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1. Introduction

We consider third-order nonlinear neutral differential equations with mixed nonlin-
earities of the following form:

[
b2(s)Φγ2

{(
b1(s)Φγ1(z

′(s))
)′}]′

+
m

∑
κ=1

qκ(s)Φακ (y(τκ(s))) = 0, (1)

where s ∈ [s0, ∞) with s0 ≥ 0 as a constant, z(s) = y(s) + py(s− τ0), and Φδ(θ) = |θ|δ−1θ,
δ > 0. Here, we assume the following:

(1) γ1, γ2, ακ ∈ (0, ∞), κ = 1, 2, . . . , m, p ∈ [0, ∞), p 6= 1, and τ0 ∈ (−∞, ∞) are constants;
(2) b1, b2, qκ ∈ C([s0, ∞), (0, ∞)) such that

∫ ∞

s0

ds

b1/γi
i (s)

= ∞, i = 1, 2, (2)

(3) τκ ∈ C1([s0, ∞), (−∞, ∞)), satisfying lims→∞ τκ(s) = ∞ for κ = 1, 2, . . . , m.

Let τ(s) := min{τ1(s), τ2(s), ..., τm(s)}. If there exists a function y ∈ C([ty, ∞),R),
ty := min{s− τ0, τ(s)} such that z(s), b1(s)Φγ1(z

′(s)), and b2(s)Φγ2{(b1(s)Φγ1(z
′(s)))′}

are continuously differentiable for all s ∈
[
sy, ∞

)
and satisfy Equation (1) for all s ∈ [sy, ∞)

and sup{|y(s)| : s ≥ T} > 0 for all T ∈ [sy, ∞). If such a solution contains arbitrarily large
zeros, it is said to be oscillatory; otherwise, it is said to be nonoscillatory. The theory of
neutral differential equations has drawn increasing interest over the past three decades
see, for example [1–6]. Since neutral equations are used to describe a variety of real-
world phenomena, such as the motion of radiating electrons, population development,
the spread of epidemics, and networks incorporating lossless transmission lines, studying
these equations is crucial both for theory and for applications. For additional applications

Mathematics 2023, 11, 424. https://doi.org/10.3390/math11020424 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11020424
https://doi.org/10.3390/math11020424
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2907-3353
https://orcid.org/0000-0003-4525-156X
https://doi.org/10.3390/math11020424
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11020424?type=check_update&version=1


Mathematics 2023, 11, 424 2 of 10

and general theory of these equations, the reader is directed to the monographs in [7–9].
It is noteworthy to observe that some third-order delay differential equations have both
oscillatory and nonoscillatory solutions, or they have only an oscillatory solution. For
example, in [10], the third-order delay differential equation

y′′′(s) + 2y′(s)− y(s− 3π

2
) = 0,

has the oscillatory solution y1(s) = sin s and a nonoscillatory solution y2(s) = exp(µs),
where µ > 0 such that

µ3 + 2µ− exp
(
−3π

2
µ

)
= 0.

While the result is due to [11], all solutions to the third-order delay differential equation

y′′′(s) + y(s− σ) = 0, σ > 0

are oscillatory if and only if σe > 3. However, the associated ordinary differential equation

y′′′(s) + y(s) = 0,

has the oscillatory solutions y1(s) = exp(s/2) sin
(

s
√

3/2
)

and y2(s) = exp(s/2) cos
(

s
√

3/2
)

and a nonoscillatory solution y3(s) = exp(−s). There has been increasing interest in ob-
taining sufficient conditions for the oscillation or nonoscillation of solutions of different
classes of differential equations. We refer the reader to [12–26]. Graef et al. [27] obtained
sufficient conditions for oscillation for the third-order neutral differential equation[

b2(s)
{(

b1(s)z′(s)
)′}]′

+ q(s) f (y(s− σ)) = 0,

where 0 ≤ p < 1, σ > 0, f (y) ∈ C(−∞, ∞), f is nondecreasing, y f (y) > 0 for all y 6= 0,

and
∫ ∞

s0

ds
bi(s)

= ∞, i = 1, 2. Baculíková and Džurina [28] discussed the third-order delay

differential equation [
b2(s)

(
y′′(s)

)γ2]′
+ q(s) f (y(σ(s))) = 0,

where γ2 is the quotient of the odd positive integers, σ(s) ≤ s, f (y) ∈ C(−∞, ∞), y f (y) > 0,
f ′(y) ≥ 0 for all y 6= 0,− f (−xy) ≥ f (xy) ≥ f (x) f (y) for xy > 0, and∫ ∞

s0

ds

b1/γ2
2 (s)

< ∞.

Very recently, Li and Rogovchenko [24] studied the oscillation criteria for the third-
order neutral functional differential equation[

b2(s)
(

z′′(s)
)γ2]′

+ q(s)yγ2(σ(s)) = 0,

where γ2 is the quotient of the odd positive integers and∫ ∞

s0

ds

b1/γ2
2 (s)

= ∞.

This paper was inspired by recent works [24,29] which established new oscillation
criteria that extend and generalize the result in [24] as well as some previously known
results. For investigating the oscillation of Equation (1), common techniques include a
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reduction in order and comparing it with the oscillation of first-order delay differential
equations for both delayed and advanced arguments.

2. Main Results

We begin this section with some preliminary lemmas, which will be used in the
statement of the main results:

Lemma 1 ([8] Lemma 1.5.1). Let h, g : [s0, ∞)→ (−∞, ∞) such that h(s) = g(s) + pg(s− c),
s ≥ s0 + max{0, c}, where p, c ∈ (−∞, ∞) and p 6= 1. Assume that lim sup

s→∞
h(s) = l ∈

(−∞, ∞) exists. Then, the following statements hold:

1. If lim inf
s→∞

g(s) = a ∈ R, then l = (1 + p)a;

2. If lim sup
s→∞

g(s) = b ∈ R, then l = (1 + p)b.

The next lemma improves upon [30] (Lemma 1) (see also [29,31,32]):

Lemma 2 ([30] Lemma 1). Assume that

ακ > γ := γ1γ2, κ = 1, 2, ..., l; and ακ < γ := γ1γ2, κ = l + 1, l + 2, ..., m. (3)

Then, an m-tuple (η1, η2, ..., ηm) exists with ηκ > 0 satisfying the conditions

m

∑
κ=1

ακηκ = γ and
m

∑
κ=1

ηκ = 1. (4)

Lemma 3 ([33], Lemma 2.1). Let Equation (2) hold. If y(s) is an eventually positive solution of
Equation (1), then either

(H1) z′(s) < 0,
(

b1(s)Φγ1(z
′(s))

)′
> 0,

[
b2(s)Φγ2

{(
b1(s)Φγ1(z

′(s))
)′}]′

≤ 0 or

(H2) z′(s) > 0,
(

b1(s)Φγ1(z
′(s))

)′
> 0,

[
b2(s)Φγ2

{(
b1(s)Φγ1(z

′(s))
)′}]′

≤ 0

eventually.

Lemma 4. Let y(s) be an eventually positive solution to Equation (1) and the corresponding y(s)
satisfy condition (H1) of Lemma 3. If for a sufficiently large T ∈ [s0, ∞) we have

∫ ∞

T

[
1

b1(w)

∫ ∞

w

(
1

b2(v)

∫ ∞

v
q(u)du

)1/γ2

dv

]1/γ1

dw = ∞, (5)

where

q(s) :=
m

∏
κ=1

[
qκ(s)

ηκ

]ηκ

, (6)

with ηκ defined as in Lemma 2, then every solution to Equation (1) tends toward zero eventually.

Proof. Since z(s) > 0 and z′(s) < 0, then there exists a constant l ≥ 0 such that lims→∞ z(s)
= l. We claim l = 0. If not, then using Lemma 1, we see that lims→∞ y(s) = l

1+p > 0. Then,
there exists s1 ∈ [s0, ∞) such that for s ≥ s1, we have

y(τκ(s))) >
l

2(1 + p)
, κ = 1, ..., m.
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However, we have

m

∑
κ=1

qκ(s)Φακ (y(τκ(s))) ≥
m

∑
κ=1

qκ(s)Φακ

(
l

2(1 + p)

)
=

(
l

2(1 + p)

)γ m

∑
κ=1

qκ(s)
[

l
2(1 + p)

]ακ−γ

. (7)

Through Lemma 2, there exists η1, ..., ηm with

m

∑
κ=1

ακηκ − γ
m

∑
κ=1

ηκ = 0.

The arithmetic-geometric mean inequality (see [34] (p. 17)) leads to

m

∑
κ=1

ηκvκ ≥
m

∏
κ=1

vηκ
κ , for any vκ ≥ 0, κ = 1, . . . , m.

Then, we obtain

m

∑
κ=1

qκ(s)
[

l
2(1 + p)

]ακ−γ

=
m

∑
κ=1

ηκ
qκ(s)

ηκ

[
l

2(1 + p)

]ακ−γ

≥
m

∏
κ=1

[
qκ(s)

ηκ

]ηκ
[

l
2(1 + p)

]ηκ(ακ−γ)

=
m

∏
κ=1

[
qκ(s)

ηκ

]ηκ

= q(s).

This, together with Equation (7), shows that

m

∑
κ=1

qκ(s)Φακ (y(τκ(s))) ≥ q(s)
(

l
2(1 + p)

)γ

. (8)

By combining Equations (1) and (8), we obtain

[
b2(s)Φγ2

{(
b1(s)Φγ1(z

′(s))
)′}]′

= −
m

∑
κ=1

qκ(s) Φακ (y(τκ(s)))

≤ −q(s)
(

l
2(1 + p)

)γ

.

By integrating the latter inequality from s to v and letting v→ ∞, we obtain

b2(s)Φγ2

{(
b1(s)Φγ1(z

′(s))
)′}
≥
(

l
2(1 + p)

)γ ∫ ∞

s
q(u)du.

It follows that(
b1(s)Φγ1(z

′(s))
)′
≥
(

l
2(1 + p)

)γ1
(

1
b2(s)

∫ ∞

s
q(u)du

)1/γ2

. (9)

Again, by integrating this inequality from s to ∞, we see that

−z′(s) ≥ l
2(1 + p)

[
1

b1(s)

∫ ∞

s

(
1

b2(v)

∫ ∞

v
q(u)du

)1/γ2

dv

]1/γ1

.
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Finally, by integrating the last inequality from s1 to ∞, we obtain

z(s1) ≥
l

2(1 + p)

∫ ∞

s1

[
1

b1(w)

∫ ∞

w

(
1

b2(v)

∫ ∞

v
q(u)du

)1/γ2

dv

]1/γ1

dw,

which a contradiction to Equation (5). This shows that lim
s→∞

z(s) = 0 and hence lim
s→∞

y(s) = 0

due to 0 < y(s) ≤ z(s).

The following result deals with the delayed argument case, namely

τ0 ≥ 0. (10)

Theorem 1. Let Equations (2), (5), and (10) hold. If τ(s) < s, and the first-order delay differential
equation

x′(s) + Q1(s)x(τ(s)) = 0, (11)

where

Q1(s) :=

 1
1 + p

∫ τ(s)

s2

(
1

b1(v)

∫ v

s1

(
1

b2(u)

)1/γ2

du

)1/γ1

dv

γ

q(s), (12)

with q(s), defined as in Equation (6), is oscillatory for all large s1 ≥ s0 and for some s2 ≥ s1, then
every solution to Equation (1) is either oscillatory or tends toward zero eventually.

Proof. Assume that y(s) is a nonoscillatory solution to Equation (1). Then, without loss
of generality, assume y(s) > 0 for s ∈ [s0, ∞). It follows from Lemma 3 that there exists
s1 ≥ s0 such that either (H1) or (H2) holds for s ≥ s1. If (H1) is satisfied, then from Lemma 4,
y(s) tends toward zero eventually. Now, we assume that (H2) is satisfied. By virtue of[

b2(s)Φγ2

{(
b1(s)Φγ1(z

′(s)
)′}]′

≤ 0, for s ≥ s1,

it then follows that

b1(s)Φγ1(z
′(s)) = b1(s)Φγ1(z

′(s1)) +
∫ s

s1

[
b2(u)Φγ2

{(
b1(u)Φγ1(z

′(u)
)′}]1/γ2

b1/γ2
2 (u)

du

≥
[
b2(s)Φγ2

{(
b1(s)Φγ1(z

′(s)
)′}]1/γ2

∫ t

s1

du

b1/γ2
2 (u)

,

and hence

z′(s) ≥
[
b2(s)Φγ2

{(
b1(s)Φγ1(z

′(s)
)′}]1/γ( 1

b1(s)

∫ s

s1

du

b1/γ2
2 (u)

)1/γ1
.

By integrating this inequality from s2 to s, we obtain

z(s) = z(s2) +
∫ s

s2

[
b2(v)Φγ2

{(
b1(v)Φγ1(z

′(v)
)′}]1/γ( 1

b1(v)

∫ v

s1

du

b1/γ2
2 (u)

)1/γ1
dv

≥
[
b2(s)Φγ2

{(
b1(s)Φγ1(z

′(s)
)′}]1/γ ∫ s

s2

( 1
b1(v)

∫ v

s1

du

b1/γ2
2 (u)

)1/γ1
dv. (13)
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However, there is a positive constant l1 such that lim
s→∞

z′(s) = l1. Then, according to

Lemma 1, we obtain lim
s→∞

y′(s) = l1
1+p > 0, and hence y′(s) > 0. From Equation (10) and

the fact that y′(s) > 0, we obtain

z(s) = y(s) + py(s− τ0) ≤ (1 + p)y(s).

Consequently, we obtain

y(τ(s)) ≥ 1
1 + p

z(τ(s)). (14)

In addition, we have

m

∑
κ=1

qκ(s)Φακ (y(τκ(s))) ≥
m

∑
κ=1

qκ(s)Φακ (y(τ(s)))

= Φγ(y(τ(s)))
m

∑
κ=1

qκ(s)[y(τ(s))]
ακ−γ. (15)

According to Lemma 2, there exists η1, ..., ηm with

m

∑
κ=1

ακηκ − γ
m

∑
κ=1

ηκ = 0.

The arithmetic-geometric mean inequality (see [34] (p. 17)) gives us

m

∑
κ=1

ηκvκ ≥
m

∏
κ=1

vηκ
κ , for any vκ ≥ 0, κ = 1, . . . , m.

Therefore, we have

m

∑
κ=1

qκ(s)[y(τ(s))]
ακ−γ =

m

∑
κ=1

ηκ
qκ(s)

ηκ
[y(τ(s))]ακ−γ

≥
m

∏
κ=1

[
qκ(s)

ηκ

]ηκ

[y(τ(s))]ηκ(ακ−γ)

=
m

∏
κ=1

[
qκ(s)

ηκ

]ηκ

= q(s).

This, together with Equation (15), shows that

m

∑
κ=1

qκ(s)Φακ (y(τκ(s))) ≥ q(s)Φγ(y(τ(s))). (16)

Now, we have[
b2(s)Φγ2

{(
b1(s)Φγ1(z

′(s))
)′}]′

≤ −q(s)Φγ(y(τ(s)))

≤ − q(s)
(1 + p)γ

Φγ(z(τ(s))).

Using Equation (13), we obtain

x′(s) ≤ −
[ 1

1 + p

∫ τ(s)

s2

( 1
b1(v)

∫ v

s1

du

b1/γ2
2 (u)

)1/γ1
dv
]γ

q(s)x(τ(s)),
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where x(s) := b2(s)Φγ2

{(
b1(s)Φγ1(z

′(s))
)′}

. Due to [35] (Theorem 1), the corresponding
delay differential equation also has a positive solution. The proof is completed by this
contradiction.

The next result is extracted from Theorem 1 and [23] (Theorem 2.1.1):

Corollary 1. Assume that Equations (2), (5), and (10) hold. If τ(s) < s, and

lim inf
s→∞

∫ s

τ(s)
Q1(w)dw ≥ 1

e
,

where Q1(w) is defined as in (12) then every solution to Equation (1) is either oscillatory or tends
toward zero eventually.

The following results address the advanced argument case, namely

τ0 ≤ 0. (17)

Theorem 2. Assume that Equations (2), (5), and (17) hold. If τ(s) < s− τ0, and the first order
delay differential equation

x′(s) + Q2(s)x(τ(s) + τ0) = 0, (18)

where

Q2(s) :=

 1
1 + p

∫ τ(s)+τ0

s2

(
1

b1(v)

∫ v

s1

(
1

b2(u)

)1/γ2

du

)1/γ1

dv

γ

q(s), (19)

with q(s) defined as in (6)is oscillatory, then every solution to Equation (1) is either oscillatory or
tends toward zero eventually.

Proof. Assume that y(s) is a nonoscillatory solution to Equation (1). Then, without loss
of generality, assume y(s) > 0 for s ∈ [s0, ∞). It follows from Lemma 3 that there exists
s1 ≥ s0 such that either (H1) or (H2) hold for s ≥ s1. If (H1) is satisfied, then from Lemma 4,
y(s) tends toward zero eventually. Now, we assume that (H2) is satisfied. With the same
proof as in the proof for Theorem 1, we find that y′(s) > 0 on [s1, ∞), and Equations (13)
and (16) hold. From Equation (17), we obtain

z(s) = y(s) + py(s− τ0) ≤ (1 + p)y(s− τ0),

which implies

y(s) ≥ 1
1 + p

z(s + τ0).

Consequently, we have

y(τ(s)) ≥ 1
1 + p

z(τ(s) + τ0). (20)

Using Equation (16), we get[
b2(s)Φγ2

{(
b1(s)Φγ1(z

′(s))
)′}]′

≤ −q(s)Φγ(y(τ(s)))

≤ − q(s)
(1 + p)γ

Φγ(z(τ(s) + τ0)).
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From Equation (13), we have

x′(s) ≤ −

 1
1 + p

∫ τ(s)+τ0

s2

(
1

b1(v)

∫ v

s1

(
1

b2(u)

)1/γ2

du

)1/γ1

dv

γ

q(s)x(τ(s) + τ0),

where x(s) := b2(s)Φγ2

{(
b1(s)Φγ1(z

′(s))
)′}

. The associated delay differential equation
also has a positive solution because of [35] (Theorem 1). The proof is completed by this
contradiction.

According to Theorem 2 and [23] (Theorem 2.1.1), we have the next result:

Corollary 2. Assume that Equations (2), (5), and (17) hold. If τ(s) < s− τ0 and

lim inf
s→∞

∫ s

τ(s)+τ0

Q2(w)dw ≥ 1
e

,

where Q2(w) is defined as in Equation (12), then every solution to Equation (1) is either oscillatory
or tends toward zero eventually.

The effectiveness and efficiency of our results are shown in the examples below:

Example 1. Consider the third-order nonlinear neutral differential equation of the form[
Φγ2

{(1
s

Φγ1

(
y(s) + py(s− 1)

)′)′}]′
+ e2Φα1(y(s− 1)) + e2Φα2(y(s)) = 0, s ≥ 1 (21)

where p 6= 1, p ≥ 0, γ1 = 1
3 , γ2 = 3, η1 = η2 = 1

2 , α1 = 3
2 , and α2 = 1

2 . With appropriate
software (e.g., Maple), we see that Equation (2) holds, where

q(s) =
m

∏
κ=1

[
qκ(s)

ηκ

]ηκ

= 2e2,

and ∫ ∞

1
w3

[∫ ∞

w

(∫ ∞

v
2e2du

) 1
3

dv

]3

dw = ∞.

We also have

lim inf
s→∞

∫ s

τ(s)
Q1(w)dw =

1
1 + p

lim inf
s→∞

[ ∫ s

s−1

{ ∫ w−1

1

(
v
∫ v

1
du
) 1

1
3 dv

}
2e2dw

]
= (1 + p)−1 lim infs→∞

[
10079 e2s

70 + 2/7 e2s7 − 4 e2s6 + 121 e2s5

5

−82 e2s4 + 168 e2s3 − 208 e2s2 − 6011 e2

140

]
≥ 1

e .

Then according to Corollary 1, every solution to Equation (21) is either oscillatory or tends
toward zero eventually.

Example 2. Consider the third-order nonlinear neutral differential equation of the form[ 1
s2 Φγ2

{(1
s

Φγ1

(
y(s) + py(s + 1)

)′)′}]′
+ sΦα1(y(s)) + sΦα2(y(s + 2)) = 0, s ≥ 1 (22)
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where p 6= 1, p ≥ 0, γ1 = γ2 = 1, η1 = η2 = 1
2 , α1 = 3

2 , and α2 = 1
2 . With appropriate

software (e.g., Maple), we see that Equation (2) holds, where

q(s) =
m

∏
κ=1

[
qκ(s)

ηκ

]ηκ

= 2s,

and ∫ ∞

1
w
[∫ ∞

w
w2
(∫ ∞

v
2udu

)
dv
]

dw = ∞.

We also have

lim inf
s→∞

∫ s

τ(s)+τ0

Q2(w)dw =
1

1 + p
lim inf

s→∞

[ ∫ s

s−1

{ ∫ w−1

1

(
v
∫ v

1
u2du

) 1
1
3 dv

}
2wdw

]
=

1
1+p lim infs→∞

[
1753
1260 + 257 s2

30 −
65 s3

9 + 11/3 s4 − 16 s5

15

+2/15 s6 − 27 s
5

]
≥ 1

e .

Then according to Corollary 2, every solution to (22) is either oscillatory or tends toward
zero eventually.

3. Conclusions

In this study, we investigated the oscillation criteria for third-order nonlinear neutral
differential equations with mixed nonlinearities. We discovered new oscillation criteria that
enhanced numerous earlier efforts. Two examples were used to demonstrate the relevance
and power of our results.
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