SvF = 0.03).
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Figure 7. Generated PW versus wavy wall numbers ((a), xh = 0.3xm) and amplitude of the wavy wall
((b), N = 4) by using cylindrical and spherical-shaped NPs in PF (SvF = 0.03).

The loading of both shaped (spherical and cylinder) NPs in BF provides higher thermal
transport due to the favorable features of NF thermal conductivity and increased velocity.
Impacts of varying the SV of NPs in the fluid on the streamline of the mid-planes, generated
electric potential and TEG temperature variation, are shown in Figure 8. The shapes of
the flow patterns are slightly affected while velocity rises with higher SV as the effective
viscosity of NF rises. The maximum value of the hot side temperature and electric potential
rise with higher SV, while the cold side temperature drops more. The max value of the
generated potential rises from 0.94 to 1.13 V with SV values rising from 0 to 0.03. The hot IT
distribution for varying SVs is shown in Figure 9 for spherical and cylindrical-shaped NPs.
For both NP shapes, the temperature rises with higher SV, but the increment amount is
significant when cylindrical-shaped NPs are used. The comparison of PF, NF-spherical and
NF-cylinder at the highest loading is shown in Figure 10a. The increment in the hot IT with
NF-cylinder is apparent. When PW features are compared with varying the loading amount
of NPs in the BF, a significant rise of PW is observed with a cylindrical shape as compared
to spherical ones. The PW rise becomes 50.7% at the highest loading for NF-cylinder while
it is only 4% for NF-spherical. These results show that both the NF loading amount and its
shape are very influential on the control of the generated PW features.
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(a) SvF = 0 (b) SvF = 0.01 (c) SvF = 0.02 (d) SvF = 0.03

(e) SvF = 0 (f) SvF = 0.01 (g) SvF = 0.02 (h) SvF = 0.03

(i) SvF = 0 (j) SvF = 0.01 (k) SvF = 0.02 (l) SvF = 0.03

Figure 8. Effects of NP loading amount in the base fluid on the streamline within VCs (a–d), temper-
ature of TEG (e–h) and electric potential (i–l) distributions by using cylindrical-shaped NPs in PF
(xh = 0.3xm, N = 4).
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Figure 9. Impacts of two different NP loadings of different shapes on the hot side IT variations (a) and
generated PW versus SvF of NPs in the base fluid with spherical and cylindrical-shaped NPs (b)
(xh = 0.3xm, N = 4).
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Figure 10. Hot side IT distributions by varying the NP loading amount in the base fluid by using
spherical-shaped (a) and cylindrical-shaped (b) NPs in PF (xh = 0.3xm, N = 4).

Different cases are compared in terms of PW enhancement amounts. As the reference
case, flat cavities using only water are considered. Figure 11a shows the electric potential
variation for the reference case, while the highest value of 0.78 V is obtained. When NF
is used instead of PF for a flat cavity, its values rises to 0.98 V. When corrugation of the
cavity is considered at the highest amplitude, its values rises up to 1.34 V with combined
utilization by adding NPs (cylindrical shape) in the base fluid. The PW generation features
for different cases of cavities by using only PF and NF are shown in Figure 11e. When
NF is used for a flat cavity instead of PF, a 57% increase of PW generation is seen. This is
attributed to the favorable transport features of using NF in both cavities, which results in
higher/lower ITs for the hot and cold cavity side. Therefore, the generated PW is increased
as a result of the higher temperature difference. The presence of the corrugation when
water is used results in a 132% PW generation increase. This amount is much higher than
using only NF in the flat cavity. The deflection of the fluid toward the hot and cold walls
and resulted enhanced velocity near the interface creates higher temperature differences,
while the generated PW is higher. When NF-cylinder is used with corrugation, which is the
most favorable case in terms of PW increment, the amount of generated PW rise becomes
194% as compared to the reference flat cavity using only water.
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Figure 11. Electric potential distributions for flat (a,b) and wavy (c,d) walled VC at two different NP
loadings by using cylindrical shaped NPs (xh = 0.3xm, N = 4) and comparisons of different cases on
the PW output of the TEG device (c).

4. Conclusions

In the present work, thermoelectric energy conversion for TEG mounted wavy VCs
is analyzed by using the shape effects of NPs in the HT fluids. Spherical and cylindrical-
shaped NPs are used, and a triangular shape wave form for one of the side walls of the VC
is considered. The following important conclusions can be stated:

• Impacts of wave amplitude on the flow field and conversion performance is significant
as compared to the wave number of the VCs.

• The rise of TEG power is in the range of 9.44–25.5% when varying the wave number,
while it is in the range of 74.48–92.4% when varying the amplitude of the triangular wave.

• When NFs with the highest and lowest amount of NPs are compared, TEG power
rises by about 50.7% for NF-cylinder while it is 4% for NF-spherical. Higher powers
are obtained by using cylindrical NPs as compared to spherical ones in the HT fluid.

• The results show that simultaneously using differently shaped NPs and the wavy
form of the cavity has significant impacts on the overall performance improvements.
As compared to the flat-walled VC case using only pure fluid, introducing a wavy
form of the wall and including cylindrical NPs in the base fluid, up to a 194% rise of
generated power is obtained.

As the extension of the work, different NFs, different forms of the wavy walls, flow
pulsations and forms of the enclosure can be considered. Effects of the TEG geometry and
material along with the form of the enclosure can also be taken into account. Pressure drop
and entropy generation analysis may also be considered, since such modifications in the
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geometry of the cavity may result in lower second law efficiency. These will increase the
applicability of the current results.
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Abbreviations
h heat transfer coefficient
H cavity height
k thermal conductivity
n unit normal vector
N wave number
Nu Nusselt number
p pressure
Pr Prandtl number
Re Reynolds number
T temperature
u, v, w x-y-z velocity components
wi, wo inlet-outlet port size
x, y, z Cartesian coordinates
xh wave amplitude
ZT figure of merit
Greek Characters
α thermal diffusivity
µ dynamic viscosity
ν kinematic viscosity
ρ density of the fluid
σ electrical conductivity
φ solid volume fraction
Subscripts
c cold wall
h hot wall
m average
nf nanofluid
Abbreviations
FEM finite element method
VC vented cavity
TEG thermoelectric generator
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