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Abstract: With the rapid development of science and technology, high-dimensional data have been
widely used in various fields. Due to the complex characteristics of high-dimensional data, it is usually
distributed in the union of several low-dimensional subspaces. In the past several decades, subspace
clustering (SC) methods have been widely studied as they can restore the underlying subspace of
high-dimensional data and perform fast clustering with the help of the data self-expressiveness
property. The SC methods aim to construct an affinity matrix by the self-representation coefficient of
high-dimensional data and then obtain the clustering results using the spectral clustering method.
The key is how to design a self-expressiveness model that can reveal the real subspace structure of
data. In this survey, we focus on the development of SC methods in the past two decades and present
a new classification criterion to divide them into three categories based on the purpose of clustering,
i.e., low-rank sparse SC, local structure preserving SC, and kernel SC. We further divide them into
subcategories according to the strategy of constructing the representation coefficient. In addition, the
applications of SC methods in face recognition, motion segmentation, handwritten digits recognition,
and speech emotion recognition are introduced. Finally, we have discussed several interesting and
meaningful future research directions.

Keywords: high-dimensional data; kernel learning; machine learning; sparse optimization; subspace
clustering

MSC: 62H30; 65K05; 90C30

1. Introduction

Clustering has been one of the most important research topics in both statistical ma-
chine learning and data mining, which aims to segment unlabeled samples into several
disjoint groups (clusters) by maximizing the difference among different groups and mini-
mizing the difference in the same group. Clustering originated from the anthropological
research by Driver and Kroeber in 1932 [1] and was then introduced into psychology [2,3].
Over the last few decades, various clustering methods have been proposed, such as k-means
clustering [4–7], spectral clustering [8–11], model-based clustering [12–14], hierarchical
clustering [15–17], and online clustering [18,19].

With the rapid development of information technology and the advent of the big data
era, data have shown explosive growth and presents complex characteristics such as high
dimensionality, nonlinearity, and incompleteness. Although traditional clustering methods
have achieved excellent results in low-dimensional data mining tasks, they often encounter
serious bottlenecks in high-dimensional data mining tasks, which cannot meet the sparsity
of high-dimensional data and avoid the impact of the “curse of dimensionality” [20,21].
Since the inherent characteristics of high-dimensional data, it usually lies in a union of low-
dimensional structures instead of being uniformly distributed across the whole space. For
instance, Figure 1 shows a set of sample points in R3 from a two-dimensional subspace (the
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plane S1) and two one-dimensional subspaces (the lines S2 and S3). It is worth pointing out
that it is difficult to analyze the data as a whole, while the natural properties of this data can
be better reflected in its underlying low-dimensional subspaces (plane or line). In fact, in
many practical problems, the data in each class can be well represented by low-dimensional
subspaces. For example, the face images of a person under different lighting conditions
can be distributed in a nine-dimensional subspace [22,23], and the motion trajectories of
rigidly moving objects in a video belong to different subspaces whose dimensions do not
exceed three [22]. To explore high-dimensional data in a low-dimensional space, subspace
clustering arises at the opportune time [24]. The subspace clustering aims to search for the
underlying subspaces in dimension space or data space to obtain corresponding subspaces
and clustering results. Over the past several decades, subspace clustering has been widely
used in face recognition [25–27], motion segmentation [28–30], image processing [31–33],
speech emotion recognition [34,35], social network [36,37], and other fields.

Figure 1. A set of sample points in R3 from a union of three subspaces: a plane and two lines.

Definition 1 (Subspace clustering, SC [38]). Given a set of samples X = [x1, . . . , xn] ∈ Rd×n,
where d and n are the number of features and samples, respectively. Assume that X are drawn from
a union of k subspaces {Si}k

i=1 with unknown dimensionality {di}k
i=1. Subspace clustering aims to

segment the samples according to the underlying subspaces which they are drawn from.

Due to the advantages of SC, a number of SC methods have been proposed during the
past decades. Figure 2 shows the development trend of SC publications and their citations
over the past two decades. It can be seen that SC shows a growth trend in general, and
the growth trend has dramatically increased since 2013. According to their mechanisms
of representing the subspaces, the existing SC methods can be roughly divided into four
main categories: algebraic methods, iterative methods, statistical methods, and spectral
clustering-based methods. These four categories of SC methods are briefly discussed
below (see [39] for details). Algebraic methods include matrix factorization-based meth-
ods [40,41] and generalized principal component analysis (GPCA) [42,43], but algebraic
methods are usually highly sensitive to noise and outliers, and the complexity of GPCA
increases exponentially with the number and dimensions of subspaces. Iterative methods,
such as k-subspaces [44–46], alternatively assign the data points to subspaces and fit the
subspaces to the corresponding cluster. However, iterative methods usually need to know
the number of subspaces and the dimensions of subspaces in advance and are sensitive to
the initial point. Statistical methods can be regarded as the probabilistic description based
on iterative methods, including probabilistic PCA (PPCA) [47,48], mixture of probabilistic
PCA (MPPCA) [47,49], random sample consensus (RANSAC) [50,51], etc. Unfortunately,
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statistical methods usually require that the dimensions of subspaces are known and equal,
and their complexity increases with the number of subspaces. Most recently, spectral
clustering-based methods have played a dominant role in SC problems due to their easy
implementation and insensitivity to data corruptions and initial points. In the following,
we will focus on spectral clustering-based methods.
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Figure 2. The development trend of SC in the past two decades.

The spectral clustering-based methods usually perform the following two steps.
(1) The representation coefficients are learned by a subspace representation model, which
is used to construct the affinity matrix. (2) The final clustering result is obtained by per-
forming spectral clustering on the affinity matrix. The basic framework of the spectral
clustering-based SC methods is shown in Figure 3. It is worth pointing out that the repre-
sentation coefficients learned in the first step play a vital role in the clustering effectiveness.
However, owing to the complexity and diversity of the inherent unknown structure of the
real data, some assumptions must be introduced on the data distributions, such as sparse
or low-rank assumptions in the representation learning, thus leading to different ways to
construct or learn representation coefficients.

Data matrix Coefficients matrix Affinity  matrix

Subspace

 self-expression
Spectral clustering

Clustering result

Figure 3. The basic framework of the spectral clustering-based SC methods.

This survey provides a comprehensive review of the recent development of spectral
clustering-based SC methods (for convenience, hereinafter referred to as SC). The main
contributions of this survey are summarized as follows:

• We systematically review the recent research progress of SC methods and summarize
them into three categories and further subcategories according to the strategy of
constructing representation coefficient; see Figure 4.

• We introduce the applications of SC methods in face recognition, motion segmentation,
handwritten digits recognition, and speech emotion recognition and present several
common benchmark datasets.
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• We provide some potential research directions which can promote the development of
this field.

 Subspace Clustering

 Low-Rank Sparse SC

 Sparse Representation Based SC

 Low-Rank Representation Based SC

 Low-Rank Sparse Representation Based SC

 Local Structure 
 Preserving SC

 Graph-Regularized Based SC

 Latent Representation Based SC

 Block Diagonal Representation Based SC

 Kernel SC

 Single Kernel Learning Based SC

 Multiple Kernel Learning Based SC

Figure 4. The categories of SC methods.

The rest of this survey is organized as follows. Sections 2–4 introduce low-rank sparse
SC methods, local structure preserving SC methods, and kernel SC methods, respectively;
see Table 1. Section 5 introduces the applications of SC methods and presents several
common benchmark datasets. Finally, the future research directions and conclusions are
presented in Sections 6 and 7, respectively.

Table 1. A brief summary of SC methods.

SC Methods Subcategories Brief Description

Low-Rank
Sparse SC

SR-Based SC [25,52–61] Achieve subspace feature selection through
sparse representation.

LRR-Based SC [38,62–72] Capture the global structure of data
through low-rank representation.

LRSR-Based SC [73–83]

Capture the global structure of data and
achieve subspace feature selection by
combining low-rank representation with
sparse representation.

Local Structure
Preserving SC

GR-Based SC [84–91]
Capture the geometric information by
combining graph regularization with data
self-representation.

LatR-Based SC [92–98]
Capture latent representation of data by
joint low-rank/sparse recovery and salient
feature extraction

BDR-Based SC [99–104]
Pursue the block diagonal structure of
coefficient matrix directly by designing
special regularization.

Kernel SC

SKL-Based SC [55,105–107] Be able to process the nonlinear structure of
the data.

MKL-Based SC [108–116]
Be able to process the nonlinear structure of
the data and learn a consensus kernel
function adaptively.

Remark: SR indicates sparse representation; LRR indicates low-rank representation; LRSR indicates low-rank
sparse representation; GR indicates graph-regularized; LatR indicates latent representation; BDR indicates block
diagonal representation; SKL indicates single kernel learning; MKL indicates multiple kernel learning.

The symbols used throughout this survey are defined at the end of this section. In this
survey, all matrices are denoted by capital letters, such as X, Y; all vectors are represented
by boldface letters, such as x, y; all scalars are represented by lowercase letters, such as x, y.
Let Rn and Rd×n be the set of n-dimensional vectors and d× n matrices, respectively. For
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any matrix X ∈ Rd×n, let Xij and xj denote its (i, j)th element and jth column, respectively.

The element-wise l1 norm is defined as ‖X‖1 = ∑d
i=1 ∑n

j=1 |Xij|; ‖X‖F =
√

∑d
i=1 ∑n

j=1 |Xij|2

denotes the Frobenius norm; ‖X‖2,q =

(
∑n

j=1

(
∑d

i=1 |Xij|2
)q/2

)1/q
denotes the l2,q norm

with q > 0; the l0 pseudo norm is defined as ‖X‖0 = #{Xij 6= 0, ∀i, j}, i.e., the total
number of non-zero elements in X. Let r = rank(X) represent the rank of X. Let σ1(X) ≥
. . . ≥ σr(X) ≥ σr+1(X) = . . . = σd(X) = 0 are the singular value of X. ‖X‖Kk,p =(

∑k
i=1 σi(X)p

)1/p
with p > 0 and k ∈ {1, 2, . . . , d} denotes the Ky Fan p-k norm. The

particular case of the Ky Fan norm with k = r is called the Schatten p norm, i.e., ‖X‖Sp =

(∑r
i=1 σi(X)p)1/p, when p = 1 yields the nuclear norm ‖X‖∗. In particular, the Schatten

0 pseudo norm is ‖X‖S0 = #{σi(X) 6= 0, ∀i}. Let tr(X) be the trace of matrix X. We
denote diag(X) as a vector whose ith element is the ith diagonal element of matrix X, while
Diag(x) as a matrix whose ith diagonal element is the ith element of vector x. � denotes the
Hadamard product, i.e., the element-wise product between two matrices. I and 1 represent
the identity matrix and all one vector, respectively. If the matrix X is positive semi-definite,
we denote X � 0. If all the elements of X are nonnegative, we denote X ≥ 0.

2. Low-Rank Sparse SC

In this section, we will review some classical low-rank sparse SC methods. Before
starting the main content of this section, we first introduce some basic definitions of SC.

Definition 2 (Independent subspace). A collection of subspaces {Si}k
i=1 is said to be indepen-

dent, if dim(⊕k
i=1Si) = ∑k

i=1 dim(Si), where dim(Si) is the dimension of subspace Si and ⊕
represents the direct sum operation.

Definition 3 (Disjoint subspace). A collection of subspaces {Si}k
i=1 is said to be disjoint, if

dim(Si ⊕ Sj) = dim(Si) + dim(Sj) (∀i 6= j), but dim(⊕k
i=1Si) 6= ∑k

i=1 dim(Si).

It is evident that, when the number of subspaces is more than two, the indepen-
dent subspace condition is much stronger than the disjoint condition, as the independent
subspaces must be disjoint subspaces while the converse is not necessarily true.

Definition 4 (Self-expressiveness property). Each sample in the union of subspaces can be
effectively represented as a linear or affine combination of other samples, i.e., X = XC where
X ∈ Rd×n is the given data, and C ∈ Rn×n is the representation coefficient matrix.

It is worth pointing out that the representation coefficient matrix C can reflect the
similarity between samples to a certain extent which will be used to build the affinity
matrix. Therefore, the representation coefficient matrix plays a crucial role in spectral
clustering-based SC methods. Ideally, the representation coefficient matrix C should satisfy
the following diagonal property.

Definition 5 (Block diagonal property, BDP). Given a sample matrix X drawn from a union of
k disjoint subspaces {Si}k

i=1, assume that the samples in the same subspace are aligned together,
i.e., X = [X1, . . . , XK] where Xi is a collection of ni samples drawn from the subspace Si. The
representation coefficient matrix C is said to satisfy the block diagonal property, if

C =


C1 0 · · · 0
0 C2 · · · 0
...

...
. . .

...
0 0 · · · Ck

 (1)
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with Ci ∈ Rni×ni .

Note that, if the representation coefficient matrix C satisfies the block diagonal
property (1), the following conclusions can be drawn: (1) the number of blocks repre-
sents the number of subspaces; (2) the size of each block represents the dimension of
the corresponding subspace; and (3) the samples of the same block belong to the same
subspace.

In practical applications, data often contain noise or outliers, so the data can be
expressed as X = YC + E, where Y is the clean data or dictionary, generally taken as the
observation X itself, and E represents the data corruptions, such as error, noise or outliers.
In general, different prior constraints are imposed on the representation coefficient matrix
C to obtain an ideal structure. Thus, the self-expressiveness based SC methods could be
unified as solving the following optimization problems. Therefore, the self-expressiveness
based SC methods can be uniformly described as the following optimization problems:

min
C,E

F(C) + λR(E) s.t. X = YC + E, C ∈ Ω, (2)

where F(C) is a penalty term (or regularization term), which is used to constrain the
representation coefficient matrix C to keep an ideal structure, and Ω is the constraint set
of C. λ > 0 is a trade-off parameter. R(E) is an error term describing the difference
between the real data and the represented data. Different norms are selected to measure the
error according to different noise distributions, which requires some prior knowledge or
assumptions. Once the representation coefficient matrix C is determined, the affine matrix
A for spectral clustering can be obtained through C. In the existing literature, a commonly

used formula is A = |C|+|C|T
2 .

2.1. Sparse Representation Based SC

In recent years, sparse representation has become a research hotspot in machine
learning, computer vision, applied mathematics, and so on. Sparsity refers to using as few
bases as possible to represent data, that is, using as few non-zero representation coefficients
as possible. The position of the non-zero representation coefficients indicates that the data
are located in the subspace spanned by its corresponding basis. Some classical sparse SC
methods are summarized in Table 2.

Table 2. The comparison of classical sparse SC methods.

Methods Year F(C) R(E) Ω Theoretical Results

SSC [25,52] 2009 ‖C‖1 ‖E‖1 {C|diag(C) = 0} BDP for independent subspaces

SSQP [53] 2011 ‖CTC‖1 ‖E‖2
F {C|C ≥ 0, diag(C) = 0 } BDP for orthogonal subspaces

W-SSC [54] 2012 ‖W � C‖1 ‖E‖p {C|diag(C) = 0} -

GS-graph [55] 2015 Γg
µ(C) ‖E‖1 - Grouping effect

l0-SSC [56] 2016 ‖C‖0 ‖E‖2
F {C|diag(C) = 0} -

SSCNA [57] 2019 ΦAL(C) ‖E‖1 {C|CT1 = 1, diag(C) = 0} -

SSC-SLp [58] 2019 ‖C‖p
p ‖E‖2

F {C|CT1 = 1, diag(C) = 0} -

SRSSC [59] 2019 ‖W � C‖1 + µ‖Q� C‖1 ‖E‖1 {C|CT1 = 1, diag(C) = 0} -

SSC+E [60] 2020 ∑n
i=1 ∑n

j=1 Cij ln Cij ‖E‖2
F {C|CT = C, C ≥ 0, diag(C) = 0} -

AdaptiveSSC [61] 2020 ‖C/W‖1 ‖E‖2
F {C|diag(C) = 0} -

Remark: - indicates that this item does not exist.

In 2009, Elhamifar and Vidal [25,52] introduced compressed sensing techniques to
subspace segmentation and proposed sparse subspace clustering (SSC) to represent each
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data point as a sparse linear combination of other data points. SSC can be formulated as
the following optimization problem:

min
C,E

‖C‖1 + λ‖E‖1 s.t. X = XC + E, diag(C) = 0, (3)

where the constraint diag(C) = 0 is used to avoid the trivial solution of representing a
data point as a linear combination of itself, i.e., C = I. In optimization, l1-norm is usually
regarded as the best convex relaxation of l0 norm, which can be used to generate sparse
solutions due to its nonsmoothness (see Figure 5 for the geometric interpretation). Note that
model (3) is a convex optimization, which can be effectively solved by the convex program-
ming algorithms, such as the alternating direction method of multipliers (ADMM) [117]
and the semi-smooth Newton augmented Lagrangian method (SSNAL) [118].

Figure 5. The geometric interpretation of different norms in R2.

For the SCC method (3) without noise, it has been proved that the representation coef-
ficient matrix obtained by (3) has the block diagonal structure (1) under the assumption of
independent subspaces. Elhamifar and Vidal [119] extended the condition of independent
subspaces to disjoint subspaces and gave the theoretical boundary for the division of dis-
joint subspaces. Soltanolkotabi and Candès [120] further extended this condition to the case
even though underlying subspaces overlap through geometric analysis. However, these
analyses are based on the assumption that the data points are exactly lying in the subspace,
which is difficult to satisfy in practice. Therefore, Soltanolkotabi et al. [121] generalized the
SCC by using geometric functional analysis and proved that this method can accurately
recover the underlying subspaces under the minimum requirements on the direction of
the subspace and the number of samples in each subspace. Wang et al. [122] theoretically
analyzed the SSC with noise and proved that the modified version of SSC can correctly
identify the underlying subspace, even for noisy data. However, the SCC method still has
some drawbacks. Since SSC seeks a sparse representation of each data individually, it may
not accurately capture the global structure, which may lead to over-segmentation [123].
On the other hand, if the correlation between a group of data points is very high, SSC tends
to select only one randomly, which will ignore the correlation structure of data from the
same subspace [124].

Since SCC essentially solves a constrained lasso regression problem which is a non-
smooth problem, the computational cost of solving the problem is higher than general
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smooth problems. Consequently, Wang et al. [53] proposed the following subspace seg-
mentation method via quadratic programming (SSQP)

min
C,E

‖CTC‖1 + λ‖E‖2
F s.t. X = XC + E, C ≥ 0, diag(C) = 0, (4)

where ‖CTC‖1 is equivalent to 1TCTC1, which can be used to enforce the block diagonal
structure of C. When the subspaces are orthogonal, it has been proved that the representa-
tion coefficient matrix obtained by SSQP (4) without noise has a block diagonal structure.

Pham et al. [54] present a weighted sparse subspace clustering (W-SSC) method by
embedding weights into the sparse formulation, which can be formulated as

min
C,E

‖W � C‖1 + λ‖E‖p s.t. X = XC + E, diag(C) = 0, (5)

where W is a non-negative weighting matrix, which can take the inverse of a similarity mea-
sure between points, such as Wij = exp

{
−‖xi − xj‖2

2/σ
}−1. ‖E‖p is the penalty of noise E,

which can be taken as l1 norm, l2,1 norm or the squared Frobenius norm, respectively, for
the random corruptions, sample-specific corruptions and Gaussian white noise. It is worth
pointing out that the SSC model (3) is a special case of (5) with W = I and ‖E‖p = ‖E‖1.
W-SSC uses the spatial relationship among the data to weight the representation coefficient
matrix, which improves the performance of SSC significantly. However, W-SSC may fall
into a local minimization easily. For this reason, Wang et al. [59] proposed a structural
reweight sparse subspace clustering method (SRSSC) by introducing the structural infor-
mation into W-SSC. If the clustering labels of data xi and xj are the same, structural matrix
Qij = 1; otherwise, Qij = 0. Furthermore, it has been proved that the global optimal
solution can be found to be better by considering the structure information. However,
there are three parameters needed to be adjusted in SRSSC, which is troublesome and
time-consuming. In addition, both of the reweight SSC methods are sensitive to data noise.

Inspired by the traditional graph construction methods, Fang et al. [55] proposed a
group sparse graph (GS-graph) subspace clustering method by constructing an informative
graph using auto-grouped l1 regularization, which can be written as

min
C,E

Γg
µ(C) + λ‖E‖1 s.t. X = XC + E, (6)

where Γg
µ(C) = ‖C‖1 + ∑i ∑j<k max{|Cij|, |Cik|} is the auto-grouped octagonal shrinkage

and clustering algorithm for regression (OSCAR) which can be regarded as a weighted
combination of the l1-norm and a pairwise l∞-norm [125]. Based on this design, GS-graph
can maintain both the sparsity and locality of data simultaneously and is insensitive to
noise. Moreover, it has proved that GS-graph (6) has the grouping effect.

Most of the existing sparsity-based SC methods are based on the l1 norm of the
representation coefficient. Although l1 norm is regarded as the best convex relaxation of l0
pseudo norm and has achieved many achievements, it does not fully reflect the properties
of l0 norm. Therefore, Yang et al. [56] directly studied the following l0-induced sparse
subspace clustering (l0-SSC)

min
C,E

‖C‖0 + λ‖E‖2
F s.t. X = XC + E, diag(C) = 0. (7)

It has proved that the l0-SSC can give subspace-sparse representation almost surely
for arbitrary distinct underlying subspaces. Although the l0-SSC model (7) is a nonconvex
and nonsmooth optimization problem, it can be effectively solved by the proximal gradient
descent (PGD) algorithm [56,126] and ADMM [127].

Although the l0 pseudo norm regularization has been widely regarded as the ori-
gin model of sparsity and achieved superior clustering performance, its computational
cost is expensive, and the convergence of algorithm is hardly guaranteed. A better strat-
egy is to use some nonconvex functions to approximate l0 pseudo norm, such as arct-
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angent–logarithmic function [57] and lp-norm [58]. Dong et al. [57] proposed a sparse
subspace clustering via the nonconvex approximation (SSCNA). Specifically, SSCNA used
the arctangent–logarithmic function ΦAL(x) = 2

π ∑n
i=1 arctan ln(|xi |+1)

v with 0 < v < 1
to approximate the l0-norm. It has proved that the proposed nonconvex approximation
is closer to l0-norm than the l1-norm and is bounded by l0 pseudo norm (see Figure 6).
Dong et al. [58] formulated the sparse subspace clustering as a smoothed lp(0 < p < 1)
minimization problem (SSC-SLp). It is worth pointing out that the lp-norm can better
approximate the l0 pseudo norm than the l1 norm (see Figure 6). In addition, an effective
algorithm with convergence was established based on ADMM.
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(a) Arctangent–logarithmic function
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Figure 6. The explanation of nonconvex approximations of l0 pseudo norm.

To study the theoretical connection between spectral clustering and SSC, Bai and
Liang [60] presented a sparse subspace clustering with entropy-norm (SSC+E), which can
be written as the following optimization problem:

min
C,E

n

∑
i=1

n

∑
j=1

Cij ln Cij + λ‖E‖2
F s.t. X = XC + E, CT = C, C ≥ 0, diag(C) = 0, (8)

where ∑n
i=1 ∑n

j=1 Cij ln Cij is the information entropy of C which can describe the stability
of variable predicted and degree of information involvement. Based on the above settings,
SSC+E can obtain the closed-form solution of the coefficient matrix. It has proved that the
optimal solution of (8) is equivalent to a Gaussian kernel as the sparse representation, that
is, spectral clustering with Gaussian kernel can be viewed as SSC+E (8). For this reason,
SSC+E obtains a sparse similarity matrix by using the Gaussian kernel, which can avoid
the complex computation caused by SSC.

To cope with the challenges of data noise and high-dimensional expression profiles
in identify cell types, Zheng et al. [61] proposed an adaptive sparse subspace clustering
method (AdaptiveSSC), which can be formulated as the following optimization problem:

min
C,E

∥∥∥∥ C
W

∥∥∥∥
1
+ λ‖E‖2

F s.t. X = XC + E, diag(C) = 0, (9)

where W is the sample-related weight matrix based on Pearson correlation. If Pearson
correlation coefficient between xi and xj is greater than 0, Wij = pearson(xi, xj); otherwise,
Wij = 0. Since AdaptiveSSC uses a data-driven adaptive sparse strategy to maintain the
local structure of the data, it is more robust to data noise. However, due to the existence
of the l1-norm, the computing efficiency of AdaptiveSSC is still low, especially for high-
dimensional datasets.
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2.2. Low-Rank Representation Based SC

As mentioned earlier, SSC can accurately restore the underlying subspace under
certain conditions. However, sparse representation-based methods aim to find a sparse
representation of each data individually, which may not accurately capture the global
structure. Moreover, sparse representation-based approaches may not be robust to noise
and outliers. In this situation, low-rank representation came into being and was successfully
applied to SC problems. Table 3 summarizes the classical low-rank SC methods.

Table 3. The comparison of classical low-rank SC methods.

Methods Year F(C) R(E) Ω Theoretical Results

LRR [38,62] 2010 ‖C‖∗ ‖E‖2,1 - BDP

LRR-PSD [63] 2010 ‖C‖∗ ‖E‖2,1 {C|C � 0} -

LSR [64] 2012 ‖C‖2
F ‖E‖2

F {C|diag(C) = 0} BDP, Grouping effect

CASS [65] 2013 ∑j ‖XDiag(C:,j)‖∗ ‖E‖2
F - BDP, Grouping effect

NLRR [66] 2016 ‖C‖p
Kk,p

(p > 0) ‖E‖q
2,q (0 < q < 1) - -

Sq-LRR [67] 2016 ‖C‖q
Sq

(0 < q < 1) ‖E‖1, ‖E‖2
F or ‖E‖2,1 - -

LRRSC [68] 2017 ‖C‖∗ ‖E‖2,1 {C|C = CT} -

CAR [69] 2018 ∑i ∑j |Cij|pij ‖E‖2
F - Grouping effect

SqNM-LRR [70] 2019 ‖C‖q
Sq

(q = 1, 2/3 or 1/2) ‖E‖1, ‖E‖2
F or ‖E‖2,1 - -

SSRSC [71] 2021 ‖C‖2
F ‖E‖2

F {C|C ≥ 0, 1TC = s1T} -

WSLog [72] 2022 ∑r
i=1 ln(wσ

p
i + 1) ‖E‖2,1 - -

Remark: - indicates that this item does not exist.

In 2010, Liu et al. [38,62] presented a subspace clustering method based on low-rank
representation (LRR) to consider the correlation structure of data. Instead of pursuing a
sparse representation in SSC, LRR pursues the lowest-rank representation among data
which can better capture the global structure of the data. LRR can be formulated as the
following optimization problem:

min
C,E

‖C‖∗ + λ‖E‖2,1 s.t. X = XC + E, (10)

where the nuclear norm is used to approximate the rank of C, and the l2,1 norm encourages
the columns of E to be zero which can better fit the data corruptions. Liu et al. [38]
have proved that, if the subspaces are independent, the representation coefficient matrix
obtained from the LRR model (10) without noise has the block diagonal structure. Note that
the problem (10) is a convex optimization, which can be effectively solved by the convex
programming algorithms, such as the augmented Lagrange multiplier (ALM) method [128],
accelerated proximal gradient (APG) [129], ADMM [117,130], and SSNAL [118]. It is worth
pointing out Favaro et al. [131] study given the closed form of LRR via the singular value
decomposition (SVD) of the data matrix.

As discussed earlier, after obtaining the optimal solution (C∗, E∗), C∗ is used to
construct the affinity matrix for spectral clustering. Since the affinity matrix is symmetric,

it is usually constructed by A = |C|+|C|T
2 , which may result in a poor clustering result.

To avoid symmetrization post-processing, Ni et al. [63] introduced a symmetric positive
semidefinite constraint into LRR (LRR-PSD), which can be formulated as

min
C,E

‖C‖∗ + λ‖E‖2,1 s.t. X = XC + E, C � 0. (11)

To further reduce computational cost in the LRR scheme, Chen et al. [68] proposed a
low-rank representation with symmetric constraint (LRRSC) to avoid iterative SVD opera-
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tion which can significantly decrease the computational cost for the subspace clustering.
LRRSC solves the following optimization problem:

min
C,E

‖C‖∗ + λ‖E‖2,1 s.t. X = XC + E, C = CT . (12)

It is worth pointing out that the affinity matrix, constructed by making full use of the
intrinsically geometrical structure of the data points in the symmetric low-rank matrix, can
significantly improve the performance of SC.

For LRR, each iteration must perform the singular value decomposition (SVD) due to
the nuclear norm, which leads to high computational complexity and dramatically limits
its ability to handle high-dimensional data. To handle this problem, Lu et al. [64] proposed
a subspace clustering method via least squares regression (LSR), which was presented by
exploiting the correlation of data, which solves the following optimization problem:

min
C,E

‖C‖2
F + λ‖E‖2

F s.t. X = XC + E, diag(C) = 0. (13)

It has proved that the optimal solution of LSR satisfies the block diagonal property (1)
without noise and with subspace independence. Furthermore, LSR encourages a grouping
effect that tends to shrink coefficients of correlated data and group them together. LSR
has also been proven to be robust to bounded disturbance. In particular, Zhang et al. [132]
proved theoretically that the Frobenius norm can be used as a surrogate of the rank function,
and related results can also be found in [133,134]. It is easy to verify that LSR (13) is a
strongly convex optimization problem and thus has a closed-form solution. Therefore,
compared with the nuclear norm, using the Frobenius norm as a surrogate of the rank
function can significantly reduce the computational complexity.

Although LSR has the grouping effect, it cannot produce a sparse solution, which
makes the optimal solution obtained by LSR lack interpretability. Lu et al. [65] proposed a
correlation adaptive subspace segmentation (CASS) method by using trace Lasso, which
can be formulated as

min
C,E

∑
j
‖XDiag(C:,j)‖∗ + λ‖E‖2

F s.t. X = XC + E. (14)

CASS is a data correlation-dependent method which simultaneously performs automatic
data selection and groups correlated data together. Consequently, CASS can be considered
as the adaptive balance between SSC and LSR. Lu et al. generalized the EBD conditions
and proved that the solution obtained by (14) has the block diagonal structure (1) if the
underlying subspaces are independent. Furthermore, CASS has been proven to have the
grouping effect, i.e., the coefficients of a group of correlated data are approximately equal.

Wang et al. [69] presented a correlation adaptive regression (CAR) subspace clustering
method, which can be formulated as the following optimization problem:

min
C,E

∑
i

∑
j
|Cij|pij + λ‖E‖2

F s.t. X = XC + E, (15)

where pij = 1 + ri,j, with ri,j = |xT
i xj| being the correlation between data points xi and

xj. CAR can be seen as a trade-off between l1-norm and Frobenius-norm, that is, l1-norm
penalty is imposed on the low correlated data while the Frobenius-norm penalty is imposed
on the highly correlated data. Therefore, the CAR model (15) can ensure that the affinity
matrix satisfies the inter-subspace sparsity and intracluster uniformity.

To further reveal the inherent correlations among data points, Xu et al. [71] proposed
a scaled simplex representation for subspace clustering (SSRSC), which aims to solve the
following optimization problem:

min
C
‖C‖2

F + λ‖E‖2
F s.t. X = XC + E, C ≥ 0, 1TC = s1T , (16)
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where 0 < s < 1 is a scalar. Here, the constraint condition C ≥ 0 is conducive to
encouraging data points from the same subspace to represent each other while suppressing
the data from different subspaces to represent each other. Thus, the obtained coefficient
matrix C is distinctive. The constraint 1TC = s1T can limit the sum of each coefficient
vector Ci to be s, which makes the representation more discriminative since C should be
non-negative. Note that the SSRSC model (16) is a convex optimization problem with two
equality constraints and one inequality constraint. Thus, it can be solved by ADMM [117],
SSNAL [118], and so forth.

Although many achievements have been made on the convex nuclear norm, which is
a surrogate of the rank function, the nuclear norm minimization may over-penalize large
singular values, resulting in a bias. Hence, a solution obtained by the nuclear norm may be
suboptimal since it is not a perfect approximation of the matrix rank. In order to achieve a
better approximation for the rank function, many nonconvex surrogate functions of rank
have been introduced into the SC problems. Jiang et al. [66] proposed a robust subspace
segmentation via nonconvex LRR (NLRR) by replacing the nuclear norm with the Ky Fan
p-k norm (0 < p, k ∈ {1, . . . , d}) and penalizing the noise via the l2,q norm (0 < q < 1) in
LRR (10). A proximal iteratively reweighted optimization algorithm (PIRA) is designed to
solve the NLRR. Zhang [67] introduced the nonconvex Schatten-q (0 < q < 1) regularization
to approximate the rank function for the SC problem, called Sq-LRR, which can be solved
by linearized alternating direction method with the adaptive penalty (LADMAP) [130]
or the generalized iterated shrinkage (GMST) algorithm [135]. Zhang [70] proposed a
Schatten-q norm minimization-based LRR (SpNM-LRR) with q = 1, 2/3 and 1/2, which
can be solved by ADMM [136]. Most recently, Shen et al. [72] presented a non-convex
low-rank approximation subspace clustering method based on a weighted Schatten-p norm
jointed logarithmic constraint (WSLog). By using the logarithmic function to further tighten
Schatten-p norm, WSLog can better recover the low rank of data. In addition, WSLog is
more robust to noise due to the data-related weight matrix.

2.3. Low-Rank Sparse Representation Based SC

As analyzed above, LRR can capture global information and successfully recover the
corrupted data drawn from independent subspaces. However, LRR often fails in the case
of disjoint subspaces or overlapping subspaces. SSC is superior to LRR in this respect.
However, it is weaker than LRR in capturing the global structure of subspaces from the
corrupted data. Therefore, the natural idea is to combine the low-rank representation with
sparse representation. Table 4 summarizes the classical low-rank sparse SC methods.

In 2011, Luo et al. [73] proposed a multiple subspace representation (MSR) by com-
bining the sparsity and low-rank of the representation coefficient matrix, which can be
formulated as the following optimization problem:

min
C,E

‖C‖∗ + µ‖C‖1 + λ‖E‖2,1 s.t. X = XC + E, 1TC = 1T , (17)

where 1TC = 1T is used to pursue the linear/affine representation of subspaces. Note
that the SSC model (3) and LRR model (10) can be regarded as the special case of (5) with
µ = ∞ and µ = 0, respectively, and the l2,1 norm is more robust against data corruption
than the usual Frobenius norm. It has proved that the representation coefficient matrix
obtained from the MSR model (17) without noise has the block diagonal structure (1) when
the underlying affine subspaces are independent.

A common problem with existing methods is that negative coefficients may be gen-
erated, which may cause data to “cancel each other” through complex addition and sub-
traction [137]. This may result in the potential structure between data not being able to be
accurately captured. To deal with this issue, Zhuang et al. [74] proposed a non-negative
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low-rank and sparse (NNLRS) model by adding a non-negative constraint to the MSR
model (17). NNLRS solves the following optimization problem:

min
C,E

‖C‖∗ + µ‖C‖1 + λ‖E‖2,1 s.t. X = XC + E, C ≥ 0, (18)

where C ≥ 0 is used to enforce the representation to be non-negative so that the obtained
coefficients can be directly used as the graph weights. The non-negativity could potentially
enhance the discriminability of the coefficients such that the data points are more likely
reconstructed by the data points from the same subspace.

Wang et al. [75] proposed a low-rank sparse subspace clustering (LRSSC) by directly
combining SSC (3) and LRR (10). LRSSC solves the following optimization problem:

min
C,E

‖C‖∗ + µ‖C‖1 + λ‖E‖2
F s.t. X = XC + E, diag(C) = 0. (19)

It has proved that the representation coefficient matrices obtained from the LRSSC (19)
and the LRSSC with random data have the block diagonal structure (1) when the underlying
affine subspaces are independent.

Table 4. The comparison of classical low-rank sparse SC methods.

Methods Year F(C) R(E) Ω Theoretical Results

MSR [73] 2011 ‖C‖∗ + µ‖C‖1 ‖E‖2,1 {C|1TC = 1T} BDP

NNLRS [74] 2012 ‖C‖∗ + µ‖C‖1 ‖E‖2,1 {C|C ≥ 0 } -

LRSSC [75] 2013 ‖C‖∗ + µ‖C‖1 ‖E‖2
F {C|diag(C) = 0} BDP

LRRLC [76] 2013 ‖C‖∗ + µ ∑i,j ‖xi − xj‖2
2|Cij| ‖E‖2,1 - -

LRSR [77] 2016 ‖Y‖∗ + ‖C‖∗ + µ‖J‖1 ‖E‖2,1 {C|C = J −Diag(diag(J))} -

EnSC [78] 2016 µ‖C‖1 +
1−µ

2 ‖C‖2
F ‖E‖2

F X = XC + E, diag(C) = 0 BDP

CAWR [79] 2017 ‖(11T −U)� C‖1 +
µ
2 ‖
√

U � C‖2
F ‖E‖2

F X = XC + E BDP, Grouping effect

GMC-LRSSC [80] 2020 ψB(σ(C)) + µψB(C) ‖E‖2
F {C|diag(C) = 0} -

S0/l0-LRSSC [80] 2020 ‖C‖S0 + µ‖C‖0 ‖E‖2
F {C|diag(C) = 0} -

SCAT [81] 2020 ∑i,j ‖xi − xj‖2
2Cij +

µ
2 ‖C‖2

F Ψ(E) {C|C ≥ 0, diag(C) = 0, CT1 = 1} -

NL-SSLR [82] 2021 ‖C‖∗ + µ‖W � C‖1 +
α
2 ‖C− C̄NL‖2

F ‖E‖2
F - -

KSLSR [83] 2022 ‖V �W‖2
F ‖E‖2

F {V|diag(V) = 0, VT1 ≤ k1} Grouping effect

Remark: - indicates that this item does not exist.

Zheng et al. [76] present a low-rank representation method with local constraint
(LRRLC) by combining LRR with local information of data, which can be formulated as

min
C,E

‖C‖∗ + µ ∑
i,j
‖xi − xj‖2

2|Cij|+ λ‖E‖2,1 s.t. X = XC + E, (20)

where ∑i,j ‖xi − xj‖2
2|Cij| is used to measure the data correlation of the representation

coefficient C, which changes with the distance between samples. Note that LRRLC is able
to capture both the global structure by the nuclear norm and the local structure by the
locally constrained regularization term simultaneously.

Wang et al. [77] proposed a low-rank subspace sparse representation (LRSR) method,
which can be formulated as

min
Y,C,J,E

‖Y‖∗ + ‖C‖∗ + µ‖J‖1 + λ‖E‖2,1 s.t. X = YC + E, C = J −Diag(diag(J)). (21)

Unlike SSC-based and LRR-based models, LRSR (21) aims to recover both the clean dic-
tionary Y and the representation coefficient C simultaneously. It has proved that LRSR can
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not only recover the low-rank subspaces, but also obtain a relatively sparse segmentation
for the disjoint subspaces or even overlapping subspaces.

As mentioned earlier, the l1-norm regularization can be guaranteed to give a subspace-
preserving affinity (i.e., there are no connections between points from different subspaces)
under broad conditions. However, the clusters may not be connected (since SSC tends to
select only one randomly for a group of highly correlated data points), while Frobenius
norm and nuclear norm regularization often improve connectivity, but give a subspace-
preserving affinity only for independent subspaces. You et al. [78] proposed a subspace
clustering via elastic net regularizer (EnSC), which can be formulated as

min
C,E

µ‖C‖1 +
1− µ

2
‖C‖2

F + λ‖E‖2
F s.t. X = XC + E, diag(C) = 0, (22)

where µ ∈ [0, 1]. Note that EnSC (22) can be regarded as a combination of SSC and LSR,
and will reduce to each of them when µ = 1 and µ = 0, respectively. It has drawn
the theoretical conditions for the subspace preserving property free of noise and with
independent subspaces, that is, if the parameter is in a certain range, the optimal solution
has a block diagonal structure. It is easy to verify that EnSC (22) is a convex optimization
problem that can be solved by the active-set method [78], ADMM [117], SSNAL [118], and
so on.

For the image segmentation problem, Wang and Wu [79] proposed a correlation
adaptive weighted regression (CAWR) subspace clustering method via combining the
correlation weighted l1-norm and l2-norm

min
C,E

‖(11T −U)� C‖1 +
µ

2
‖
√

U � C‖2
F + λ‖E‖2

F s.t. X = XC + E, (23)

where U = XTX is the correlation matrix of the data. It can be seen that CAWR introduces
the correlation adaptive weight to each coefficient in the l1-norm and l2-norm. It can be seen
that CAWR introduces the correlation adaptive weight for both l1 and l2 regularization,
which can make better use of data information. Many existing models can be regarded
as special cases of CAWR, such as SSC [119], LLR [38], and EnSC [78]. It has proved that
CAWR has the ability of subspace selection (by l1 regularization) for uncorrelated data and
the grouping effect (by l2 regularization) for highly correlated data. In addition, the optimal
solution obtained by CAWR is proved to have the block diagonal structure under noiseless
data and independent subspace. However, CAWR lacks robustness to data corruption [91].

Instead of using the convex approximations of rank and l0 pseudo norm, Brbić and
Kopriva [80] introduced two S0/l0 pseudo norm-based nonconvex regularizations for
LRSSC. The first method is based on the multivariate generalization of the minimax-concave
(GMC) penalty function, which can be formulated as

min
C,E

ψB(σ(C)) + µψB(C) + λ‖E‖2
F s.t. X = XC + E, diag(C) = 0. (24)

where B ∈ Rn×n is a given matrix, and the GMC penalty is defined by ψB(x) = ‖x‖1− SB(x)
with SB(x) = infv∈Rn

{
‖v‖1 +

1
2‖B(x− v)‖2

2

}
. The GMC-LRSSC can maintain the convex-

ity of low-rank and sparsity-constrained subproblems and achieve better approximation
for rank and sparsity than nuclear and l1-norms. To further approximate the low-rank
and sparsity, the Schatten-0 and l0 pseudo norm regularizations are introduced to LRSSC
(S0/l0-LRSSC), which is

min
C,E

‖C‖S0 + µ‖C‖0 + λ‖E‖2
F s.t. X = XC + E, diag(C) = 0. (25)

It is worth pointing out that simultaneous rank and sparsity regularization can be
handled by the proximal average method [138,139], which approximates the proximal map
of the joint solution by averaging the solutions obtained separately from low-rank and
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sparsity subproblems. Although GMC-LRSSC (24) and S0/l0-LRSSC (25) are nonconvex
optimization problems, they can be solved by an improved ADMM [140]. Moreover, the
convergence of the two algorithms was established by Brbić and Kopriva [80].

To further reflect the similarities between data points, Zhong and Pun [81] proposed a
subspace clustering method with an adaptive transformation matrix (SCAT)

min
C,E

∑
i,j
‖xi − xj‖2

2Cij +
µ

2
‖C‖2

F + λΨ(E)

s.t. X = XC + E, C ≥ 0, diag(C) = 0, CT1 = 1,
(26)

where ‖xi − xj‖2
2Cij is used to capture the local structure of data, and the affine constraint

CT1 = 1 is used to deal with affine subspaces. Ψ(E) is a function of E which depends on
the distribution of data errors. For instance ‖E‖2

F is used for Gaussian residuals while ‖E‖1
for Laplacian. Note that SCAT can be regarded as imposing data similarity information
into LSR [64]. Hence, SCAT can simultaneously capture the global (due to the LSR) and the
local structure (due to the similarity learning) of data.

Most recently, Zhai et al. [82] proposed a novel scalable nonlocal means regularized
sketched reweighted sparse and low-rank (NL-SSLR) SC method for the large hyperspec-
tral images (HSIs) clustering. NL-SSLR aims to explore both local and global structural
information simultaneously, which solves the following optimization problem:

min
C,E

‖C‖∗ + µ‖W � C‖1 +
α

2
‖C− C̄NL‖2

F + λ‖E‖2
F s.t. X = XC + E, (27)

where C̄NL is a nonlocal coefficient matrix obtained by a nonlocal means filter, and W is
a weight matrix defined as Wij =

a
Cij+b with two small constants a and b. Note that W

obtained in this way can better promote sparsity by punishing larger elements, and the two
constants a and b are used to avoid overweight, which can be taken as 0.001 in practice. It
should be pointed out that the nuclear norm is used to explore the global structure of data,
while the reweighted l1-norm regularization and the nonlocal means filter are utilized to
explore the spatial correlation information of data fully.

Since LSR [64] uses Frobenius norm regularization, it cannot obtain sparse solution,
which may make it sensitive to data corruptions and data dimensions. To handle this issue,
Yang et al. [83] proposed the following k-sparse least squares regression (KSLSR) subspace
clustering method via 0-1 integer programming

min
V,W,E

‖V �W‖2
F + λ‖E‖2

F s.t. X = X(V �W) + E, diag(V) = 0, VT1 ≤ k1, (28)

where W ∈ Rn×n is the weight value. V ∈ {0, 1}n×n is the sparse selection factor, where
Vij = 1 represents that the data xj are selected for the linear representation of the data xi,
and Vij = 0 indicates that the data xj are not selected. vT

i 1 ≤ k indicates that the data xi can
be linearly represented by at most k data points which can be regarded as a transformation
of l0 pseudo norm. Once V and w are obtained, the coefficient matrix C can be obtained
immediately by C = V�W. It has proved that the KSLSR model (28) has the k-sparsity and
grouping effect, thus KSLSR is robust to data corruptions and dimension of data. However,
due to the 0-1 constraint on V, KSLSR is an NP-hard combinatorial optimization problem,
which is usually difficult to solve directly [141]. To effectively solve KSLSR, problem (28)
was transformed into a continuous optimization problem by equivalently replacing the 0-1
constraint on V with a lp-box intersection [142], i.e., the intersection of a shifted lp-sphere
and a solid cube. Figure 7 shows the geometric illustration of the lp-box. Then, the KSLSR
with continuous constraints can be solved by ADMM.
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Figure 7. The geometric illustration of the lp-box in R2.

3. Local Structure Preserving SC
3.1. Graph-Regularized Based SC

In the previous section, we review some classical low-rank sparse SC methods, such
as SSC, LRR, and MSR. Although these methods have reached state-of-the-art performance,
they may lose the local structure of data. In other words, the representation coefficients for
locally similar features or samples may differ greatly. This may damage the connection of
the similarity graph, and ultimately affect the clustering performance. To deal with this
issue, a natural idea is to introduce the graph information of the incidence matrix into the
subspace representation. Table 5 summarizes the classical graph-regularized SC methods.

Table 5. The comparison of classical graph-regularized SC methods.

Methods Year F(C) R(E) Constraint

GLRR [84] 2013 ‖C‖∗ + µtr(CT LC) ‖E‖2,1 X = XC + E

LapLRR [85] 2014 ‖C‖∗ + µtr(CT LC) ‖E‖2
F X = XC + E, C ≥ 0

E-SSC [86] 2016 ‖C‖1 +
µ
2 tr(CT LC) ‖E‖2

F X = XC + E, diag(C) = 0, CT1 = 1

NSHLRR [87] 2016 ‖C‖∗ + µ1‖C‖1 + µ2tr(CLhCT) ‖E‖1 X = XC + E, C ≥ 0

GCLRR [88] 2017 ‖C‖∗ + µtr(CLCT) ‖E‖2,1 X = XVC + E, VTV = I

MLLRR [89] 2019 ‖C‖∗ + µ1‖C‖1 + µ2tr(CLCT) ‖E‖2,1 X = XC + E, C ≥ 0

SGL [90] 2022 ‖C‖2
F + µtr(FT LF) ‖E‖2

F X = XC + E, C ≥ 0, C1 = 1, FT F = I

GLl1/2RSC [91] 2022 ‖C‖1/2
1/2 + µ1‖L� C‖1/2

1/2 + µ2‖P� C‖1/2
1/2 + µ3‖R� C‖1/2

1/2 ‖E‖2
F X = XC + E, C ≥ 0

To make full use of the correlation of different hyperspectral images and consider their
local manifold structure, Lu et al. [84] proposed a graph-regularized low-rank representa-
tion (GLRR) subspace clustering method, which can be written as

min
C,E

‖C‖∗ + µtr(CLCT) + λ‖E‖2,1 s.t. X = XC + E, (29)

where L = D −W is the Laplace matrix of X, and W and D are the incidence matrix
and symmetric degree matrix of X, respectively; tr(CLCT) is called graph regularization,
which can be used to maintain the similar local structures of data [143]. GLRR (29) can
be regarded as a generalization of the LRR [38] by considering the local geometrical
structure of the data. Hence, GLRR can capture both the global structure (due to the LRR
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framework) and local structure (due to the graph regularization) of the data. It is easy to
verify that the optimization problem (29) is convex and thus can be solved by ALM [128],
ADMM [117,130], and other convex optimization algorithms. To further improve the
GLRR, Liu et al. [85] proposed a Laplacian regularized LRR (LapLRR) method, which
can be regarded as a generalization of GLRR (29) by adding a nonnegative constraint.
Chen et al. [86] also introduced the Laplace regularization into SSC [52] and LRR [38], and
proposed the enhanced sparse subspace clustering method (E-SSC) and enhanced LRR
method (E-LRR).

Yin et al. [87] proposed a non-negative sparse hyper-Laplacian regularized low-rank
representation method (NSHLRR), which can be formulated as

min
C,E

‖C‖∗ + µ1‖C‖1 + µ2tr(CLhCT) + λ‖E‖1 s.t. X = XC + E, C ≥ 0, (30)

where Lh is the hyper-Laplacian matrix defined in [144]. The Laplacian and the sparsity
constraints encourage choosing nearby samples (which most likely belong to the same
cluster), rather than the faraway samples (which may belong to other clusters), to represent
the sample at the center of the locally linear manifold. Hence, the optimal solution obtained
by NSHLRR (30) approximately satisfies the block diagonal structure. By combining
graph hyper-Laplacian regularizer with LRR, the NSHLRR can simultaneously capture
the global structure and inherent nonlinear geometric information of data. Note that
NLSRR can be regarded as an extension of LRRGL [145] by replacing the traditional
Laplacian matrix with a hypergraph Laplacian matrix. To improve the robustness of data
corruptions, Wang et al. [89] imposed the l1,2 regularization to the data corruptions instead
of l1 regularization and applied it to tumor clustering.

Du et al. [88] proposed a graph regularized Compact LRR (GCLRR) method by combin-
ing dictionary learning with low-rank representation and introducing graph regularization.
The GCLRR can be formulated as

min
C,V,E

‖C‖∗ + µtr(CLCT) + λ‖E‖2,1 s.t. X = XVC + E, VTV = I, (31)

where VTV = I is used to eliminate the uncertainty caused by the diagonal structure.
Instead of using the original data X as a dictionary, the GCLRR used the linear combination
of X as the dictionary, i.e., A = XV. Thus, the proposed method can realize dictionary
learning and low-rank representation simultaneously. In addition, unlike previous SC
methods which treat the affinity matrix construction and clustering algorithm separately,
GCLRR integrates these two tasks into a single optimization framework to ensure over-
all optimization. It is worth pointing out that the GCLRR model (31) can capture both
the global subspace structure (by the low-rank representation) and the local geometrical
structure (by graph regularization).

Although the above graph-regularized based SC methods have shown good perfor-
mance, these methods are often inefficient and limited in exploring the potential information
of data. To deal with these problems, Kang et al. [90] proposed a scalable graph learning
(SGL) subspace clustering method which can be written as

min
C,F,E

‖C‖2
F + µtr(FT LF) + λ‖E‖2

F s.t. X = XC + E, C ≥ 0, C1 = 1, FT F = I. (32)

Since SGL used the Frobenius norm regularization, it avoided the singular value
decomposition, which can increase the computational efficiency. With the help of the graph
Laplace information, SGL can capture the local information of the data and handle new
data. In addition, the connection between SGL and the k-means clustering was established.

To deal with the challenges brought by diverse visual patterns, noise, and complex
background in image processing, Francis et al. [91] proposed the following subspace
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clustering method by integrating the l1/2-norm, l2-norm and graph Laplacian regularization
(GLl1/2RSC). The proposed GLl1/2RSC can be formulated as

min
C,E
‖C‖1/2

1/2 + µ1‖L� C‖1/2
1/2 + µ2‖P� C‖1/2

1/2 + µ3‖R� C‖1/2
1/2 + λ‖E‖2

F

s.t. X = XC + E, C ≥ 0,
(33)

where P and R can describe the correlation of data, which are defined as P = 11T −U and
R =

√
U with U = XTX. C ≥ 0 is used to promote better learning of the local geometrical

structure and can deliver more physical interpretation to the data points. Based on the
above design, GLl1/2RSC has the capabilities of l1/2-norm, l2-norm, which can achieve
the subspace selection and subspace grouping simultaneously. Due to the existence of
l1/2-norm, the obtained representation coefficient matrix C by GLl1/2RSC (33) is sparse
and has an accurate block diagonal structure. Moreover, GLl1/2RSC can retain the local
structure of data and is relatively insensitive to noise and outliers.

3.2. Latent Representation Based SC

The previously mentioned methods generally use the observed data itself as the
dictionary. However, when the observed date is insufficient or corrupted by noise, the
performance of these methods may be inferior. To solve this issue, latent representation SC
methods were presented by joint low-rank recovery and salient feature extraction. Table 6
summarizes the classical latent representation SC methods.

To cope with the impact of insufficient data samples, Liu and Yan [92] proposed
a Latent low-rank representation (LatLRR) on the basis of LRR, which imposed low-
rank constraints on the column representation coefficient matrix and row representation
coefficient matrix at the same time. LatLRR can be formulated as

min
C,H,E

‖C‖∗ + ‖H‖∗ + λ‖E‖1 s.t. X = XC + HX + E, (34)

where H ∈ Rd×d is used to reflect the information of hidden data. Notice that there is no
parameter between C and H in (34) as the strengths of these two parts are automatically
balanced. LatLRR aims to use row data information to make up for the corruption of
column data information. It has proved that LatLRR (34) can not only deal with insufficient
data samples but also robustly extract salient features from corrupted data. However,
because the nuclear norm is used as the penalty function, the singular value decomposition
(SVD) must be performed twice in each iteration, which leads to high computational
complexity and greatly limits its ability to handle high-dimensional data. In addition,
Zhang et al. [146] proved that the solution of the noiseless LatLRR (34) is not unique and
gave a closed-form solution.

Although the LatLRR method [92] can handle the situation of insufficient data, they
may be inaccurate in identifying the underlying subspaces due to the noise, so they may fail
to preserve the local structure of data. To further capture the local structure of data, Zhang
et al. [93] proposed a regularized low-rank representation (rLRR) method via introducing a
data-dependent Laplacian regularization into LatLRR, which can be formulated as

min
C,H,E

‖C‖∗ + ‖H‖∗ +
µ

2

[
tr
(

CT LC
)
+ tr

(
HXLCXT HT

)]
+ λ‖E‖2,1

s.t. X = XC + HX + E, Z ≥ 0,
(35)

where L = D−W is the Laplace matrix of X, and W and D are the incidence matrix and
symmetric degree matrix of X, respectively. The Laplacian regularization tr

(
CT LC

)
and

tr
(

HXLCXT HT) are used to preserve the locality and similarity of the observed data and
salient data, respectively. It should be noted that the idea of Laplacian regularization has
been widely used in machine learning (see, e.g., [147–150]). Note that LatLRR [92] can be
regarded as a special case of rLRR with µ = 0. By using Laplace regularization to improve
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LatLRR, rLRR can better preserve the local data information. Hence, rLRR can produce
more discriminative low-rank coefficients and robust representations.

Table 6. The comparison of classical latent representation SC methods.

Methods Year F(C) R(E) Constraint

LatLRR [92] 2011 ‖C‖∗ + ‖H‖∗ ‖E‖1 X = XC + HX + E

rLRR [93] 2014 ‖C‖∗ + ‖H‖∗ + µ
2
[
tr
(
CT LC

)
+ tr

(
HXLCXT HT)] ‖E‖2,1 X = XC + HX + E, C ≥ 0

FLRR [94] 2018 ‖C‖2
F + ‖H‖2

F ‖E‖1 X = XC + HX + E

AS-LRC [95] 2019 ‖C‖∗ + ‖H‖2,1 + µ1‖(11T − R)� C‖1 + µ2℘(H, R) ‖E‖1 X = XC + HX + E

FLLRSC [96] 2020 ‖C‖2
F + ‖H‖2

F ‖E‖2,1 X̃ = X̃C + HX̃ + E

eLatLRR [97] 2021 ‖C‖∗ + ‖H‖∗ + µ
2 ‖HX− HXC‖2

F ‖E‖1 X = XC + HX + E

LLRRWD [98] 2022 µ1
(
‖C‖2

F + ‖H‖2
F
)
+ µ2tr

(
(P� D)TC

)
‖E‖1 X = XC + HX + E, C ≥ 0, Ci,i = 0, C1 = 1

Inspired by LSR [64], Yu and Wu [94] proposed to replace the nuclear norm with
the Frobenius norm. The optimization problem of the Frobenius norm based low-rank
representation (FLRR) method is as follows:

min
C,H,E

‖C‖2
F + ‖H‖2

F + λ‖E‖1 s.t. X = XC + HX + E. (36)

It is easy to obtain a closed-form solution of FLRR (36) by virtue of the properties
of the Frobenius norm. Consequently, compared with LatLRR (34), the computational
complexity of FLRR can be greatly reduced. In addition, it is proved theoretically that the
Frobenius norm can be used as a convex surrogate for the rank function. Following [64],
FLRR (36) also has block diagonal property and grouping effect, that is, FLRR tends to
assign approximately equal coefficients to a set of highly correlated data and group them
together. Although FLLRR has achieved a better clustering performance, it is sensitive to
outliers and noise due to the Frobenius norm.

To recover the underlying subspaces more accurately, Zhang et al. [95] proposed an
adaptive structure-constrained low-rank coding (AS-LRC) method by combining latent
representation of data with automatic weighting learning

min
C,H,R,E

‖C‖∗ + ‖H‖2,1 + µ1‖(11T − R)� C‖1 + µ2℘(H, R) + λ‖E‖1

s.t. X = XC + HX + E,
(37)

where R is an auto-weighting matrix, ℘(H, R) = ‖LX − LXR‖2
F + ‖1T − 1T R‖2

F + ‖R‖2,1.
Based on the above design, the auto-weighting matrix R is group sparsity, and hence it can
better preserve the local information of data. ‖(11T − R)� C‖1 can be used to encourage
a block diagonal structure of the representation coefficient C. In addition, AS-LRC (37)
selects the l2,1-norm to encourage a group of sparse features rather than learning low-rank
features by nuclear-norm regularization, which is more robust to noise and outliers.

To improve the performance of LRR for hyperspectral band selection, Sun et al. [96]
presented a fast and latent low-rank subspace clustering (FLLRSC) method. The FLLRSC
can be expressed as the following optimization problem:

min
C,H,E

‖C‖2
F + ‖H‖2

F + λ‖E‖2,1 s.t. X̃ = X̃C + HX̃ + E, (38)

where X̃ = ΦTX ∈ Rm×n is the projected matrix, and Φ =
√

m/nDFP ∈ Rd×m is the
Hadamard random projection matrix. D ∈ Rd×d is a diagonal matrix whose diagonal
elements are taken from −1, 1. F ∈ Rd×d is the Hadamard matrix. P ∈ Rd×m is a uniform
sampling matrix that randomly samples m columns of DF. Thus, FLLRSC first performs
Hadamard projection on the original data to reduce the data dimension, and then performs
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self-representation on the transformed data to obtain the affinity matrix. Based on this
design, FLLRSC can greatly reduce computational cost and solve the problem of insufficient
sampling. In addition, the coefficient matrix obtained by FLLRSC has the block diagonal
structure and is insensitive to noise.

To reduce the effects of noise, Wu et al. [97] extended the LatLRR (eLatLRR) by
introducing the correlations between features in the low-rank decomposition process

min
C,H,E

‖C‖∗ + ‖H‖∗ +
µ

2
‖HX− HXC‖2

F + λ‖E‖1 s.t. X = XC + HX + E, (39)

where the term ‖HX−HXC‖2
F is used to establish the relationship between C and H, which

can further enhance the data representation. According to the fact that HX is cleaner than
X, ‖HX − HXC‖2

F can be used to generate a coefficient matrix C that is more distinctive
and satisfies the block diagonal structure. In addition, LatLRR [92] can be considered as
a special case of eLatLRR (39) with µ = 0. Then, a non-negative constraint and elastic
net regularization are integrated into the eLatLRR, which automatically improves the
representation ability of the homogeneous samples while suppressing the effect of noise.

To fully consider the local structure of data, Fu et al. [98] proposed a novel latent LRR
with weighted distance penalty (LLRRWD), that is,

min
C,H,E

µ1

(
‖C‖2

F + ‖H‖2
F

)
+ µ2tr

(
(P� D)TC

)
+ λ‖E‖1

s.t. X = XC + HX + E, C ≥ 0, Ci,i = 0, C1 = 1,
(40)

where D and P are the Euclidean distance matrix and weight matrix among samples,
respectively. If the labels of xi and xj are the same, Pij = 1; otherwise, Pij = θ with θ > 1.
tr
(
(P� D)TC

)
is called the weighted distance penalty. In particular, if Pij = 1, the weighted

distance will reduce to the traditional Euclidean distance. Different from the Euclidean
distance, the weighted distance can not only maintain the local structure, but also enhance
the discrimination of affinity matrix. It is worth noting that FLLRR (36) can be regarded as
a special case of LLRRWD (40) with µ2 = 0. Moreover, a weight matrix is imposed on the
sparse error norm to reduce the effect of noise and redundancy.

3.3. Block Diagonal Representation Based SC

As mentioned earlier, a good SC model should have the block diagonal property.
The existing methods usually pursue the block diagonal structure of the representation
coefficient matrix by imposing different structure priors, such as sparsity and low-rank,
which is indirect. Under certain subspace assumptions, the optimal solution obtained by
these methods may satisfy the block diagonal structure. However, in practical applications,
due to data corruption, the block diagonal property cannot necessarily be guaranteed. The
natural idea is to directly impose a block diagonal prior to the representation coefficient
matrix. Table 7 summarizes the classical block diagonal representation SC.

To directly pursue the block-diagonal structure, Feng et al. [99] proposed block
diagonal SSC and LRR through imposing a rank constraint on the graph Laplacian

(BD-SSC) min
C,E

‖C‖1 + λ‖E‖2
F s.t. X = XC + E, diag(C) = 0, rank(LA) = n− k, (41)

(BD-LRR) min
C,E

‖C‖∗ + λ‖E‖2
F s.t. X = XC + E, rank(LA) = n− k, (42)

where LA is the Laplacian matrix, which is defined as: LA(i, j) = −A(i, j) if i 6= j; LA(i, j) =
∑j 6=i A(i, j), otherwise. n and k are the number of samples and categories, respectively. It
has been proved that the rank of LA is equivalent to the number of blocks in the affinity
matrix A [151]. Hence, the constraint rank(LA) = n− k enforces the obtained matrix C to
form a block diagonal affinity matrix, even for noise data.
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Table 7. The comparison of classical block diagonal representation SC methods.

Methods Year F(C) R(E) Constraint

BD-SSC [99] 2014 ‖C‖1 ‖E‖2
F X = XC + E, diag(C) = 0, rank(LA) = n− k

BD-LRR [99] 2014 ‖C‖∗ ‖E‖2
F X = XC + E, rank(LA) = n− k

BDR [100] 2019 ‖C‖[k] ‖E‖2
F X = XC + E, diag(C) = 0, C ≥ 0, CT = C

rBDR [101] 2019 ‖C‖2
F + ‖H‖2

F + ‖B+ − B−V‖2
F + µ‖V‖[k] ‖E‖2,1 X = XC + HX + E, diag(V) = 0, VT = V, V ≥ 0

LBDR [102] 2022 1
2‖X− XU1,U2‖2

F + µ‖C‖[k] ‖E‖2
F XU1 = XU1 C + E, diag(C) = 0, CT = C, C ≥ 0

ABDR [103] 2022 Θ(C) ‖E‖2
F X = XC + E

PBDR [104] 2023 ‖C‖[k] + µ‖W2g(W1X̃)− C‖2
F ‖E‖2

F X̃ = X̃C + E, diag(C) = 0, CT = C, C ≥ 0

Lu et al. [100] constructed a block diagonal matrix induced regularizer and applied it
to the SC problem. The proposed block diagonal representation (BDR) SC method aims to
solve the following optimization problem:

min
C,E

‖C‖[k] + λ‖E‖2
F s.t. X = XC + E, diag(C) = 0, C ≥ 0, CT = C, (43)

where ‖C‖[k] = ∑n
i=n−k−1 σi(LC) with Laplacian matrix LC = Diag(C1) − C being the

lock diagonal regularizer. For the BDR model (43) without noise, it has been proved that
the obtained representation coefficient matrix has the block diagonal structure under the
assumption of independent subspaces. It is worth pointing out that the BDR model is a
nonconvex optimization problem due to the k-block diagonal regularizer, which can be
solved by the alternating minimization algorithm. Although BDR can obtain a relatively
ideal block diagonal coefficient matrix for noise data, it sacrifices the convexity of the
model and is more complex than SSC and LRR. In addition, the number of categories (or
subspaces) in (43) must be given in advance, which is impossible in practical problems.

To cope with the situation of insufficient data samples, Zhang et al. [101] proposed a
novel robust block-diagonal adaptive locality-constrained latent representation (rBDLR)
method. The rBDLR can be formulated as the following optimization problem:

min
C,H,E,V,θ

‖C‖2
F + ‖H‖2

F + ‖B+ − B−V‖2
F + µ‖V‖[k] + λ‖E‖2,1

s.t. X = XC + HX + E, diag(V) = 0, VT = V, V ≥ 0,
(44)

where B+ =
(√

α(C + θ1T),
√

βHX
)T , B− =

(√
αI,
√

βHX
)T , θ ∈ Rn×1 denotes the bias.

‖B+ − B−V‖2
F means that V is approximate by C + θ1T , which can avoid the overfitting.

Specifically, FLRR [94] can be regarded as a special case of rBDLR with α = 0, β = 0 and
removing the constraints on V. By combining the latent representation with the locality-
based block-diagonal regularizer, rBDLR can extract the adaptive locality-preserving salient
features jointly, and the optimal solution obtained by the rBDLR model (44) has the block
diagonal structure.

To capture the nonlinear structure of data, Xu et al. [102] proposed a novel latent
block-diagonal representation (LBDR) subspace clustering method which integrates an
autoencoder into the block-diagonal representation

min
C,U1,U2,E

1
2
‖X− XU1,U2‖

2
F + µ‖C‖[k] + λ‖E‖2

F

s.t. XU1 = XU1 C + E, diag(C) = 0, CT = C, C ≥ 0,
(45)

where U1 ∈ Rl×d and U2 ∈ Rd×l are filter matrices, and l is the number of hidden units.
XU1,U2 ∈ Rd×n represents the autoencoder for data X, which is defined as XU1,U2 =
U2φ(U1X) with an activation function φ(·), and XU1 ∈ Rl×n represents the latent rep-
resentation matrix, which is defined as XU1 = φ(U1X). Different from the traditional
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self-representation, LBDR performs self-representation to the reconstructed data. Note
that the dimension of the reconstructed data are smaller than the original data, which can
greatly reduce the calculation load. Moreover, it has proved theoretically that the LBDR
model can project the original data in the nonlinear space into a new linear space.

Inspired by convex biclustering [152], Lin et al. [103] proposed an adaptive block
diagonal representation (ABDR) subspace clustering method via coercively fusing both
columns and rows of the coefficient matrix. The ABDR can be formulated as

min
C,E

Θ(C) + λ‖E‖2
F s.t. X = XC + E, (46)

where Θ(C) = ∑i,j Wij‖C.i −C.j‖2 + ∑i,j Wij‖Ci.−Cj.‖2 with Wij = ιk
(i,j) exp(φ‖X.i −X.j‖2

2).

Here, ιk
(i,j) is an indicator function whose value is 1 if X.j is the k-KNN of X.i or 0 otherwise.

It has been proved that the representation coefficient matrix obtained by the noiseless
ABDR has the block diagonal structure without any structure prior. Unlike the traditional
BDR methods, ABDR (46) is a convex optimization problem and does not need to give the
number of subspaces in advance.

Although the BDR methods mentioned above have attracted extensive attention due to
the diagonal property, the high computing cost greatly limits their performance, especially
for high-dimensional data. To deal with this problem, Xu et al. [104] proposed the following
projective block diagonal representation (PBDR) subspace clustering method

min
C,W1,W2,E

‖C‖[k] + µ‖W2g(W1X̃)− C‖2
F + λ‖E‖2

F

s.t. X̃ = X̃C + E, diag(C) = 0, CT = C, C ≥ 0,
(47)

where X̃ ∈ Rd×m is a small subset selected from X by uniform random sampling, W1 ∈
Rh×d and W2 ∈ Rm×h are two weight matrices with h being the number of hidden units,
and g(·) is a nonlinear activation function (such as Sigmoid, ReLU, or TanH). It is worth
noting that PBDR does not directly process the original data but its subset, which can
greatly reduce the dimension of data and thus reduce the computational complexity. It has
proved that the optimal solution obtained by the PBDR model (47) has the block diagonal
structure. In addition, the proposed PBDR model was further extended to the sparse and
low-rank cases, thus improving its ability to capture the global or local structure of data.
However, for PBDR, how to select the subset of original data is a difficulty.

4. Kernel SC
4.1. Single Kernel Learning Based SC

Although the previous low-rank sparse SC methods and local structure preserving SC
methods have achieved some success, they are limited to the Euclidean distance (due to the
linear self-expression among samples) and unable to identify the clusters with nonlinear
shaped [153]. To capture the nonlinear structure inherent in many real-world datasets,
kernel technology is proposed, which maps the original data to the reproducing kernel
Hilbert space (RKHS) [154,155]. In recent years, kernel technology has been successfully
applied to the SC problem, which aims to construct the affinity matrix by self-representation
in the kernel Hilbert space. The single kernel learning (SKL) based SC methods can be
formulated as the following unified framework:

min
C∈Ω

1
2
‖φ(X)− φ(X)C‖+ F(C), (48)
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where φ(·) is a feature map which maps the input data in the original feature space into
the reproducing kernel Hilbert space, F(C) is a penalty term (or regularization term), and
Ω is the constraint set of C. The KSC model (48) can be equivalently written as

min
C∈Ω

1
2

tr
(

φ(X)Tφ(X)− φ(X)Tφ(X)C− CTφ(X)Tφ(X) + CTφ(X)Tφ(X)C
)
+ F(C). (49)

Define the kernel function K with Kij =
〈
φ(xi), andφ(xj)

〉
, (49) can be transformed to

min
C∈Ω

1
2

tr
(

K− 2KC + CTKC
)
+ F(C). (50)

The classical SKL-based SC methods are summarized in Table 8.

Table 8. The comparison of classical SKL-based SC methods.

Methods Year Brief Description Advantage Disadvantage

KSSC [105] 2014 SKL + SSC It can handle the nonlinear structure of
data and obtain a sparse coefficient ma-
trix.

Its performance greatly depends on the
kernel function, and it cannot capture the
global structure of data.

KGS-graph [55] 2015 SKL + GS-graph It can handle the nonlinear structure of
data and group highly correlated data to-
gether.

Its performance greatly depends on the
kernel function, and it cannot capture the
global structure of data.

KSCBD [106] 2020 SML + BDR It can process nonlinear data and obtain
a representation coefficient matrix with
block diagonal structure.

Its performance greatly depends on the
kernel function, and it cannot capture the
global structure of data.

ALKBDR [107] 2022 SML + BDR +
LRR

It can process nonlinear data and has a
stronger generalization ability to process
complex data.

Its performance greatly depends on the
kernel function, and it has four parame-
ters that need to be adjusted.

Patel and Vidal [105] proposed a kernel sparse subspace clustering (KSSC) method by
using the kernel trick to extend the SSC, which can be formulated as

min
C

tr
(

K− 2KC + CTKC
)
+ µ‖C‖1 s.t. diag(C) = 0, CT1 = 1, (51)

where K is the kernel Gram matrix which can be chosen as the polynomial or Gaussian
kernels. Since KSSC can be regarded as combining the kernel technique with SSC, it
can process the nonlinear structure of data and obtain a sparse coefficient matrix. Note
that KSSC (51) is a convex optimization problem, so it can be solved by ADMM [117],
SSNAL [118], and so forth.

Fang et al. [55] also extend the GS-graph (6) to the kernelized version (named KGS-
graph). The KGS-graph aims to solve the following optimization problem:

min
C

tr
(

K− 2KC + CTKC
)
+ Γg

µ(C), (52)

where Γg
µ(C) = ‖C‖1 + ∑i ∑j<k max{|Cij|, |Cik|}. As an extension of the GS-graph (6),

the KGS-graph can preserve both the sparsity and locality of data simultaneously and is
insensitive to noise. Moreover, it has proved that KGS-graph (52) has the grouping effect.

Yang et al. [106] presented a kernel subspace clustering method with block diagonal
prior (KSCBD), which can be formulated as

min
C,B

tr
(

K− 2KC + CTKC
)
+

µ

2
‖C− B‖2

F

s.t. B ≥ 0, diag(B) = 0, BT = B, rank(LB) = n− k,
(53)
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where K is the kernel Gram matrix, LB is the Laplacian matrix corresponding to B, and
rank(LB) = n− k indicates that the affinity matrix is an ideal graph with k clusters. Since
KSCBD embeds the block diagonal prior into the kernel Hilbert space, it can not only
process nonlinear data, but the resulting representation coefficient also has a block diagonal
structure. However, due to the existence of n − k rank constraints, the problem (53) is
NP-hard, which is difficult to solve directly. Therefore, it usually uses the Ky Fans theorem
to relax n− k rank constraints and solve the relaxed problem.

Liu et al. [107] presented an adaptive low-rank kernel block diagonal representation
(ALKBDR) subspace clustering method, which can be written as

min
φ(X),C,B

tr‖φ(X)− φ(X)C‖+ µ1

2
‖C− B‖2

F + µ2‖B‖[K] + µ3‖φ(X)‖∗ + µ4‖E‖1

s.t. B ≥ 0, diag(B) = 0, BT = B, KG = φ(X)Tφ(X) + E,
(54)

where KG is a pre-defined kernel matrix. The ALKBDR model (54) can be seen as combining
the kernel learning with low-rank and diagonal representation. Therefore, ALKBDR is not
only able to process nonlinear data, but also has a stronger generalization ability to process
complex data. However, using only a single pre-defined kernel function greatly limits its
clustering performance, and there are four parameters that need to be adjusted, which is
tricky and time-consuming.

4.2. Multiple Kernel Learning Based SC

It is worth pointing out that the performance of the kernel clustering will heavily
depend on the choice of the kernel function K, which is often affected by prior knowl-
edge about the data [156]. As a result, a good choice of kernel functions is critical
for kernel clustering. However, one of the main challenges with kernel methods, in
general, is that it is often unclear which kernel is best for a given task. To overcome
this challenge, Zhao et al. [157] proposed a multiple kernel learning (MKL) framework
by adding an additional procedure to combine a group of pre-specified feature map-
pings into the kernel clustering. For example, each sample can be mapped to φw(x) =
[w1φ1(x)T , w2φ2(x)T , · · ·wmφm(x)T ]T , where {φi(·)}m

i=1 is a group of feature mappings and
w ∈ Rm specifies the coefficients of each base kernel. Then, the corresponding kernel
function can be expressed as

κw(xj, xk) = φw(xj)
Tφw(xk)

T =
m

∑
i=1

w2
i κi(xj, xk). (55)

In particular, if the pre-specified base kernel functions {Ki}m
i=1 are known in advance,

the kernel matrix Kw can be defined as

Kw =
m

∑
p=1

w2
i Ki. (56)

Note that, in (56), the l2-norm constraint is used on the kernel weights to avoid
sparse solutions, which may cause redundancy of the pre-specified kernel function. In
addition, replacing Kw with a convex combination of pre-specified kernel ∑m

i=1 wiKi can
avoid overfitting and obtain a sparse solution. In order to intuitively compare the SKL-
based methods and MKL-based methods, Figure 8 illustrates their implementation steps.
Table 9 summarizes some classical MKL-based SC methods.
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Figure 8. The illustration of SKL-based methods and MKL-based methods.

Inspired by multiple kernel clustering [157,158], Kang et al. [108] proposed a joint
similarity learning and clustering with multiple kernel (SCMK) method, which can be
written as the following optimization problem:

min
C,P,w

tr
(

Kw − 2KwC + CTKwC
)
+ µ1‖C‖2

F + µ2tr
(

PT LP
)

s.t. CT1 = 1, 0 ≤ C ≤ 1, PT P = I,
m

∑
i=1

√
wi = 1, wi ≥ 0,

(57)

where Kw = ∑m
i=1 wiKi with a set of predefined kernels {Ki}m

i=1, L is the Laplace matrix, and
P is an indicator matrix. SCMK can be regarded as integrating the MKL, self-representation
in the kernel Hilbert space, and local similarity learning in the original space into a unified
framework. Therefore, it can capture both the global structure (due to the Frobenius
norm regularization) and local structure (due to the graph regularization) of data and
has the grouping effect. In addition, it has proved theoretical relationships to kernel k-
means, k-means, and spectral clustering methods. However, SCMK (57) is a variable
indivisible optimization problem with an orthogonal constraint, which is easy to fall into
local solutions.
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Table 9. The comparison of classical MKL-based SC methods.

Methods Year Brief Description Advantage Disadvantage

SCMK [108] 2017 MKL + F-norm
penalty + graph
penalty

It can capture the global structure of orig-
inal data and the local structure of recon-
structed data and has the grouping effect.

It is a variable indivisible optimization prob-
lem with orthogonal constraint, which is
easy to fall into local solutions.

LKG [109] 2019 MKL + LRR It can capture the global structure of the
data and find a consensus kernel from the
neighborhood of the candidate kernel.

It fails to fully use the structural information
of data, and is sensitive to data corruption.

LLMKL [110] 2019 MKL + LRR +
graph penalty

It can preserve both global structure and
local structure of data, and learn a consen-
sus kernel from the neighborhood of the
predefined kernels.

The decomposition form of the kernel func-
tion may not be applicable, and it does not
fully use the structure information of data.

LAKRSC [111] 2020 MKL + SR It can learn a consensus kernel by data
decomposition and is robust to noise.

The decomposition form of the kernel func-
tion may not be applicable and it does not
fully use the structure information of data.

SPMKC [112] 2021 MKL + LRR +
graph penalty

It can preserve both and local structure of
data, and learn a consensus kernel from
the neighborhood of the predefined ker-
nels.

It is an optimization problem with orthogo-
nal constraint which is easy to fall into local
solutions, and sensitive to data corruptions.

AWLKSC [113] 2021 MKL + LRR +
BDR

It can obtain a coefficient matrix with
block diagonal structure, and learn a con-
sensus kernel from the neighborhood of
the predefined kernels.

The number of categories (or subspaces)
must be given in advance.

SLMKC [114] 2021 MKL + AL + F-
norm penalty +
graph penalty

It can avoid the extra step of generating
affinity matrix by representation coeffi-
cient, and preserve the local structure of
data.

It is an optimization problem with orthogo-
nal constraint which is easy to fall into local
solutions, and sensitive to data corruptions.

SPAKS [115] 2022 MKL + F-norm
penalty + graph
penalty

It can maintain the local structure of data
and divide the highly relevant data into
the same groups.

It is limited in capturing the global structure
of data, and the feature maps or distance
matrices in RKHS need to be given in ad-
vance.

PMKSC [116] 2022 MKL + multi-
view clustering
+ AL + SEL

It can preserve more discriminative struc-
tural information in the kernel space, and
learn a consensus kernel from the neigh-
borhood of the predefined kernels.

It does not take full the similarity among
multiview data and is an optimization prob-
lem with orthogonal constraint which is
easy to fall into local solutions.

Remark: AL indicates affinity matrix learning; SEL indicates Self-expressiveness learning.

The existing MKL-based SC methods usually take the linear combination of the
predefined kernels as the used kernel matrix, which may be sensitive to noise and limit the
representation capability. To solve this problem, a natural idea is to learn a consensus kernel
function and data self-representation at the same time. Consequently, Kang et al. [109]
proposed a low-rank kernel learning based graph subspace clustering method (LKG), which
can be written as

min
C,K,w

1
2

tr
(

K− 2KC + CTKC
)
+ µ1‖C‖∗ + µ2‖K‖∗ + µ3‖K−

m

∑
i=1

wiKi‖2
F

s.t. C ≥ 0, K ≥ 0, wi ≥ 0,
r

∑
i=1

wi = 0,
(58)

where {Ki}m
i=1 are a set of predefined kernels, and wi is the weight for the predefined kernel

Ki. By imposing the nuclear norm regularization, the obtained kernel matrix can capture
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the global structure of the data. In contrast to existing methods, LKG aims to learn the
low-rank kernel matrix through the similarity of the kernel matrix and find a consensus
kernel from the neighborhood of the candidate kernel.

To further consider the correlation between samples, Ren et al. [110] presented a local
structural graph and low-rank consensus multiple kernel learning (LLMKL) method for
subspace clustering, which can be formulated as

min
C,K,B,E,w

1
2

tr
[(

I − 2C + CCT
)

BT B
]

+ µ1‖B‖∗ +
1
2
‖K−

m

∑
i=1

wiKi‖2
F + µ3tr(DTC) + λ‖E‖1

s.t. K = BT B + E, diag(C) = 0, CT1 = 1, C ≥ 0, wi ≥ 0,
r

∑
i=1

wi = 1,

(59)

where K is the kernel matrix that can be decomposed into BT B and a sparse noise component
E, {Ki}m

i=1 are a set of predefined kernels, wi is the weight for the predefined kernel Ki,
and D is the similarity matrix of data with Dij = ‖xi − xj‖2

2. LLMKL jointly integrates the
MKL technology, the global structure in the kernel space, the local structure in the original
space, and the self-representation in the Hilbert space into a unified optimization model.
For this reason, LLMKL can preserve both the global structure and local structure of data,
and learn a consensus kernel from the neighborhood of the predefined kernels rather than
using the linear combination of the predefined kernels directly, which makes it more robust
to data noise.

Xue et al. [111] presented a robust subspace clustering method (LAKRSC) based on
nonconvex low-rank approximation and adaptive kernel, which can be written as

min
C,B,Z

1
2

tr
[(

I − 2Z + ZZT
)

BT B
]
+ µ1‖B‖

p
w,Sp

+ µ2‖C‖1 + µ3 ∑
i,j

ψ(Eij)

s.t. K = BT B + E, 1TC = 1, Z = C− diag(C),

(60)

where ‖B‖w,Sp = (∑n
i=1 wiσ

p
i )

1/p is the weighted Schatten p-norm with wi = α/σi(B) for
a constant α, and K is the kernel matrix which can be decomposed into BT B and a data
corruption E. ψ(Eij) = 1− exp

(
−E2

ij/(2$2)
)

, where $ is the size of the Gaussian kernel. It
is worth pointing out that LAKRSC uses weighted Schatten p-norm to approximate the
rank function, which can better capture the global structure of data. In addition, the kernel
function is obtained by data decomposition, which can obtain a better kernel function and
better handle data corruption.

Ren and Sun [112] proposed a structure-preserving multiple kernel subspace clustering
method (SPMKC), which can be formulated as the following nonconvex optimization
problem with an orthogonal constraint, which can be written as

min
C,K,P

1
2

tr
(

K + CTKC
)
− µ1tr(KC) + µ2tr(PT LP) + µ3

m

∑
i=1

wi‖K− Ki‖2
F + µ4‖C‖2

F

s.t. C ≥ 0, C1 = 1, diag(C) = 0, PT P = I,

(61)

where {Ki}m
i=1 are a set of predefined kernels, and the weight value wi is used to control

the contribution of ith predefined kernel Ki to K. Note that SPMKC can be regarded
as integrating MKL, low-rank representation, and graph regularization into a unified
framework. As a result, SPMKC can preserve both the global structure of the input data in
the kernel space and the local structure of the original data, and the obtained representation
coefficient has the block diagonal structure.
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To construct an ideal k-block diagonal affinity matrix, Guo et al. [113] proposed an
automatic weighted multiple kernel learning-based (AWLKSC) robust subspace clustering
method, which can be formulated as

min
C,K,w

1
2

tr
(

K− 2KC + CTKC
)
+ µ1‖C‖[k] + µ2

m

∑
i=1

wi‖K− Ki‖2
F + µ3‖K‖

p
w,Sp

s.t. C ≥ 0, C = CT , diag(C) = 0,

(62)

where ‖C‖[k] = ∑n
i=n−k−1 σi(LC) with Laplacian matrix LC = Diag(C1) − C is the lock

diagonal regularizer, and ‖ · ‖p
w,Sp

is the weighted Schatten-p norm. The AWLKSC can be
considered as integrating block diagonal constraints, MKL, and low-rank approximation.
Therefore, the coefficient matrix obtained by AWLKSC (62) has the block diagonal structure
and is robust to noise.

The existing SC methods first learn a coefficient matrix by data self-expressiveness,
and then build the affinity graph based on the coefficient matrix. This makes the quality of
the affinity matrix largely depends on the coefficient matrix, and thus the obtained affinity
graph may perform poorly. To tackle this issue, Ren et al. [114] presented a simultaneous
learning self-expressiveness coefficients and affinity matrix multiple kernel clustering
(SLMKC) method, which is formulated as

min
C,K,A,P

tr
(

K− 2KC + CTKC
)
+ µ1

(
‖C‖2

F + ‖A‖2
F

)
+ µ2tr(CLACT) + µ3tr(PT LCP) + µ4

m

∑
i=1

wi‖K− Ki‖2
F

s.t. AT1 = 1, A � 0, PT P = I,

(63)

where {Ki}m
i=1 are a set of predefined kernels, A is the affinity matrix, LA and LC are

the Laplace matrices of A and C, respectively, and wi is the weight of the ith candidate

kernel Ki which can take as wi = 1/(2
√
‖K− ki‖2

F + ξ) with ξ being infinitely close to
zero. Unlike the existing MKC methods, SLMKC proposes a unified optimization model to
simultaneously learn the consensus kernel, the self-expressiveness coefficient matrix, and
the affinity matrix. Under this design, SLMKC can avoid the extra step of generating an
affinity matrix by the representation coefficient but still maintain the correlation between
the coefficient matrix and affinity matrix. Meanwhile, SLMKC can preserve the local
structure of the coefficient matrix and affinity matrix due to the Laplacian regularization.

To strengthen the distinguishability of the affinity matrix, Zhang et al. [115] presented
the following self-paced smooth multiple kernel subspace clustering (SPAKS) method by
combining the feature smoothing regularizer with multiple kernel learning

min
C,w

m

∑
i=1

wi

(
1
2

tr(Ki − 2KiC + CTKiC) +
µ1

2
tr(DiC) +

µ2

2
‖C‖2

F

)
+ µ3

m

∑
i=1

(wi ln(wi)− wi)

s.t. diag(C) = 0, C ≥ 0, C = CT ,

(64)

where {Ki}m
i=1 are a set of predefined kernels, {Di}m

i=1 are the distance matrix on RKHS.
tr(DiC) is the feature smoothing regularizer which can be regarded as a transformation of
the graph Laplace regularity. Base on this design, SPAKS can enable the self-representation
coefficients of data points draw from the same subspace to be closer, thus maintaining the
local structure of data. In addition, due to the existence of the Frobenius norm, SPAKS
can divide the highly relevant data into the same groups. However, SPAKS is limited in
capturing the global structure of data, and the feature maps or distance matrices in RKHS
need to be given in advance.
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Inspired by projective clustering, Sun et al. [116] proposed a projective multiple kernel
subspace clustering method (PMKSC), which can be written as

min
Hi ,Ci ,C

m

∑
i=1

(
tr(Ki(I − Hi HiT

)) + µ1‖Hi − Ci Hi‖2
F + µ2‖Ci − C‖2

F

)
+ µ3‖C|2F

s.t. HiT
Hi = I, Si ≥ 0, Ci1 = 1, diag(Ci) = 0, ∀ i,

(65)

where {Ki}m
i=1 are a set of predefined kernels, {Hi}m

i=1 are the projected kernel partition
matrix, {Ci}m

i=1 are the projective sub-graph corresponding to each basic kernel partition,
which is used to preserve the complex relationship between each view representation, and
C is the fusion graph which can be directly used as the affinity matrix for spectral clustering.
Figure 9 shows the flowchart of PMKSC. By combining the kernel self-expressiveness with
multiview data, PMKSC can preserve more discriminative structural information in RKHS,
and be robust to data noise and redundancy. In addition, PMKSC incorporated affinity
matrix learning into the unified model, avoiding the extra step of generating an affinity
matrix by a representation coefficient, which helps improve clustering performance.
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Figure 9. The flowchart of PMKSC.

5. Application

SC is an effective unsupervised learning problem for high-dimensional data mining,
which has been successfully applied to computer vision, pattern recognition, and other fields,
such as face recognition [25–27], motion segmentation [28–30], image processing [31–33], and
speech emotion recognition [34,35]. In this section, we aim to introduce the application
fields of SC in detail and introduce some benchmark datasets.

5.1. Face Recognition

In recent years, face recognition is a biological recognition technology based on human
facial feature information, which has been a research hotspot in the field of computer vision
and pattern recognition. It has been proved that face images under different lighting or ex-
pression transformation can be approximated by a low dimensional subspace. Specifically,
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a group of face images taken from multiple people can be regarded as a combination of
nine-dimensional linear subspaces [22,23]. Therefore, SC has been successfully applied to
face recognition. Next, we introduce two benchmark datasets for face recognition, i.e., ORL
face dataset and Extended Yale B face dataset. Figures 10 and 11 show some typical images
of these two face datasets, respectively.

• ORL face dataset (https://cam-orl.co.uk/facedatabase.html, accessed on 5 Octo-
ber 2022) consists of frontal face images collected by 40 individuals (10 samples
per person) under different facial expressions (smiling or not smiling and open or
close eyes) and facial details (glasses or no glasses) with 112 × 92 pixels for each
image [159]. To reduce the computational cost, these images have been downsam-
pled into 32× 32 pixels [160], so each image can be regarded as a column vector of
1024 dimensions.

• Extended Yale B face dataset (https://paperswithcode.com/dataset/extended-yale-b
-1, accessed on 5 October 2022) consists of frontal facial images collected by 38 individ-
uals under 64 different lighting conditions with 192× 168 pixels for each image [161].
Following [160], the original images can be downsampled into 32× 32 pixels, so each
image can be formed as a 1024-dimensional vector.

Figure 10. The typical images of the ORL face dataset.

Figure 11. The typical images of the Extended YaleB face dataset.

5.2. Motion Segmentation

Motion segmentation refers to dividing the video sequence into multiple space-time
regions according to the motion tracks of different rigid objects. In other words, clustering
the feature points on the objects with rigid motion in the video, so that each category
corresponds to an independently moving rigid object, and then the motion trajectory is
obtained. In particular, the coordinates of points in the trajectory of a moving object can
form a low-dimensional subspace, whose dimension is at most 4 [25].

Hopkins155 motion segmentation database (http://www.vision.jhu.edu/data/hopk
ins155/, accessed on 5 October 2022) is a common benchmark dataset for motion segmenta-
tion. This dataset contains 155 video sequences where 120 video sequences contain two
motions, and 35 video sequences have three motions [29]. For each sequence, a tracker is
used to extract the point trajectories, and the outliers are extracted manually. On average,
each sequence with 2 motions has 266 feature trajectories and 30 frames, and each sequence
with 3 motions has 398 feature trajectories and 29 frames. It is worth pointing out that each
sequence is a sole dataset (i.e., data matrix X), so there are in total 155 SC tasks. Figure 12
show some typical images of the Hopkins155 motion segmentation database.

https://cam-orl.co.uk/facedatabase.html
https://paperswithcode.com/dataset/extended-yale-b-1
https://paperswithcode.com/dataset/extended-yale-b-1
http://www.vision.jhu.edu/data/hopkins155/
http://www.vision.jhu.edu/data/hopkins155/
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Figure 12. The typical images of the Hopkins155 motion segmentation database.

5.3. Handwritten Digits Clustering

The images of handwritten digits reside in the subspaces of dimension 12 [162], so
the problem of clustering images of handwritten digits can be solved by the SC methods.
Next, we introduce two benchmark datasets for handwritten digits clustering, i.e., the USPS
dataset and MNIST dataset. Figure 13 shows some images of these two datasets.

• USPS database (http://gaussianprocess.org/gpml/data/, accessed on 5 October 2022)
contains 9298 grey scale images of handwritten digits 0–9 [163]. Each digit image
of USPS database has 16 × 16 pixels, so that each image can be represented by a
256-dimensional vector.

• MNIST database (http://yann.lecun.com/exdb/mnist/, accessed on 5 October 2022)
contains 70,000 grey scale images of handwritten digits 0–9 [164]. Each gray image of
MNIST database has 28× 28 pixels, so each image can be vectorized into a column vector
of 784 dimensions.

Figure 13. Handwritten digit images from the USPS database (left) and MNIST database (right).

5.4. Speech Emotion Recognition

Speech emotion recognition aims to analyze speech data and speculate the possible
emotions, such as anger, disgust, fear, happiness, neutrality, sadness, and surprise. It can be
implemented in the following two steps: (1) Extracting features that can effectively express
the emotional content of speech; (2) Clustering the extracted features. Here, we introduce
three commonly used benchmark datasets. For more information, see [165].

• The GEneva multimodal emotion portrayals (GEMEP) [166] is a French content corpus
containing 1260 emotional speeches delivered by 10 professional actors (5 female)
under 18 speech emotion categories. These emotional categories cover the well-known
“six major” emotions, as well as the nuances of these emotions (e.g., panic, fear).

• The airplane behavior corpus (ABC) [167] is a German content corpus crafted for the
special target application of public transport surveillance. ABC contains 430 corpora
delivered by 8 German speakers (4 female) under 6 speech emotion categories (aggres-
sive, cheerful, intoxicated, nervous, neutral, and tired). The numbers of samples of six
emotions are 95, 105, 33, 93, 79, and 25, respectively.

http://gaussianprocess.org/gpml/data/
http://yann.lecun.com/exdb/mnist/
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• The eNTERFACE corpus [166] is an open English audio-visual emotion database. It
consists of 1277 corpora made by 42 English speakers (8 female) from 14 countries
under six basic emotions (anger, disgust, fear, happiness, sadness, and surprise). The
numbers of samples of six emotions are 215, 215, 215, 207, 210, and 215, respectively.

6. Research Prospect for Subspace Clustering

The emergence of high-dimensional data has promoted the development of traditional
machine learning. Although subspace clustering has been developed to varying degrees in
many practical applications, there are still several directions to be solved in the future.

6.1. Deep Subspace Clustering

With the development of deep learning technology in recent years, it has been widely
used in various fields due to its ability to effectively explore the deep features of data. Deep
subspace clustering (DSC) has emerged, which performs subspace clustering based on the
low-dimensional features of the original data learned by deep learning techniques.

At present, convolutional neural network [168–171], generative adversarial
network [172–175], deep auto-encoder [176–179], and other mainstream deep learning
methods have been successfully applied to subspace clustering, and achieved good cluster-
ing performance in many fields. Although the DSC methods have improved the clustering
accuracy to a certain extent, how to effectively mine the subspace structure inside the
data and obtain a more robust data representation still needs further research. In addi-
tion, the DSC methods are limited by computationally time-consuming and large memory
consumption, so how to quickly solve the DSC needs to be urgently settled.

6.2. Data Outliers Detection

As Hampel et al. [180] pointed out, a routine dataset may contain about 1–10% (or
more) of outliers, while for high-dimensional data, this proportion may be larger. In the
process of data processing, data outliers have a high impact on the performance of models,
and affect the generalization ability of models, even leading to the model being unable to
extract effective features. Therefore, it is essential to identify and separate data outliers.

At present, statistical researchers often use robust regression (such as least trimmed
squares regression [181], Huber regression [182], and least absolute deviation [183]) or
mean-shift model [184] to solve this problem. Up to now, a subspace clustering method
with outlier detection has not been found. Consequently, how to combine the subspace
clustering with data outliers detection is meaningful research.

6.3. Tuning Parameters Selection

In the subspace clustering methods, there exists exists some tuning parameters, es-
pecially in the kernel subspace clustering methods. A good tuning parameter can often
determine the clustering performance of the these methods. At present, grid search (such as
cross validation), the Bayesian method, or the empirical method are usually used to adjust
the tuning parameters; however, this is a time-consuming process. Hence, it is interesting
to study how to choose the regulating parameters.

6.4. Kernel Functions Selection

As mentioned earlier, the performance of kernel subspace clustering methods depends
heavily on the choice of kernel functions. Therefore, a good choice of kernel functions is
crucial for kernel subspace clustering. However, a major challenge of kernel methods is that
it is usually unclear which kernel is optimal. Although many kernel function construction
methods or multiple kernel learning methods have been proposed, this problem has still
not been well resolved. As a consequence, studying the selection of kernel functions is also
a promising direction.
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6.5. Theory Analysis

According to the previous description, it can be found that most of the subspace
clustering methods lack theoretical support, and only a small part of them have investigated
the block diagonal property of the self-representation coefficient matrix and grouping effect.
In addition, no articles studying the statistical properties of the model (for example, the
error bound theory and consistency) and the clustering recovery theory have been found.
Studying the theoretical properties of the models can help us understand and analyze them,
and thus better apply them to practical problems. Therefore, it is very meaningful to further
study the theoretical properties of subspace clustering methods.

7. Conclusions

In this survey, we have reviewed the development of SC methods in the past two
decades. According to the strategy of the constructing representation coefficient, we divide
the classical SC methods into three categories, i.e., low-rank sparse SC methods, local
structure preserving SC methods, and kernel SC methods. Among them, the low-rank
sparse SC methods can capture the global structure of data and achieve subspace feature
selection by low-rank representation and sparse representation. Local structure preserving
SC methods can better capture the geometric information of data. Moreover, kernel SC
methods can not only capture the geometric information of data, but also cope with the
challenges brought by the nonlinearity of data. Then, the application fields of SC and the
commonly used benchmark datasets are introduced. Finally, we have discussed several
interesting and meaningful future research directions.
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