
Citation: Griesbach, C.; Mayr, A.;

Bergherr, E. Variable Selection and

Allocation in Joint Models via

Gradient Boosting Techniques.

Mathematics 2023, 11, 411. https://

doi.org/10.3390/math11020411

Academic Editors: Min Wang,

Haijun Gong, Liucang Wu and

Songfeng Zheng

Received: 28 November 2022

Revised: 5 January 2023

Accepted: 9 January 2023

Published: 12 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Variable Selection and Allocation in Joint Models via Gradient
Boosting Techniques
Colin Griesbach 1,∗ , Andreas Mayr 2 and Elisabeth Bergherr 1

1 Chair of Spatial Data Science and Statistical Learning, Georg-August-Universität Göttingen,
37073 Göttingen, Germany

2 Department of Medical Biometrics, Informatics and Epidemiology, University Hospital Bonn,
53127 Bonn, Germany

* Correspondence: colin.griesbach@uni-goettingen.de

Abstract: Modeling longitudinal data (e.g., biomarkers) and the risk for events separately leads
to a loss of information and bias, even though the underlying processes are related to each other.
Hence, the popularity of joint models for longitudinal and time-to-event-data has grown rapidly
in the last few decades. However, it is quite a practical challenge to specify which part of a joint
model the single covariates should be assigned to as this decision usually has to be made based on
background knowledge. In this work, we combined recent developments from the field of gradient
boosting for distributional regression in order to construct an allocation routine allowing researchers
to automatically assign covariates to the single sub-predictors of a joint model. The procedure
provides several well-known advantages of model-based statistical learning tools, as well as a fast-
performing allocation mechanism for joint models, which is illustrated via empirical results from a
simulation study and a biomedical application.

Keywords: joint modeling; time-to-event analysis; gradient boosting; statistical learning; variable
selection

MSC: 62J07

1. Introduction

Joint models for longitudinal and time-to-event data, first introduced in [1], are a
powerful tool for analyzing data where event times are recorded alongside a longitudinal
outcome. If the research interest lies in the association between these two outcomes, joint
modeling avoids potential bias arising from separate analyses by combining two sub-
models in one single modeling framework. A thorough introduction to the concept of joint
models can be found in [2], and various well-established R packages are available covering
frequentist [3,4] and Bayesian [5] approaches.

Like many regression models, joint models suffer from the usual drawbacks, where
proper tools for variable selection are not immediately available and computation becomes
more and more infeasible in higher dimensions. In addition, joint models also raise the
question of which sub-model a variable should be assigned to, i.e., should a variable
x have a direct impact on the survival outcome T, or should the potential influence be
modeled indirectly by an impact of x on the longitudinal outcome y, which then might
affect T? This choice gets exponentially more complex with an increasing amount of
covariates, and usually has to be made by researchers based on background knowledge.
Boosting techniques from the field of statistical learning, however, are well-known for
addressing these exact issues. Originally emerging from the machine learning community
as an approach to classification problems [6,7], boosting algorithms have been adapted
to regression models [8] and, by now, cover a wide range of statistical models. For an
introduction and overview of model-based boosting, we recommend [9,10].

Mathematics 2023, 11, 411. https://doi.org/10.3390/math11020411 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11020411
https://doi.org/10.3390/math11020411
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1483-8261
https://orcid.org/0000-0001-7106-9732
https://orcid.org/0000-0003-3983-9957
https://doi.org/10.3390/math11020411
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11020411?type=check_update&version=3

Mathematics 2023, 11, 411 2 of 16

The formulation of boosting routines for joint models is, to date, still a little-developed
field. The foundations were made by [11], where generalized additive models for location
scale and shape (GAMLSS) were fitted using boosting techniques. Due to the multiple
predictors for each single distributional parameter, these models consist of a similar struc-
ture to joint models and thus the boosting concept for GAMLSS could be adapted to joint
models by [12]. Furthermore, in [13], joint models were estimated using likelihood-based
boosting techniques, and [14,15] compare boosting routines for joint models with various
other estimation approaches.

In the last few years, several additional developments have been made in order to
enable a variable selection for joint models, usually by applying different shrinkage tech-
niques. In [16], an adaptive LASSO estimator was constructed that estimates L1-penalized
likelihoods in a two-stage fashion. This approach was later extended to multivariate
longitudinal outcomes in [17] and to time-varying coefficients in [18]. In [19,20], Bayesian
shrinkage estimators were applied to achieve either variable or model selection for various
classes of joint models and, recently, ref. [21] applied Monte Carlo methods to enable a
variable selection for joint models with an interval-censored survival outcome. However,
all of these mentioned approaches are only capable of selecting and estimating effects into
predefined predictor functions. To the best of our knowledge, no methods exist that allocate
single features to the given sub-models in a data-driven way.

The aim of the present work is to combine recent developments from the field of model-
based gradient boosting in order to develop a new routine, JMalct, that is able to allocate
the single candidate variables to the specific sub-models. Therefore, the initial boosting
approach by [12] was equipped with a non-cyclical updating scheme proposed by [22] and
adaptive step-lengths as investigated in [23]. These two preliminary works are of high
importance and their combination is the foundation of our proposed allocation procedure.
Furthermore, the JMalct algorithm makes use of a recent random effects correction [24]
providing an unbiased estimation of the random effects using gradient boosting and tuning
based on probing [25] for faster computation and improved selection properties.

The remainder of this article is structured as follows. In Section 2, the underlying joint
model as well as the JMalct boosting algorithm are formulated. Section 3 then applies
the proposed method to simulated data with varying amounts of candidate variables.
Several real-world applications are presented in Section 4 and the final section gives a brief
summary and outlook.

2. Methods

This section first formulates the considered joint model as well as the basics of the un-
derlying JMboost approach. Afterwards, the new JMalct routine and a thorough discussion
of its computational details are provided.

2.1. Model Specification

A joint model consists of two sub-models modeling the longitudinal and time-to-event
outcome, respectively. The longitudinal sub-model is specified as a linear mixed model

yij = ηlong(tij, xlongi) + εij

= β0 + βttij + βT
longxlongi + γ0i + γtitij + εij,

(1)

with individuals i = 1, . . . , n and corresponding measurements j = 1, . . . , ni. Here,
xlongi ∈ Rplong denotes a set of longitudinal time-independent covariates, and tij the specific

measurement times and normal distributed error components, i.e., (γ0i, γti) ∼ N⊗2(0, Q)
and εij ∼ N (0, σ2) are assumed.

In the survival sub-model, the individual hazard is modeled by

λi(t) = λ0(t) exp
(

ηsurv(xsurvi) + αηlong(t, xlongi)
)

(2)

Mathematics 2023, 11, 411 3 of 16

with the survival predictor ηsurv(xsurvi) = βT
survxsurvi including baseline covariates xsurvi ∈

Rpsurv and the longitudinal predictor ηlong reappearing in the survival sub-model, this time
scaled by the association parameter α. The baseline hazard λ0(t) := λ0 > 0 is chosen to
be constant as conventional gradient boosting methods tend to struggle with a proper
estimation of time-varying baseline hazard functions [26].

Given the sub-models (1) and (2) and assuming independence between the random
components, the joint log-likelihood is

`(ηlong, ηsurv,α, λ0, σ2|y, T , δ) =
n

∑
i=1

{ ni

∑
j=1

log φ
(

yij|ηlong(tij, xlongi), σ2
)

+ δi log λi(Ti|ηlong, ηsurv, α, λ0)−
∫ Ti

0
exp(λi(t|ηlong, ηsurv, α, λ0))dt

}
,

(3)

where, in the longitudinal part, φ(·|m, v) denotes the density of a normal distribution with
mean m and variance v. In this context, we considered the complete data log-likelihood
as it is used solely for allocation purposes. The random effects will be estimated in a
less time-consuming way based on a fixed penalization integrated in the random effects
base-learner discussed in Section 2.4.

2.2. The JMboost Concept

In [12], joint models were estimated for the first time using a boosting algorithm,
although they addressed a slightly different model to the one described above. The original
concept in this publication was based on an alternating technique that used two loops: one
outer loop circling through the two sub-predictors and two inner loops that circle through
the single base-learners. In a very simple manner, the boosting algorithm can hence be
summarized as follows:

• Initialize ηlong, ηsurv, α, λ0 and σ2;

• While m ≤ max(mstop,l, mstop,s);

– If m ≤ mstop,l: perform one boosting cycle to update ηlong;

– If m ≤ mstop,s: perform one boosting cycle to update ηsurv;
– If m ≤ mstop,l: update σ2;
– If m ≤ mstop,s: update λ0 and α.

Both sub-predictors have their own stopping iteration mstop,l and mstop,s, which need to
be optimized via a grid search. The latter is computationally quite burdensome, particularly
for high numbers of candidate variables.

2.3. The JMalct Boosting Algorithm

The central JMalct algorithm is depicted in Algorithm 1.

Mathematics 2023, 11, 411 4 of 16

Algorithm 1: JMalct

• Initialize predictors η̂
[0]
long and η̂

[0]
surv. Specify base-learners hlong1, . . . , hlongp and hsurv1, . . . , hsurvp, as well as hγ.

Initialize association α̂[0] and baseline hazard λ̂
[0]
0 . Choose iteration limit mstop and learning rate c, and define the

sets S [0]long = S [0]surv := {1, . . . , p}.
• for m = 1 to mstop do

step1: Allocation step

Compute the gradients
u[m]

long =
(

u[m]
longij

)
i≤n,j≤ni

=
(

yij − η̂
[m−1]
longij

)
i≤n,j≤ni

(4)

and

u[m]
surv =

(
u[m]

survi

)
i≤n

=

(
δi −

∫ Ti

0
λ̂
[m−1]
i (t, ·)dt

)
i≤n

. (5)

Fit both gradients separately to the base-learners

u[m]
long

base-learner−−−−−−→ ĥ[m]
longr, r ∈ S [m−1]

long , (6)

u[m]
surv

base-learner−−−−−−→ ĥ[m]
survr, r ∈ S [m−1]

surv , (7)

and select the best performing component for each predictor:

r∗long = arg min
r≤p

∑
ij

(
u[m]

longij − ĥ[m]
longij

)2
, r∗surv = arg min

r≤p
∑

i

(
u[m]

survi − ĥ[m]
survi

)2
(8)

Compute the optimal step lengths νlongr∗ , νsurvr∗ with corresponding likelihood values `longr∗ , `survr∗ and only
update the component resulting in the best joint likelihood improvement:

η̂
[m]
long = η̂

[m−1]
long + cνlongr∗ ĥ

[m]
longr∗ , if `longr∗ > `survr∗ , (9)

η̂
[m]
surv = η̂

[m−1]
surv + cνsurvr∗ ĥ

[m]
survr∗ , if `longr∗ < `survr∗ (10)

Update the active sets

S [m]
long = S [m−1]

long \ {r∗surv}, if `survr∗ > `longr∗ , (11)

S [m]
surv = S [m−1]

surv \ {r∗long}, if `longr∗ > `survr∗ . (12)

step2: Update remaining parameters

Perform an additional longitudinal boosting update regarding the random structure:

u[m]
long

base-learner−−−−−−→ ĥ[m]
γ ⇒ η̂

[m]
long = η̂

[m]
long + cĥ[m]

γ (13)

Obtain updates for the association by maximizing the joint likelihood:

α̂[m] = arg max
α∈R

`(α, ·) (14)

end for
• Stop the algorithm early based on probing, i.e., when a phantom variable would

get selected.

2.4. Computational Details of the JMalct Algorithm

In the new JMalct algorithm, we only have one cycle. This cycle consists of three steps:
in the first one, the base-learner with the best fitting gradient for the longitudinal predictor

Mathematics 2023, 11, 411 5 of 16

ηlong is chosen and the corresponding step length νlong is calculated. In the second step, the
base-learner with the best fitting gradient for the time-to-event submodel ηsurv is chosen
and the corresponding step length νsurv is calculated. These first two steps will be referred
to as the G-steps (gradient-steps) in the following. In the third step, referred to as the L-step
(likelihood step), the likelihood is calculated for both the best longitudinal base-learner,
weighted with the step length νlong, and the best survival base-learner, weighted with the
step length νsurv. The base-learner performing better in the L-step is then chosen to be
updated. The algorithm is summarized in the following overview and depicted in Figure 1.
A detailed description is provided below.

Choose mstop,

initialize η̂
[0]
long, η̂

[0]
surv,

set m = 1

compute current

gradients u[m]
long, u[m]

surv

find best variable
x∗long w.r.t. u[m]

long

find best variable
x∗surv w.r.t. u[m]

surv

scale x∗long with opt.
step length ν∗long

scale x∗surv with opt.
step length ν∗surv

update (and assign)
x∗ ∈ {x∗long, x∗surv}

maximizing `

Update α̂[m], σ̂2[m]

based on the
current fit

Probing-based
stopping, return

fit/estimates

m→ m + 1

Figure 1. Schematic overview of the JMalct procedure.

while m ≤ mstop:
• G-step 1

– Fit all base-learners to the longitudinal gradient with regard to η̂
[m]
long;

– Find the best-performer, β∗long and corresponding step-length νlong.

• G-step 2

– Fit all base-learners to gradient with regard to η̂
[m]
surv;

– Find the best-performer, β∗surv and corresponding step-length νsurv.

• L-step

– Fit likelihood for η∗long and η∗surv with updates from G1 and G2;

– Select the best-performer and update corresponding sub-predictor;
– Remove the selected candidate variable from options to choose for the other

predictor (if not performed already).

• Step 4

– Update α̂[m], σ̂2[m] based on the current fit.

The baseline covariates that enter the allocation process are not assigned to a sub-model
in the beginning and therefore have to be considered in two forms. X long ∈ MatR(N, p),
where N = ∑i ni, denotes the set of candidate variables resembled as longitudinal covari-
ates, i.e., measurements assigned to the same individual i contain the same cluster-constant

Mathematics 2023, 11, 411 6 of 16

measurement ni times. On the other hand, Xsurv ∈ MatR(n, p) contains the exact same
variables as X long but reduced to just one representative of each individual in order to
fit the corresponding base-learner to the survival gradient. The measurements of one
specific covariate r are denoted by xlongr and xsurvr, which matches the rth column of the
corresponding matrix.
Starting values. The regression coefficients underlying the allocation mechanism are
necessarily set to zero, i.e., β

[0]
long = β

[0]
surv = 0. The remaining longitudinal parameters are

extracted by an initial linear mixed model fit

y = β0 + βt · t + γ0 + γt · t (15)

containing only the intercept as well as time and random effects. For the remaining survival
parameters, we chose α[0] = 0 and λ̂[0] = ∑i δi/ ∑i Ti.
Computing the gradients. The gradients ulong and usurv are a crucial component of the
JMalct algorithm. For the longitudinal part, we considered the quadratic loss ρ(y, η) =
1
2 (y− η)2 and calculated

ulong = − ∂ρ

∂ηlong
(y, ηlong) = y− ηlong (16)

as the regular residuals of the longitudinal sub-model, following [9]. The survival gradient
was obtained by differentiating the likelihood (3) with respect to ηsurv, yielding

usurv = − ∂ρ

∂ηsurv
(ηsurv, ·) =

(
δi −

∫ Ti

0
λ̂
[m−1]
i (t, ·)dt

)
i≤n

, (17)

as the longitudinal part vanishes. This is a nice analogy to the longitudinal gradient, as
usurv represents the martingale residuals of the survival sub-model.
Fitting the longitudinal base-learners. The possible fixed effects estimates were obtained
by fitting the pre-specified base-learners to the longitudinal and survival gradient. In the
longitudinal case, the fixed effects base-learners hlong1, . . . , hlongp were equipped with an
additional effect estimate for the time coefficient βt as this variable shall not be subject to
the selection and allocation mechanism. Fitting the base-learners is achieved by

ĥlongr = Slongrulong, r = 1, . . . , p, (18)

with the projection matrix

Slongr = x̃longr(x̃T
longr x̃longr)

−1 x̃T
longr, r = 1, . . . , p, (19)

where x̃longr = (1, t, xlongr) and t denotes the collection of longitudinal measurement times.
If the base-learner actually gets selected, estimates β̂0 for the intercept and β̂t for the time
effect receive the corresponding updates computed in the fitting process.
Fitting the survival base-learners. Similar to the longitudinal part, the survival base-
learner was fitted by applying the corresponding projection matrix to the survival gradient,
i.e.,

ĥsurvr = Ssurvrusurv, r = 1, . . . , p, (20)

where the survival gradient usurv represents the martingale residuals of the time-to-event
model. The projection matrix takes the form

Ssurvr = x̃survr(x̃T
survr x̃survr)

−1 x̃T
survr, r = 1, . . . , p, (21)

with x̃survr = (1, xsurvr). This means that, if the base-learner actually gets selected, the
estimate λ̂0 for the constant baseline hazard receives the corresponding update computed
in the fitting process.

Mathematics 2023, 11, 411 7 of 16

Adaptive step lengths. As the two distinct sub-models affect different parts of the joint
likelihood, it may not be sufficient to stick to a fixed learning rate, e.g., νlong = νsurv = 0.1.
To ensure that the comparison of potential likelihood improvements is fair, for each selected
component, the optimal step length was computed using a basic line search by finding

νlong = arg max
ν∈R+

`(η̂long + νĥlongr∗long
, ·), νsurv = arg max

ν∈R+

`(η̂surv + νĥsurvr∗surv
, ·). (22)

following [23]. The corresponding maximal likelihood values are denoted by `∗long and `∗surv,
which were used to determine the overall best-performing sub-model of each iteration.
When this is achieved, the learning rate for the actual update was then again scaled by a
constant c < 1—here, c = 0.1—in order to ensure small updates with weak base-learners.
Fitting the random effects base-learner. In general, the random effects base-learner is
similar to the formulation found in the appendix of [27]. One major difference is that it
is fixed for all iterations and not updated based on the current covariance structure. It is
defined through its projection matrix

Sγ = ZC(ZTZ + λdf)
−1ZT (23)

where λdf was chosen so that tr(Sγ) = df holds, which fixes the degrees of freedom for
the random effects update. In the simulation study, we used df = 10 and determined the
corresponding λdf with the internal function mboost:::df2lambda().

The matrix Z denotes the conventional random effects design matrix for intercepts
and slopes, i.e.,

Z = diag(Z1, . . . , Zn), Zi =

1 ti1
...

...
1 tini

, i = 1, . . . , n, (24)

and C is a correction matrix introduced in [28] correcting the random effects update for
the candidate variables xlong1, . . . , xlongp, which are baseline covariates and thus cluster-
constant. A derivation of the correction matrix C can also be found in Appendix A.
Tuning the hyperparameter m based on probing. Both the step length as well as the
number of iterations can be considered as hyperparameters of the boosting algorithm.
Since the step length is usually set as constant or, like in this work, determined by an
adaptive line search, the number of overall iterations m states the main tuning parameter
of the algorithm. While this hyperparameter is usually tuned in a computationally more
extensive way by considering out-of-bag loss, we determined the optimal amount m∗ with
the help of probing. Probing for gradient boosting was introduced by [25]. The pragmatic
idea avoids more time-consuming procedures such as cross validation or bootstrapping,
which rely on a re-fitting of the model. For each covariate xr, another variable x̄r was added
to the set of candidate variables, where x̄r is a random permutation of the observations
contained in xr. These additional variables were artificially created to be non-informative
and called probes or shadow variables. Instead of finding the best-performing number of
iterations based on a computationally burdensome cross validation, the boosting routine
was simply stopped as soon as one of the shadow variables x̄r, i.e., a known-to-be non-
informative variable, would get selected. The focus is hence shifted from tuning the
algorithm purely based on prediction accuracy (with regard to the test risk) towards a
reasonable variable selection.
Computational complexity and asymptotic behavior. Due to the artificial construction of
the algorithm and the comparatively complex model class, theoretical analysis regarding
complexity and asymptotic behavior is quite a challenging task. The model-based boosting
related literature is still little-developed with respect to theoretical investigations, but
thorough analyses in simpler cases were carried out in [29] for the quadratic loss, where
exponentially fast bias reduction could be proven, as well as for more general settings in

Mathematics 2023, 11, 411 8 of 16

[30,31]. Consistency properties for very-high-dimensional linear models were obtained
in [32] and, regarding JMalct, we refer to the following section, where further insights
with respect to the algorithm’s complexity are given based on numerical evaluations. In
addition, we experienced no convergence issues in simulations and applications.

3. Simulation Study

The JMalct algorithm was evaluated by conducting a simulation study where data
according to the assumed generating process specified in Section 2.1 were simulated and
models were subsequently fitted using JMalct and, if sensible, JM [3] as a benchmark and
well-established approach. In addition, we considered the combination JMalct+JM, where
JMalctwas used solely for allocating the variables, which were then refitted by JM according
to the allocation obtained from JMalct. After briefly highlighting the single scenarios, the
simulation section evaluates allocation properties and the accuracy of estimates, as well as
the quality of the prediction and the computational burden.

3.1. Setup

We simulated data according to the model specification in Section 2.1 with n = 500
and ni = 5 using inversion sampling. The pre-specified true parameter values are

β0 = 1, βt = 1.5, βT
long = (1, 2, 1, 2), βT

surv = (0.3, 0.5, 0.3, 0.5), α = 0.1 (25)

with variance components

σ = 0.1, Q =

(
τ2

0 0
0 τ2

t

)
, τ0 = 2, τt = 0.3. (26)

The entries of the covariate vectors xlongi and xsurvi were drawn independently from
the uniform distribution U ([−0.1, 0.1]). In addition to the informative covariates with
effects βlong and βsurv, the total set of covariates was expanded with a varying number
pnon-inf of non-informative noise variables. The baseline hazard was chosen as λ0(t) ≡ 1
and given the censoring mechanism described in Algorithm A1 depicted in Appendix B.
The chosen parameter values result in an average censoring rate of ≈ 50%. All of the
parameters were specified in a way to obtain reasonably distributed event times T .

Overall, we considered four scenarios with varying numbers of additional noise
variables pnon-inf yielding overall dimensions P ∈ {10, 25, 50, 100}. In each scenario, 100
independent data sets were generated and models were fitted using the various routines.
The results were then summarized over all 100 independent simulation runs.

3.2. Selection and Allocation

In order to address allocation, we considered the criteria of correctly allocated (CA)
and incorrectly allocated (IA) variables per predictor, as well as the share of false positives
(FPs). Precisely, CAlong is the share of longitudinal variables, which are correctly assigned
to the longitudinal predictor, and IAlong is the share of survival variables, which are falsely
assigned to the longitudinal predictor and CAsurv, IAsurv analogously. FPs, on the other
hand, denote the share of wrongly selected noise variables regardless of which predictor
they are assigned to.

Table 1 depicts allocation and selection properties obtained for the different simulation
scenarios. While, for the longitudinal predictor, variables get allocated perfectly, the
survival part shows less ideal but still satisfactory results. There are various possible
explanations for this behavior. On the one hand, the simulated signal is less strong for
the survival effects due to the chosen parameter values, which, in general, increases the
chance of false negatives. On the other hand, the longitudinal part of the likelihood carries
more information, as there are more longitudinal measurements available than event times,
which increases the risk of incorrect allocations. Finally, survival variables being incorrectly
allocated to the longitudinal predictor is inherently more probable than vice versa as the

Mathematics 2023, 11, 411 9 of 16

longitudinal predictor also appears in the survival sub-model and the model therefore
still accounts for the variables’ impact on the time-to-event outcome. While the allocation
properties are roughly constant with a varying number of dimensions, the false positives
rate clearly diminishes with more and more noise variables.

Table 1. Share of correctly allocated (CA) and incorrectly allocated (IA) variables for each predictor as
well, as false positive rate. Values are averaged over 100 independent simulation runs of each scenario.

P CAlong IAlong CAsurv IAsurv FP

10 1.00 0.20 0.76 0.00 0.58
25 1.00 0.15 0.78 0.00 0.12
50 1.00 0.14 0.77 0.00 0.05

100 1.00 0.10 0.76 0.00 0.02

3.3. Estimation Accuracy

The accuracy of coefficient estimation is shown in Table 2, separated for each sub-
model. We considered the mean squared error (mse) computed as

mselong = ‖θlong − θ̂long‖2, msesurv = ‖θsurv − θ̂surv‖2, (27)

where θlong = (β0, βt, βT
long)

T and θsurv = (λ, α, βT
surv)

T . The lower half of the table discards

all entries of the estimates β̂long and β̂surv referring to non-informative variables and thus
only measures the accuracy of the effects that are known to be informative.

It is evident that the accuracy of JM is heavily influenced by the number of noise
variables, whereas the routines relying on the allocation and selection mechanism by
JMalct stay fairly robust. As usual for regularization techniques, JMalct’s estimates for
informative effects are slightly biased due to the early stopping of the algorithm. The
combination JMalct+JM, however, stays unaffected by the number of noise variables and
is, at least for the longitudinal predictor, the most accurate. The main hindrance of this
approach is that the estimation accuracy of survival effects is slightly more influenced by
false negatives occurring in the selection mechanism, which is why the combination lags
behind its two competitors regarding precision for the survival sub-model.

Table 2. Mean squared error for longitudinal (mselong) and survival (msesurv) coefficients averaged
over 100 independent simulation runs. Regular parameter estimates are indicated by θ, whereas
θ−n.inf denotes the second half, where non-informative effects are neglected.

P JMalct JM JMalct+JM
mselong msesurv mselong msesurv mselong msesurv

θ 10 0.497 0.343 0.713 0.489 0.342 0.453
25 0.479 0.296 1.888 1.359 0.309 0.417
50 0.585 0.303 4.212 3.375 0.374 0.409

100 0.563 0.295 9.532 9.483 0.320 0.393

θ−n.inf 10 0.486 0.323 0.302 0.254 0.288 0.423
25 0.470 0.292 0.247 0.291 0.239 0.398
50 0.578 0.297 0.362 0.367 0.306 0.384

100 0.557 0.290 0.315 0.558 0.254 0.373

3.4. Predictive Performance

Boosting is a tool primarily designed for prediction, and thus the predictive perfor-
mance of JMalct and how it compares to established routines are of interest. Since our
underlying joint model focuses on the time-to-event outcome as the main endpoint, we

Mathematics 2023, 11, 411 10 of 16

evaluated the prediction accuracy regarding the predicted and actual event time based on
additional test data with ntest = 1000 individuals and ni = 5. We considered the loss

L(T, T̂) = | log T − log T̂|, T̂ = E[T], (28)

as the absolute deviation between the predicted and actual event time T̂ and T, respectively,
on a log-scale [33].

Figure 2 depicts the values of L over the varying numbers of additional noise vari-
ables. The prediction is comparable among the three routines in low-dimensional settings.
However, as expected, it worsens for JM when the dimensions increase. Both JMalct and
the combination JMalct+JM rely on the selection conducted by JMalct and hence produce
sparse models, which is why their quality of prediction stays fairly equal even in higher
dimensions.

1.
25

1.
35

1.
45

1.
55

P = 10

JMalct JM JMalct + JM

1.
3

1.
4

1.
5

1.
6

P = 25

JMalct JM JMalct + JM

1.
3

1.
4

1.
5

1.
6

P = 50

JMalct JM JMalct + JM

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8 P = 100

JMalct JM JMalct + JM

Figure 2. Comparison of the prediction error (L) of the survival part for the varying numbers of
non-informative noise variables.

3.5. Computational Effort

Table 3 shows the elapsed computation time measured in seconds, where each sim-
ulation run was carried out on a 2 x 2.66 GHz-6-Core Intel Xeon CPU (64GB RAM). Most
obviously, JM becomes tremendously more burdensome as the dimensions increase. The
constant or even a little decreasing computation times for JMalct over various dimensions
might be surprising at first, as component-wise procedures such as gradient boosting tend
to increase at least linearly in computation time with additional covariates. However, as
the overall stopping criterion is based on probing, the algorithm tends to stop earlier in
high-dimensional settings since more non-informative probes are available, increasing
the probability that one might get selected earlier in the process. Due to the sparsity ob-
tained by JMalct, the combination JMalct+JM also profits from the allocation and selection
mechanism regarding the computational effort, as JM runs considerably faster again.

Mathematics 2023, 11, 411 11 of 16

Table 3. Average computation times of the three approaches measured in seconds.

P JMalct JM JMalct+JM

10 92.69 97.44 149.19
25 88.80 339.41 151.65
50 86.92 1009.52 152.59

100 85.06 3517.76 146.26

3.6. Complexity

While a formulation of explicit complexity results for the JMalct routine is quite
technical in general, like that stated in Section 2.4, simulations can give insights toward how
the algorithm scales up with varying numbers of observations and covariates. Therefore,
we considered the same setup as above with different values for n and p and ran the JMalct
routine 100 times independently for mstop = 100 iterations without early stopping. Figure 3
depicts the averaged computation times for increasing values of n and p.

200 400 600 800 1000

5

10

15

20

25

Number of clusters n

t

20 40 60 80 100

2.0

2.5

3.0

3.5

4.0

Number of covariates p

t

Figure 3. Average JMalct run times for varying numbers of clusters n and covariates p. Dashed gray
lines depict the corresponding linear model fit. Left panel shows square root times to highlight the
quadratic relationship.

The left figure depicts square root computation times with p = 3 as fixed, and thus
reveals quadratically growing run times for increasing observations. On the other hand,
the run times clearly expose a linear relationship with the amount of total covariates and
n = 100 as fixed. This is to be expected, as further candidate variables simply add to the
inner loops of univariate base-learner fits and, thus, the algorithm is capable of fitting data
sets with almost arbitrary high dimensions.

4. 1994 AIDS Study

The 1994 AIDS data [34] were originally collected in order to compare two antiretrovi-
ral drugs based on a collective of HIV-positive patients. They include 1405 longitudinal
observations of 467 individuals, from which, 188 unfortunately died during the course
of the study. The main longitudinal outcome is each patient’s repeatedly measured CD4
cell counts. CD4 cells decline in HIV-positive patients and are a well-known proxy for
disease progression, and are therefore of high interest. Apart from the CD4 cell count as
the longitudinal outcome, death as the time-to-event outcome and time t itself, the four
additional baseline variables—drug (treatment group), gender, AZT (indicator of whether a
previous AZT therapy failed) and AIDS (indicator of whether AIDS is diagnosed)—were
observed. The structure of the data is depicted in Table 4.

Mathematics 2023, 11, 411 12 of 16

Table 4. Structure of the data with primary outcomes for the joint analysis in the three columns on
the left.

y T δ t Drug Gender AZT prevOI id

10.67 16.97 0 0 ddC male intolerance AIDS 1
8.43 16.97 0 6 ddC male intolerance AIDS 1
9.43 16.97 0 12 ddC male intolerance AIDS 1
6.32 19.00 0 0 ddI male intolerance noAIDS 2
8.12 19.00 0 6 ddI male intolerance noAIDS 2
4.58 19.00 0 12 ddI male intolerance noAIDS 2
5.00 19.00 0 18 ddI male intolerance noAIDS 2
3.46 18.53 0 0 ddI female intolerance AIDS 3
3.61 18.53 0 2 ddI female intolerance AIDS 3
6.16 18.53 1 6 ddI female intolerance AIDS 3

...
...

...
...

...
...

...
...

...

Figure 4 depicts the coefficient paths computed by the JMalct algorithm and the
corresponding allocation process. The variable AIDS is selected into the longitudinal sub-
model right away and frequently updated. This is not surprising, as the diagnosis of AIDS
is by definition partly linked to the CD4 cell count. The remaining variables drug and
gender were also allocated to the longitudinal sub-model by a smaller amount, whereas AZT
was selected into the survival predictor, indicating an increased risk of death for patients
with failed AZT therapy.

0 50 100 150 200

−
4

−
3

−
2

−
1

0

ηlong

C
oe

ffi
ci

en
ts

Number of boosting iterations
0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

ηsurv

C
oe

ffi
ci

en
ts

Number of boosting iterations

0

0

drug gender AZT AIDS

Figure 4. Coefficient progression in both sub-models for AIDS data. The variable AZT was assigned
to ηsurv, and the rest to ηlong.

5. Discussion and Outlook

Finding adequate data-driven allocation mechanisms for joint models is a very im-
portant task, as modeling possibilities increase exponentially with a growing number of
covariates. Until today, decisions about the specific model choice have to be made based
on background knowledge or by conducting a preliminary analysis, and both of these
approaches can be seen as rather unsatisfactory.

The JMalct algorithm combines recent findings from the field of gradient boosting to
construct a fast-performing allocation and selection mechanism for a joint model focusing
on time-to-event data as the primary outcome. A simulation study revealed that the

Mathematics 2023, 11, 411 13 of 16

selection and allocation mechanism yields promising results while preserving the well-
known advantages from gradient boosting. Therefore, it is advised to use the JMalct
algorithm in its current form in advance of the actual analysis in order to determine an
allocation of covariates, which is then fitted using convenient frameworks such as JM.

Possible ways of improving the accuracy of estimates and allocation properties re-
garding the survival sub-model could be based on additional weighting rules. As the
longitudinal part contributes substantially more to the likelihood due the higher number of
observations, weighting the two sub-models solely by different step lengths may not be
sufficient. Promising ideas are initial weightings of the sub-models using various maximum
likelihood estimations or focusing on a relative likelihood improvement in the selection
step.

Another aspects focuses on variable selection and tuning the algorithm via probing.
Although probing leads to fast runtimes and good selection properties, the procedure comes
with disadvantages. Especially in higher dimensions, the probability that one shadow
variable is informative simply by chance increases, leading to very early stopping. An
alternative could rely on stability selection [35,36], as shown to be helpful in other cases [37].

Furthermore, the difference in the proportion of falsely selected variables between the
longitudinal and survival sub-predictor could be an inherent joint modeling problem and
should also be subject of future analysis. Further research is also warranted on theoretical
insights, as it remains unclear if the existing findings on the consistency of boosting
algorithms [32,38] also hold for the adapted versions for boosting joint models.

In conclusion, the JMalct algorithm represents a promising statistical inference scheme
for joint models that also provides a starting point for a much wider framework of boosting
joint models, covering a great range of potential models and types of predictor effects.

Author Contributions: Conceptualization, C.G. and E.B.; methodology, C.G., A.M. and E.B.; software,
C.G. and E.B.; formal analysis, C.G.; investigation, C.G.; writing—original draft preparation, C.G.;
writing—review and editing, E.B. and A.M.; project administration, E.B.; funding acquisition, E.B. All
authors have read and agreed to the published version of the manuscript.

Funding: The work on this article was supported by the DFG (Number 426493614) and the Volkswa-
gen Foundation (Freigeist Fellowship).

Data Availability Statement: All code and data required to reproduce the finding of this article are
available.

Acknowledgments: The work on this article was supported by the DFG (Number 426493614) and
the Volkswagen Foundation (Freigeist Fellowship). We further acknowledge the support by the Open
Access Publication Funds of the University of Göttingen.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Correction Matrix C

Due to the separated updating process for the random effects, it may be necessary
to adjust the estimates for possible correlations with cluster-constant covariates using the
correction matrix C. The following derivation is a special case of the more general version
proposed in [28]. For the correction of the random intercepts γ̃0 = (γ01, . . . , γ0n)

T and
random slopes γ̃t = (γt1, . . . , γtn)T with the baseline covariates Xsurv defined in Section 2.4,
consider the residual generating matrix

CA = In − Xsurv(XT
survXsurv)

−1Xsurv (A1)

and subsequently CB = diag(CA, CA), so that the product (CB)γ̃, γ̃ = (γ̃T
0 , γ̃T

t)
T corrects

the random intercepts γ̃0 and slopes γ̃t for any covariates contained in the corresponding
matrix Xsurv by counting out the orthogonal projections of the given random effect esti-
mates on the subspace generated by the covariates Xsurv. This ensures that the coefficient

Mathematics 2023, 11, 411 14 of 16

estimate for the random effects is uncorrelated with any observed covariate. The final
correction matrix C is obtained by

C = P−1CBP, (A2)

where P is a permutation matrix mapping γ = (γ01, γt1, . . . , γ0n, γtn) to

Pγ = γ̃ (A3)

and thus accounts for the usual ordering of the random effects in mixed-model frameworks.

Appendix B. Simulation Algorithm

The following algorithm is used to generate data in Section 3.

Algorithm A1: simJM

• Choose integers n, ni and parameter values β0, βt, βlong, βsurv and α with variance components σ and Q.
Specify a baseline hazard λ0(t).

• Generate n · ni longitudinal measurement times mimicking yearly appointments the following way:

– Sample dij ∼ U ({1, . . . , 365}) and set t̃ij := (j− 1) · 365 + dij for i = 1, . . . , n
and j = 1, . . . , ni.

– For each i, shift observation times to t̃i1 = 0.
– Standardize time points to the unit interval by tij := t̃ij/(ni · 365).

• Generate covariate vectors xlongi, xsurvi for i = 1, . . . , n corresponding to the lengths of βlong and βsurv.

• Calculate the longitudinal response

yij = β0 + βttij + βT
longxlongi + γ0i + γtitij︸ ︷︷ ︸

ηlong(tij ,xlongi)

+εij (A4)

with εij ∼ N (0, σ2) and (γ0i, γti) ∼ N⊗2(0, Q). Define hazard functions

λi(t) = λ0(t) exp
(

βT
survxsurvi + αηlong(t, xlongi)

)
(A5)

as described in Section 2.1.

• Draw event times by generating random numbers ui ∼ U ([0, 1]) and setting

T∗i := F−1
i (u), Fi(t) = 1− exp

(
−
∫ t

0
λi(s)ds

)
, (A6)

according to inversion sampling.

• Censor by setting Ti := min(T∗i , tini) to obtain censored data with censoring indicator δi := 1(T∗i ≤ tini) and
receive the observed survival outcome (T , δ) = (Ti, δi)i=1,...,n.

• Delete all longitudinal observations corresponding to times tij > Ti for every i.

References
1. Wulfsohn, M.S.; Tsiatis, A.A. A Joint Model for Survival and Longitudinal Data Measured with Error. Biometrics 1997, 53, 330.

[CrossRef]
2. Rizopoulos, D. Joint Models for Longitudinal and Time-to-Event Data: With Applications in R; Chapman & Hall/CRC Biostatistics

Series; CRC Press: Boca Raton, FL, USA, 2012; Volume 6.

http://doi.org/10.2307/2533118

Mathematics 2023, 11, 411 15 of 16

3. Rizopoulos, D. JM: An R Package for the Joint Modelling of Longitudinal and Time-to-Event Data. J. Stat. Softw. 2010, 35, 1–33.
[CrossRef]

4. Philipson, P.; Sousa, I.; Diggle, P.J.; Williamson, P.; Kolamunnage-Dona, R.; Henderson, R.; Hickey, G.L. JoineR: Joint Modelling of
Repeated Measurements and Time-to-Event Data; R Package Version 1.2.6.; Springer: Berlin, Germany, 2018.

5. Rizopoulos, D. The R Package JMbayes for Fitting Joint Models for Longitudinal and Time-to-Event Data Using MCMC. J. Stat.
Softw. 2016, 72, 1–45. [CrossRef]

6. Freund, Y.; Schapire, R.E. Experiments with a new boosting algorithm. In Proceedings of the Thirteenth International Conference
on Machine Learning Theory, Bari, Italy, June 28–1 July 1996; Morgan Kaufmann: San Francisco, CA, USA, 1996; pp. 148–156.

7. Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput.
Syst. Sci. 1997, 55, 119–139. [CrossRef]

8. Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: A statistical view of boosting (with discussion). Ann. Stat.
2000, 28, 337–407. [CrossRef]

9. Bühlmann, P.; Hothorn, T. Boosting algorithms: Regularization, prediction and model fitting. Stat. Sci. 2007, 27, 477–505.
10. Mayr, A.; Binder, H.; Gefeller, O.; Schmid, M. The Evolution of Boosting Algorithms - From Machine Learning to Statistical

Modelling. Methods Inf. Med. 2014, 53, 419–427. [CrossRef] [PubMed]
11. Mayr, A.; Fenske, N.; Hofner, B.; Kneib, T.; Schmid, M. Generalized additive models for location, scale and shape for high

dimensional data-a flexible approach based on boosting. J. R. Stat. Soc. Ser. (Applied Stat.) 2012, 61, 403–427. [CrossRef]
12. Waldmann, E.; Taylor-Robinson, D.; Klein, N.; Kneib, T.; Pressler, T.; Schmid, M.; Mayr, A. Boosting joint models for longitudinal

and time-to-event data. Biom. J. 2017, 59, 1104–1121. [CrossRef]
13. Griesbach, C.; Groll, A.; Bergherr, E. Joint Modelling Approaches to Survival Analysis via Likelihood-Based Boosting Techniques.

Comput. Math. Methods Med. 2021, 2021, 4384035. [CrossRef]
14. Tutz, G.; Binder, H. Generalized Additive Models with Implicit Variable Selection by Likelihood-Based Boosting. Biometrics 2006,

62, 961–971. [CrossRef] [PubMed]
15. Rappl, A.; Mayr, A.; Waldmann, E. More than one way: Exploring the capabilities of different estimation approaches to joint

models for longitudinal and time-to-event outcomes. Int. J. Biostat. 2021, 18 , 127–149. [CrossRef] [PubMed]
16. He, Z.; Tu, W.; Wang, S.; Fu, H.; Yu, Z. Simultaneous Variable Selection for Joint Models of Longitudinal and Survival Outcomes.

Biometrics 2015, 71, 178–187. [CrossRef]
17. Chen, Y.; Wang, Y. Variable selection for joint models of multivariate longitudinal measurements and event time data. Stat. Med.

2017, 36, 3820–3829. [CrossRef] [PubMed]
18. Xie, Y.; He, Z.; Tu, W.; Yu, Z. Variable selection for joint models with time-varying coefficients. Stat. Methods Med. Res. 2019,

29, 309–322. [CrossRef]
19. Tang, A.M.; Zhao, X.; Tang, N.S. Bayesian variable selection and estimation in semiparametric joint models of multivariate

longitudinal and survival data. Biom. J. 2017, 59, 57–78. [CrossRef]
20. Andrinopoulou, E.R.; Rizopoulos, D. Bayesian shrinkage approach for a joint model of longitudinal and survival outcomes

assuming different association structures. Stat. Med. 2016, 35, 4813–4823. [CrossRef]
21. Yi, F.; Tang, N.; Sun, J. Simultaneous variable selection and estimation for joint models of longitudinal and failure time data with

interval censoring. Biometrics 2022, 78, 151–164. [CrossRef]
22. Thomas, J.; Mayr, A.; Bischl, B.; Schmid, M.; Smith, A.; Hofner, B. Gradient boosting for distributional regression: Faster tuning

and improved variable selection via noncyclical updates. Stat. Comput. 2017, 28, 673–687. [CrossRef]
23. Zhang, B.; Hepp, T.; Greven, S.; Bergherr, E. Adaptive Step-Length Selection in Gradient Boosting for Generalized Additive

Models for Location, Scale and Shape. Comput. Stat. 2022 , 37, 2295–2332. [CrossRef]
24. Griesbach, C.; Säfken, B.; Waldmann, E. Gradient boosting for linear mixed models. Int. J. Biostat. 2021, 17, 317–329. [CrossRef]

[PubMed]
25. Hepp, T.; Thomas, J.; Mayr, A.; Bischl, B. Probing for Sparse and Fast Variable Selection with Model-Based Boosting. Comput.

Math. Methods Med. 2017, 2017, 1421409.
26. Hofner, B. Variable Selection and Model Choice in Survival Models with Time-Varying Effects. Diploma Thesis, Ludwig-

Maximilians-Universität München, Munich, Germany, 2008.
27. Kneib, T.; Hothorn, T.; Tutz, G. Variable Selection and Model Choice in Geoadditive Regression Models. Biometrics 2009,

65, 626–634. [CrossRef] [PubMed]
28. Griesbach, C.; Groll, A.; Bergherr, E. Addressing cluster-constant covariates in mixed effects models via likelihood-based boosting

techniques. PLoS ONE 2021, 16, e0254178. [CrossRef] [PubMed]
29. Bühlmann, P.; Yu, B. Boosting With the L2 Loss. J. Am. Stat. Assoc. 2003, 98, 324–339. [CrossRef]
30. Bissantz, N.; Hohage, T.; Munk, A.; Ruymgaart, F. Convergence Rates of General Regularization Methods for Statistical Inverse

Problems and Applications. SIAM J. Numer. Anal. 2007, 45, 2610–2636. [CrossRef]
31. Yao, Y.; Rosasco, L.; Caponnetto, A. On Early Stopping in Gradient Descent Learning. Constr. Approx. 2007, 26, 289–315.

[CrossRef]
32. Bühlmann, P. Boosting for High-dimensional Linear Models. Ann. Stat. 2006, 34, 559–583. [CrossRef]
33. Korn, E.; Simon, R. Measures of explained variation for survival data. Stat. Med. 1990, 9, 487–503. [CrossRef]

http://dx.doi.org/10.18637/jss.v035.i09
http://dx.doi.org/10.18637/jss.v072.i07
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1214/aos/1016218223
http://dx.doi.org/10.3414/ME13-01-0122
http://www.ncbi.nlm.nih.gov/pubmed/25112367
http://dx.doi.org/10.1111/j.1467-9876.2011.01033.x
http://dx.doi.org/10.1002/bimj.201600158
http://dx.doi.org/10.1155/2021/4384035
http://dx.doi.org/10.1111/j.1541-0420.2006.00578.x
http://www.ncbi.nlm.nih.gov/pubmed/17156269
http://dx.doi.org/10.1515/ijb-2020-0067
http://www.ncbi.nlm.nih.gov/pubmed/33818032
http://dx.doi.org/10.1111/biom.12221
http://dx.doi.org/10.1002/sim.7391
http://www.ncbi.nlm.nih.gov/pubmed/28707701
http://dx.doi.org/10.1177/0962280219873125
http://dx.doi.org/10.1002/bimj.201500070
http://dx.doi.org/10.1002/sim.7027
http://dx.doi.org/10.1111/biom.13387
http://dx.doi.org/10.1007/s11222-017-9754-6
http://dx.doi.org/10.1007/s00180-022-01199-3
http://dx.doi.org/10.1515/ijb-2020-0136
http://www.ncbi.nlm.nih.gov/pubmed/34826371
http://dx.doi.org/10.1111/j.1541-0420.2008.01112.x
http://www.ncbi.nlm.nih.gov/pubmed/18759832
http://dx.doi.org/10.1371/journal.pone.0254178
http://www.ncbi.nlm.nih.gov/pubmed/34242316
http://dx.doi.org/10.1198/016214503000125
http://dx.doi.org/10.1137/060651884
http://dx.doi.org/10.1007/s00365-006-0663-2
http://dx.doi.org/10.1214/009053606000000092
http://dx.doi.org/10.1002/sim.4780090503

Mathematics 2023, 11, 411 16 of 16

34. Abrams, D.I.; Goldman, A.I.; Launer, C.; Korvick, J.A.; Neaton, J.D.; Crane, L.R.; Grodesky, M.; Wakefield, S.; Muth, K.;
Kornegay, S.; et al. A Comparative Trial of Didanosine or Zalcitabine after Treatment with Zidovudine in Patients with Human
Immunodeficiency Virus Infection. N. Engl. J. Med. 1994, 330, 657–662. [CrossRef]

35. Meinshausen, N.; Bühlmann, P. Stability selection. J. R. Stat. Soc. Ser. (Stat. Methodol.) 2010, 72, 417–473. [CrossRef]
36. Shah, R.D.; Samworth, R.J. Variable selection with error control: Another look at stability selection. J. R. Stat. Soc. Ser. (Stat.

Methodol.) 2012, 75, 55–80. [CrossRef]
37. Mayr, A.; Hofner, B.; Schmid, M. Boosting the discriminatory power of sparse survival models via optimization of the concordance

index and stability selection. BMC Bioinform. 2016, 17, 288. [CrossRef] [PubMed]
38. Zhang, T.; Yu, B. Boosting with early stopping: Convergence and consistency. Ann. Stat. 2005, 33, 1538–1579. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1056/NEJM199403103301001
http://dx.doi.org/10.1111/j.1467-9868.2010.00740.x
http://dx.doi.org/10.1111/j.1467-9868.2011.01034.x
http://dx.doi.org/10.1186/s12859-016-1149-8
http://www.ncbi.nlm.nih.gov/pubmed/27444890
http://dx.doi.org/10.1214/009053605000000255

	Introduction
	Methods
	Model Specification
	The JMboost Concept
	The JMalct Boosting Algorithm
	Computational Details of the JMalct Algorithm

	Simulation Study
	Setup
	Selection and Allocation
	Estimation Accuracy
	Predictive Performance
	Computational Effort
	Complexity

	1994 AIDS Study
	Discussion and Outlook
	Appendix A
	Appendix B
	References

