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Abstract: Linear transformations such as min–max normalization and z-score standardization are
commonly used in logistic regression for the purpose of scaling. However, the work in the literature
on linear transformations in logistic regression has two major limitations. First, most work focuses on
improving the fit of the regression model. Second, the effects of transformations are rarely discussed.
In this paper, we first generalized a linear transformation for a single variable to multiple variables
by matrix multiplication. We then studied various effects of a generalized linear transformation in
logistic regression. We showed that an invertible generalized linear transformation has no effects
on predictions, multicollinearity, pseudo-complete separation and complete separation. We also
showed that multiple linear transformations do not have effects on the variance inflation factor (VIF).
Numeric examples with a real data were presented to validate our results. Our results of no effects
justify the rationality of linear transformations in logistic regression.

Keywords: logistic regression; linear transformations; predictions; ordinary least squares estimator;
maximum likelihood estimator
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1. Introduction

Logistic regression is one of the most commonly used techniques for modeling the
relationship between the dependent variable and one or more independent variables.

In data analysis and machine learning, a transformation refers to a mapping of a
variable into a new variable. A transformation can be linear or nonlinear, depending
on whether the mapping is linear or nonlinear. Linear transformations can be used to
improve interpretability of coefficients in linear regression and make a fitted model easier
to understand [1], whereas nonlinear transformations are often used to improve the fit of
the model on the data [2].

Three types of linear transformations are commonly used in machine learning prior to
model fitting, namely, min–max normalization, z-score standardization and simple scaling.
Since different variables that are measured in different scales may not contribute equally to
model fitting, min–max normalization is used to transform all continuous variables into the
same range [0, 1] to avoid a possible bias. Essentially, min–max normalization subtracts the
minimum value of a continuous variable from each value and then divides by the range of
the variable. z-score standardization rescales continuous variables to the standard scale, i.e.,
how far it is from the mean. Mathematically, z-score standardization subtracts the mean
value of a continuous variable from each value and then divides by the standard deviation
of the variable. Simple scaling shrinks or expands a continuous variable with big values
and small values, respectively. The three types of linear transformations are all discussed
by Adeyemo, Wimmer and Powell [3] for logistic regression.

However, the work in the literature on transformations in regression have some
limitations. First, most work focuses on improving the fit of the regression model [4–9].
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Second, the effects of transformations are rarely discussed. Morrell, Pearson, and Brant [10]
examined how linear transformations affected a linear mixed-effect model and the tests of
significance of fixed effects in the model. They showed how linear transformations modified
the random effects, and their covariance matrix and the value of the restricted log-likelihood.
Zeng [11] studied invariant properties of some statistical measures under monotonic
transformations for univariate logistic regression. Zeng [12] derived analytic properties
of some well-known category encodings such as ordinal encoding, order encoding and
one-hot encoding in multivariate logistic regression by means of linear transformations.
Adeyemo, Wimmer and Powell [3] compared the prediction accuracy of the three types of
linear transformations, min–max normalization, z-score standardization and simple scaling,
in logistic regression, by means of simulation.

In this paper, we first generalized a linear transformation for a single variable to multi-
ple variables by a matrix multiplication. We then studied various effects of a generalized
linear transformation in logistic regression. We showed that an invertible generalized linear
transformation has no effects on predictions, multicollinearity, pseudo-complete separation,
and complete separation. We also showed that multiple linear transformations do not have
effects on the variance inflation factor (VIF). Numeric examples with randomly generated
transformations from a real data were presented to illustrate our theoretic results.

The remainder of this paper is organized as follows. In Section 2, we give two
definitions of a generalized linear transformation and show that they are equivalent. In
Section 3, we study the effects of a generalized linear transformation on logistic regression.
In Section 4, we present numeric examples to validate our theoretic results. Finally, the
paper is concluded in Section 5.

Throughout the paper, we concentrate on transformations of independent variables,
which are also sometimes called explanatory variables.

2. A Generalized Linear Transformation in Logistic Regression

Let x = (x1, x2, . . . , xp) be the vector of p independent variables and y be the depen-
dent variable. Let us consider a sample of n independent observations

(
xi1, xi2, . . . , xip, yi

)
,

i = 1, 2, . . . , n, where yi is the value of y and xi1, xi2, . . . , xip the values of p independent
variables x1, x2, . . . , xp for the i-th observation. Without loss of generality, we assume
x1, x2, . . . , xp are all continuous variables since otherwise they can be converted into
continuous variables.

Let us adopt the matrix notation:

Y =


y1
y2
...
yn

, X =


x10 x11 . . . x1p
x20 x21 . . . x2p

...
...

. . .
...

xn0 xn1 . . . xnp

, β =


β0

β1
...
βp


where xi0 = 1 for all i (used for intercept β0) and matrix X is called the design matrix. Here,
β0, β1, . . . , βp are called regression coefficients or regression parameters.

Without causing confusion, we also use x0, x1, . . . , xp to denote the (p + 1) columns or col-
umn vectors of X. We further use capital letter Xi to denote the row vector

(
1, xi1, xi2, . . . , xip

)
for i = 1, 2, . . . , n.

Definition 1. A linear transformation is a linear function of a variable which maps or transforms
the variable into a new one. Specifically, a linear transformation of variable x can be defined
as xt = ax + b, where a and b are constants and a is nonzero. For convenience, let us call
a linear transformation of a single variable a simple linear transformation. By multiple linear
transformations, we mean a set of simple linear transformations. Here, we use letter t in the
superscript to denote the new variable after a transformation.

Note that a and b in Definition 1 are not vectors since x is a variable.
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Definition 1 can be generalized naturally by matrix multiplication to transform a set
of variables to a new set of variables.

Definition 2. A generalized linear transformation is a linear matrix-vector expression
x1

t

x2
t

...
xp

t

 = A


x1

x2
...
xp

+


b1

b2
...
bp

 (1)

that transforms or maps independent variables x1, . . . , xp into new independent variables
x1

t, x2
t, . . . , xp

t, where A =
(
aij
)

is a p × p matrix of real numbers and b1, b2, . . . , bp
are real constants. Here, x1, . . . , xp are variables not vectors.

It should not be confused with the linear transformation between two vector spaces,
in which there is no vector b =

(
b1, b2, . . . , bp

)′. Here and hereafter, we use the prime
symbol ′ in the superscript for the transpose of a vector or a matrix. The new variables
x1

t, x2
t, . . . , xp

t in the component forms are

b1 +
p

∑
j=1

a1jxj, b2 +
p

∑
j=1

a2jxj, . . . , bp +
p

∑
j=1

apjxj.

Consider a simple linear transformation, xi
t = axi + b, for some xi with 1 ≤ i ≤ p.

Without loss of generality, assume i = 1. Let A be a p-dimensional diagonal matrix with
a11 = a and a22 = a33 = . . . = app = 1. Let b = (b, 0, · · · , 0)′ be a p-dimensional column
vector. Then x1, x2, . . . , xp are transformed into to x1

t, x2, . . . , xp according to Definition 2.
Similarly, consider a set of simple linear transformations, say,
xi

t = aixi + bi for 1 ≤ i ≤ r with 2 ≤ r ≤ p. Let A be a p-dimensional diagonal
matrix with aii = ai for 1 ≤ i ≤ r and aii = 1 for i = r + 1, r + 2, . . . ., p. Let
b = (bi, b2, · · · , br, 0, · · · , 0)′ be a p dimensional column vector. Then x1, x2, . . . , xp are
transformed into to x1

t, x2
t, , . . . , xr

t, xr+1, xr+2, . . . , xp according to Definition 2. Hence,
both a simple linear transformation and multiple linear transformations are a special case
of a generalized linear transformation.

However, Definition 2 is not convenient to use since the new design matrix issomewhat
complicated. Therefore, we give another definition incorporated with the design matrix.

Definition 3. A generalized linear transformation is a matrix multiplication XC that transforms
x1, . . . , xp into x1

t, x2
t, . . . , xp

t, where x1
t, x2

t, . . . , xp
t are the 2nd to the last column of XC

and C is a (p + 1)× (p + 1) matrix of real numbers as follows

C =


1 c11 c12 . . . c1p
0 c21 c22 . . . c2p
...

...
...

. . .
...

0 cp1 cp2 . . . cpp
0 cp+1,1 cp+1,2 . . . cp+1, p

. (2)

Note that we request the first column of C to be 0 except the first entry (which is 1) in
order for XC to be the new design matrix.
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For convenience, let us partition C into 4 blocks such that C =

(
1 C1
0 C11

)
, where C1 is

the p-dimensional row vector
(
c11 c12 . . . c1p

)
, 0 is the p-dimensional column vector of all

0′s and C11 is the p× p submatrix by deleting the first column and the first row of C, that is,

C11 =


c21 c22 . . . c2p
c31 c32 . . . c3p
...

...
. . .

...
cp+1,1 cp+1,2 . . . cp+1,p

. (3)

In the following we prove the definitions of generalized linear transformation are equivalent.

Theorem 1. Definition 2 and Definition 3 are equivalent.

Proof. Let us begin with Definition 2. Its new design matrix is

1 b1 +
p
∑

j=1
a1jx1j b2 +

p
∑

j=1
a2jx1j · · · bp +

p
∑

j=1
apjx1j

1 b1 +
p
∑

j=1
a1jx2j b2 +

p
∑

j=1
a2jx2j · · · bp +

p
∑

j=1
apjx2j

...
...

...
. . .

...

1 b1 +
p
∑

j=1
a1jxnj b2 +

p
∑

j=1
a2jxnj · · · bp +

p
∑

j=1
apjxnj


= X


1 b1 b2 . . . bp
0 a11 a21 . . . ap1
0 a12 a22 · · · ap2
...

...
...

. . .
...

0 a1p a2p . . . app

. (4)

Hence, the new design matrix of Definition 2 is in the form of Definition 3 with

C =


1 b1 b2 . . . bp
0 a11 a21 . . . ap1
0 a12 a22 · · · ap2
...

...
...

. . .
...

0 a1p a2p . . . anp

. (5)

Note that the submatrix by deleting the first row and first column of matrix C above is
the transpose of A, that is, A′.

Next, let us begin with Definition 3.

XC = X


1 c11 . . . c1p
0 c21 . . . c2p
...

...
. . .

...
0 cp+1,1 . . . cp+1, p



=



1 c11 +
p
∑

j=1
cj+1,1x1j c12 +

p
∑

j=1
cj+1,2x1j · · · c1p +

p
∑

j=1
cj+1,px1j

1 c11 +
p
∑

j=1
cj+1,1x2j c12 + ∑ j = 1pcj+1,2x2j · · · c1p +

p
∑

j=1
cj+1,px2j

...
...

. . .
...

1 c11 +
p
∑

j=1
cj+1,1xnj c12 +

p
∑

j=1
cj+1,2xnj · · · c1p +

p
∑

j=1
cj+1,pxnj


.

(6)

The second, third, . . . , last column of the matrix above are from the linear transform

c11 +
p

∑
j=1

cj+1,1xj, c12 +
p

∑
j=1

cj+1,2xj, . . . , c1p +
p

∑
j=1

cj+1,pxj,



Mathematics 2023, 11, 467 5 of 19

respectively. Hence, Definition 3 is in the form of Definition 2 with

A =


c21 c31 . . . cp+1,1
c22 c32 . . . cp+1,2
...

...
. . .

...
c2p c3p . . . cp+1,p

 (7)

and 
b1
b2
...

bp

 =


c11
c12
...

c1p

. (8)

We have concluded our proof. �
If we expand along the first column to find the determinant of C in (2), we immediately

see that the determinant of C is equal to the determinant of C11. Therefore, C is nonsingular
(or invertible) if and only if C11 in (3) is nonsingular. In addition, it follows from the proof
of Theorem 1 that C is nonsingular if and only if A in Definition 2 is nonsingular.

Moreover, it is easy to see that if C11 is nonsingular then the inverse of C can be
written as

C−1 =

(
1 −C1C−1

11
0 C−1

11

)
. (9)

From now on we will use Definition 3 unless otherwise specified. For convenience, let
us call the generalized linear transformation XC invertible if C is invertible.

3. Effects of a Generalized Linear Transformation

In logistic regression, the dependent variable y is binary with 2 values 0 and 1. Let the
conditional probability that y = 1 be denoted by Prob(y = 1 |x) = π(x).

Logistic regression assumes the logit linearity between the log odds and independent
variables x1, x2, . . . , xp

ln
[

π(x)
1− π(x)

]
= β0 + β1x1 + . . . + βpxp. (10)

Equation (10) above can be written as

π(x) =
eβ0+β1x1+...+βpxp

1 + eβ0+β1x1+...+βpxp
. (11)

The following log likelihood is used in logistic regression

l(β, Y, X) =
n

∑
i=1

yi ln
(

eXi β

1 + eXi β

)
+

n

∑
i=1

(1− yi) ln
(

1
1 + eXi β

)
. (12)

The maximum likelihood method is used to estimate parameters in logistic regres-
sion. Specifically, the maximum likelihood estimators (MLE) are the values of parameters

β0, β1, . . . βp that maximize (12). The vector
ˆ
β =

(
ˆ
β0,

ˆ
β1,

ˆ
β2, . . . ,

ˆ
βp

)′
of the MLE esti-

mators of β =
(

β0, β1, β2, . . . , βp
)′ satisfies [13]

n
∑

i=1
yi =

n
∑

i=1
πi

n
∑

i=1
xijyi =

n
∑

i=1
xij πi

(13)
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or in matrix-vector form
X′Y = X′π (14)

where π = ( π1, π2 , · · · , πn)
’, and πi = π(Xi) =

eXi
ˆ
β

1+eXi
ˆ
β

for i = 1, 2, . . . , n. Note that

after a generalized linear transformation XC, (12) and (14) hold with the design matrix X
replaced by the new design matrix XC.

Equation (13) or (14) represents (p + 1) nonlinear equations of
ˆ
β0,

ˆ
β1, · · · ,

ˆ
βp and

cannot be solved explicitly in general [14]. Rather, they can be solved numerically by
Newton-Raphson algorithm [15] as follows

β(i+1) = β(i) + (X′VX)
−1g, (15)

where V is the n×n diagonal matrix with its diagonal elements π1(1− π1), π2(1− π2), . . .
, πn(1− πn). In addition g = X′(Y− π). Both V and g are evaluated at β(i) in (15).

If X′X is nonsingular and the data is not completely separable or pseudo-completely

separable [16], then the MLE estimator
ˆ
β exists and is unique.

The MLE estimator
ˆ
β can be used to predict prob(y = 1|x) by the linear combination

of variables x1, . . . , xp

ˆ
π(x) =

e
ˆ
β0+

ˆ
β1x1+

ˆ
β2x2+...+

ˆ
βpxp

1 + e
ˆ
β0+

ˆ
β1x1+

ˆ
β2x2+...+

ˆ
βpxp

==
e(1, x1, x2, ..., xp)

ˆ
β

1 + e(1, x1, x2, ..., xp)
ˆ
β

. (16)

In particular, we have n fitted values

π̂i =
e(1, xi1, xi2, ..., xip)

ˆ
β

1 + e(1, xi1, xi2, ..., xip)
ˆ
β

, i = 1, 2, . . . , n.

3.1. Effects on MLE Estimator and Predictions

Theorem 2. For logistic regression, if the MLE estimator of β is
ˆ
β, then the MLE estimator of β

is C−1
ˆ
β after a generalized linear transformation XC assuming C is nonsingular. Moreover, the

generalized linear transformation does not affect predictions.

Proof. Since
ˆ
β is the maximum likelihood estimator of β, (14) is satisfied by

ˆ
β. Multiplying

both sides of (14) by C′, we obtain

C′
(
X′Y

)
= C′

(
X′π

)
. (17)

Clearly, (17) can be rewritten as

(XC)′Y = (XC)′π. (18)

Writing Xi
ˆ
β as (XiC)

(
C−1

ˆ
β

)
for i = 1, 2, . . . , n, we have

πi =
eXi

ˆ
β

1 + eXi
ˆ
β

=
e(XiC)(C−1

ˆ
β)

1 + e(XiC)(C−1
ˆ
β)

. (19)
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It follows from (18) and (19) that C−1
ˆ
β satisfies (14) for the new design matrix XC.

Hence, the linear combinations C−1
ˆ
β of

ˆ
β is the new MLE estimator after the generalized

linear transformation XC.
Let us now predict prob(y = 1) for a set of values of variables x1, . . . , xp, for the new

system after the generalized linear transformation XC using the new MLE estimator C−1
ˆ
β.

Let v1, v2, . . . , vp be a specific value of x1, . . . , xp, respectively. Then, the row vector
(1, v1, . . . , vp) in the original system becomes (1, v1, . . . , vp)C in the new system. By
(16), the predicted conditional probability of y = 1 when x = (1, v1, . . . , vp)C in the new
system is

e(1, v1, ..., vp)C(C−1 β̂)

1 + e(1, v1, ..., vp)C(C−1 β̂)
=

e(1, v1, ..., vp)
ˆ
β

1 + e(1, v1, ..., vp)
ˆ
β

. (20)

The right-hand side of (20) is the predicted conditional probability of y = 1 when
x = (1, v1, . . . , vp) in the original system. �

3.2. Effects on Multicollinearity

Perfect multicollinearity or complete multicollinearity or multicollinearity, in short,
refers to a situation in logistic regression in which two or more independent variables are
linearly related [17]. In particular, if two independent variables are linearly related, then it
is called collinearity.

Mathematically, multicollinearity means there exist constant a0, a1, . . . , ap such that

a0x0 +
p

∑
i=1

aixi = 0 (21)

where at least two of a1, . . . , ap are nonzero. If we treat x0 as an independent variable,
then we just require at least one of a1, . . . , ap is nonzero.

Multicollinearity is a common issue in logistic regression. If there is multicollinearity,
the design matrix X will not have a full column rank of p + 1. Hence, the (p + 1)× (p + 1)

matrix
ˆ
I = X′VX in (15) will have a rank less than p + 1. Thus, the inverse matrix

ˆ
I
−1

in
(15) does not exist, which make the iteration in (15) impossible.

If there is near multicollinearity and there is no separation of the data points, the-

oretically
ˆ
I = X′VX in (15) has an inverse and the iteration in (15) can be proceeded.

Yet, iteration (15) may not find an approximate inverse
ˆ
I = X′VX and hence may cause

unstable estimates and inaccurate variances [18].
Some authors define multicollinearity in logistic regression to be a high correlation

between independent variables [19–21]. Let us call multicollinearity with high correlation
by near multicollinearity and reserve multicollinearity for perfect multicollinearity or
complete multicollinearity.

Let us define VIF now. Let R2
j be the R-squared that results when xj is linearly

regressed against the other (p – 1) independent variables. Then VIF for xj is defined as

VIFj =
1

1− R2
j

, j = 1, 2, . . . , p. (22)

Near multicollinearity can be detected by using VIF [2]. The larger the VIF of an
independent variable, the larger the correlation between this independent variable and
others. However, there is no standard for acceptable levels of VIF. Multicollinearility can be
combated by a generalized cross-validation (GCV) criterion in partially linear regression
models [22,23].
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3.2.1. Preliminary Results in Linear Regression

As VIF is related to linear regression, let us briefly introduce some preliminary re-
sults in linear regression. As for logistic regression, we consider p independent variables
x1, x2, . . . , xp. Unlike logistic regression, the dependent variable y in linear regression is
a continuous variable. We shall adopt the same notation as in logistic regression unless
otherwise specified. In particular, X is the design matrix.

In linear regression, the relationship between y and x1, . . . , xp is formulated as a
linear combination

y = β0 + β1x1 + β2x2 + . . . + βpxp + ε (23)

where ε is a random error, or in matrix notation

Y = Xβ +


ε1
ε2
...

εn

. (24)

The ordinary least squares (OLS) estimator
ˆ
β of β satisfies [2]

X′X
ˆ
β = X′Y. (25)

Assuming the (p + 1)-dimensional square matrix X′X is nonsingular, then the OLS

estimator
ˆ
β =

(
ˆ
β0,

ˆ
β1,

ˆ
β2, . . . ,

ˆ
βp

)′
is unique and can be written explicitly as

ˆ
β =

(
X′X

)−1X′Y. (26)

The OLS estimator
ˆ
β can be used to predict y by the linear combination of variables

x1, . . . , xp as follows

ˆ
y =

ˆ
β0 +

ˆ
β1x1 +

ˆ
β2x2 + . . . +

ˆ
βpxp = (1, x1, x2, . . . , xp)

ˆ
β. (27)

Like Gelman and Hill [1] and Chatterjee and Hadi [2], we will call a predicted value a
fitted value if the values of x1, . . . , xp come from one of the n observations. So, we have n
fitted values

ŷi =
ˆ
β0 +

ˆ
β1xi1 +

ˆ
β2xi2 + . . . +

ˆ
βpxip, i = 1, 2, . . . , n.

Therefore, the n-dimensional column vector
ˆ
Y for the n fitted values

ˆ
y1,

ˆ
y2, . . . ,

ˆ
yn

can be expressed as
ˆ
Y =

(
ˆ
y1,

ˆ
y2, . . . ,

ˆ
yn

)′
= X

ˆ
β. (28)

It is easy to show that the OLS estimator is C−1
ˆ
β after an invertible generalized

linear transformation XC. Moreover, the generalized linear transformation does not affect
predictions. Indeed, let us now predict y for a set of values of variables x1, . . . , xp, which
could be from any set of values not necessarily from one of the n observations. We first
transform the values of x1, . . . , xp into (1, v1, . . . , vp)C, where v1, v2, . . . , vp are values

of x1, . . . , xp. Next, we apply (27) and obtain (1, v1, . . . , vp)C(C−1
ˆ
β) = (1, v1, . . . , vp)

ˆ
β,

which is the predicted value of the original model.
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In linear regression, the coefficient of determination, denoted by R2 and also called
R-squared, is given by Chatterjee and Hadi [2].

R2 =
∑n

i=1

(
ˆ
yi − y

)2

∑n
i=1(yi − y)2 = 1−

∑n
i=1

(
yi −

ˆ
yi

)2

∑n
i=1(yi − y)2 (29)

where y is the mean of the dependent variable y, that is, y = ∑n
i=1 yi
n , and

ˆ
yi is the fitted value

ˆ
yi =

ˆ
β0 +

ˆ
β1xi1 +

ˆ
β2xi2 + . . . +

ˆ
βpxip, i = 1, 2, . . . , n.

The coefficient of determination R2 can be related to the square of the correlation

between Y and
ˆ
Y as follows [2]

R2 =

[
Cor

(
Y,

ˆ
Y
)]2

(30)

where

Cor
(

Y,
ˆ
Y
)
=

∑n
i=1(yi − y)

(
ˆ
yi −

ˆ
y
)

√
∑n

i=1(yi − y)2 ∑n
i=1

(
ˆ
yi −

ˆ
y
)2

. (31)

Theorem 3. R2 in linear regression is invariant under invertible generalized linear transformations.

Proof. Expressing ∑n
i=1(yi − y î)

2 in the numerator of the 2nd equation in (29) into the
matrix form and applying (26), we obtain

n

∑
i=1

(
yi −

ˆ
yi

)2
=

(
Y− X

ˆ
β

)′(
Y− X

ˆ
β

)
= Y′Y−Y′X

ˆ
β. (32)

Substituting (32) into (29) yields

R2 = 1− Y′Y−Y′X
ˆ
β

∑n
i=1(yi − y)2 . (33)

Now let XC be an invertible generalized linear transformation. Then the OLS estimator

after the transformation becomes C−1
ˆ
β. In this case, R2 in (33) becomes

1− Y′Y−Y′(XC)C−1
ˆ
β

∑n
i=1(yi − y)2 = 1− Y′Y−Y′X

ˆ
β

∑n
i=1(yi − y)2 ,

which returns to R2 in (29) before the generalized linear transformation. �

3.2.2. Effects on Logistic Regression

In Definitions 2 and 3, we defined a generalized linear transformation only for inde-
pendent variables. Since an independent variable is used as the dependent variable in
order to find its VIF, we consider a simple linear transformation for the dependent variable
in the following result.
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Lemma 1. Consider a linear regression with y as the dependent variable and x1, x2, . . . , xp as
the independent variables. If we make a simple linear transformation on y such as yt = ay + b
and a generalized linear transformation XC on independent variables with nonsingular C, then

β̂t = C−1
(

a
ˆ
β + (b, 0, . . . , 0)′

)
is the OSL estimator of the new linear regression after the

transformations, where X is the design matrix, (b, 0, . . . , 0) is a (p + 1)-dimensional row vector

and
ˆ
β = (X′X)−1X′Y is the OLS estimator of the original linear regression.

Proof. Since for the new linear regression has design matrix is XC and the dependent
variable can be expressed as aY + (b, b, . . . , b)′, where (b, b, . . . , b) is a n-dimensional

row vector, it is sufficient show that β̂t = C−1
(

a
ˆ
β + (b, 0, . . . , 0)′

)
satisfies

(XC)′(XC)β = (XC)′
(

aY + (b, b, . . . , b)′
)

. (34)

Substituting β̂t = C−1
(

a
ˆ
β + (b, 0, . . . , 0)′

)
into the left-hand side of (34) and replac-

ing
ˆ
β with (X′X)−1X′Y, we obtain

(XC)′(XC)β̂′ = (XC)′X
(

a
ˆ
β + (b, 0, . . . , 0)′

)
= (XC)′

(
aY + (b, b, . . . , b)′

)
,

which is the right-hand side of (34). �

Theorem 4. VIF for each independent variable is invariant under multiple linear transformations
in logistic regression.

Proof. Without loss of generality, we assume multiple linear transformations xt
i = aixi + bi

for the first r independent variables for i = 1, 2, . . . , r, where r ≤ p. To find VIF, we do
linear regressions for each i = 1, 2, . . . , r, by making xt

i as the dependent variable and
xt

1 , xt
2, . . . , xt

i−1, xt
i+1, . . . , xt

r, xr+1, xr+2, . . . , xp as the independent variables. Similarly,
we do linear regression for each i = r + 1, r + 2, . . . , p, by making xi as the dependent
variable and xt

1 , xt
2, . . . , xt

r, xr+1, . . . , xi−1, xi+1 , . . . , xp as the independent variables.
We only prove the invariance of VIF for xt

1 and of VIF for xr+1 as the invariance of VIF
for xt

i , i = 2, 3, . . . , r can be proved similar to xt
1 and the invariance of VIF for xi,

i = r + 1, r + 2, . . . , p can be proved similar to xr+1.
To find VIF for xt

1, we do linear regressions by making xt
1 as the dependent variable and

xt
2, xt

3, xt
r, xr+1, xr+2, . . . , xp as the independent variables. In this case, the dependent vari-

able xt
1 = yt = a1x1 + b1 and the independent variables xt

2, xt
3, . . . , xt

r, xr+1, xr+2, . . . , xp
result from a generalized linearization XC, where X is the design matrix with independent
variables x2, x3, . . . , xp and C is the upper triangular matrix as follows

C =



1 b2 b3 . . . br 0 0 · · · 0
0 a2 0 . . . 0 0 0 · · · 0
0 0 a3 · · · 0 0 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 . . . ar 0 0 · · · 0

0 0 0
... 0 1 0 · · · 0

0 0 0 0 0 0 1 · · · 0
...

...
...

...
...

...
...

. . .
...

0 0 0 0 0 0 0 · · · 1


.
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Since the determinant of C equals a2a3 . . . ar 6= 0, by Lemma 1, the OLS estimator

after the multiple linear transformations is β̂t = C−1
(

a1
ˆ
β + (b1, 0, . . . , 0)′

)
. By (29), it’s

sufficient to prove the following identity:

∑n
i=1

(
a1xi1 + b1 − ŷt

i

)2

∑n
i=1

(
a1xi1 + b1 − (a1x1 + b1)

)2 =
∑n

i=1

(
yi −

ˆ
yi

)2

∑n
i=1(yi − y)2 . (35)

Since the denominator of the left-hand side of (35) is

n
∑

i=1

(
a1xi1 + b1 − (a1x1 + b1)

)2
=

n
∑

i=1
(a1xi1 + b1 − a1x1 − b1 )

2

= (a1)
2 n

∑
i=1

(xi1 − x1 )2 = (a1)
2 n

∑
i=1

(yi − y)2.

It is sufficient to show that

n

∑
i=1

(
a1xi1 + b1 − ŷt

i

)2
= (a1)

2
n

∑
i=1

(
yi −

ˆ
yi

)2
. (36)

Expressing the left-hand side of (36) as the multiplication of vectors

n

∑
i=1

(
a1xi1 + b1 − ŷt

i

)2
=
(

a1x1 + B1 − Ŷt
)′(

a1x1 + B1 − Ŷt
)

(37)

where B1 is the n-dimensional column vector with all elements of b1 and Ŷt is the n-
dimension vector of fitted values ŷt

i for i = 1, 2, . . . , n.
Applying (28) for the vector Ŷt of fitted values and design matrix XC and applying

Lemma1, we obtain

Ŷt = (XC)β̂t = (XC)C−1
(

a1
ˆ
β + (b1, 0, . . . , 0)′

)
= a1X

ˆ
β + B1.

Hence, a1x1 + B1 − Ŷt = a1
(

x1 − X̂β
)

and so (37) becomes

n

∑
i=1

(
a1xi1 + b1 − ŷt

i

)2
= (a1)

2(x1 − X̂β
)′(x1 − X̂β

)
which is the right hand-side of (36).

To find VIF for xr+1, we do linear regressions by making xr+1 as the dependent
variable and xt

1, xt
2, . . . , xt

r, xr+2, . . . , xp as the independent variables. In this case, the
independent variable result from a generalized linearization ZD, where Z is the design
matrix of independent variables x1 , x2, , . . . , xr , xr+2 , . . . , xp and D is the upper triangular
matrix as follows

D =



1 b1 b2 . . . br 0 0 · · · 0
0 a1 0 . . . 0 0 0 · · · 0
0 0 a2 · · · 0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . ar 0 0 · · · 0

0 0 0
... 0 1 0 · · · 0

0 0 0 0 0 0 1 · · · 0
...

...
...

...
...

...
...

. . . 0
0 0 0 0 0 0 0 · · · 1


.
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Since the determinant of D equals a1a2 . . . ar 6= 0, by Theorem 3, VIF for xr+1 after the
generalized transformation ZD is the same as VIF for xr+1 prior to the generalized linear
transformation. �

Remark 1. VIFs are not necessarily invariant under an invertible generalized linear transformation
XC. For instance, let xt

1 = x2 and xt
2 = x1 and keep x3, x4, . . . , xp unchanged. Then

xt
1, xt

2, x3, x4, . . . , xp result from the generalized linear transformation with

D =



1 0 0 0 0 0 · · · 0
0 0 1 0 0 0 · · · 0
0 1 0 0 0 0 · · · 0
0 0 0 1 0 0 · · · 0
0 0 0 0 1 0 · · · 0
0 0 0 0 0 1 · · · 0
...

...
...

...
...

...
. . . 0

0 0 0 0 0 0 · · · 1


.

Since the determinant of D is −1, D is nonsingular. However, VIF for xt
1 after the generalizer linear

transformation XD equals VIF for x2 prior to the generalized linear transformation, which are
unequal in general.

The following result is immediate.

Theorem 5. Multicollinearity exists in logistic regression if, and only if, it exists after an invertible
generalized linear transformation.

Remark 2. All the results about multicollinearity and VIF also apply to machine learning algo-
rithms in which multicollinearity is applicable such as linear regression.

3.3. Effects on Linear Separation

Albert and Anderson [16] first assumed design matrix X to have a full column rank,
that is, no multicollinearity. They then introduced the concept of separation (including
complete separation and quasi-complete separation) and overlap in logistic regression
with intercept. They showed that separation leads to nonexistence of (finite) MLE and that
overlap leads to finite and unique MLE. Therefore, like multi-collinearity, separation is a
common issue in logistic regression.

Definition 4. There is a complete separation of data points if there exists a vector b =
(
b0, b1, . . . , bp

)′
that correctly allocates all observations to their response groups; that is,

p
∑

j=0
bjxij = Xib = b′X′i > 0, yi = 1,

p
∑

j=0
bjxij = Xib = b′X′i < 0, yi = 0.

(38)

Definition 5. There is quasi-complete separation if the data are not complete separable, but there
exists a vector b =

(
b0, b1, . . . , bp

)′ such that
p
∑

j=0
bjxij = Xib = b′X′i ≥ 0, yi = 1,

p
∑

j=0
bjxij = Xib = b′X′i ≤ 0, yi = 0

(39)
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and equality holds for at least one subject in each response group.

Definition 6. If neither a complete nor a quasi-complete separation exists, then the data is said to
have overlap.

Theorem 6. An invertible generalized linear transformation does not affect the data configuration
of logistic regression.

Proof. We consider three cases.

Case 1. There is a complete separation of data points in the original system. Then
(38) holds for a vector b =

(
b0, b1, . . . , bp

)′. The row i in the design matrix is XiC for
i = 1, 2, . . . , n, after the invertible generalized linear transformation XC. Let bt = (C′)−1b,
then vector b′ is a constant column vector of dimension (p + 1). Since

(
bt)′(XiC)

′ = b′X′i ,
(38) holds after the generalized linear transformation. Therefore, there is also a complete
separation of data points after the generalized linear transformation XC.

Case 2. There is a quasi-complete separation of data points in the original system. It
can be proved similarly to Case 1.

Case 3. The original data point has overlap. Then the new data points after the
generalized linear transformation XC also has overlap. We prove it by contradiction.
Assume otherwise the new data points after the generalized linear transformation does not
has overlap. Then there is either a complete separation or a pseudo-complete separation
of data points. Let us first assume there is a complete separation of data point after the
generalized linear transformation XC. Then there is a vector b =

(
b0, b1, . . . , bp

)′ such
that (38) holds. Row i in the design matrix after the generalized linear transformation
XC is XiC for i = 1, 2, . . . , n. Let bt = (C′)−1b, then (38) holds with bt, which is a
contradiction. Next, let us assume there is a quasi-complete separation after the generalized
linear transformation XC. It can be proved similarly. �

4. Numeric Examples

In this section, we use real data, the well-known German Credit Data from a German
bank, to validate our theoretical results. The German Credit Data can be found in the
UCI Machine Learning Repository [24]. The original dataset is in file “german.data”,
which contains categorical/symbolic attributes. It has 1000 observations representing
1000 loan applicants. The statistical software package R (version 3.4.2) and its RStudio
will be employed for our analyses. Since there are only 1000 records, we will not split
them into training and test. We extract german.data using R’s read_table function, call it
german_credit_raw, and use colnames() method to rename the column names.

There are 21 variables or attributes in german_credit_raw including 8 numerical ones
as follows, which are denoted by x1, x2, . . . , x8, resepectively:

• Duration: Duration in month;
• credit_amount: Credit amount;
• installment_rate: Installment rate in percentage of disposable income;
• current_address_length: Present residence since;
• age: Age in years;
• num_credits: Number of existing credits at this bank;
• num_dependents: Number of people being liable to provide maintenance for;
• credit_status: Credit status: 1 for good loans and 2 for bad loans.

Let us define a new variable called default as y = de f ault = credit_status − 1. With
the new variable default, 0 is for good loans and 1 is for bad loans. Since it is not easy to
interpret categorical variables, we will only consider numerical variables.
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4.1. Validation of Invariance of Separation

Let us first build a logistic regression model logit_model_1 using all the 8 numerical
variables and glm function in R. In the following, we italicize statements in R, use “>“ for
the R prompt and make outputs from R bold.

> logit_model_1 <- glm(default ~ duration + credit_amount + installment_rate +
current_address_length + age + num_credits + num_dependents + credit_status, data =
german_credit_raw, family = “binomial”)

Warning message:
glm.fit: algorithm did not converge
We see a warning message as above. It indicates a separation in the data. Indeed, this

separation is from variable credit_status. (38) holds with b0 = −3, b1 = b2 = . . . = b7 =
0, b8 = 2. By Definition 4, there is a complete separation of data points.

Now let us make a generalized linear transformation. We randomly generate 8× 8
matrix C11 as shown in Table 1 and the 8-dimensional row vector C1 in (3) by calling R
function runif, which generates random values from a uniform distribution with a default
value from 0 to 1. We set seed for the purpose of reproduction. We denote C11 and C1 by
C_11 and C_1 in R, respectively. We call R’s function det to calculate the determinant of C11.

Table 1. Matrix C_11.

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0.2655087 0.6291140 0.7176185 0.2672207 0.4935413 0.8209463 0.7323137 0.3162717
[2,] 0.3721239 0.0617863 0.9919061 0.3861141 0.1862176 0.6470602 0.6927316 0.5186343
[3,] 0.5728534 0.2059746 0.3800352 0.0133903 0.8273733 0.7829328 0.4776196 0.6620051
[4,] 0.9082078 0.1765568 0.7774452 0.3823880 0.6684667 0.5530363 0.8612095 0.4068302
[5,] 0.2016819 0.6870228 0.9347052 0.8696908 0.7942399 0.5297196 0.4380971 0.9128759
[6,] 0.8983897 0.3841037 0.2121425 0.3403490 0.1079436 0.7893562 0.2447973 0.2936034
[7,] 0.9446753 0.7698414 0.6516738 0.4820801 0.7237109 0.0233312 0.0706790 0.4590657
[8,] 0.6607978 0.4976992 0.1255551 0.5995658 0.4112744 0.4772301 0.0994662 0.3323947

> set.seed(1)
> C_11 <- matrix(runif(64), nrow = 8)
We use R function det to find the determinant of C_11 to be 0.01433565.
Vector C_1 is generated as follows:
> set.seed(10)
> C_1 = runif(n = 8, min = 1, max = 20)
[1] 10.642086 6.828602 9.111246 14.168940 2.617583 5.283296
6.216080 6.173796

Since C_11 is nonsingular, so is C =

(
1 C1
0 C11

)
by (9). Now x1, . . . , x8 can be transmitted

into x1
t, x2

t, . . . , x8
t as in (6). Let us denote x1

t, x2
t, . . . , x8

t by duration2, credit_amount2,
. . . , credit_status2 in R.

Let us build a logistic regression model logit_model_2 for the eight transformed variables.
We also see the warning message as for the eight original variables. Therefore, after a

nonsingular generalized linear transformation, the separation in data remains.

4.2. Validation of MLE

Let us drop credit_status and rebuild a logistic regression model called logit_model_3.
The main output is shown in Table 2.
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Table 2. Coefficients and statistics for model 3.

Coefficients:

Estimate Std. Error z Value Pr(>|z|)
(Intercept) −1.56979765 0.42997660 −3.651 0.000261 ***
duration 0.02621174 0.00770330 3.403 0.000667 ***

credit_amount 0.00007060 0.00003404 2.074 0.038053 *
installment_rate 0.20355992 0.07251671 2.807 0.004999 **

current_address_length 0.04090933 0.06690897 0.611 0.540923
age −0.02143075 0.00708337 −3.026 0.002482 **

num_credits −0.15689020 0.13049965 −1.202 0.229276
num_dependents 0.12800328 0.20131338 0.636 0.52488

—

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

The output also indicates the data still has overlap after the transformation. Hence, we
have validated Theorem 6.

We see variables current_address_length, num_credits and num_dependents are not
significant at the 0.05 level. Since we are not focused on building a model, let us still keep
these variables. Let us extract the coefficients and put them in a vector called model_coef_3
as follows:

> model_coef_3 <- data.frame(coef(logit_model_3))
> model_coef_3 <- as.matrix(model_coef_3)
Next, let us make a generalized linear transformation. We use letter D rather than C

to distinguish the case from Section 4.1. We randomly generate 7× 7 matrix D11 and the
7-dimensional row vector D1 in (3) by calling R function runif. Again, we denote D11 as
shown in Table 3 and D1 by D_11 and D_1 in R, respectively.

Table 3. Matrix D_11.

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.1848823 0.8334488 0.40528218 0.3875495 0.96264405 0.6271963 0.1150841
[2,] 0.7023740 0.4680185 0.85354845 0.8368892 0.13237200 0.8444290 0.1632009
[3,] 0.5733263 0.5499837 0.97639849 0.1505014 0.01041453 0.2848706 0.9440418
[4,] 0.1680519 0.5526741 0.22582546 0.3472722 0.16464224 0.6672256 0.7948638
[5,] 0.9438393 0.2388948 0.44480923 0.4887732 0.81019214 0.1504698 0.9746879
[6,] 0.9434750 0.7605133 0.07497942 0.1492469 0.86886104 0.9817279 0.3490884
[7,] 0.1291590 0.1808201 0.66189876 0.3570626 0.51428176 0.2970107 0.5019699

> set.seed(2)
> D_11 <- matrix(runif(49),nrow = 7)
> det(D_11)
[1] 0.2851758
> set.seed(20)
> D_1 = runif(n = 7, min = 1, max = 20)
[1] 17.672906 15.602131 6.300300 11.054110 19.295234 19.626737
2.735319

Since the determinant of D_11 is nonzero, D =

(
1 D1
0 D11

)
is non-singular by (9) as

shown in Table 4:
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Table 4. Matrix D.

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 1 17.6729064 15.6021310 6.30029963 11.0541102 19.29523359 19.6267371 2.7353192
[2,] 0 0.1848823 0.8334488 0.40528218 0.3875495 0.96264405 0.6271963 0.1150841
[3,] 0 0.7023740 0.4680185 0.85354845 0.8368892 0.13237200 0.8444290 0.1632009
[4,] 0 0.5733263 0.5499837 0.97639849 0.1505014 0.01041453 0.2848706 0.9440418
[5,] 0 0.1680519 0.5526741 0.22582546 0.3472722 0.16464224 0.6672256 0.7948638
[6,] 0 0.9438393 0.2388948 0.44480923 0.4887732 0.81019214 0.1504698 0.9746879
[7,] 0 0.9434750 0.7605133 0.07497942 0.1492469 0.86886104 0.9817279 0.3490884
[8,] 0 0.1291590 0.1808201 0.66189876 0.3570626 0.51428176 0.2970107 0.5019699

We use R function solve to find its inverse D−1 and call it inv_D (see Table 5) in R

Table 5. Inverse matrix of D.

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 1 −7.9987564 −8.13990103 4.21471891 1.9118435 −3.7229455 −10.65351722 2.7150084
[2,] 0 −0.3069549 0.33838941 0.27554240 −0.6317051 0.4987514 0.42693364 −0.8228946
[3,] 0 1.6396322 −0.06252947 0.79806766 0.2807233 0.2680550 −0.76439514 −2.2899087
[4,] 0 −0.1062208 0.10961077 0.64555254 −0.8488122 −0.5625429 0.10509829 1.1379418
[5,] 0 0.6460218 0.86107501 −0.79420393 0.7167836 0.9646552 −1.22876225 −1.0880130
[6,] 0 0.2595927 −0.43338042 −0.38521513 −0.4283198 0.1580233 0.29055578 0.9751883
[7,] 0 −1.1460418 0.12889195 −0.48351108 0.4179223 −1.0293070 1.14940313 1.6676878
[8,] 0 −0.4189740 −0.45383398 0.03608131 0.8623441 0.2778314 −0.07680999 0.3163327

Now x1, . . . , x7 can be transmitted into x1
t, x2

t, . . . , x7
t as in (6). Let us denote

x1
t, x2

t, . . . , x7
t by duration4, credit_amount4, . . . , number_dependents4 in R. Let us build

a logistic regression model for the seven transformed variables and call it logit_model_4.
The main output is shown in Table 6:

Table 6. Coefficients and statistics of model 4.

Coefficients: Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.25487 1.65128 0.760 0.447
duration_4 −0.16078 0.18457 −0.871 0.384

credit_amount_4 0.03798 0.46388 0.082 0.935
installment_rate_4 0.23513 0.24465 0.961 0.337

current_address_length_4 −0.08251 0.27582 −0.299 0.765
age_4 −0.01331 0.19983 −0.067 0.947

num_credits_4 −0.05616 0.35614 −0.158 0.875
num_dependents_4 0.07820 0.08644 0.905 0.366

Let us extract the coefficients called model_coef_3 to get more digits as shown in
Table 7:

Table 7. Coefficients of model 4.

coef.logit_model_4.

(Intercept) 1.2548745
duration_4 −0.1607787

credit_amount_4 0.0379776
installment_rate_4 0.2351349

current_address_length_4 −0.0825126
age_4 −0.0133075

num_credits_4 −0.0561589
num_dependents_4 0.0781968
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> model_coef_4 <- data.frame(coef(logit_model_4))
Let us find the multiplication of D−1 and vector model_coef_3 in R as follows:
> inv_D%*%model_coef_3
The result of the product is shown in Table 8 below.

Table 8. Product of inverse matrix of D and coefficients of model 3.

coef.logit_model_3.

[1,] 1.25487449
[2,] −0.16077871
[3,] 0.03797764
[4,] 0.23513490
[5,] −0.08251257
[6,] −0.01330746
[7,] −0.05615895
[8,] 0.07819677

This is exactly the same as model_coef_4. Next, we calculate the predicted values
for all the 1000 records using both models logit_model_3 and logit_model_4 by calling R
function predict and then all.equal utility to check these two predictions are near equality:

> model_3_predictions = predict(logit_model_3, german_credit_raw, type=“response”)
> model_4_predictions = predict(logit_model_4, german_credit_raw, type=“response”)
> all.equal(model_3_predictions, model_4_predictions, tolerance = 1e-13)
[1] “Mean relative difference: 0.0000000000005060054”
We see that the two predictions are identical taking rounding errors into consideration.

Thus, we have validated validated Theorem 2.
Note that a nonlinear transformation even a one-to-one correspondence will not have

the properties in Theorem 2 even for a single variable. For instance, let us define a one-
to-one correspondence for variable age as follows: age_6 = ln(age), which is log(age) in
R. Let us build a univariate logistic regression model called logit_model_5 for age and a
univariate logistic regression model called logit_model_6 for age_6. Next, we apply these
two models to predict the values for german_credit_raw.

> model_5_predictions = predict(logit_model_5, german_credit_raw, type=“response”)
> model_6_predictions = predict(logit_model_6, german_credit_raw, type=“response”)
> all.equal(model_5_predictions, model_6_predictions, scale=1)
[1] “Mean absolute difference: 0.008512868”
We see that the predictions from logit_model_5 are in general different from predictions

for logit_model_6.

4.3. Validation of Invariance of VIF

For logistic regression model logit_model_3 in Section 4.2, we use VIF function in the
car package of R to find VIF for all the 7 variables. The result is shown in Table 9.

Table 9. VIF for model 3.

VIF

duration 1.781992
credit_amount 1.991715
installment rate 1.223520

curent_adress_length 1.069032
age 1.111486

num_credits 1.031390
num_dependents 1.033490

> car::vif(logit_model_3)
Next, we randomly generate multiple simple transformations as follows
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> set.seed(30)
> A = runif(n = 7)
> set.seed(40)
> B = runif(n = 7, min = 1, max = 10)
> german_credit_raw$duration_7 = A [1] * german_credit_raw$duration + B [1]
> german_credit_raw$credit_amount_7 = A [2] * german_credit_raw$credit_amount +

B [2]
. . .

> german_credit_raw$num_dependents_7 = A [7] * german_credit_raw$num_dependents
+ B [7]

We build a logistic regression for the variables after multiple simple linear transfor-
mations and call it logit_model_7. We then find VIF as follows and display the result in
Table 10

Table 10. VIF for model 7.

VIF

duration_7 1.781992
credit_amount_7 1.991715

installment_rate_7 1.223520
curent_adress_length_7 1.069032

age_7 1.111486
num_credits_7 1.031390

num_dependents_7 1.033490

> car::vif(logit_model_7)
Hence, we have validated Theorem 4. There is no need to validate Theorem 5 (the

invariance of multicollinearity) as its analytical proof is straightforward.

5. Conclusions

In this paper, we first generalized a linear transformation for a single variable to multi-
ple variables by a matrix multiplication. We then studied various effects of a generalized
linear transformation in logistic regression. We showed that an invertible generalized linear
transformation has no effects on predictions, multicollinearity, pseudo-complete separation,
and complete separation. We also showed that multiple linear transformations do not
have effects on the variance inflation factor (VIF). Numeric examples with real data were
presented to validate our theoretic results.
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