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Abstract: With the growing demand for digitalization, multimedia data transmission through wireless
networks has become more prominent. These multimedia data include text, images, audio, and
video. Therefore, a secure method is needed to modify them so that such images, even if intercepted,
will not be interpreted accurately. Such encryption is proposed with a two-layer image encryption
scheme involving bit-level encryption in the time-frequency domain. The top layer consists of a bit
of plane slicing the image, and each plane is then scrambled using a chaotic map and encrypted
with a key generated from the same chaotic map. Next, image segmentation, followed by a Lifting
Wavelet Transform, is used to scramble and encrypt each segment’s low-frequency components.
Then, a chaotic hybrid map is used to scramble and encrypt the final layer. Multiple analyses were
performed on the algorithm, and this proposed work achieved a maximum entropy of 7.99 and near
zero correlation, evidencing the resistance towards statistical attacks. Further, the keyspace of the
cryptosystem is greater than 2128, which can effectively resist a brute force attack. In addition, this
algorithm requires only 2.1743 s to perform the encryption of a 256 × 256 sized 8-bit image on a host
system with a Windows 10 operating system of 64-bit Intel(R) Core(TM) i5-7200U CPU at 2.5 GHz
with 8 GB RAM.

Keywords: encryption; chaotic maps; integer wavelet transform; statistical attack; keyspace

MSC: 94A60

1. Introduction

COVID-19 and the subsequent lockdown made professionals and laypeople use mobile
phones as gadgets for telephony and handy computers for daily activities such as attending
online meetings, academic classes and discussions, writing documents, writing surveillance,
etc. Specifically, the transfer of images plays a vital role in social media. Hence, the safe
transmission of these images, as essential information carriers, in an unsecure medium is
critical for ensuring confidentiality. Confidentiality protects the disclosure of data and can
be achieved through image encryption. Third parties can glean confidential information if
such images are intercepted, proving dangerous. This prolific interception has happened
due to the immense development of wireless technology.

On the other hand, it is necessary to safeguard the gadget and its essential content.
Hence, security solutions must be utilized. Encryption especially must be deployed in
the gadget to preserve the data’s confidentiality. Though the communication channel has
authentication and security mechanisms, it is recommended to have indigenous encryption
schemes for data security that resist third-party service providers and other channel intruders.
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The Internet of Things becomes an Interconnection of Threats due to the overwhelming
heterogeneous connectivity in networks. This opens a backdoor for attackers, intruders, and
masqueraders to make the network system vulnerable. Nowadays, real-time monitoring
has become an essential part of any industry. A camera interfaced with an edge device
is utilized for monitoring purposes where the privacy of the images and videos are to
be preserved. Image security offers confidentiality to the image and frames, such as
video, to secure them from attackers. Though cloud storage offers good authentication,
the cloud service provider can access the content against the individual’s privacy policy.
Hence, the image could be encrypted in the edge device and stored in the cloud, ensuring
adequate data security. Furthermore, due to technological advancements, data are now
easily transmitted over long distances. Hence, there is a need for an efficient encryption and
scrambling technique that prevents third parties from understanding the communicated
information [1,2].

Image encryption is a technique that modifies an image into an output that cannot
be discerned by a third-party user [2]. This multimedia data can be personal, public,
governmental, or military. Since governmental or military data are susceptible, they face
significant threats while being transmitted online. Thus, information security over the
internet is one of the most researched topics to protect individuals’ privacy. Research
has taken many data protection measures to transmit multimedia data securely over the
internet for national security and safety. Data security protects data from unauthorized
and illegal access [3,4] as these sensitive and critical data must be securely transmitted over
the channel. For this purpose, network-specific data encryption is not trustworthy and
consistent. Hence, we need another method to protect these sensitive data when transmitted
over the channel [4]. The confidential data should not be able to be retrieved even when
an unauthorized party has accessed the network routes. One of the most basic data
security techniques is cryptography, in which researchers directly convert sensitive data
into cryptosystems and transmit them through the channel. However, due to the rapidly
changing types of multimedia files and increased computational power, cryptosystems can
be easily hacked into, and sensitive data are very vulnerable.

Since the 1990s, chaotic systems have exhibited the randomness, unpredictability, and
sensitivity of generated keys to the initial value required to design an effective cryptosys-
tem. Furthermore, chaotic maps reduce the correlation between adjacent pixels; hence,
they are useful in scrambling. Cryptography shows how chaos-based image encryption
can be helpful because of the initial conditions’ susceptibility [5]. These maps can be
categorized into one-dimensional and higher-dimensional maps. However, the chaotic tra-
jectories and parametric and commencing values of 1D chaotic maps such as Logistic maps,
Sine maps, and tent maps can be extracted relatively easily [6,7]. Suneja et al. observed
the advantages of higher dimensionality in chaos-based systems, where they conducted
some augmentations on implementing 1D chaotic maps to combat these earlier method
limitations [8].

Hua et al. [9] and Gao et al. [10] used a hybrid consisting of two existing 1D and
3D chaotic maps. Both methods proposed new 1D maps combined in series and parallel.
The former had two parameters but became non-uniform for a range of those parameters.
The latter showed substantial uniformity but relied only on one parameter. Compared
to existing maps, the range across which chaotic behavior is depicted, randomness and
susceptibility to commencing values is much better for the earlier maps. A significant
improvement was seen for maps functioning over more than a single dimension. These
chaotic maps, such as the Duffing map, Chirikov–Taylor map, Kaplan–Yorke map, Henon
map, etc., have been preferred due to their complex structures and better chaotic perfor-
mances. For example, Zhu et al. [11] implemented a 2D chaotic system for image encryption
based on a scheme that couples a Sine map and a Logistic map-modulated Sine map. The-
oretical analyses and simulations have shown the efficacy of such a higher dimensional
map [12–20].
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Wavelet transforms are used to operate on an image in the time-frequency domain.
In a wavelet transform, a discrete signal is subjected to a high pass filter and a low pass
filter and downsampled, the outputs of which are high (HP) and low (LP) frequency
signals, both having half as many samples as the input signal [17–19,21]. The method
proposed in [20] shows how a Discrete Wavelet Transform (DWT) can split an image into
its wavelet sub-bands. Another image can then be embedded directly into the decomposed
sub-bands for watermarking. Similarly, scrambling an image’s sub-bands can lead to a
decreased correlation between the pixels in a lower number of iterations. The Lifting
Wavelet Transform (LWT) is a reversible wavelet transform that is computationally efficient,
incorporates floating-point operations, and is easily implementable on hardware [19]. The
Lifting Scheme is also faster and more efficient than other schemes. For instance, it has
advantages over DWT, such as the transform’s ability to retain invertibility despite a
local modification.

Other advantages of the Lifting Scheme are that the inverse and forward transforms
have precisely the same complexity, require less memory, and can be used on arbitrary
geometries. In addition, this transform divides the input signal into odd-positioned and
even-positioned sample sequences. Afterward, the transform is ‘lifted’ to a transform
with the required properties by using one or more lifting filter operations, P and/or U. It
analyses and depicts the various multi-resolution aspects of the LWT to propose an image
compression system that consumes less power and operates at high-speeds and is known
in the available literature on image security research [21–53].

The special contributions of this research work are listed below:

1. The usage of lift wavelet transform as the intermediate stage of the ciphering process
to effectively reduce the operational time;

2. The development of a hybrid chaotic system to offer high keyspace;
3. The design of bit-level diffusion to break the pixel dependencies.

The rest of the paper is arranged as follows: Section 2 deals with LWT’s related works
and the proposed algorithm’s chaotic maps. The chaotic maps used are a variety of 1D and
2D maps; the Gauss map, Piecewise Linear map, Tent map, Sine map, and Circle map are
the 1D chaotic maps used, and the Kaplan–Yorke map, Chirikov–Taylor map, Duffing map,
and Henon map [23–27] are the 2D maps used. Section 3 depicts the novel hybrid chaotic
map proposed, Section 4 demonstrates its encryption and decryption methodology, and
Sections 5 and 6 deal with its results and performance analysis, and provide a conclusion.

2. Background

This section explains the necessary preliminaries, such as lift wavelet transform,
chaotic maps, and their characteristics. These concepts were adopted in the proposed
methodology to accomplish the encryption process.

2.1. Lifting Wavelet Transform

Lifting wavelet transform [19] comprises three steps: Split, Predict, and Update, as
depicted in Figure 1. Each step is explained below.
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2.1.1. Split

Here, the entire signal is split into two sequences, the low-resolution part λj, which
consists of pixels in even coordinates, and the high-resolution part γj (pixels in odd coordi-
nates). This creates a checkerboard-like pattern, as shown in Figure 2.
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2.1.2. Predict

A more powerful prediction mechanism will allow data representation more compactly.
This mechanism is also known as dual lifting. Here, the high-resolution part of the data
γj is predicted from its low-resolution part λj. When the signals have high degrees of
correlation, such a prediction will be very accurate, hence only the portion of γj that is
different from its prediction (the prediction error) needs to be stored.

Thus, γj is replaced with γj-P(λj), where P is the prediction operator. P is usually
a linear interpolation operation. The closer P(λj) is to λj, the greater compression and
efficiency of the transform. The values of γj are predicted by averaging the immediate
horizontal and vertical neighbors in λj and replaced by their prediction errors:

γj = γj −
1
4
(Im(r− 1, c) + Im(r, c− 1) + Im(r, c + 1) + Im(r + 1, c)) (1)

where Im(r, c) is the value of the image pixel at position (r, c). The new γj represents the
high-frequency component of the signal.

2.1.3. Update

This new representation, also known as primal lifting, causes a change in specific basic
properties, such as the signal’s mean. To preserve this property, a primal lifting step is
required to update; hence, λj is updated with data computed from the new sequence γj.

Thus, λj is supplanted by λj + U(γj), where U is an updating operator. U is also a linear
interpolation operation. The new λj represents the low-frequency component/approximation
of the signal.

λj = λj −
1
8
(Im(r− 1, c) + Im(r, c− 1) + Im(r, c + 1) + Im(r + 1, c)) (2)

Hence, the final output is a more compact representation of the signal’s low-frequency
and high-frequency components.

In Figure 2, the red squares represent λj and the black squares represent γj. The next
resolution level can be found by splitting the λj sequence and repeating the same operations
while considering the checkerboard to be rotated 45◦.
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λj is split into even (λj−1) and odd samples (γj−1) represented by blue and yellow
squares, respectively, in Figure 3.

λj−1 = λj−1 +
1
8
(Im(r− 1, c− 1) + Im(r− 1, c + 1) + Im(r + 1, c− 1) + Im(r + 1, c + 1)) (3)
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Similarly, γj−1 is given as:

γj−1 = γj−1 +
1
4
(Im(r− 1, c− 1) + Im(r− 1, c + 1) + Im(r + 1, c− 1) + Im(r + 1, c + 1)) (4)

The values represented by the red and blue squares are low-frequency components,
while those represented by the black and yellow squares are high-frequency components.
For subsequent resolution, the blue squares, i.e., λj−1, must be operated on similarly.

Row processing is the one-dimensional decomposition of an image using LWT that
splits the image into high and low-frequency parts. After the two-dimensional decomposi-
tion or row-column processing, the image is split into four frequency sub-bands, LL, LH,
HL, and HH, as shown in Figure 4. LL is the most sensitive part of the decomposed image
and contains most of the image’s information. The LWT decomposition of Lena is shown
in Figure 5.
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2.2. Chaotic Maps

A chaotic map is an iteratively evolving function that exhibits chaotic behavior. The
chaotic map also exhibits susceptibility to its initial conditions and the parameters its
equation depends on. These properties are useful in image encryption and can significantly
reduce the correlation between an image’s pixels, thus successfully morphing it into an
indiscernible image. There exist chaotic maps that operate over multiple dimensions
as well. At the same time, the chaotic systems introduced in this paper are all classical
discrete chaotic systems. Many high-performance discrete chaotic systems have been
studied recently, such as in [36–53]. The chaotic maps used in the proposed scheme are
described below.

2.2.1. Kaplan–Yorke Map

The Kaplan–Yorke map is a 2D chaotic map that maps a point in the (x, y) plane given
below, and its behavior can be analyzed.

K(i + 1) = 2(K(i))
Y(i + 1) = a(Y(i) + cos(4πK(i))

(5)

We use only the K dimension to generate a 1D chaotic array, but we use both dimen-
sions in the proposed hybrid map. A plot of 2000 iterations of the Kaplan–Yorke map
with a = 0.2 is shown in Figure 6. The initial K-value K0 has been chosen as depicted in
Section 2.2, and its bifurcation diagram is shown in Figure 7c.
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2.2.2. Gauss Map

The Gauss map is a 1D map that uses many control parameters to strengthen data
security. The number of changing pixel rate (NPCR) and the unified averaged changed
intensity (UACI) are values in [23] that show this characteristic. The Gauss map is also
computationally faster. The equation for the Gauss map is as follows:

gi+1 = exp
(
−αg2

i

)
+ β (6)

To generate chaos, α = 6.2 and β = 0.5 have been chosen. The initial g value g0 has been
chosen as depicted in Section 2.2. Figure 7a shows the bifurcation diagram of the Gauss
map.

2.2.3. Piecewise Linear Map

The PWLCM is a 1D chaotic map. It is a uniform system with high ergodicity, invariant
distribution, confusion, and determinacy suitable for information encryption [12,13]. The
PWLCM equation is:

C(i + 1) =



C(i)
a i f 0 ≤ C(i) < a

C(i)−a
0.5−a i f a ≤ C(i) < 0.5

1−a−C(i)
0.5−a i f 0.5 ≤ C(i) < 1− a

1−C(i)
a i f 1− a ≤ C(i) < 1

(7)

To generate chaos, a = 0.45 has been chosen. The initial C value C0 has also been chosen,
as depicted in Section 2.2. The bifurcation diagram of PWLCM is shown in Figure 7b.
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2.2.4. Chirikov–Taylor Map

The Chirikov–Taylor map is a 2D map that represents the mapping of a square with
the length of its side equal to 2π onto itself [27], given by:

C(i + 1) = C(i) + T(i) + a sin (2πC(i))
T(i + 1) = C(i + 1)− C(i)

(8)

a = 0.6 and an initial T value of 0.2 have been chosen to generate chaos. The initial
C value C0 has been chosen, as depicted in Section 2.2. Figure 7d shows the bifurcation
diagram of the Chirikov–Taylor map from 0 to 2.

2.2.5. Tent Map

The Tent map is a 1D chaotic map named after the tent-like shape of the t(I + 1) vs.
t(i) graph. For the right values of µ (approaching 2), the map experiences transformations
that cause it to stretch and fold. The map is also very susceptible to changes in its initial
conditions for these values and displays an increase in the density of periodic and non-
periodic points [24]. The equation for the tent map is given by:

T(i + 1) = µT(i) i f T(i) < 0.5
T(i + 1) = µ(1− (T(i)) i f T(i) ≥ 0.5

(9)

To generate chaos, µ = 0.7 has been chosen. The initial T value T0 has been chosen, as
depicted in Section 2.2. Figure 7e shows the bifurcation diagram of the tent map.

2.2.6. Sine Map

The Sine map is a 1D chaotic map that shows high complexity and non-linearity. The
equation of this system transforms inputs into the range [0, 1] [25] and is given by:

s(i + 1) = a sin(π(s(i)) (10)

The initial value s0 has been chosen as depicted in Section 2.2. Figure 7f shows the
bifurcation diagrams of the Sine map from range 0 to 1.

2.2.7. Duffing Map

The Duffing map is a discretized version of the Duffing equation. It is a 2D system
that displays either a periodic or chaotic property based on the parameter values [26]. The
equation is given by:

M(i + 1) = D(i)
D(i + 1) = −b M(i) + a D(i)− D(i)3 (11)

For generating chaos, a = 2.75, b = 0.2, and an initial D value of 0.3678 have been
chosen. In addition, the initial M value M0 has been chosen, as depicted in Section 2.2.
Figure 7g shows the Duffing map’s bifurcation diagram.

2.2.8. Henon Map

Inspired by his study to show that dynamic systems defined by quadratic equations
can be reduced to the study of area-preserved mapping, Henon proposed a 2D map:

E(i + 1) = 1− a(E(i)2) + H(i)
H(i + 1) = b(E(i))

(12)

a = 1.4, b = 0.3, and an initial H value of 0.3678 have been chosen for generating chaos.
The choosing initial E value E0 is depicted in Section 2.2. Figure 7h shows the bifurcation
diagram of the Henon map.
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2.2.9. Circle Map

The Circle map is a 1D chaotic map for specific values of a (0, 1), and b; the map
displays specific characteristics such as phase locking. For these values, the map behaves
chaotically. The equation is as follows:

O(i + 1) = O(i) + M− K
2π

sin (2πO(i)) (13)

K = 0.5 and M = 0.2 have been chosen to generate chaos. The initial O value O0 has
been chosen as 0.489. Figure 7i shows the bifurcation diagram of the Circle map.

3. Proposed Hybrid Chaotic Map

The proposed hybrid chaotic map is a 3D map that combines three different chaotic
maps non-linearly. The three maps used are the Chirikov–Taylor, Kaplan–Yorke, and Henon
maps. The equation defining this system is given below.

x(i + 1) = [K(x(i) + C(a, c sin(2πx(i))− H(d, sin(2πx(i) ]mod 1 (14)

where C(a, b, X(i)) is the Chirikov–Taylor map as a function of a and b (a and c are two
of the parameters of the map), K(x(i)) is the Kaplan–Yorke function, and H(d, x(i)) is the
Henon map as a function of d (d is the third parameter of the map). Here, mod refers to the
modulus operation. The system equation thus becomes:

x(i + 1) =
[

2x(i) + sin(2πx(i)) + y(i) + asin(2πsin(2πx(i)))
−1 + c(sin(2πx(i)))2 − z(i)

]
mod 1

y(i + 1) = x(i + 1)− sin(2πx(i))
z(i + 1) = d sin(2πx(i) + dx(i) + cos(4πx(i)))

(15)

where a = 0.6, c = 1.4, and d = 0.3 have been chosen. The initial values x0, y0, and z0 have
been chosen as shown in Section 3.2. The bifurcation diagram between x and parameters a,
c, and d are given in Figure 8a–c, respectively. A uniform chaotic behavior is observed over
a wide range of all the parameters. Hence, the proposed novel hybrid map is suitable for
the final layer of scrambling in the proposed algorithm.
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3.1. Lyapunov Exponents for Proposed Map

Lyapunov exponents are a good measure of chaos in a system. For example, the
Lyapunov exponent given by Equation (16) is used to study and analyze the rate of
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separation (expressed exponentially) of two orbits infinitesimally close at an initial time
stage. It indicates a susceptibility or sensitivity to a variation in the initial conditions.

Ly( f (x)) = lim
n→∞

(
1
n

)n−1

∑
i=0

ln
∣∣( f i′(x)

)∣∣ (16)

where fi′(x) is the derivative of the ith iterate fi(x).
A positive Lyapunov exponent indicates an unstable orbit that shows chaotic proper-

ties. The points initially nearby will diverge regardless of how close they are. There will be a
Lyapunov exponent for a 3D chaotic system, such as the proposed one, for every dimension,
i.e., Lx, Ly, and Lz. A system can be declared chaotic if at least one of these dimensions
displays a positive Lyapunov exponent over many iterations. Figure 9 illustrates how the
Lyapunov exponents of the proposed hybrid map vary as iterations progress. Here, the 1st
500 iterations have been ignored to eschew the influence of the initial state. It is observed
across 2000 iterations that Lx remains positive with a value of around 2. This implies that
the proposed Hybrid Chaotic map is in a chaotic state.
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All the chaotic maps’ initial value x values are defined by XORing all the grey-scale
image pixels and dividing by 255, as shown below.

xo =
xo ⊕ I(i, j)

255
(17)

where i and j vary from 1 to 256 each, i.e., covering all the image pixels.

3.2. Choosing Initial Value for Chaotic Maps

This prevents differential by changing the initial value, the encryption key, and the
scrambling sequence whenever an original image is modified. For the proposed 3D hybrid
chaotic map, the initial values of the other two dimensions, i.e., z and y, are determined in
Equations (18) and (19), respectively.

zo =
1

256× 256× 255

(
256

∑
i=1

256

∑
j=1

I(i, j)

)
(18)

y0 = x0 + z0 (19)

4. Proposed Methodology

The encryption and decryption algorithms for the proposed methodology are given below.



Mathematics 2023, 11, 457 11 of 23

4.1. Encryption

The step-by-step process for image encryption is shown in Figure 10 and is explained
in Algorithm 1.
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Algorithm 1 Encryption

Input: the 8-bit grayscale image of size 256 × 256
Output: the encrypted image of size 256 × 256
Step 1: Take an input image I and slice the image into constituent bit planes. For an 8-bit image,
8-bit planes will be formed.
Step 2: Determine the initial values of the chaotic maps from Section 3.2.
Step 3: For each sliced bit plane:

(a) Iterate the corresponding bit plane chaotic map equation with one using the modulo
operation to form a 1D array of random/chaotic values of length equal to the number of
pixels in each bit plane. For example, for a 256 × 256 image, the array’s length will be 65,536.

(b) Sort the 1D array in ascending order.
(c) Scramble the 1D array by iterating through each bit plane pixel and assigning a new

position to the pixel corresponding to the original index.
(d) Generate a key for the bit plane by carrying out a modulo operation between the original

indices of the sorted array before scrambling and obtaining a binary key of length 65,536.
(e) Conduct a pixel-wise XOR operation between the generated key and the bit plane to give an

encrypted bit plane.
(f) Repeat for the remaining planes with their corresponding chaotic maps.

Here, the Gauss map, PWLCM, Kaplan–Yorke map, Chirikov–Taylor map, Tent map, Sine map,
Duffing map, and Henon map are used to scramble and encrypt planes 0 through 7, respectively.
Step 4: Recombine encrypted planes to form I′.
Step 5: Divide I′ into four parts, E1, E2, E3, and E4, each of size 128 × 128.
Step 6: For each of the four sub-parts of size 128 × 128, perform the following operations:

(a) Perform forward LWT transform to obtain the four decomposed sub-bands LL, LH, HL, and
HH.

(b) Take the LL sub-band and scramble it using the Circle map to form LL′.
(c) Perform the inverse IWT on LL′, LH, HL, and HH to obtain a scrambled sub-image of

128 × 128.
(d) Repeat step 6 for other subparts of the image I′.

Step 7: The 4 scrambled sub-images are recombined to give an R of size 256 × 256.
Step 8: The final layer of scrambling is done using the proposed Hybrid Chaotic map, whose
initial value is found using equations in Section 3.2.
Step 9: Generate a key using step 3(d) using values in the range of 0–255 instead of in the
range 0–1.
Step 10: The generated key from step 9 is XORed with R to give the final encrypted image E.

4.2. Decryption

The block diagram for the proposed decryption algorithm is given in Figure 11, and
its step-by-step process is explained in Algorithm 2.

Algorithm 2 Decryption

Input: the encrypted image of size 256 × 256
Output: the 8-bit grayscale image of size 256 × 256
Step 1: Encrypted image E is XORed with the key used in the final encryption layer.
Step 2: Descramble the image using the same hybrid chaotic map. The pixels corresponding

to the sorted generated chaotic array are placed in the positions corresponding to the indices of
the sorted values in the generated unsorted 1D chaotic array to give E′.

Step 3: Divide E′ into four parts, E1’, E2′, E3′ and E4′

Step 4: For each subpart E1’, E2′, E3′ and E4′:

(a) Perform forward LWT transform.
(b) Components corresponding to LL′ are descrambled similarly using the Circle map.
(c) The inverse LWT is performed for the part by replacing the LL′ component with the

descrambled LL component.
(d) Repeat for remaining subparts.
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Step 5: Recombine descrambled subparts to give a new D′.
Step 6: Slice new D′ into constituent bit planes.
Step 7: For each bit plane:

(a) XOR with the same key with which they were encrypted.
(b) Descramble the image with the same chaotic map with which they were scrambled, as

mentioned in step 2.
(c) Repeat step 7 for all other bit planes.

Step 8: Recombine the decrypted bit planes to recover the original image I.
Mathematics 2022, 10, x FOR PEER REVIEW 14 of 25 
 

 

 
Figure 11. Block diagram of the proposed decryption method. 

  

Figure 11. Block diagram of the proposed decryption method.



Mathematics 2023, 11, 457 14 of 23

5. Results and Performance Measures

The proposed algorithm is tested on ten grayscale images from the waterloo image
database of sizes 256 × 256 (https://links.uwaterloo.ca/Repository.html (accessed on
10 December 2022)). Figure 12 shows the original, encrypted, and decrypted images of
some input images from the database.
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5.1. Statistical Analysis
5.1.1. MSE, PSNR, and SSIM

The performance characteristics of the output encrypted image have been compared
with the original image using the Peak Signal Noise Ratio (PSNR), Mean Square Error
(MSE), and Structural Similarity Index Matrix (SSIM), which are shown below in Equations
(20)–(22), where the sizes of the original (I) and the encrypted (E)images are M × N.

MSE =
1

MN

M

∑
i=1

N

∑
j=1

(
Ii,j − Ei,j

)2 (20)

PSNR = 10log10
255 ∗ 255

MSE
dB (21)

SSIM(C, S) =
(2µIµE + x1) ∗ (2σIE + x2)

(µ 2
I + µ2

E + x1

)
∗(σ 2

I + σ2
E + x2

) (22)

where:
µC is the mean pixel value of I; µS is the mean pixel value of E;
σ2

C is the variance of I; σ2
S is the variance of E;

σCS is the covariance of I and E;
x1 = (k1L)2 and x2 = (k2L)2 are used to compensate for the weak denominator; L is

the dynamic range of pixel values;
k1 = 0.01 and k2 = 0.03.
A secure encrypted image should have a very low PSNR and SSIM. Table 1 shows

the PSNR and SSIM of the encrypted images and the proposed method’s original images.
The average PSNR obtained is 8.8413 dB, and the SSIM for the ten images approaches zero,
which proves that the encryption generated by the proposed method is robust and secure.

https://links.uwaterloo.ca/Repository.html
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Table 1. MSE, PSNR, and SSIM values for the encrypted images.

S. No. Image MSE PSNR (in dB) SSIM

1. Lena 7734.48 9.2465 0.0124
2. Barb 7666.37 9.2849 0.0120
3. Boat 8232.87 8.9753 0.0088
4. Goldhill 8009.06 9.0950 0.0120
5. Mandrill 6929.84 9.7236 0.0105
6. Mountain 11,140.38 7.6618 0.0114
7. Washsat 9365.16 8.4156 0.0094
8. Peppers 9255.63 8.4667 0.0090
9. Cameraman 9412.01 8.3940 0.0092
10. Pirate 7907.29 9.1505 0.0110

5.1.2. Histogram Analysis

An image’s histogram plots the number of pixels in an image having intensity values
for every available intensity value. It is useful in evaluating image encryption schemes. A
good image encryption system should convert an image into a non-discernible one with no
defined features. This can be evaluated by checking the histogram of the encrypted image.
An even histogram implies that the number of pixels for every intensity value is uniform,
implying no discernible contrasts and features. Figure 13 shows the original, encrypted,
and decrypted image histogram plots of the mandrill image for the proposed algorithm.
Thus, the proposed algorithm can smoothen the original image histogram and protect the
image’s statistical information.
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5.1.3. Information Entropy

The information entropy (IFE) value gives information about the uncertainty of the
pixels of an image. It illustrates the number of corresponding intensity levels that a pixel
can adapt. It is given by Equation (23):

H =
255

∑
n=0

(
P(L = n)log

1
P(L = n)

)
(23)
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where n varies from 0 to 255 (the range of intensity values that grayscale pixels can take),
and P(L = n) is the percentage of pixels with intensity = n.

A high IFE score depicts an excellent randomness characteristic. For example, for a
grayscale image with a data range of [0, 255], its maximum IFE is 8. An IFE score close to
the maximum implies a highly random characteristic shown by the ciphered image.

The IFE values in Table 2 show that the proposed scheme provides an IFE close to 8.
Thus, the randomness imparted by the scheme is strong enough to prevent the divulging of
information. Table 3 compares the average IFE for the proposed method with the existing
literature, showing promising results.

Table 2. Information entropy for encrypted images.

S. No. Image Entropy

1. Lena 7.9976
2. Barb 7.9974
3. Boat 7.9970
4. Goldhill 7.9970
5. Mandrill 7.9970
6. Mountain 7.9972
7. Washsat 7.9971
8. Peppers 7.9971
9. Cameraman 7.9972
10. Pirate 7.9973

Table 3. Comparison of average information entropy for encrypted images.

S. No. Method Entropy

1. Proposed Method 7.9972
2. [9] 7.9994
3. [10] 7.9912
4. [13] 7.9978
5. [35] 7.998
6. [40] 7.9993
7. [41] 7.9998
8. [42] 15.785
9. [43] 7.9914
10. [44] 7.9915
11. [45] 7.9994
12. [46] 7.9972
13. [47] 7.9914
14. [48] 7.9992
15. [49] 7.9991
16. [50] 7.9993
17. [53] 7.9992

5.1.4. Correlation Test

A good encryption scheme should preserve the statistical information of an image by
reducing the correlation between the image’s pixels [37–51]. The adjacent pixel correlation
coefficients along the horizontal, vertical, and diagonal directions can be calculated using
Equation (24), where µr and µc are the mean values along with the r (row) and c (column)
coordinates of the ciphered image. σr and σc are the standard deviations, along with the r
and c coordinates. E[.] is the expectation operation, and x and y are chosen appropriately
depending on whether the horizontal, vertical, or diagonal correlation needs to be calcu-
lated. Table 4 compares the correlation coefficients of the proposed method and the three
directions with other algorithms.

Correlation(x, y) =
E[r− µr][c− µc]

σrσc
(24)
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Table 4. Comparison of the correlation coefficients of various methods.

Method Image
Correlation Coefficients of the Literature Correlation Coefficients of the Proposed Method

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

[9]
Lena −0.0685 0.0857 0.0059 −0.002153 −0.0000901 −0.0006059

Goldhill −0.0351 0.0556 0.0330 0.002091 0.001700 0.001184
[10] Cameraman 0.0159 0.0093 0.0097 −0.001211 −0.006940 −0.0004557

[13]

Lena 0.0069 0.0047 0.0056 −0.002153 −0.0000901 −0.0006059
Cameraman 0.0063 −0.0099 −0.0076 −0.001211 −0.006940 −0.0004557

Baboon −0.0063 0.0070 0.0051 0.005398 0.0002923 0.006103
Boat 0.0033 −0.0069 0.0025 0.003136 −0.0005582 0.004891

The correlation distributions for neighboring adjacent pixels in all three directions for
the original and encrypted Lena image are plotted in Figure 14. The dispersed correlation
coefficients in the encrypted image plots compared to those of the original image demon-
strates that the proposed scheme can significantly decrease the correlation between the
pixels and prevent attackers from gleaning useful information where µ and σ are the mean
value and standard deviation, respectively.
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5.2. Differential Attack Analysis

NPCR refers to the change rate in the pixel at every coordinate of the encrypted image
when only one pixel at a randomly selected coordinate of the original image is altered.
UACI measures the average difference between the intensities of the two encrypted images.
The NPCR and UACI are defined in Equations (25)–(27).

NPCR =

(
R

∑
i=1

C

∑
j=1

Ed(i, j)

)
/R ∗ C (25)

UACI =

(
R

∑
i=1

C

∑
j=1
|E1(i, j)− E2(i, j)|

)
/255× R× C (26)

Ed(i, j) =
{

0, i f E1(i, j) = E2(i, j)
1, i f E1(i, j) 6= E2(i, j)

(27)

where R and C are the dimensions of the images, E1 is the encrypted image of the original
image, and E2 is the resultant image of the original image with a modification in one
randomly selected pixel. The theoretical ideal value is 99.609% for NPCR and 33.46%
for UACI.

Table 5 shows the NPCR and UACI values of the proposed algorithm and those of
other algorithms. The values are more significant than the ideal values of NPCR and UACI;
the proposed algorithm shows that it can withstand any differential attack [30–50].

Table 5. Comparison of average NPCR and UACI values.

S. No. Method NPCR UACI

1. Proposed Method 99.6230 33.4935
2. [9] 99.6166 33.5033
3. [10] 99.6110 33.4430
4. [13] 99.6405 33.5175
5. [30] 99.64 33.50
6. [31] 99.62 33.44
7. [32] 99.63 33.61
8. [33] 99.61 33.47
9. [34] 99.61 33.46
10. [38] 99.6567 33.5078
11. [39] 99.64 33.54
12. [40] 99.61 33.50
13. [41] 99.6060 33.5126
14. [42] 99.6067 33.47
15. [43] 99.6366 33.4586
16. [44] 99.62 33.47
17. [45] 99.6094 33.4635
18. [46] 99.6056 33.4758
19. [47] 99.6060 33.4689
20. [48] 99.6132 33.4601
21. [50] 99.6199 33.4773

5.3. Key Space Analysis and Key Sensitivity

An efficient encryption method should be susceptible to minute variations in the key.
It should not be decrypted by a key that might even differ from the actual key. The smallest
changes in the decryption key should lead to a significant alteration in the output. The
key generated by the proposed chaotic map is directly dependent on parameters a, c and
d. It has been observed that a change as small as 10–16 for a and 10–15 for b and c show
a significantly different output. Hence, the proposed system is susceptible to minuscule
variations in the key generated by the proposed hybrid map. Good encryption should have
a large keyspace. Such a system would be able to withstand third-party manipulations
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such as brute force attacks satisfactorily. The keyspace for encryption due to the proposed
hybrid map in Section 3 is affected by the parameters a, c, and d and the initial values x0,
b0, and p0 (initial values for each chaotic map dimension). The precision for parameter
a has been observed to be 10–16, while for parameters c, d, and initial values x0, b0, and
p0, the precisions have been observed to be 10–15. Thus, the keyspace is calculated to
be 1016 × 1075 × 256 = 1.044 × 2184. The keyspace is hence large enough to render a
brute-force attack unfeasible.

5.4. Robustness
5.4.1. Cropping Attack

During transmission, data loss is expected, due to which images can experience
cropping of portions. Hence, the encryption scheme should be able to withstand such
an attack. To check this resistance to cropping, a 70 × 70 portion of the encrypted image
is cropped, and then the decryption algorithm is applied to this modified image. It is
observed that the resulting decrypted image still retains the necessary information despite
the missing data in the encrypted image. Hence the scheme shows good resistance to such
data loss, as depicted in Figure 15.
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Figure 15. (a) 70 × 70 area cropped in the encrypted Lena image; (b) Decrypted image.

5.4.2. Noise Attack

It is to be expected that images will be subjected to noise. Hence, the encryption scheme
should withstand such an attack and retain most of the image’s essential features on the
receiving end after decryption. The proposed algorithm has tested this by applying varying
Gaussian noise scales to the encrypted image. The noise has been applied according to:

E′ = E + σGn (28)

where E is the encrypted image, Gn is the Gaussian noise (matrix, generated from a 0 mean
and unit SD normal distribution, of dimensions equal to that of the image), σ is the noise
intensity (the analysis has been done for σ values of 0.3, 0.6 and 1), and E′ is the noisy
encrypted image.

Figure 16 shows images decrypted from the noisy encrypted images for the three σ
values. The decrypted images retain most of the important aspects and features of the
original image, demonstrating that the proposed scheme shows good resistance to noise
attacks.
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5.5. Computational Complexity

The speed with which an image can be encrypted must also be considered. The
speed depends on factors such as the computer specifications on which the algorithm is
run. The average time required for the entire embedding and extraction combined when
tested on a Windows 10 operating system with a 64-bit Intel(R) Core(TM) i5-7200U CPU at
2.5 GHz and 8 GB RAM is found to be 2.1743 s. The same time complexity can be given in
Big-O notation as O(N) since the algorithm is operated sequentially for each pixel. This
algorithm is compared against the encryption scheme proposed in [54], which takes 23.7 s
to encrypt the image. This shows that the proposed encryption scheme is effective in terms
of time consumption.

5.6. NIST SP 800-22

NIST Special Publication (SP) 800-22 is a statistical test suite for random and pseudo-
random number generators (RNGs and PRNGs) used in cryptographic applications. The
test suite consists of 22 statistical tests designed to provide a comprehensive evaluation
of the statistical properties of an RNG or PRNG. The test suite is organized into three
categories: empirical tests, which are based on the observed statistical properties of the
output sequence; spectral tests, which analyze the distribution of the output sequence in
the frequency domain; and statistical tests, which analyze the distribution of the output
sequence in the time domain. The test suite is intended to be used as part of an overall
testing strategy for RNGs and PRNGs and is not intended to be used as a standalone
evaluation tool. In summary, NIST SP 800-22 is a comprehensive test suite for evaluating
the statistical properties of RNGs and PRNGs used in cryptographic applications. The
probability (P)-value, calculated for each of the 15 NIST Tests, varies between 0 and 1 and is
given in Table 6. Shallow p-values indicate the absence of randomness in the stream of bits.
The NIST SP 800-22 standard observes that if the p-value is greater than or equal to 0.001, the
bits under testing can be considered to have uniform distribution and statistical strength.

Table 6. NIST SP 800-22 results.

Type of Test p-Value Conclusion

Frequency Test (Monobit) 0.4120 Random
Frequency Test within a Block 0.9606 Random
Run Test 0.6140 Random
Longest Run of Ones in a Block 0.1815 Random
Binary Matrix Rank Test 0.1327 Random
Discrete Fourier Transform (Spectral) Test 0.4770 Random
Non-Overlapping Template Matching Test 0.0257 Random
Overlapping Template Matching Test 0.1384 Random
Maurer’s Universal Statistical test 0.8626 Random
Linear Complexity Test 0.4227 Random
Serial Test 1
Serial Test 2

0.9000 Random
0.7167 Random

Approximate Entropy Test 0.7484 Random
Cumulative Sums (Forward) Test 0.6990 Random
Cumulative Sums (Reverse) Test 0.5227 Random

6. Discussion of the Obtained Results

The proposed work has been compared with the existing works regarding entropy
and differential analysis. Entropy has been considered a strong metric for evaluating the
equidistribution property of encrypted pixels among the plane. When comparing, the
proposed work yielded a maximum entropy of 7.9972, which is relatively higher than
the works reported in [10,43,44,46,47] and comparatively similar to the works reported
in [9,13,35,40,41,45,48–50,53]. From the results, it has been confirmed that the proposed
work has secured adequate entropy. In addition, differential attack analysis was carried out
to investigate the tolerance level of the proposed cryptosystem when it is subjected to cipher
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attacks. On observing the results from Table 5, this work outperforms the works mentioned
in [9,10,33,34,40–42,45–48,50] in NPCR estimation. Similarly, the UACI estimated value is
higher than the works mentioned in [9,10,13,31,33,34,42–48,50]. Other than this analysis,
the avalanche effect of keys has been verified by conducting a key sensitivity analysis,
thereby calculating the keyspace of 1.044 × 2184, which is very much sufficient to resist a
brute force attack. Further, cropping and correlation analyses were performed to evaluate
the cryptosystem from the position of being attacked. Though the encrypted images were
attacked through the earlier attacks, the algorithm was resistant to decrypting the image,
evidencing the proposed algorithm’s self-strength. The novelty and enhancements of the
proposed work are presented below:

1. A hybrid chaotic system-driven cryptosystem was developed;
2. Lifting wavelet transform decomposition was adopted to achieve quantization error-

free frequency separation;
3. Bit plane-based diffusion was used to break the pixel dependency in an effective way

which resulted in a near-zero correlation on encrypted pixels;
4. Ten different keys were used to accomplish the encryption through which the keyspace

was increased to 1.044 × 2184;
5. Segmentation of the intermediate cipher image helped to reduce the time consumption,

which resulted in a time of 2.1743 s to encrypt a 256 × 256 × 8-bit image;
6. A maximum entropy of 7.9972 was achieved with an average PSNR of 8.84139.

7. Conclusions

Effective multilayer encryption augmented by a novel 3D hybrid chaotic map is
proposed. The proposed map has a uniform chaotic characteristic over several parameters
and a larger keyspace than existing chaotic maps. Multiple chaotic maps are used to
scramble and encrypt, creating a robust encryption system in which each key generated
by a chaotic map is different from the others. LWT is used in a portion of our procedure
to perform frequency domain scrambling to overcome certain spatial domain scrambling
limitations. Ten standard 256× 256× 8-bit depth grayscale test images were taken from the
University of Southern California database to test the proposed encryption. Entropy and
correlation analyses were considered as the primary focus for statistical validation, in which
the average entropy was calculated as 7.9972 with a near 0 correlation. Further, an average
PSNR of 8.8439 ensured that adequate encryption was achieved through the proposed
cryptosystem. The avalanche effect was witnessed through key sensitivity analysis, and the
average NPCR and UACI from differential analyses were determined as 99.6230 and 33.4935,
respectively. This evidences that the proposed work is cryptographically strong. Moreover,
the attack analysis results also confirm this algorithm’s attack-resistant capability. Future
work will be on implementing the chaos-cryptic solution on reconfigurable hardware to
improve the speed of the operation by employing hardware concurrency.
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