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Abstract: A number of actual problems of integrated photonics are reduced to an oblique incidence of
radiation on a plane-parallel scatterer. For such problems, an approximate method of integrating the
Maxwell equations along the beam propagation direction is proposed. As a result, the original two-
dimensional problem is reduced to a one-dimensional one, and recently proposed one-dimensional
bicompact schemes are used to solve it. This approach provides a significant reduction of computa-
tional costs compared to traditional two-dimensional methods such as finite differences and finite
elements. To verify the proposed method, calculations of test and applied problems with known
exact reflection spectra are carried out.
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1. Introduction

Integrated photonics is the field of optics dedicated to the development of nanoscale
devices that allow controlling radiation in the near-infrared and visible range. Optical
nanostructures can be used as detectors, logic elements, switches, modulators, waveguides,
etc. A number of important applications are reduced to the problem of oblique incidence of
a plane electromagnetic wave (monochromatic or pulse) on a set of plane-parallel plates.
The latter can be both dielectric and conductive, and their material parameres may depend
on the coordinates. Such problems arise when studying the properties of bound states
of various types (surface [1] or Tamm [2,3] plasmon polaritons, micro-cavity modes [4],
excitons [5], etc.).

The outlined problems are two-dimensional; i.e., electromagnetic fields depend on two
spatial coordinates, and the dependence on the third coordinate can be neglected. For such
problems, two-dimensional codes based on the finite difference or finite element method
are traditionally used.

For monochromatic problems in the absence of surface currents, the methods of finite
and boundary elements based on the Raviar-Thomas [6] and Nedelec [7] elements seem to
be the most workable.

For non-stationary problems, finite difference, finite element, and finite volume meth-
ods in the time domain are only applicable [8–11]. However, these methods face a number
of difficulties [12]. Firstly, near the interface of the media, the error turns out to be large.
Secondly, real optical media have frequency dispersion. Existing methods of accounting for
it may introduce a noticeable error in the solution.

If the fields are monochromatic, and the media are dielectric and piecewise homo-
geneous, then scattering matrix methods [13] are used. These methods provide not an
approximate but an exact solution to the problem. Within their scope of applicability, these
methods are the most workable. Sveshnikov and Tikhonravov generalized the scattering

Mathematics 2023, 11, 466. https://doi.org/10.3390/math11020466 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11020466
https://doi.org/10.3390/math11020466
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-0918-9263
https://orcid.org/0000-0003-0609-1065
https://doi.org/10.3390/math11020466
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11020466?type=check_update&version=2


Mathematics 2023, 11, 466 2 of 24

matrix method to problems in layered media with spatially inhomogeneous layers [14];
however, this generalization is applicable only for normal radiation incidence.

In some cases, with the help of physical approximations, the problem can be simplified
and reduced to a one-dimensional formulation (see, e.g., [15–23]). This greatly simplifies
the calculation. An example is the integration of hyperbolic problems along the direction
of wave propagation. However, most of such approaches are developed for cases when
there are no interface boundaries in the medium; i.e., the properties of the substance
change smoothly in space. At the same time, a characteristic feature of integrated photonics
problems is the presence of several interface boundaries on which multiple re-reflections
occur.

In the present paper, we propose to integrate the Maxwell equations along the direction
of wave propagation. This approach reduces the problem to a one-dimensional one. For the
latter, a recently proposed bicompact scheme and the spectral decomposition method are
used. This allows us to reduce the complexity of solving the tasks listed above. Calculations
of test and applied problems with a known exact reflection spectra have been carried out,
which convincingly verify the proposed approach.

2. Problem Statement
2.1. Plane-Parallel Structure

1. Consider a layered structure consisting of Q isotropic plane-parallel plates with a
total thickness of a. Let the coordinate axis z be perpendicular to the plates; the axes x and
y are located in the plane of the plates. Denote the coordinates of the layer boundaries by
0 = ξ0 < ξ1 < . . . < ξQ = a. At z < 0 and z > a, semi-infinite dielectric media are located.
We denote their dielectric permittivity and magnetic susceptibility by ε0, µ0 (for z < 0) and
εa, µa (for z > a). We assume these media to be homogeneous and isotropic.

2. Let part of the plates be dielectric and part of them be conductors or semiconduc-
tors. Denote by εq the dielectric permittivity, µq the magnetic susceptibility, and σq the
conductivity of the q th plate (for dielectric plates, σq = 0).

3. Due to heating by currents and incident radiation, the plates may become optically
inhomogeneous, that is, their refractive index may depend on the coordinate. We assume
that the refractive index and conductivity depend on the z coordinate but practically do
not change with time.

4. The values εq, µq, σq may depend on the frequency ω of the electromagnetic wave.
This dispersion is called the frequency one. At the same time, we assume that the spatial
dispersion (i.e., the dependence of the material parameters on the wave vector) is negligible.

Note that in the presence of spatial dispersion, the wavefront is deformed (and cannot
be considered homogeneous). Polarization deformation occurs, which may lead to the
implementation of multimode oscillations, waveguide modes, etc. [24]. This class of tasks
is beyond the scope of this work.

Spatial dispersion is insignificant if the field changes little at the distance at which the
response of the medium to this field is formed [24]. The change in the field occurs due to the
displacement of charges in the substance. Thus, we assume that the displacement of charges
during the oscillation period of the fields is small compared to the wavelength. In plasma
physics problems, this means the approximation of a cold plasma. In problems of dielectric
photonics and plasmonics, this approximation is applicable because the frequency of field
oscillations is high. Thus, the typical oscillation period in the optical and near-infrared
range is ∼ 10−14 s. During this time, the free electrons in the metal shift by the fractions of
an angstrom, while the characteristic wavelength is hundreds of nanometers.

2.2. Scattering of Monochromatic Radiation by Plasmonic Structures

1. Let a plane linearly polarized electromagnetic wave of frequency ω fall obliquely on
the structure and the wave vector lie in the Oxz plane. The angle of incidence (i.e., the angle
between the wave vector of the incident wave and the normal to the plates) is denoted by α.
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It is known that two wave polarizations are possible for oblique incidence. A wave is
called s-polarized if the vector E is perpendicular to the plane formed by the wave vectors
of the incident and reflected waves. Then, the vector E has only y-component E = {0, Ey, 0},
and the vector H has x- and z-components H = {Hx, 0, Hz}. This polarization is illustrated
in Figure 1, where one media interface is given for simplicity. If the vector E lies in the plane
formed by the wave vectors of the incident and reflected waves, then the wave is called
p-polarized (see Figure 2). Then, the vector E has x- and z-components E = {Ex, 0, Ez}, and
the vector H has only y-component H = {0, Hy, 0}.

Figure 1. S-polarized wave. Bold line is the direction of propagation of a direct wave (ray trajectory).
Dotted line is the direction of propagation of the reflected wave. A thin line is the interface between
the media. The dashed line is normal to the interface.

Figure 2. P-polarized wave. The designations correspond to Figure 1.

Moreover, if the incident wave has s-polarization, then the reflected and transmitted
waves are also s-polarized, and it is similar in the case of p-polarization. We assume that
the incident wave is s- or p-polarized. It is this case that is of interest to applications.
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If the incident wave has a circular or elliptical polarization, then it can be represented
as the sum of two linear polarizations (s and p). Next, one solves the problem for each of
them and sums up the answer.

2. Suppose there are no external bulk currents Jext = 0. Incident radiation induces bulk
currents Jind

q = σqEq. They are directed in the same way as the vector E. These currents
emit waves that interfere with the incident, reflected and transmitted waves. In this case,
various bound states of the electromagnetic field can be formed.

3. We assume that the material of the plates may be inhomogeneous (e.g., due to
heating by currents and incident radiation). In this case, we assume that εq, µq, σq depend
only on z and do not depend on x, y.

The described formulation arises in plasmonics [25–27]. It is often found in physical
and technical applications: sensing, microscopy, optical communication, etc.

2.3. Scattering of Monochromatic Radiation by Optical Structures

1. In the problem, formulated in Section 2.2, all plates are made of dielectric materials
and transparent to incident radiation (i.e., the value of Im ε� 1 is small). Let all bulk and
surface currents be absent Jext

q = Jind
q = 0, jext

q = jind
q = 0.

2. Let a plane linearly polarized electromagnetic wave of frequency ω fall obliquely
on this structure. We choose the direction of the coordinate axes in the same way as in the
problem from Section 2.2. The incident radiation is partially reflected from the structure
and partially passes through it. Bound states can be formed inside the structure, e.g., the
Bloch surface waves [28,29].

3. The plates are spatially homogeneous, i.e., inside each plate, the material parameters
εq, µq are constant. Heating of the plates by incident radiation is supposed to be negligible.

4. In references, this problem is commonly called optical. It is found in many technical
applications. Examples are reflectionless and antireflective coatings, planar waveguides,
etc. (see, for example, [30,31]).

2.4. Scattering of an Electromagnetic Pulse by Plasmonic Structures

1. In the problem from Section 2.2, a monochromatic wave does not fall on the scatterer,
but a wave packet

f0(ζ) = E0(ζ) exp
(
−iω0ζ

)
, ζ = t− (k̃0r)

k̃0c
(1)

with given carrier frequency ω0 and envelope E0. Here, k̃0/k̃0 is a unit vector in the
direction of wave propagation, k0 = ω0/c. Let the pulse (1) be plane and linearly polarized,
and the envelope is a finite function. We select the coordinate axes in the same way as in
the problem (Section 2.2).

The incident radiation induces bulk currents Jind
q = σqEq, which re-emit linearly

polarized pulses.
2. We assume that the refractive index and conductivity depend on the z coordinate but

change slowly over time. The media have a frequency dispersion, but the spatial dispersion
is negligible. The conditions when these assumptions are correct are formulated above.

3. The described problem arises when considering ultrafast processes in plasmon
structures.

2.5. Scattering of an Electromagnetic Pulse by Optical Structures

1. Let a wave packet (1) fall on the scatterer in the problem from Section 2.3. We select
the coordinate axes in the same way as in Section 2.3. The material parameters εq, µq are
assumed to be constant within each plate. There is a frequency dispersion, and the spatial
dispersion is considered negligible.

2. This problem is of great importance for studying the dynamics of bound states in
dielectric structures.
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3. Problem in Integral Form
3.1. Stationary Case

The basic equations of electrodynamics are Maxwell’s equations. Traditionally, their
differential form is considered in the literature. We use the integral form of these equations.
For the case of monochromatic fields, these equations are as follows:∫

Γ
Hqdl =

4π

c

∫
S

σqEqds− iω
c

∫
S

Dqds, Dq = εqEq, 1 ≤ q ≤ Q; (2)∫
Γ

Eqdl =
iω
c

∫
S

Bqds, Bq = µqHq, 1 ≤ q ≤ Q. (3)

Here, S is an arbitrary surface bounded by the contour Γ. The CGS system of units is used.
Let us formulate the radiation conditions for this problem. Consider a section of the

scatterer bounded by the planes x = 0 and x = d > 0. For the compactness of the notation ,
we introduce the following designations:

A±q =
∂

∂x
± i(k̃q)x, B±q =

∂

∂z
± i(k̃q)z. (4)

Here, (k̃q)x = k̃q sin αq and (k̃q)z = k̃q cos αq are projections of the wave vector in the qth
plate on the x and z axes, respectively. The values of 1 6 q 6 Q− 1 correspond to the
scatterer plates, q = 0 is for medium at z < 0, q = Q is for medium at z > a. Recall that the
wave number in the qth plate is equal to k̃q = ω

√
εqµq/c.

The operator A+
q B+

q permits one to select the incident wave ∼ exp{i(k̃q)xx + i(k̃q)zz}
in the qth medium and set its amplitude without affecting the amplitude of the reflected
wave ∼ exp{i(k̃q)xx− i(k̃q)zz}.

Thus, the radiation conditions take the following form:

A+
q B+

q E = −4(k̃q)x(k̃q)zE0
qei(k̃q)zz, x = 0, ξq−1 < z < ξq, (5)

A+
0 B+

0 E = −4(k̃0)x(k̃0)zE0
0ei(k̃0)zz, z = 0, 0 < x < d, (6)

A−q B+
q E = 0, x = d, ξq−1 < z < ξq, (7)

A+
QB−Q E = 0, z = a, 0 < x < d. (8)

Here, E0
q is the amplitude of the wave incident on the interface z = ξq from the medium

q to the medium q + 1. The amplitude of E0
q+1 is related to E0

q by the Fresnel coefficients.
The amplitude E0

0 corresponds to the radiation incident on the boundary of the scatterer
z = 0. The conditions (7) show that the incident and reflected waves freely pass through
the boundary x = d, and the condition (8) shows that the transmitted wave freely passes
through the boundary z = a.

At the media interfaces, we set the conjugation conditions

ez × (Eq − Eq−1) = 0, ez(Dq −Dq−1) = 0,
ez × (Hq −Hq−1) = 0, ez(Bq − Bq−1) = 0.

(9)

Integral Equations (2) and (3) are the physical conservation laws (the circulation
theorem and Faraday’s law, respectively). The difference approximation of these laws,
together with the interface conditions at the interface of the media, provides completely
conservative schemes for this problem [12]. This is the reason why we consider the integral
form of the Maxwell equations.

3.2. Non-Stationary Case

1. Let not a monochromatic wave fall on the scatterer but a wave packet (1) with given
carrier frequency ω0 and envelope E0. Here, k̃0/k̃0 is a unit vector in the direction of wave
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propagation, k0 = ω0/c. Let the pulse (1) be plane and linearly polarized, and the envelope
is a finite function.

The incident radiation induces bulk currents Jind
q = σqEq, which re-emit linearly

polarized pulses.
2. Let us formulate the mathematical statement of the problem. It includes Maxwell’s

non-stationary equations∫
Γ

Hqdl =
4π

c

∫
S

σqEqds +
1
c

∂

∂t

∫
S

Dqds, (10)∫
Γ

Eqdl = −1
c

∂

∂t

∫
S

Bqds, (11)

conjugation conditions (9), initial conditions Eq = 0, Hq = 0 at t = 0 and a non-stationary
analogue of the radiation conditions.

Let us formulate non-stationary radiation conditions. To do this, in (5)–(8), we replace
iω → ∂/∂t and substitute the pulse (1) in the right-hand part. Denote

C±q =
∂

∂x
∓

sin αq

c
∂

∂t
, D±q =

∂

∂z
∓

cos αq

c
∂

∂t
. (12)

Then, the non-stationary radiation conditions describing the incidence of the wave on the
scatterer take the form

C+
q D+

q E = −4
(ω0)2

c2 sin αq cos αz
d2fq

dζ2 , ζ = t− (k̃0r)
k̃0c

(13)

for x = 0, ξq−1 < z < ξq and for z = 0, 0 < x < d. Here, fq is the profile of the incident
pulse in the qth plate. The radiation conditions describing the movement of the transmitted
wave to infinity are written as follows:

C−q D+
q E = 0, x = d, ξq−1 < z < ξq, (14)

C+
Q D−Q E = 0, z = a, 0 < x < d. (15)

4. Optical Paths
4.1. Reducing the Dimensionality of Multidimensional Problem

Problems for equations of mathematical physics with many variables are of great
computational complexity. There are, however, several techniques that permit us to reduce
the dimensionality of the problem. These are analytical–numerical algorithms, which are
usually based on physical simplifications of the problem. One of them is the self-similar
change of variables, which transforms a partial differential equation into an ordinary
differentional equation. The construction of such substitutions can be considered rather an
art; general algorithms are not developed yet.

Another well-known method is the method of characteristics for hyperbolic problems.
Integration of the original equation along the characteristic can be interpreted as a problem
of reduced dimensionality.

Closely related to this are approaches in which a hyperbolic system is integrated along
the direction of propagation of oscillations. For example, this approach was developed by
Dobrokhotov, Nazaikinsky, Shafarevich, Sekerzh-Zenkovich, Anikin, Tolchennikov and
others (see, e.g., [15,32] and references therein). In these works, the problem was solved in
two stages: first, on the basis of the variational principle, ray trajectories were calculated;
then, one-dimensional calculations of the wave front were carried out along them.

These authors applied this approach to the calculations of short-wave radio paths in
the ionosphere, modeling the propagation of ocean waves, the formation of tsunamis and
some other tasks. In all these problems, the properties of the medium in which the wave
propagates smoothly depend on the coordinate, i.e., there are no interface boundaries.
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A similar approach was developed by Forbes and Alonso in relation to the problems
of wave optics (diffraction, propagation of electromagnetic fields through waveguides,
etc.) [16–23]. These authors considered reflection and refraction at one interface. They
introduced rays for reflected and refracted waves. However, if there are several interface
boundaries, multiple re-reflections occur, and there are infinitely many such re-reflections
in a transparent environment. Generalization of the Forbes–Alonso method for this case
faces serious difficulties. The total field contains an infinite number of terms. Cutoff for
such a series introduces an error, the magnitude of which requires additional research.

Nevertheless, the described semi-analytical methods are much more efficient than
direct numerical modeling of a multidimensional problem, so they seem promising.

In the present paper, we propose an approach that reduces the tasks from Sections 2.2–2.5
to a one-dimensional formulation. It is applicable both in a medium with a smoothly
varying refractive index and in a layered one (having several interface boundaries). In this
way, the proposed approach differs from the methods of the Dobrokhotov group and the
Forbes–Alonso method. It is called the optical path method. The method consists in the
integration of the Maxwell equations along the direction of propagation (ray trajectory) of
incident and refracted waves.

4.2. Ray Trajectories

1. Consider the stationary problem from Section 3.1. At first, assume there are no
currents; i.e., all plates are dielectric σq = 0, 1 6 q 6 Q. A generalization for the case of
conductive plates is constructed further (see Section 4.8). The material of the plates can be
either homogeneous or heterogeneous.

2. At each qth interface, the incident wave is partially reflected and, being refracted,
partially passes further. For the incident and the transmitted wave, the z component of
the wave vector is positive kz > 0. We denote such waves direct. For the reflected wave,
the z-component of the wave vector is negative kz > 0. We call such waves inverse. The
direct transmitted wave falls to the next (q + 1)-th interface, and the angle of incidence
is equal to the angle of refraction for the q-th interface. At the (q + 1)-th interface, the
wave undergoes reflection and refraction. The reflected inverse wave returns to the qth
boundary and also experiences reflection and refraction on it. The wave reflected from the
qth boundary becomes direct and, together with other direct waves, falls on the (q + 1)-th
border.

The number of such re-reflections is very large (in the case of a negligibly small
absorption, there are infinitely many re-reflections). At the same time, in each plate, all
direct waves have the same angles of incidence and refraction, and all reverse waves have
the same angles of reflection. Therefore, it is possible to introduce a single ray trajectory for
all direct waves.

3. We construct the ray trajectory within the framework of geometric optics. To do this,
we employ the Fermat principle (similar to [32]). It is applicable because spatial dispersion
is neglected. The Fermat principle implies minimization of the light propagation time in
the medium ∫ a

0

n(z)
c

√
1 + (x′(z))2dz→ min

x(z)
. (16)

Here, c/n(z) is the speed of light in the medium. This equation defines the ray trajectory
x(z) of the incident wave. In an heterogeneous medium, this ray trajectory is curved. The
ray trajectory of the reflected wave is mirror-symmetric to the trajectory of the incident
wave relative to the plane Oyz. To build it, one should replace x → −x while preserving
the sign of z.

Methods for solving problem (16) are discussed in [33–35]. It is also possible to use a
direct grid method [36].

4. An interesting special case is photonic crystals, in which the refractive index
changing periodically and smoothly depends on the coordinate. Such structures are created
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by placing chiral liquid crystals in a sufficiently strong external electric field between flat
plates of a capacitor [37].

Such a structure can be considered as one plane-parallel plate with inhomogeneous
filling. One can construct a ray trajectory by solving the problem (16). It is easy to see that
if n(z) changes periodically, then x′(z) is also periodic (with the minimum being sought in
the class of monotonous functions). Then, the ray trajectory x(z) has the form of a “ladder”
with smoothed steps.

5. In the simplest case, if the scatterer is composed of homogeneous isotropic dielectric
plates, this problem admits a simple analytical solution. Direct and inverse waves propagate
along straight lines, the direction of which in the qth plate is determined by the Snellius
law (which, as is known, is a consequence of the Fermat principle). The angle of refraction
of βq at the q th interface is determined by the equality

βq = arcsin
nq+1

nq
sin αq, (17)

where αq is the angle of incidence on the q-th media interface.
An example of a ray trajectory for a single interface between homogeneous media

is shown in Figures 1 and 2. This ray trajectory is not smooth: it has a fracture at each
interface. Denote the coordinate along the radial trajectory by η. For the case of Figures 1
and 2, the coordinate transformation z→ η is performed according to the following rule:

η =
z

cos α
, z < 0; η =

z
cos β

, z > 0. (18)

If there are several partition boundaries, then the transformation (18) is generalized in an
obvious way.

6. As a spatial coordinate, we choose the ray trajectory of the direct wave.

4.3. Unknown Functions

1. Consider an incident wave. In both homogeneous and inhomogeneous media, on
the ray trajectory, the fields E and H are orthogonal to k and have only one component
equal to the complex amplitude of the corresponding vector. This amplitude depends on
one spatial variable, i.e., the coordinates along the ray trajectory. Therefore, a problem
in which only an incident wave is present is one-dimensional. The same is true for the
reflected wave.

2. In all the plates of the scatterer, including the medium in the region z < 0, the field
is a superposition of incident and reflected waves. In this case, the total vectors E and H
are not orthogonal to k. However, according to the law of reflection, the angles between
the field vectors of the incident and reflected waves and the coordinate axes are the same.
So, for s-polarization, the angle between the field Hinc of the incident wave and the z axis is
equal to the angle between the field Hrefl of the reflected wave and the z axis (similarly for
the x axis). The same is true for the fields Einc, Erefl in the case of p-polarization. Therefore,
the projections of the total field on the coordinate axis are calculated as follows:

Hz = (Hinc)z + (Hrefl)z = (Hinc + Hrefl) sin α, for s-polarization,
Ez = (Einc)z + (Erefl)z = (Einc + Erefl) sin α, for p-polarization.

(19)

Expressions for Ex, Hx are obtained from (19) by replacing sin→ cos.
3. Thus, the solution is completely determined by the sum of complex amplitudes of

the incident and reflected waves. Therefore, a one-dimensional scheme can be used for
calculation, in which the specified sum is an unknown function.
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4.4. Conjugation Conditions

The Maxwell integral equations in an isotropic medium are invariant with respect to
rotation of the coordinate system. Therefore, in order to pass to the coordinate along the
ray trajectory, it is sufficient to modify the conjugation conditions at media interfaces.

Consider the incidence of a wave on one interface (see Figures 1 and 2). The conjuga-
tion conditions for tangential components of fields on this boundary have the form

(Eτ)1 = (Eτ)2, (Hτ)1 = (Hτ)2. (20)

Here, medium 1 is located before the interface, and medium 2 is located after. For s-
polarization, the conjugation conditions have the form

E1 = E2, H1 cos α = H2 cos β, (21)

where α is the specified angle of incidence, and β is the angle of refraction. For p-
polarization, the conjugation conditions are written as follows:

H1 = H2, E1 cos α = E2 cos β. (22)

Compared to the case of a normal incidence, only the multipliers cos α and cos β are
added. If there are several partition boundaries, then the conditions (21) and (22) are
written on each of them.

To account for the total internal reflection, we introduce a purely imaginary wave
number k → ik if (Re n1/Re n2) sin α > 1. This substitution is valid if the media are
transparent or absorbing (i.e., Im n > 0).

4.5. Effective Thickness

After the transition to the ray coordinate, the effective (optical) thickness of the plates
differs from the physical thickness. We require the plates of effective thickness to ensure
the correct phase incursion.

Consider the oblique incidence of a plane wave on a plane-parallel plate (the Fabry–
Perot interferometer). The phase difference between a wave that once passed back and
forth through the plate and a wave reflected from the outer surface of the plate is equal
to [38]

δ =
2π

λ
2hn cos β. (23)

To obtain the same phase difference when moving along the ray trajectory, we replace the
physical thickness with the effective one

h→ h cos β. (24)

If absorption is present, then the refractive index is complex. When constructing the
ray trajectory, we assume that the refraction is determined by the real part Re n, and the
imaginary part Im n is responsible for absorption. Therefore, the angle β is calculated by
the formula (17), where one replaces n→ Re n.

Such a plate of effective thickness provides the same reflection spectrum as the original
plate for inclined incidence. If there are several plates, the thickness of each should be
replaced with the effective one.

4.6. Finite-Difference Scheme

According to the conjugation conditions, the tangential components of the vectors E
and H, as well as the normal components of the vectors D and B, are continuous at the
interface boundaries. However, the complex amplitudes of the fields E and H experience a
strong discontinuity. To carry out calculations of generalized solutions, one needs to use a
bicompact scheme [12,39]. This is a two-point completely conservative scheme based on
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grid approximation of the integral conservation laws (2), (3) and conjugation conditions
(9). In this case, the coordinate grid is selected so that the nodes coincide with the media
interfaces. The remaining nodes can be placed arbitrarily. Such grids are called special [40].

Earlier, the bicompact scheme was developed for a one-dimensional problem. From
a physical point of view, this problem describes the scattering of a plane wave normally
falling on a plane-parallel scatterer. The optical path method proposed in this paper makes
it possible to apply the bicompact scheme to two-dimensional problems described in
Sections 2.2–2.5. This significantly expands the scope of applicability of this scheme.

Consider the optically equivalent scatterer. The effective plate thicknesses are (ξq+1 −
ξq) cos βq, 1 6 q 6 Q− 1, where ξ0 = 0. Let us introduce a special grid. A bicompact
difference scheme for the case of s-polarization has the following form:

H2n−1 − H2n−2 =
iω
2c

εn−1/2∆zn−1/2(E2n−1 + E2n−2), 1 ≤ n ≤ N, (25)

E2n−1 − E2n−2 =
iω
2c

µn−1/2∆zn−1/2(H2n−1 + H2n−2), 1 ≤ n ≤ N, (26)

E2n = E2n−1, H2n cos βn = H2n−1 cos αn, 1 ≤ n ≤ N − 1, (27)
√

ε0E0 +
√

µ0H0 = 2
√

ε0E0, z = 0√
εN E2N−1 −

√
µN H2N−1 = 2

√
εN Ea, z = a.

(28)

Here, α0 and β0 are the angle of incidence and the angle of refraction at the boundary of
the computational domain, α1 and β1 are the angle of incidence and the angle of refraction
corresponding to the first node of the grid, etc. At the same time, β0 is calculated according
to the given α0 by the formula (17); then, we assume α1 = β0, β1 is determined by α1
according to (17), etc. Note that the conjugation conditions are stated in each inner mesh
node, i.e., nodes, in a which media interface is located, and nodes without an interface are
treated uniformly. If there is no interface in the n-th node, then refraction does not occur,
and βn = αn by construction.

In the case of p-polarization, one should replace the equalities (27) with

E2n cos βn = E2n−1 cos αn, H2n = H2n−1, 1 ≤ n ≤ N − 1. (29)

The solution of the difference scheme (25)–(29) corresponds to the fixed coordinate x.
To obtain a solution to the original two-dimensional problem, it is necessary to change the
variables η → z by the formula (18) and multiply the solution by

exp
(

ixm
ω

c
√

εnµn sin αn

)
. (30)

Here, {xm} are the values of the x coordinate at which the solution is sought. It is advisable
to calculate the values of the material parameters εn, µn in the nodes of the grid. The
multiplier (30) describes the propagation of the wave along the interface boundaries.

Justification of convergence of the scheme (25)–(29) repeats almost verbatim that for a
one-dimensional bicompact scheme [12]. Thus, the scheme (25)–(29) converges and has a
second order of accuracy on solutions that undergo a gap at the grid nodes that satisfies
the conjugation conditions (27) or (29).

4.7. Wedge-Shaped Plate

The proposed method can be generalized to the case of wedge-shaped plates when
the interface boundaries are flat but not parallel. Let us construct such a generalization
following [38].

The phase incursion of the wave passing back and forth through the plate is approxi-
mately described by the formula (23), where h is the thickness of the plate at the place where
the light is reflected. So, if the angle at the vertex of the wedge is γ, then at a distance of x
from the vertex, the thickness of the plate is h(x) = x tg γ. Therefore, for a wedge-shaped
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plate, the effective thickness is introduced according to the formula (24), in which one
substitutes the «local» physical thickness h(x).

In the conjugation conditions, one shoud take into account that the angles α and β are
counted from the normal to the media interface.

The grid problem (25)–(29) is solved for every fixed xl . The solution is multiplied by a
multiplier (30), where instead of xm, one substitutes xm − xl (i.e., by the distance «the wave
passes» from the source xl to the observation point xm). Then, the resulting solutions are
summed with a weight that is the inverse of the number of grid steps in the coordinate x.

4.8. Induced Currents

S-polarization. In this case, the electric field vectors Einc = {0, Einc, 0} in the incident
and Erefl = {0, Erefl, 0} in the reflected wave are directed along the y axis. Therefore, the
vector Jind = σE is also directed along the same axis. These currents emit electromagnetic
waves in which the vector Eemit = {0, Eemit, 0} is directed in the same way as the vectors
Einc and Erefl. Consequently, the amplitude of the total field is the sum of the amplitudes of
the fields of incident, reflected and re-emitted waves. Therefore, the difference scheme for
the case of s-polarized waves in a conducting medium has the following form:

H2n−1 − H2n−2 − (iωc−1εn−1/2 − 4πc−1σn−1/2)∆zn−1/2(E2n−1 + E2n−2) = 0,
1 ≤ n ≤ N,

(31)

E2n−1 − E2n−2 −
iω
2c

µn−1/2∆zn−1/2(H2n−1 + H2n−2) = 0, 1 ≤ n ≤ N, (32)

E2n = E2n−1, H2n cos βn = H2n−1 cos αn, 1 ≤ n ≤ N − 1, (33)
√

ε0E0 +
√

µ0H0 = 2
√

ε0E0, z = 0√
εN E2N−1 −

√
µN H2N−1 = 2

√
εN Ea, z = a.

(34)

P-polarization. For the case of p-polarization, the vectors Einc of the incident and
Erefl of the reflected wave do not lie in the plane of the media interface: they have x- and
z-components. The bulk currents Jind are directed in the same way as the vector Einc + Erefl.
Therefore, in the wave emitted by them, the vector Eemit is parallel to the sum of the electric
fields of the incident and reflected waves Einc + Erefl.

Thus, the difference scheme for the case of a p-polarized wave in a conducting medium
has the following form

H2n−1 − H2n−2 − (iωc−1εn−1/2 − 4πc−1σn−1/2)∆zn−1/2(E2n−1 + E2n−2) = 0,
1 ≤ n ≤ N,

(35)

E2n−1 − E2n−2 −
iω
2c

µn−1/2∆zn−1/2(H2n−1 + H2n−2) = 0, 1 ≤ n ≤ N, (36)

E2n cos βn = E2n−1 cos αn, H2n = H2n−1, 1 ≤ n ≤ N − 1 (37)
√

ε0E0 +
√

µ0H0 = 2
√

ε0E0, z = 0√
εN E2N−1 −

√
µN H2N−1 = 2

√
εN Ea, z = a.

(38)

4.9. Non-Stationary Problems

For non-stationary problems, the spectral decomposition method was proposed in [12,39].
Here, we briefly recall its essence.

When a wave packet propagates in a linear dispersive medium, different values of
ε, µ, σ are realized for different spectral components of the solution. We decompose the
package into monochromatic components, solve a stationary problem for each of them and
sum up the solutions obtained. The spectral decomposition of the original package is the
direct Fourier transform; the summation of the solutions obtained is the inverse Fourier
transform. Both conversions are performed using numerical quadratures. The described
algorithm is called non-stationary bicompact scheme.
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Thus, the non-stationary problem from Section 3.2 is reduced to a set of stationary
problems from Section 3.1. This approach has a simple physical interpretation. It permits
one to take into account an arbitrary law of frequency dispersion, including a tabular one.

4.10. Accuracy of the Method

Let us discuss the accuracy of the proposed approach. It consists, firstly, of the physical
error of the optical path method. This error comes from replacing the original scatterer
under oblique incidence with an effective scatterer under normal incidence. This error
is determined by the input data of the problem and is irremovable. Secondly, the grid
error of the difference scheme, which is used to solve the problem along the optical ray,
contributes. If the scheme converges, this error can be reduced up to the magnitude of
computer round-off errors by decreasing the grid step [41].

Let us discuss the physical accuracy of the optical path method. First, consider a
stationary problem.

If the materials of the plates are transparent (i.e., absorption is absent), then the
replacement of each plate with an effective one is accurate: an effective plate under normal
incidence provides the same phase gain as the original plate under oblique incidence. If
the plates are spatially homogeneous, then the ray trajectories are constructed exactly; see
(17) and (18). In this case, the optical path method does not introduce a physical error
(see Section 6.1). If the plates are inhomogeneous, then the ray trajectories are calculated
approximately from (16). In this case, the error of solving the problem (16) is the physical
error of the optical path method. If the grid method is used for this, then the specified error
can be decreased up to computer round-off errors.

If absorption is present, then the ray trajectory is constructed according to the real part
of the refractive index. Strictly speaking, such a representation is approximate. It is true at
least in the first approximation of perturbation theory [42]. Nevertheless, this assumption
is the source of the physical error of the optical path method. For typical problems, the
magnitude of this error is 0.1∼1% (see Section 6.2). In an inhomogeneous environment,
there is also an error in calculating the radial trajectory.

Second, consider the non-stationary case. Its feature the simultaneous presence of
several frequencies in the solution. If there is no frequency dispersion, then the same
material parameters of the scatterer layers and ray trajectories are realized for all the
frequencies. If the medium is dispersive, then an individual ray trajectory is realized for
each frequency. As a result, the wavefront deforms and ceases to be flat. We neglect this
factor and calculate a single ray trajectory corresponding to the middle of the frequency
range under consideration. This introduces a physical error that increases with increasing
frequency dispersion. The magnitude of this error in a typical photonic crystal problem is
∼ 0.1% (see Section 7.2).

Thereby, the main disadvantage of the optical path method is the presence of an
irremovable physical error. However, the examples presented further show that for typical
problems, it does not exceed 0.1 ∼ 1%. This accuracy is quite sufficient for physical
applications.

4.11. Comparison with Known Approaches

1. Let us compare the domain of applicability of the optical path method and other
approaches.

As noted above, the methods of the Dobrokhotov group are applicable to problems
in which the properties of the medium smoothly depend on the coordinate, i.e., there
are no interface boundaries. The Forbes–Alonso method is designed for media with a
smoothly varying refractive index and, possibly, one interface between two media. The
generalization of these approaches to problems in layered media with multiple interfaces
encounters significant difficulties due to multiple re-reflections. The proposed optical path
method is uniformly applicable both to media without interfaces and to layered media.
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Scattering matrix methods are widely used in optical problems. However, they are
applicable for piecewise homogeneous media: inside the layers, the refractive indices
should not depend on the coordinate. The optical path method is applicable to problems in
which plates can be spatially heterogeneous.

The scattering matrix methods and the Forbes–Alonso method are applicable only
for stationary problems. The optical path method is constructed for both stationary and
non-stationary problems.

Thus, within the framework of the considered formulations, the optical path method
is applicable to a wider range of problems than the outlined known methods.

2. Let us compare the proposed approaches with traditional two-dimensional finite
element and finite difference methods. They are applicable to a much wider class of
problems than those considered in this paper: the wavefront can be curved (for example,
cylindrical), the scatterer can have a curved boundary (for example, a cylindrical body
located on a flat substrate), etc. The optical path method seems to be inapplicable to such
problems. For example, inside a cylindrical diffuser, the wave is repeatedly re-reflected
and «swirls». The correct construction of the ray trajectory is an independent problem. The
algorithm becomes cumbersome, and its complexity is comparable to a two-dimensional
code. Therefore, such tasks are beyond the scope of the present work. The limited domain
of applicability can be considered a shortcoming of the optical path method.

In turn, for the considered problems from Sections 2.2–2.5, the optical path method has
an advantage over two-dimensional finite element and finite difference methods because it
requires sufficiently lower computational costs.

Let each coordinate have a characteristic number of nodes of the spatial grid equal
to N. Then, for a stationary problem, the number of sought solution values in the grid
nodes is O(N2). Therefore, the complexity of calculating such a problem using the finite
difference or finite element method is at least O(N2) arithmetic operations. The same is
true for one time step of methods in the time domain for a non-stationary problem.

The optical path method actually reduces the considered problem to a one-dimensional
one. The difference scheme (25)–(29) leads to a system of 2N + 2 linear algebraic equa-
tions with a 5-diagonal matrix [43]. The number of arithmetic operations required to
solve it is O(N). Therefore, the complexity of the proposed methods is ∼ N times lower
than that for two-dimensional codes. To obtain good accuracy, one uses detailed grids
with N = 102∼103. Thereby, the proposed approach is much more efficient than two-
dimensional schemes.

3. Finally, let us compare the bicompact scheme and the classical finite element and
finite difference methods for solving a one-dimensional problem along the ray coordinate.
As already noted, the amplitudes of the fields undergo a strong discontinuity at the interface
of the media. For example, for the s-polarization, the field amplitude H experiences a
discontinuity (see Figure 3), and the field E is continuous. The magnitude of the gap is
subject to the conjugation conditions. In [44], comparative testing of bicompact scheme and
classical methods of finite differences in the time domain and finite elements on problems
with strong discontinuities of the solution was carried out. It showed that in this case,
the error of classical methods does not decrease with decreasing grid step; i.e., there is
no convergence.

The reason for this is as follows. The convergence of classical schemes is proved for
sufficiently smooth solutions. It is well known [45] that in order to calculate problems with
generalized solutions, it is necessary to use completely conservative schemes, which are
the grid implementation of all the necessary conservation laws. For the problem under
consideration, the physical conservation laws are the integral Maxwell equations. The
interface conditions at the interface of media are their consequence. Classical difference
methods do not take into account boundary conditions in the case of strong discontinuities.
At the same time, bicompact scheme accounts for these conditions explicitly and confidently
copes with such tasks.
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5. Method Validation

In the two following sections, the verification of the optical path method and bi-
compact scheme is carried out. In these problems, we consider the media to be spatially
homogeneous, and the incident field to be monochromatic. Note that the scope of appli-
cability of the proposed approaches is much wider: they are applicable if the media are
spatially heterogeneous, and the incident radiation can be non-monochromatic. However,
for piecewise homogeneous media, using matrix methods, it is possible to calculate the
exact values of the reflectance R and transmittance T. Possessing the exact solution, one
can perform a thorough verification of the proposed methods. Therefore, we chose this
particular case as a test. Nevertheless, it is quite representative.

We emphasize that the transition from a stationary formulation to a non-stationary
one is reduced to a direct and inverse Fourier transform. This approach is reliably verified
in [12]. Therefore, calculations of non-stationary problems are not carried out in this work.

6. Fabry–Perot Interferometer

Consider the oblique incidence of a plane wave on a plane-parallel plate (the Fabry–
Perot interferometer). Let the plate thickness be d and the interface boundaries correspond
to the planes z = b and z = b + d. The plate is located in the air.

6.1. Transparent Plate

1. Let the material parameters of the plate be ε = 4, µ = 1, and the thickness is
d = 0.5 microns. The refractive index is real; i.e., the plate is optically transparent. The
wavelengths λ ∈ (0.5, 3) microns are considered: from the middle of the visible range
to the upper limit of the short infrared range. We select the angle α so that cos β is a
rational number. This permits us to eliminate the influence of round-off errors when
calculating trigonometric functions and check convergence more accurately. Let us put
cos β = 9/10. Then, α = arcsin (

√
ε cos β) ≈ 1.059 ≈ 60.67o. The zeros in the reflection

spectrum correspond to the phase incursion δ = 2πm, m = 1, 2, . . ., see the formula (23).
The corresponding wavelengths are equal to

λ = 2 cos β/m = 9/(5m), microns m = 1, 2, . . . . (39)

2. Figure 3 shows the complex amplitudes of the fields depending on the ray coordinate
in the case of s-polarization. Vertical lines are the layer boundaries. One can see that Re E
and Im E are continuous, and Re H and Im H experience a discontinuity at both boundaries.
This is consistent with the conjugation condition (27).

3. Let us note one nuance. For practice, it is not only the value of R or T in some
characteristic region of the spectrum (for example, in the local minimum or local maximum
of reflection) that matters but also the position λ of this characteristic region. This is due
to the fact that in typical photonics problems, the spectra of R(λ) and T(λ) have areas of
sharp change (large gradients). Therefore, a small horizontal shift of the spectrum leads to
a significant change in R and T at a fixed λ.
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Figure 3. Fabry–Perot interferometer, s-polarization. Complex amplitudes of fields depending on the
ray coordinate. Vertical lines are layer boundaries.

Therefore, to estimate the proximity of the spectral curves, we choose not classical
norm of their difference but the Hausdorff metric [46]. Recall its definition. Let U and V be
two nonempty compact subsets of the metric space M. Let these sets consist of points u
and v, respectively. Then, the distance from U to V is

δ(U, V) = max{sup
v∈V

inf
u∈U
|u− v|, sup

u∈U
inf
v∈V
|u− v|} (40)

Due to taking the operation sup, the definition (40) resembles the C norm. If in this
definition, we replace sup with an integral over dλ, take |u − v| squared and take the
square root from the answer, then the resulting metric resembles the L2 norm.

4. Figure 4 shows the dependence of the reflection coefficient R on the wavelength
λ. The dotted line is the exact spectrum found by the matrix method. Solid lines are
calculations using the optical path method and a bicompact scheme corresponding to
several thickening grids in space. From grid to grid, the number of steps is doubled and
the length of the steps decreases by the factor of 2. One can see that as the grids thicken,
the profiles R(λ) tend to the limit that corresponds to the exact spectrum. This tendency
has the character of horizontal shift. This type of convergence confirms the reasonability of
choosing the Hausdorff metric for comparing the calculated curves.
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Figure 4. Fabry–Perot interferometer. The reflection spectrum for the case of s-polarization. Dotted
line is calculation by the matrix method. Solid lines are calculations by the method of optical paths
and the bicompact scheme on thickening grids along the ray coordinate.

5. Figure 5 shows the error of the spectra calculated by the proposed methods for
the case of s-polarization. The error was calculated as the distance between the calculated
spectrum and the exact spectrum found using the matrix method in the Hausdorff metric.
The graph is given in double logarithmic scale; the power convergence corresponds to a
straight line with a slope equal to −p, where p is the order of accuracy.

Figure 5. Fabry–Perot interferometer. The error of calculating the spectrum in the Hausdorff metric
(40), depending on the number of steps along the ray coordinate. Line without markers is straight
with slope −2. Empty markers stand for s-polarization, filled ones are p-polarization. ◦ is bicompact
scheme, � is finite element method,4 is finite-difference time domain method.

It can be seen that the curve tends to a straight line, the slope of which is −2. This
means that when the spatial grids thicken, the error decreases, and the rate of its decrease
is O(h2), which corresponds to the second order of accuracy of the finite-difference scheme.
At the same time, the proposed scheme provides high quantitative accuracy: already on
the grid with N = 80 steps, the error is ∼ 1%. This is enough for practical applications.

Similar results were obtained for the case of p-polarization. The corresponding errors
are also shown in Figure 5.
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6. For comparison, calculations of the problem along the optical beam were carried
out using classical schemes: the finite element method in the frequency domain (FEFD) and
finite difference method in the time domain (FDTD). Recall that these methods do not take
into account the conjugation conditions (21) and (22). The errors obtained in the calculation
for s-polarization are shown in Figure 5. It can be seen that for both schemes, the error does
not decrease with the thickening of the grid, i.e., there is no convergence. This shows the
importance of taking into account physically correct interface conditions at the interface
boundaries.

6.2. Lossy Plate

Now let the plate be metal with ε = −120+ 3i. This value corresponds, for example, to
the dielectric constant of silver at a wavelength of 1.5 microns. The considered wavelengths
lie in the range λ ∈ (0.5, 12) microns; its lower boundary is the middle of the visible range,
and the upper one is the end of the second transparency window for thermal imaging.

The calculated reflection spectra for s-polarization are shown in Figure 6. It can be
seen that as the meshes thicken, the spectrum found using the optical path method and
the bicompact scheme tends to a certain limit function (i.e., there is convergence of the
difference scheme). However, this limit function differs from the exact spectrum found
using the matrix method. The reason for the discrepancy is a physical error introduced by
the optical path method in an absorption medium.

Figure 7 shows the errors in the calculation using the optical path method and the
bicompact scheme versus the number of grid steps. The graph is plotted in double logarith-
mic scale. It can be seen that on coarse grids, the error decreases at a rate approximately
corresponding to O(h2). Thereby, the grid error of the difference scheme is decisive on
these grids. On sufficiently detailed grids, the error reaches the value of ∼ 0.3% and stops
decreasing. This means that the determining contribution is not the grid error but the
physical error. Recall that it is irremovable. However, this accuracy is quite sufficient for
physical applications.

Figure 6. Fabry–Perot interferometer. The reflection spectrum for the case of s-polarization. Notations
correspond to Figure 4.
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Figure 7. Fabry–Perot interferometer. The error of calculating the spectrum in the Hausdorff metric
(40), depending on the number of steps along the ray coordinate. Notations correspond to Figure 5.

Calculations for p-polarization gave the same result. The corresponding error curve
almost coincides with Figure 7.

7. Spectra of Photonic Crystals
7.1. Structure

Consider a photonic crystal (PC) consisting of 7 pairs of layers {SiO2—130 nm, Ta2O5—
92 nm} [3]. This structure is shown in Figure 8. A plane linearly polarized monochromatic
wave falls on the structure from z = −∞. The angle of incidence is 45o.

The dependence of the dielectric permittivity of these materials on the wavelength
is shown in Figure 9. Experimental reflection spectra of this PC at the angle of incidence
α = 45o for s- and p-polarizations are published in [3].

Figure 8. Photonic crystal from the work [3]. The dependence of ε on the coordinate z, corresponding
to the wavelength λ = 900 nm. Vertical lines are layer boundaries. The arrow is the direction of
propagation of the incident wave, and the angle of incidence is 45◦.
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Figure 9. The dependence of the dielectric permittivity ε on the wavelength λ [47,48]. Red lines are
Ta2O5, black lines are SiO2. Solid lines stand for Re ε, dashed lines are for 103 · Im ε.

7.2. Calculated Spectra

1. For the s-polarized wave, the reflection spectrum is shown in Figure 10. The band-
gap is clearly visible in the wavelength range of 600∼ 850 nm; in this range, the PC is
a mirror for a given angle of incidence. To the left and right of the band-gap, reflection
minima are visible, which correspond to almost complete passage.

For a p-polarized wave, the reflection spectrum is shown in Figure 11. The band-gap
corresponding to the wavelengths of 600 ∼ 800 nm is visible, and there is almost zero
reflection minima to the left and right of it.

Figure 10. Photonic crystal from Figure 8. Reflection spectrum for the s-polarized wave. Solid line is
the optical paths method and the bicompact scheme, N = 576; dotted line is the matrix method.
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Figure 11. Photonic crystal from Figure 8. Reflection spectrum for the p-polarized wave. The
notations correspond to Figure 10.

In Figure 12, the errors of the spectra for both polarizations calculated using the
proposed approaches are shown. As before, the error refers to the distance between the
calculated spectrum and the exact one (found using the scattering matrix method) in the
Hausdorff metric. The scale of the graph is double logarithmic.

It can be seen that for both polarizations, the errors decrease in accordance with the
second order of accuracy up to a value of 0.1%. Furthermore, the errors stop decreasing
and come out on horizontal lines. The reason for this is that the physical approximations
of the optical path method described in Section 4.5 introduce some error that does not
decrease with decreasing grid step. Nevertheless, it can be seen that this error is small, and
the physical accuracy of the optical path method is obviously sufficient for practical tasks.

Figure 12. Photonic crystal from Figure 8. Error of calculating the reflection spectrum. The notations
correspond to Figure 5.

7.3. Experimental Spectra

1. The manufacture of optical nanostructures is a complex technological process.
Because of this, the geometric parameters of the scatterer (for example, the thickness of the
PC layers) may fluctuate. These fluctuations are several percent of the size of the scatterer.
They introduce significant distortions in the electromagnetic response of the structure [10].
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Therefore, fluctuations in the thickness of the PC layers affect the interference of
reflected waves inside the PC. The presence of a systematic error in the thicknesses leads to
a shift of the minima in the reflection spectrum. Random errors lead to a blurring of the
minima and their rise above the abscissa axis.

2. To take into account thickness fluctuations, we apply the virtual experiment method
we proposed earlier [12]. Recall the essence of this approach.

Let one of the parameters of the problem A be known with the error σA. We assume this
parameter to be a normally distributed random variable with a mathematical expectation
of A and a standard deviation of σA. The electromagnetic response of the structure is a
function of this random variable. Therefore, the calculation results must be averaged over
the distribution of the value A. At the same time, one can find the confidence interval of the
averaged calculation, i.e., the error estimate introduced by the error of setting the value A.

3. In [3] and other works of this team, we have not found fluctuation estimations of
the layer thicknesses of the PC under consideration. Therefore, we selected the statistical
characteristics of these fluctuations so that the averaged calculated spectrum best described
the experimental spectrum. We introduce a systematic error h0 of thicknesses, which for
simplicity we assume to be the same for all layers. We also introduce a random error,
which is distributed according to the Gauss law with zero mean and standard deviation σ0.
Realizations of random error may be different for different layers.

The value of h0 was selected by the position of the reflection minima, and the standard
σ0 was chosen to describe their depths. For both polarizations, the values of h0 ≈ 3 nm,
σ0 ≈ 3.5 nm turned out to be practically optimal.

4. Comparison of the obtained averaged spectrum with the experimental one is shown
in Figure 13 (for s-polarization) and Figure 14 (for p-polarization). Additionally, confidence
intervals of the averaged spectrum equal to two standard deviations are shown.

Figure 13. Photonic crystal from Figure 8. Reflection spectrum for the s-polarized wave. Green
solid line is experiment [3]. Black solid line is calculation made in this work. Dashed lines are
boundaries of the confidence interval according to the virtual experiment method (corresponding to
two standard deviations).
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Figure 14. Photonic crystal from Figure 8. Reflection spectrum for the s-polarized wave. The notations
correspond to Figure 13.

It can be seen that the positions of the extremums in the calculated and experimental
spectra coincide with an accuracy of 1%–2%. This accuracy can be considered excellent.
The reflection values themselves concide with an accuracy of mostly 1%–4%; occasionally,
the error increases to ∼ 10%. This corresponds to the typical accuracy of experimental
measurements. Almost the entire experimental curve lies inside the confidence corridor
around the calculated curve. This confirms the reasonability of the selected σ0 and h0.

5. Therefore, the calculations of this section show that the optical path method is
applicable to a wide range of important applied tasks.
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