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Abstract: One-stage stochastic linear complementarity problem (SLCP) is a special case of a multi-
stage stochastic linear complementarity problem, which has important applications in economic
engineering and operations management. In this paper, we establish asymptotic analysis results of
a sample-average approximation (SAA) estimator for the SLCP. The asymptotic normality analysis
results for the stochastic-constrained optimization problem are extended to the SLCP model and then
the conditions, which ensure the convergence in distribution of the sample-average approximation
estimator for the SLCP to multivariate normal with zero mean vector and a covariance matrix, are
obtained. The results obtained are finally applied for estimating the confidence region of a solution
for the SLCP.
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1. Introduction

The finite-dimensional complementarity problems form a relatively perfect and fruit-
ful topic in mathematical programming. In order to reflect the uncertain factors in practice,
stochastic complementarity problems have attracted extensive attention in the recent lit-
erature [1–4]. We investigate the following one-stage stochastic linear complementarity
problem (SLCP): find x ∈ <n, such that

E[M(ξ(w))]x +E[q(ξ(w))] > 0, x > 0,

(E[M(ξ(w))]x +E[q(ξ(w))])Tx = 0,
(1)

where E denotes the mathematical expectation, ξ : Ω → Ξ ⊂ <k is a random vector
defined on a probability space (Ω,F , P), and M : <k → <n×n and q : <k → <n are
functions. Throughout the paper, M(ξ(ω)) and q(ξ(ω)) are measurable functions of ω,
and the condition

E
[
‖M(ξ(ω))‖2 + ‖q(ξ(ω))‖2

]
< ∞

holds. To ease the notation, ξ(ω) will be written as ξ.
Problem (1) can be seen as a special case of the stochastic nonlinear complementarity

problem (SNCP) in Gürkan et al. [5]. Some examples of stochastic complementarity prob-
lems in operational research, finance, economics, and engineering, can be found in [6,7].

Accurately calculating the expected value in (1) is either impossible or costly. The
sample-average approximation (SAA) method [8–10] is considered to be an effective method
for estimating the expected value. By generating an independent identically distributed
(iid) sample ξ1, · · · , ξN of ξ and approximating the expected value with sample average,
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the SAA method can effectively estimate the expectations. Throughout the paper, the SLCP
(1) will be approximated by

M̂N x + q̂N > 0, x > 0,(
M̂N x + q̂N

)T
x = 0,

(2)

where

M̂N x + q̂N =
1
N

N

∑
j=1

[
M(ξ j)x + q(ξ j)

]
(3)

is the sample-average mapping of E[M(ξ(w))]x + E[q(ξ(w))]. Equation (1) is called the
true problem, and Equation (2) is the SAA problem to Equation (1).

In this paper, for an SAA solution xN and its almost sure cluster point x∗, we are inter-
ested in the asymptotic behavior of the SAA estimator

√
N(xN − x∗), that is, establishing

conditions on E[M(ξ(w))] such that for N → ∞,

√
N(xN − x∗) D−−−−→ Z,

where Z in <n is a normal random variable, and the symbol D above the arrow denotes a
convergence in the distribution.

The asymptotic behavior of the SAA estimator has been deeply discussed in plenty of
the literature [6,8,11,12] and other references. Most of those results are related to conver-
gence in the distribution of the SAA estimators for stochastic-constrained optimizations or
normal map formulations of stochastic variational inequalities. In this paper, we first study
the asymptotic behavior of the SAA solutions of stochastic quadratic programming, and
then obtain the conditions ensuring the asymptotical normality of the SAA estimators of
the SLCP. Finally, methods for estimating confidence regions of true solutions to the SLCP
are provided.

The paper proceeds as follows: in Section 2, the asymptotic results are obtained under
the nonsingularity condition or positive definiteness condition of E[M(ξ(w))]. We then
applied the results in Section 3 to obtain the confidence intervals of an SLCP solution.

2. Main Results

Notice that if the solution of an SLCP (1) exists, then the SLCP (1) is equivalent to the
following quadratic programming:

min
x∈<n

xTE[M(ξ)]x +E[q(ξ)]Tx

s.t. E[M(ξ)]x +E[q(ξ)] ≥ 0, x ≥ 0.
(4)

In order to provide the asymptotic behavior of the SAA SLCP, we first consider the
following stochastic-constrained optimization (SCO) problem:

min
x

E[ f (x, ξ(w)]

s.t. E[gi(x, ξ(w))] 6 0, i = 1, 2, · · · , p,
E[hj(x, ξ(w))] = 0, j = 1, 2, · · · , q,

(5)

where ξ is defined as in Equation (1), f : <n ×<k → <, gi : <n ×<k → <i = 1, 2, · · · , p, hj :
<n ×<k → <, j = 1, 2, · · · , q are random functions.

The definition of the Karash–Kuhn–Tucker (KKT) point of the problem (5) is as follows:
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Definition 1. Suppose the expectation value functions E[ f (·, ξ(w))],E[g(·, ξ(w))], E[h(·, ξ(w))]
are continuously differentiable. Then (x∗, λ∗, µ∗) ∈ <n×<p×<q is called the Karash–Kuhn–Tucker
(KKT) point of the problem (5) if (x∗, λ∗, µ∗) satisfies

0 ∈ ∇xE[ f (x∗, ξ(w))] + JxE[g(x∗, ξ(w))]Tλ∗ + JxE[h(x∗, ξ(w))]Tµ∗,

λ∗i ≥ 0, λ∗i E[gi(x∗, ξ(w))] = 0, i = 1, 2, · · · , p

E[gi(x∗, ξ(w))] ≤ 0, i = 1, 2, · · · , p

E[hj(x∗, ξ(w))] = 0, j = 1, 2, · · · , q,

where
g(x, ξ(w)) = (g1(x, ξ(w)), · · · , gp(x, ξ(w)))T

and
h(x, ξ(w)) = (h1(x, ξ(w)), · · · , hq(x, ξ(w)))T .

Let ξ1, ξ2, · · · ξN be an iid sample of ξ, then the SAA problem of SCO is

min
x

f̂N(x)

s.t. ĝN
i (x) 6 0, i = 1, 2, · · · , p,

ĥN
j (x) = 0, j = 1, 2, · · · , q.

(6)

where

f̂N(x) =
1
N

N

∑
k=1

f (x, ξk), ĝN
i (x) =

1
N

N

∑
k=1

gi(x, ξk), i = 1, 2, · · · , p,

ĥN
j (x) =

1
N

N

∑
k=1

hj(x, ξk), j = 1, 2, · · · , q.

We make the following assumptions for the future asymptotic analysis. Let X be a
nonempty compact subset of <n, and let σ(x, ξ(w)) be one of the elements in the following:

{ f (·, ξ(w)),∇ f (·, ξ(w)),∇2 f (·, ξ(w)),∇gi(·, ξ(w)),∇2gi(·, ξ(w)), i = 1, 2, · · · , p,
∇hj(·, ξ(w)),∇2hj(·, ξ(w)), j = 1, 2, · · · , q}.

Consider the following conditions.

(A1) For each x ∈ X, E[‖σ(x, ξ(w)‖] is finite valued, and E[σ(x, ξ(w))] is well-defined.
(A2) There exists a positive valued random variable C(w) such that

E[C(w)] < +∞,

and for all x1, x2 ∈ X, and almost every w ∈ Ω, the following inequality holds:

‖σ(x1, ξ(w))− σ(x2, ξ(w))‖ ≤ C(w)‖x1 − x2‖.

(A3) For any fixed x ∈ X,

f (·, ξ(w)), gi(·, ξ(w)), i = 1, 2, · · · , p,

hj(·, ξ(w)), j = 1, 2, · · · , q,

is twice continuously differentiable at x for almost every w ∈ Ω.

The above assumptions are commonly used in stochastic optimization. Using Theo-
rem 6.3.2 and Theorem 6.3.6 in [8],

E[ f (·, ξ(w))],E[gi(·, ξ(w))],E[hj(·, ξ(w))], i = 1, 2, · · · , p, j = 1, 2, · · · , q
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is twice continuously differentiable on X, and

lim sup
N→∞,x∈X

∥∥∥∥∥ 1
N

N

∑
k=1

σ(x, ξk)−E[σ(·, ξ(w))]

∥∥∥∥∥ = 0 w.p.1.

Let (x0, λ0, µ0) ∈ <n ×<p ×<q. We need the following conditions:

(A4) The second order sufficient condition (SOSC) holds at (x0, λ0, µ0), i.e.,

dT∇2
xE[L(x0, λ0, µ0, ξ(w))]d > 0,

for every nonzero vector d satisfying

∇xE[gi(x0, ξ(w))]Td ≤ 0, i ∈ I(x0),∇xE[hj(x0, ξ(w))]Td = 0, j = 1, 2, · · · , q,

where
I(x0) = {i = 1, 2, · · · , p : E[gi(x0, ξ)] = 0}

L(x, λ, µ, ξ(w)) = f (x, ξ) + g(x, ξ)Tλ + h(x, ξ)Tµ.

(A5) The Mangasarian–Fromovitz constrant qualification (MFCQ) holds at x0, i.e.,

∇xE[hj(x0, ξ(w))], j = 1, 2, · · · , q

is linear independent and there exists d satisfying

∇xE[gi(x0, ξ(w))]Td ≤ 0, i ∈ I(x0),∇xE[hj(x0, ξ(w))]Td = 0, j = 1, 2, · · · , q.

(A6) The linear independent constraint qualification (LICQ) holds at x0, i.e.,

∇xE[gi(x0, ξ(w))]Td, i ∈ I(x0),∇xE[hj(x0, ξ(w))]Td, j = 1, 2, · · · , q

are linearly independent.
(A7) The strict complementarity condition (SCC) holds, i.e.,

(λ0)i > 0, i ∈ I(x0) := J.

Suppose that L̂N(x, λ, µ) is the SAA function of L(x, λ, µ, ξ). Then, the following
propositions are directly from Theorems 3.1 and 3.2 in [6].

Proposition 1. Let (x0, λ0, µ0) ∈ <n × <p × <q and there exists a compact neighborhood X
of x0 such that condition (A1)–(A3) holds. If (x0, λ0, µ0) is a KKT point for (5) and condition
(A4) and (A5) holds, then there exists (xN , λN , µN) satisfying the KKT condition of (6) and
(xN , λN , µN)→ (x0, λ0, µ0) w.p.1 as N → ∞.

Proposition 2. Suppose condition (A1)–(A3) hold on X, where X is a compact neighborhood of x0.
If a sequence of KKT points (xN , λN , µN) for (6) converges to (x0, λ0, µ0) almost surely, and (A4),
(A6) hold at (x0, λ0, µ0) , then

√
N
[
(xN , (λN)J , µN)− (x0, (λ0)J , µ0)

] D−−−−→ (u, v, w),

where (u, v, w) ∈ <n×<|J|×<q is the KKT point for the random quadratic programming problem
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min
d∈<n

c∗1
Td + 1

2 dT∇2
xE[L(x0, λ0, µ0, ξ)]d

s.t. [JxE[g(x0, ξ)]d + c∗2 ]J+ = 0,

[JxE[g(x0, ξ)]d + c∗2 ]J0 ≤ 0,

JxE[h(x0, ξ)]d + c∗3 = 0,

where J+ = {i ∈ J : (λ0)i > 0}, J0 = {i ∈ J : (λ0)i = 0}, c∗1 , c∗2 , c∗3 satisfy

√
N
[
∇x L̂N(x0, λ0, µ0)−∇xE[L(x0, λ0, µ0, ξ)]

] D−−−−→ c∗1 ,

√
N[ĝN(x0)−E[g(x0, ξ)]]

D−−−−→ c∗2 ,

√
N
[

ĥN(x0)−E[h(x0, ξ)]
] D−−−−→ c∗3 .

Theorem 1. Suppose conditions in Proposition 2 hold. If a sequence of KKT points (xN , λN , µN)
for (6) converges to (x0, λ0, µ0) almost surely and (A7) hold, then

√
N
[
(xN , (λN)J , µN)− (x0, (λ0)J , µ0)

]
converges in distribution to a normal with mean 0 and the covariance matrix

T =

Ψ GT HT

G 0 0
H 0 0

−1Σ11 Σ12 Σ13
Σ21 Σ22 Σ23
Σ31 Σ32 Σ33

Ψ GT HT

G 0 0
H 0 0

−1

,

where
Ψ = ∇2

xE[L(x0, λ0, µ0, ξ)], G = JxE[g(x0, ξ)]J , H = JxE[h(x0, ξ)],

α1(ξ) = ∇xL(x0, λ0, µ0, ξ)−∇xE[L(x0, λ0, µ0, ξ)], α2(ξ) = [g(x0, ξ)−E[g(x0, ξ)]]J ,

α3(ξ) = h(x0, ξ)−E[h(x0, ξ)], Σij = E[αi(ξ)αj(ξ)
T ], i = 1, 2, 3; j = 1, 2, 3.

Proof. By Proposition 2, under condition (A7), we know that

√
N
[
(xN , (λN)J , µN)− (x0, (λ0)J , µ0)

] D−−−−→ (u, v, w),

where (u, v, w) is the KKT point for the stochastic quadratic programming

min
d∈<n

c∗1
Td + 1

2 dT∇2
xE[L(x0, λ0, µ0, ξ)]d

s.t. [JxE[g(x0, ξ)]d + c∗2 ]J = 0,JxE[h(x0, ξ)]d + c∗3 = 0.

That is, (u, v, w) satisfies∇2
xE[L(x0, λ0, µ0, ξ)] JxE[g(x0, ξ)]TJ JxE[h(x0, ξ)]T

JxE[g(x0, ξ)]J 0 0
JxE[h(x0, ξ)] 0 0

u
v
w

 =

 −c1
∗

−(c2
∗)J

−c3∗

.

Notice that under (A4),∇2
xE[L(x0, λ0, µ0, ξ)] JxE[g(x0, ξ)]TJ JxE[h(x0, ξ)]T

JxE[g(x0, ξ)]J 0 0
JxE[h(x0, ξ)] 0 0


is nonsingular and
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u
v
w

 =

∇2E[L(x0, λ0, µ0, ξ)] JxE[g(x0, ξ)]TJ JxE[h(x0, ξ)]T

JxE[g(x0, ξ)]J 0 0
JxE[h(x0, ξ)] 0 0

−1 −c1
∗

−(c2
∗)J

−c3
∗

.

Then the conclusion holds.

Remark 1. Notice that in [8,11] (Section 5.2.2), the asymptotic analysis of the optimal solutions
of SAA stochastic-constrained optimization is established when the constraints are independent
of random vectors. The conclusions of Theorem 1 extend the results in [8,11] (Section 5.2.2) to
stochastic-constrained optimization in which the constraints contain random vectors.

We next apply the results above to a stochastic linear complementarity problem (1).
We first provide some conditions below:

(A8) E[M(ξ)] is a symmetric matrix, and

∀d ∈ <n, dTE[M(ξ)]d = 0⇒ d = 0.

(A9) Let x0 be a solution of SLCP (1); the nondegenerate condition holds at x0, i.e.,

(x0)i + (E[M(ξ)]x0 +E[q(ξ)])i > 0, for i = 1, 2, · · · , n.

(A10) E[M(ξ)] is positive definite.

Notice that if (A10) holds, then (A8) holds. (A9) is a typical condition in the study of
complementarity problems.

Let the ξ1, ξ2, · · · , ξN be the iid samples of ξ. Thus, the SAA problem of (4) is as
follows:

min
x∈<n

xT M̂N x + xT q̂N

s.t. M̂N x + q̂N ≥ 0, x ≥ 0.
(7)

Next, we provide our results.

Theorem 2. Suppose that E[M(ξ)] and E[q(ξ)] are well-defined and finite. Let x0 be a solution
of SLCP (1) and (x0, λ0, µ0) ∈ <n ×<n ×<n be a KKT point for (4), (A9) holds at x0, and (A8)
holds. Then

(i) for N large enough, there exists (xN , λN , µN) satisfying the KKT condition of (7), and
(xN , λN , µN)
→ (x0, λ0, µ0) w.p.1 as N → ∞.

(ii) for the (xN , λN , µN) in (i),

√
N[(xN , (λN)J , (µN)I)− (x0, (λ0)J , (µ0)I)]

converges in distribution to a normal with 0 and covariance matrix D−1ΥD−1, where

D =

2E[M(ξ)] E[M(ξ)]J EI
E[M(ξ)]TJ 0 0

ET
I 0 0

, Υ =

Υ11 Υ12 0
Υ21 Υ22 0
0 0 0


with

J = {i ∈ {1, 2, · · · , n} : (E[M(ξ)]x0 +E[q(ξ)])i = 0}, I = {i ∈ {1, 2, · · · , n} : (x0)i = 0},

E the identity matrix,

β1(ξ) = (M(ξ)−E[M(ξ)])x0 + q(ξ)−E[q(ξ)],

β2(ξ) = (M(ξ)x0 −E[M(ξ)]x0 + q(ξ)−E[q(ξ)])J ,
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Υij = E[βi(ξ)β j(ξ)
T ], i = 1, 2; j = 1, 2.

Proof. We will only need to verify conditions in Theorem 1. We advance the proof with
the following three steps:

Step 1. Notice that x0 satisfies

E[M(ξ)]x0 +E[q(ξ)] > 0, x0 > 0,

(E[M(ξ)]x0 +E[q(ξ)])Tx0 = 0

and (x0, µ0, λ0) satisfies the KKT condition of (4), that is,

0 = 2E[M(ξ)]x0 +E[q(ξ)]−E[M(ξ)]λ0 − µ0.

E[M(ξ)]x0 +E[q(ξ)] > 0, λ0 > 0.

(E[M(ξ)]x0 +E[q(ξ)])Tλ0 = 0. (8)

x0 > 0, µ0 > 0, xT
0 µ0 = 0. (9)

Then we have

0 = xT
0 (2E[M(ξ)]x0) +E[q(ξ)]Tx0 − xT

0 E[M(ξ)]λ0 − xT
0 µ0 (10)

and
0 = 2λT

0 E[M(ξ)]x0 + λT
0 E[q(ξ)]− λT

0 E[M(ξ)]λ0 − λT
0 µ0, (11)

which, by (8) and (9), means that

0 = xT
0 E[M(ξ)]x0 − xT

0 E[M(ξ)]λ0

and
0 = λT

0 E[M(ξ)]x0 − λT
0 E[M(ξ)]λ0 − λT

0 µ0.

Since
λ0 ∈ N<n

+
(E[M(ξ)]x0 +E[q(ξ)]),

µ0 ∈ N<n
+
(x0)

and condition (A9) hold, we have
λT

0 µ0 = 0.

Then combining (10) and (11), we have

(x0 − λ0)
TE[M(ξ)](x0 − λ0) = 0,

which by condition (A8) means that
x0 = λ0.

Consequently, by (8), we obtain

µ0 = E[M(ξ)]x0 +E[q(ξ)].

Then the SCC in Theorem 1 holds for (4).
Step 2. Let

J = {i ∈ {1, · · · , n} : (E[M(ξ)]x0 +E[q(ξ)])i = 0}

and
I = {i ∈ {1, · · · , n} : (x0)i = 0}.
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Under condition (A8), we have

J ∩ I = ∅, J ∪ I = {1, · · · , n}.

Let

E[M(ξ)] =

E[m1(ξ)]
T

...
E[mn(ξ)]T

,

where mi(·) : <k → <n, i = 1, 2, · · · n are random vectors. If

|J| = k,

without loss of generality, we assume that

J = {1, · · · , k}, I = {k + 1, · · · , n}.

Next, we show
E[m1(ξ)], · · · ,E[mk(ξ)], ek+1, · · · , en

are linearly independent. Indeed, let

M̃ =



E[m1(ξ)]
T

...
E[mk(ξ)]

T

eT
k+1
...

eT
n


,

we only need to show that M̃d = 0 =⇒ d = 0. If there exists d ∈ <n such that

M̃d = 0,

then

M̃d =



E[m1(ξ)]
Td

...
E[mk(ξ)]

Td
eT

k+1d
...

eT
n d


= 0.

Therefore, we have

n

∑
i=1

(eT
i d)(E[mi(ξ)

Td]) = dTE[M(ξ)]d = 0,

which by condition (A8), means that
d = 0.

So M̃ is nonsingular. Consequently, the LICQ for (4) holds at x0.
Step 3. Next we show the SOSC for (4) holds at (x0, λ0, µ0). Notice that under the

LICQ, the SOCC is as follows:
dTE[M(ξ)]d > 0
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for every nonzero vector d satisfying d ∈ C, where

C =

d ∈ <n :
E[mi(ξ)]

Td = 0, for λi > 0, i ∈ J,

eT
j d = 0, for µj > 0, j ∈ I

.

Since
λi > 0⇐⇒ i ∈ J,

µj > 0⇐⇒ j ∈ I,

then

C =

d ∈ <n :
E[mi(ξ)]

Td = 0, for i ∈ J,

eT
j d = 0, for j ∈ I

.

Similarly to Step 2 above, we have

dTE[M(ξ)]d = 0, for d ∈ C.

Then d = 0 follows from condition (A8). Therefore the SOSC holds for (4). As a result,
we verify the conditions in Theorem 1.

Notice that under (A10), the SLCP (1) is equivalent to the following problem.

min
x∈<n

1
2 xTE[M(ξ)]x + q(ξ)Tx

s.t. x ≥ 0
(12)

By Theorem 2, we obtain the following results.

Corollary 1. Suppose E[M(ξ)] and E[q(ξ)] are well-defined and finite. Let x0 be a solution of
SLCP (1), (x0, µ0) ∈ <n ×<n be a KKT point for (12), (A9) holds at x0, and (A10) holds. Then

(i) for N large enough, there exists (xN , µN) satisfying the KKT condition of the SAA problem of
(12) and

(xN , µN)→ (x0, µ0) w.p.1 as N → ∞

(ii) for (xN , µN) in (i), √
N[(xN , (µN)I)− (x0, (µ0)I)]

converges in distribution to a normal with 0 and covariance matrix(
E[M(ξ)] EI

ET
I 0

)−1(E[γ(ξ)γ(ξ)T ] 0
0 0

)(
E[M(ξ)] EI

ET
I 0

)−1

with
I = {i ∈ {1, 2, · · · , n} : (x0)i = 0},

γ(ξ) = (M(ξ)−E[M(ξ)])x0 + q(ξ)−E[q(ξ)].

3. Applications

In this section, we apply the results above to estimate the confidence regions of the
SLCP solutions (1). Inspired by Theorem 4.2 in [12], we have the following theorem:
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Theorem 3. Suppose conditions in Theorem 2.2 hold. Let ΣN be a sequence converging to
E[γ(ξ)γ(ξ)T ] with probability one and Σ := E[γ(ξ)γ(ξ)T ] be nonsingular, where γ(ξ) =
(M(ξ)−E[M(ξ)])x0 + q(ξ)−E[q(ξ)]. Let

Σ̃N =

 2M̂N
M̂N
E

Σ−1
N

(
2M̂N , M̂N , E

)
, Σ̃ =

 2E[M(ξ)]
E[M(ξ)]

E

Σ−1(2E[M(ξ)],E[M(ξ)], E).

Assume the decomposition of Σ̃N is

Σ̃N = UT
NCNUN = ((UN)

T
1 , (UN)

T
2 )

(
ΛN 0
0 0

)(
(UN)1
(UN)2

)
, (13)

where UN ∈ <3n×3n is an orthogonal matrix, (UN)1 ∈ <rN×3n, (UN)2 ∈ <(3n−rN)×3n, and
ΛN ∈ <rN×rN are diagonal matrices with monotonically decreasing positive elements, and rN is
the rank of Σ̃N . Thus, for α ∈ (0, 1) and any ε > 0,

lim
N→∞

Prob
{
(x0, λ0, µ0) ∈ Q̂N,ε

}
= 1− α, (14)

where

Q̂N,ε =

z ∈ <3n

∣∣∣∣∣∣
N(z− zN)

T(UN)
T
1 Λ−1

N (UN)1(z− zN) ≤ χ2
rN
(α),

‖
√

N(UN)2(z− zN)‖∞ ≤ ε


with z = (x, λ, µ), zN = (xN , λN , µN).

Proof. We know from Theorem 2.2 that2E[M(ξ)] E[M(ξ)]J EI
E[M(ξ)]TJ 0 0

ET
I 0 0

√N((xN , (λN)J , (µN)I)− (x0, (λ0)J , (µ0)I))

converges in distribution to a normal with 0 and covariance matrixΥ11 Υ12 0
Υ21 Υ22 0
0 0 0

,

which, by Theorem 5.1 in [13], means that

√
N
[
2M̂N(xN − x0) + M̂N((λN)J − (λ0)J) + EI((µN)I − (µ0)I)

]
converges in distribution to a normal with 0 and covariance matrix Υ11 = E[γ(ξ)γ(ξ)T ].
Notice that under condition (A9), for a large enough N, for i ∈ {1, 2, · · · , n} \ I and
j ∈ {1, 2, · · · , n} \ J, (µN)i − (µ0)i = 0, and (λN)i − (λ0)i = 0. We obtain the following:

E(µN − µ0) = EI((µN)I − (µ0)I) and M̂N(λN − λ0) = (M̂N)J((λN)J − (λ0)J)

Therefore,

√
N
[
2M̂N(xN − x0) + M̂N(λN − λ0) + (µN − µ0)

]
converges in distribution to a normal with 0 and covariance matrix E[γ(ξ)γ(ξ)T ]. Since
E[γ(ξ)γ(ξ)T ] is nonsingular, for a large enough N, ΣN is almost surely nonsingular . Thus,
we have
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N
[
2M̂N(xN − x0) + M̂N(λN − λ0) + µN − µ0

]T
Σ−1

N

[
2M̂N(xN − x0) + M̂N(λN − λ0) + µN − µ0

]
weakly converging to an χ2

n random variable. Consequently, the result is directly from the
proof of Theorem 4.2 in [12].

In practice, let

ΣN =
1
N

N

∑
i=1

(F(xN , ξ i)− 1
N

N

∑
i=1

F(xN , ξ i)

)(
F(xN , ξ i)− 1

N

N

∑
i=1

F(xN , ξ i)

)T
, (15)

where F(x, ξ) = M(ξ)x + q(ξ). Then, ΣN converges to Σ almost as surely as N tends to
infinity.

We next illustrate three examples to show the applications of the results above.

Example 1. Consider an SLCP (1) with

M(ξ) =

(
2ξ1 ξ2
ξ2 ξ3

)
, q(ξ) =

(
ξ1
−ξ2

)
,

where ξ = (ξ1, ξ2, ξ3), ξ1, ξ2, ξ3 are independent random variables and each one has a normal
distribution N (1, 0.1). Since E[M(ξ)] is definitely positive, that is, condition (A10) holds, the
corresponding true optimization problem (12) is

min
x∈<2

1
2 xT

(
2 1
1 1

)
x +

(
1
−1

)T

x

s.t. x ≥ 0
(16)

Generating an iid sample ξ1, · · · , ξN of ξ, then the SAA problem is

min
x∈<2

1
2 xT M̂N x + q̂T

N x

s.t. x ≥ 0,
(17)

where M̂N and q̂N are sample-average mappings of E[M(ξ)] and E[q(ξ)], respectively.

Next, we verify the conditions in Theorem 3. By simple computing, the optimal
solution to the true problem (16) is x0 = (0, 1)T and the corresponding multiplier is
µ0 = E[M(ξ)]x0 +E[q(ξ)] = (2, 0)T . Then we have

(x0)i + (E[M(ξ)]x0 +E[q(ξ)])i > 0, for i = 1, 2,

which means condition (A9) holds. Condition (A8) holds due to the fact that (A10) holds.
The matrix

E[γ(ξ)γ(ξ)T ] =

(
0.02 −0.01
−0.01 0.02

)
is nonsingular. Then all the conditions in Theorem 3 hold. In practice, we can verify such
conditions by the corresponding SAA estimators due to the robustness of those conditions.

We denote xN and µN the corresponding SAA optimal solution and multiplier to (17)
respectively. By Theorem 3, for fixed ε, the 95% confidence region is(x, µ) ∈ <4

∣∣∣∣∣∣∣∣∣
(

x− xN
µ− µN

)T

(UN)
T
1 Λ−1

N (UN)1

(
x− xN
µ− µN

)
≤ χ2

rN
(0.05),∥∥∥∥√N(UN)2

(
x− xN
µ− µN

)∥∥∥∥
∞
≤ ε

,
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where

Σ̃N =

(
2M̂N

E

)
Σ−1

N
(

2M̂N E
)
= ((UN)

T
1 , (UN)

T
2 )

(
ΛN 0
0 0

)(
(UN)1
(UN)2

)
,

ΣN is defined as in (15).
We next examine the performance of the proposed method in Theorem 3 by generating

100 confidence intervals at the 95% level, with different sample sizes N and parameters ε.
We show the coverage rates for x0. The related quadratic programming is solved through
“fmincon” running on MATLAB. The results are illustrated in Table 1.

Table 1. Summary of coverage rates for x0 with different ε and N.

Types N = 10 N = 30 N = 60 N = 100

ε = 0.1 90% 93% 95% 97%

ε = 0.3 91% 94% 96% 98%

ε = 0.5 93% 94% 98% 99%

We know from Table 1 that when N = 10 and ε = 0.1, a reasonable coverage rate for
x0 can be obtained. Furthermore, the coverage rates for x0 increase with the increase of
sample numbers and parameters.

We next apply the results obtained to a two-stage stochastic linear complementarity
problem (TSLCP), which is a modified version of Example 2.6 in [14].

Example 2. Consider a TSLCP as follows: finding x ∈ <2 such that

0 ≤ x ⊥ Ax +E[B(ξ)y(ξ)] + q1 ≥ 0, (18)

0 ≤ y(ξ) ⊥ N(ξ)x + M(ξ)y(ξ) + q2(ξ) ≥ 0, for a.e. ω ∈ Ω, (19)

where “a.e." means “almost everywhere", “⊥" denotes the perpendicularity of two vectors,

A =

(
4 2
0 5

)
, B(ξ) =

(
−3 + ξ 0

2 1− ξ

)
, q1 =

(
−2
−4

)
,

N(ξ) =

(
−1 0
0 1

)
, M(ξ) =

(
1 −3− ξ
0 1

)
, q2(ξ) =

(
0

1 + ξ

)
,

y : < → <2, ξ follows a uniform distribution over [− 1
2 , 1

2 ]. For any x ∈ <2
+ and a.e. ξ ∈ Ξ, the

second-stage TLSCP given by (18) has a unique y∗ = (x1, 0)T . Then (19) can be written as

0 ≤
(

x1
x2

)
⊥ E

[(
1 + ξ 2

2 5

)](
x1
x2

)
+

(
−2
−4

)
≥ 0.

In a manner similar to Example 3.1, for N = 100 and ε = 0.1, we obtain the 95% confidence
region of x∗ is [−0.0012, 0.0021]× [−0.0011, 0.0013].

The asymptotic analysis results can be applied to a problem in engineering, that is, the
refinery production problem, which is illustrated in [15,16].

Example 3. In a refinery, there are two products: gasoline and fuel oil. Their output and demand
depend on oil production and weather, respectively, in addition to other daily uncertainties. On
the supply side, the problem is to minimize production costs under both technical and demand
constraints. In order to balance supply and demand, we need an equilibrium condition, which can
be constructed into a stochastic linear complementarity problem. For a detailed description of this



Mathematics 2023, 11, 482 13 of 14

problem, see [15]. According to Section 4 in [15], the expected value formulation of the refinery
production problem is as follows: finding x ∈ <5 such that

0 ≤ x ⊥ E[M(ξ)x + q(ξ)] ≥ 0,

where

M(ξ) =


0 0 1 −2− ξ1 −3
0 0 1 −6 ξ2 − 3.4
−1 −1 0 0 0

2 + ξ1 6 0 −ξ3 −ξ3
3 3.4− ξ2 0 −ξ4 ξ4

, q2(ξ) =


−2
−3
−100

180 + ξ3
162 + ξ4

,

2x1 + 3x2 is the initial production cost and ξi, i = 1, 2, 3, 4 satisfy the distribution ξ1 ∼ U[−0.8, 0.8],
ξ2 ∼ e(λ = 2.5), ξ3 ∼ N(0, 12), ξ4 ∼ N(0, 9). Similar to Example 3.1, for N = 100 and
ε = 0.1, we obtain the 95% confidence region of x∗ is [35.9224, 36.0052]× [17.9634, 18.0031]×
[−0.0012, 0.0065]× [0.2488, 0.2502]× [0.4987, 0.5014].

4. Conclusions

For a one-stage SLCP, the asymptotic normality results of its SAA estimator were
obtained in this paper. Under some typical conditions, we show that the SAA estimator
of the true solution of the SLCP converges in distribution to a multivariate normal with
a zero mean vector and a covariance matrix. As a result, the methods for estimating the
confidence regions of solutions of the SLCP were obtained.

Author Contributions: Conceptualization, S.L. and J.Z.; methodology, S.L.; software, C.Q.; validation,
J.Z., S.L. and C.Q.; formal analysis, S.L.; investigation, J.Z.; writing—original draft preparation, S.L.;
writing—review and editing, J.Z.; visualization, C.Q.; supervision, J.Z.; project administration, J.Z.;
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China un-
der Project Grant Nos. 12171219 and 61877032, the Liaoning Revitalization Talents Program No.
XLYC2007113, Scientific Research Fund of Liaoning Provincial Education Department under Project
No. LJKZ0961.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rockafellar, R.T.; Wets, J.B. Stochastic variational inequalities: single-stage to multistage. Math. Program. 2017, 165, 291–330.

[CrossRef]
2. Chen, X.J.; Sun, H.; Xu, H. Discrete approximation of two-stage stochastic and distributionally robust linear complementarity

problems. Math. Program. 2019, 177, 255–289. [CrossRef]
3. Rockafellar, R,T.; Sun, J. Solving monotone stochastic variational inequalities and complementarity problems by progressive

hedging. Math. Program. 2019, 174, 453–471. [CrossRef]
4. Zhang, J.; Xu, H.; Zhang, L. Quantitative stability analysis of stochastic quasi-variational inequality problems and applications.

Math. Program. 2017, 165, 433–470. [CrossRef]
5. Gürkan, G.; Özge, A.Y.; Robinson, S.M. Sample-path solution of stochastic variational inequalities. Math. Program. 1999, 84,

313–333. [CrossRef]
6. King, A. J.; Rockafellar, R.T. Asymptotic Theory for Solutions in Statistical Estimation and Stochastic Programming. Math. Oper.

Res. 1993, 18,148–162. [CrossRef]
7. Jiang, H.; Xu, H. Stochastic approximation approaches to the stochastic variational inequality problem. IEEE Trans. Autom. Control

2008, 53, 1462–1475. [CrossRef]
8. Shapiro, A.; Dentcheva, D.; Ruszczynski, A. Lectures on Stochastic Programming: Modeling and Theory; SIAM: Philadelphia, PA,

USA, 2009.

http://doi.org/10.1007/s10107-016-0995-5
http://dx.doi.org/10.1007/s10107-018-1266-4
http://dx.doi.org/10.1007/s10107-018-1251-y
http://dx.doi.org/10.1007/s10107-017-1116-9
http://dx.doi.org/10.1007/s101070050024
http://dx.doi.org/10.1287/moor.18.1.148
http://dx.doi.org/10.1109/TAC.2008.925853


Mathematics 2023, 11, 482 14 of 14

9. Xu, H. Sample average approximation methods for a class of stochastic variational inequality problems. Asia-Pac. J. Oper. Res.
2010, 27, 103–119. [CrossRef]

10. Zhang, J.; Zhang, L.; Pang, L. On the Convergence of Coderivative of SAA Solution Mapping for a Parametric Stochastic
Variational Inequality. Set-Valued Var. Anal. 2012, 20, 75–109. [CrossRef]

11. Shapiro, A. Simulation-based optimization-convergence analysis and statistical inference. Commun. Stat. Model. 1996, 12, 425–454.
[CrossRef]

12. Lu, S. Symmetric confidence regions and confidence intervals for normal map formulations of stochastic variational inequalities.
SIAM J. Optim. 2014, 24, 1458–1484. [CrossRef]
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