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Abstract: Coated functionally graded materials (FGMs) are used in several industrial structures such
as turbine blades, cutting tools, and aircraft engines. Given the need for analytical and numerical
analysis of these complex structures, a mathematical model of tricoated FG structures is presented for
the first time in this paper. The objective of this work was to analyze analytically the buckling problem
of unidirectional (1D), bidirectional (2D), and tridirectional (3D) coated FG spherical nanoshells
resting on an orthotropic elastic foundation subjected to biaxial loads. Based on the generalized
field of displacement, a 2D higher-order shear deformation theory was proposed by reducing the
number of displacement variables from five to four variables for specific geometry cases. The nonlocal
strain gradient theory was employed to capture the size-dependent and microstructure effects. The
equilibrium equations were performed by applying the principle of the virtual work, and the obtained
differential equations were solved by applying the Galerkin technique to cover all possible boundary
conditions. The proposed elastic foundation was defined based on three parameters: one spring
constant and two shear parameters referring to the orthotropy directions. A detailed parametric
analysis was carried out to highlight the impact of various schemes of coated FGMs, gradient material
distribution, length scale parameter (nonlocal), material scale parameter (gradient), geometry of the
nanoshell, and variation in the orthotropic elastic foundation on the critical buckling loads.

Keywords: coated functionally graded shell; biaxial loads; spherical nanoshells; four-variable HSDT;
nonlocal strain gradient theory

MSC: 74E30

1. Introduction

Among the fundamental engineering structures, shells have numerous applications in
many fields such as aerospace, automobile, pressure vessel, marine ship, turbomachinery,
etc. [1]. A spherical shell is a doubly curved shell with constant curvature in the merid-
ional and circumferential directions and two radii of equal curvature [2]. A functionally
graded material (FGM) is an advanced composite of ceramic/metal constituents with a
continuous gradation through spatial directions according to the design specifications and
operational conditions [3]. As the dimensions of a structure approach the size of its material
microstructure, size effects that are ignored by classical continuum are observed. Hence, to
envision the mechanical responses of structures down to the nano size accurately, advanced
and modified continuum theories have been applied [4,5]. Nguyen et al. [6] improved the
load-carrying capacity and strength of membrane structures by exploiting the advantages
of an FG carbon-nanotube-reinforced composite (CNTRC) material.
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Ansari et al. [7] presented Mindlin’s strain gradient theory to consider the size-
dependent effect on the vibration and instability of conveying fluid FG nanoshells under
thermo-mechanical loads. Kar and Panda [8] studied the nonlinear thermomechanical
deformation behavior of an FG shallow spherical shell panel using Voigt’s micromechanical
rule. Fattahi and Sahmani [9] illustrated the size-dependent impact on the nonlinear insta-
bility response of FG-CNTRC nanoshells with temperature-dependent material properties
under hydrostatic pressure and heat conduction. Faleh et al. [10] studied the forced vibra-
tion of a porous FG nonlocal strain gradient theory nanoshell rested on an elastic foundation
and exposed to a transverse partial dynamic load with a specific frequency of excitation.
Barati [11] examined the vibration response of even and uneven porous FG nanoshells in
the frame of nonlocal strain gradient elasticity. Sahmani and Aghdam [12] analyzed the
axial buckling and postbuckling response of cylindrical FG nanoshells in the presence of sur-
face free-energy effects by using a perturbation technique. Blooriyan et al. [13] developed
an analytical solution to explore the pre/postbuckling responses of circular cylindrical
nanoscale shells under thermomechanical loads in the framework of Gurtin–Murdoch
surface elasticity theory. Karami et al. [14] studied the elastic bulk wave characteristics
of prestressed FG anisotropic bi-Helmholtz nonlocal strain gradient nanoshells in a mag-
netic field. Lu et al. [15] explored analytically the vibration response of FG cylindrical
nonlocal strain gradient nanoshells that incorporated surface effects using first-order shear
deformation theory. Safarpour et al. [16] investigated the size-dependent effect on the
thermal buckling and free and forced vibration of an FG multilayer composite cylindrical
shell resting on an elastic foundation. Sahmani et al. [17] developed a surface elastic shell
model by incorporating modal interactions to study the nonlinear primary resonance of
nanoshells by using a multiple-timescale technique. Forsat et al. [18] studied the transient
vibrational response of a porous FG cylindrical nonlocal strain gradient nanoshell under
different impulsive loadings by using an inverse Laplace transform technique.

Karami and Shahsavari [19] studied the forced resonant vibration response of graphene-
nanoplatelet-reinforced FG polymer composite doubly curved nonlocal strain gradient
theory nanoshells. Karami and Janghorban [20] studied analytically the static bending
and buckling of a quasi-3D FG doubly curved nonlocal and strain gradient nanoshell.
Li et al. [21] illustrated analytically the surface stress influence on the nonlinear free vibra-
tions of FG nanoshells in the presence of modal interaction via the Galerkin technique.
Dindarloo and Zenkour [22] applied nonlocal strain gradient theory to present the size-
dependent effect on the bending response of FG spherical nanoshells exposed to a thermal
environment. Arefi and Talkhunche [23] studied the vibration responses of an FG cylindri-
cal nanoshell using the higher-order shear deformation theory. Cao et al. [24] considered
analytically the free vibration of 3D FG nonlocal nanoplates and nanoshells by using the
Galerkin solution method. Heidari et al. [25] presented the impact of distributed piezo-
electric segments on static critical buckling of an FG cylindrical micro/nanoshell based on
Navier’s technique. Zou and Dindarloo [26] studied the static response of FG cylindrical
nonlocal elastic nanoshells in a thermal environment by using the Galerkin solution method.
Arefi et al. [27] used nonlocal elasticity theory and two-variable sinusoidal shear deforma-
tion theory to investigate the bending response of FG composite doubly curved nanoshells
with thickness stretching. Daikh et al. [28] developed a comprehensive study of the static
deflection and buckling stability of axially FG carbon-nanotube-reinforced composite (FG-
CNTRC) plates with temperature-dependent material properties. Ghandourah et al. [29]
studied the bending and buckling of FG-CNTRC laminated hyperbolic higher-order shear
deformation plates by using quasi-3D nonlocal strain gradient theory. Shi et al. [30] ex-
amined the statics and dynamics of an electro-thermomechanically porous FG modified
couple-stress nanoshell conveying a fluid flow under a temperature gradient and a uni-
form electrical field. Melaibari et al. [31] examined analytically the dynamic behavior of
randomly oriented FG-CNTRC laminated shells with different geometries. Yang et al. [32]
investigated the static and dynamic stability analyses of an FG-CRNC cylindrical shell
subjected to a non-normal boundary condition with one generatrix clamped.
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The above review demonstrated that the studying of buckling response of coated FG
spherical nanoshells rested on an orthotropic elastic medium has not been considered before.
Therefore, this study considered the modeling, simulation, and investigation of buckling
response for this problem. The rest of the article is organized as following: Section 2
presents the geometrical modeling and material distribution function. Basic equations of
the kinematics/displacement field, constitutive equations, modified continuum theory,
and equilibrium equations are developed in Section 3. The analytical solution is presented
in Section 4 and Appendix A. The numerical results used to investigate the effects of the
material distribution, geometrical parameters, nanoscale and microstructure scale, and
elastic foundations on the buckling response are discussed in Section 5. The conclusions
and main points are summarized in Section 6.

2. Geometrical Modeling and Material Distribution Functions

We constructed a model of an FG shell in the spherical coordinate system (x, y, z) of
thickness h and width a × b as shown in Figure 1. The principal radii of curvature of the
mid-plane was Rx in the x direction and Ry in the y direction. The shell was composed of
metal, and the ceramic and material properties were graded continuously from the edges
to the core. Two types of ceramic/metal distribution are presented in this study: hard core
(HC) (for ceramics core) and soft core (SC) (for metal core) FGMs. Each FGM type had five
schemes (FG-A, FG-B, FG-C, FG-D, and FG-E) as shown in Figures 2 and 3. The effective
mechanical properties could be portrayed by the law of mixture as [33]:

P(x, y, z) = Pm + (Pc − Pm)V(x, y, z) (1)

where Pm and Pc are the corresponding mechanical properties of the metal and the ceramic,
respectively; these were related to the temperature of the environment. The volume fraction
of the ceramic phase V(x, y, z) in the x, y, and z directions can be expressed as:

V(x) =
[(
|2x−a|

a

)p
− 1
]

V(x) =
[(
|2y−b|

b

)k
− 1
]

V(z) =
[(
|2z|

h

)e
− 1
] (2)

where p, k, and e are the inhomogeneity indexes in the x, y, and z directions respectively.
For the HC-coated functionally graded shell, the total volume fraction can be given as:

V(x, y, z) = V(x)V(y)V(z) (3)

and for the SC-coated FG shell as:

V(x, y, z) = 1−V(x)V(y)V(z) (4)
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3. Basic Equations
3.1. Generalized Higher-Order Shear Deformation Theory

The displacement field is based on the classical generalized higher-order shear de-
formation theory (HSDT), which contains five displacements variables that can be given
by [4]:

u(x, y, z) =
(

1 + z
Rx

)
u− z ∂w

∂x + f (z)ψx

v(x, y, z) =
(

1 + z
Ry

)
v− z ∂w

∂y + f (z)ψy

w(x, y, z) = w

(5)

where u, v, and w are the displacement components along the x, y, and z directions,
respectively; and ψx and ψy are the rotations of the transverse normal around the x and
y axes, respectively. f (z) presents a shape function that defines the variation in the shear
distribution along the composite shell thickness:

f (z) = 5hatan
( z

h

)
− 4z (6)

g(z) = f ′(z) (7)

3.2. Four-Variable Higher-Order Shear Deformation Theory

For special cases in which the rotations ψx and ψy in the x and y directions are the
same, a new field of displacement was proposed by integrating these rotations into one
“ψ”. The assumption of the proposed field of displacement is given as follows:
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• The thickness h of the FG shell is uniform.
• The material properties of the FG shell are symmetric with respect to the midplane

(x, y, 0).
• The opposite boundary conditions must be the same (e.g., SSSS, CCCC, and CCSS).

Taking into account the above assumptions, the number of the unknowns of the
displacement field is reduced from five to four unknowns as:

u(x, y, z) =
(

1 + z
Rx

)
u− z ∂w

∂x − f (z) ∂ψ
∂x

v(x, y, z) =
(

1 + z
Ry

)
v− z ∂w

∂y − f (z) ∂ψ
∂y

w(x, y, z) = w

(8)

The normal and shear strains at any generic point through the domain of the shell can
be stated as:

εxx
εyy
εzz
γxy
γyz
γxz


=


u,x + w/Rx −w,xx ψ,xx 0 0
v,y + w/Ry −w,yy ψ,yy 0 0

v,x + u,y −2w,xy −2ψ,xy 0 0
0 0 0 φ,y − ψ,y 0
0 0 0 φ,x − ψ,x 0




1
z

f (z)
f ′(z)
f ′′ (z)

 (9)

where φ is the slope of transverse displacement w. By taking into consideration the small-
scale effect, the nonlocal strain gradient constitutive stress–strain relations are expressed by:

[
1− µ∇2

]


σxx
σyy
τyz
τxz
τxy

 =
[
1− λ∇2

]


Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q44 0 0
0 0 0 Q55 0
0 0 0 0 Q66




εxx
εyy
γyz
γxz
γxy

 (10)

where ∇2 is the Laplacian operator
(
∇2 = ∂2

∂x2 +
∂2

∂y2

)
, µ = (ea)2, and λ = l2, in which ea

and l capture the nonlocal effects and the strain gradient effects, respectively. The material
constants Qij are expressed as [14]:

Q11 = Q22 = E(x,y,z)
1−υ2

Q12 = υQ11

Q44 = Q55 = Q66 = E(x,y,z)
2(1+υ)

(11)

where E(x, y, z) and υ are Young’s modulus and Poisson’s coefficient, respectively. To
obtain the equilibrium equations of the coated FG nanoshell, the variational principle was
employed. By considering the action of both the biaxial loadings and the elastic foundation,
the strain energy of the coated FG nanoshell can be determined as:

δU =
∫
A

[
Nxx

∂u
∂x −Mxx

∂2w
∂x2 − Sxx

∂2ψ

∂x2 + Nyy
∂v
∂y −Myy

∂2w
∂y2 − Syy

∂2ψ

∂y2

+Nxy

(
∂u
∂y + ∂v

∂x

)
− 2Mxy

∂2w
∂x∂y − 2Sxy

∂2ψ
∂x∂y + Nyz

(
∂φ
∂y −

∂ψ
∂y

)
+ Nxz

(
∂φ
∂x −

∂ψ
∂x

)
− feδw− N0

xx
∂w
∂x

∂δw
∂x + N0

yy
∂w
∂y

∂δw
∂y

] (12)

where N, M, and S denote the force, the moment resultants, and the additional moment
resultants, respectively; and N0

xx and N0
yy are the axial applied mechanical loadings in the

x-direction and y-direction, respectively.



Mathematics 2023, 11, 409 6 of 25

The proposed elastic foundation fe was defined based on three parameters (one
spring constant and two shear parameters) that referred to the orthotropy directions as an
extension of Pasternak model [34]:

fe = kw(w + f ′(z)φ)− Gη

[
cos2 θ ∂2w

∂x2 + 2 cos θ· sin θ ∂2w
∂x∂y + sin2 θ ∂2w

∂y2

]
−Gξ

[
sin2 θ ∂2w

∂x2 − 2 sin θ· cos θ ∂2w
∂x∂y + cos2 θ ∂2w

∂y2

] (13)

where kw is the modulus of the subgrade reaction (elastic coefficient of Winkler founda-
tion); Gη and Gξ correspond to the shear foundation parameters in the η and ξ directions,
respectively; and θ represents the orthotropy direction.

The force and moment resultants could be portrayed as:

{
Nij, Mij, Sij

}
=
∫
{1, z, f (z)}σijdxdydz, i, j = x, y (14)

Then, the equilibrium equations of the coated FG-shell based were derived as follows:

δu : ∂Nxx
∂x +

∂Nxy
∂y = 0

δv : ∂Nxy
∂x +

∂Nyy
∂y = 0

δw : ∂2 Mxx
∂x2 + 2 ∂2 Mxy

∂x∂y +
∂2 Myy

∂y2 − fe + N0
xx

∂2w0
∂x2 + N0

yy
∂2w0
∂y2 = 0

δψ : ∂2Sxx
∂x2 +

∂2Syy
∂y2 + 2 ∂2Sxy

∂x∂y −
∂Nxz

∂x −
∂Nyz

∂y = 0

(15)

By inserting the stress/strain relations into the force and moment resultants given
in Equation (15), the equilibrium equations of the coated FG shells can be transformed
as follows:

(
1− λ∇2

)A11
∂2u
∂x2 + A66

∂2u
∂y2 + (A12 + A66)

∂2v
∂x∂y +

(
A11
Rx

+ A12
Ry

)
∂w
∂x − B11

∂3w
∂x3

−(B12 + 2B66)
∂3w

∂x∂y2 − C11
∂3ψ

∂x3 − (C11 + 2C66)
∂3ψ

∂x∂y2

 = 0 (16)

(
1− λ∇2

) (A12 + A66)
∂2u

∂x∂y + A22
∂2v
∂y2 + A66

∂2v
∂x2 +

(
A12
Rx

+ A22
Ry

)
∂w
∂x

−(B12 + 2B66)
∂3w

∂x2∂y − B22
∂3w
∂y3 − (C12 + 2C66)

∂3ψ

∂x2∂y − C22
∂3ψ

∂y3

 = 0 (17)

(
1− λ∇2

)


B11
∂3u
∂x3 + (B12 + 2B66)

∂3u
∂x∂y2 −

(
A11
Rx

+ A12
Ry

)
∂u0
∂x + (B12 + 2B66)

∂3v
∂x2∂y + B22

∂3v
∂y3 −

(
A12
Rx

+ A22
Ry

)
∂v0
∂y

+
(

2B11
Rx

+ 2B12
Ry

)
∂2w
∂x2 − D11

∂4w
∂x4 − (2D12 + 4D66)

∂4w
∂x2∂y2 − D22

∂4w
∂y4 +

(
2B12
Rx

+ 2B22
Ry

)
∂2w
∂y2

−E11
∂4ψ

∂x4 − 2(E12 + 2E66)
∂4ψ

∂x2∂y2 − E22
∂4ψ

∂y4 −
(

A11
R2

x
+ 2 A12

Rx Ry
+ A22

R2
y

)
w0 +

(
C11
Rx

+ C12
Ry

)
∂2ψ

∂x2


+
(

C12
Rx

+ C22
Ry

)
∂2ψ
∂y2 +

(
1− µ∇2)[N0

xx
∂2w
∂x2 + N0

yy
∂2w0
∂y2 − fe

]
= 0

(18)

(
1− λ∇2

)


C11
∂3u
∂x3 + (C12 + 2C66)

∂3u
∂x∂y2 + (C12 + 2C66)

∂3v
∂x2∂y + C22

∂3v
∂y3 − E11

∂4w0
∂x4

−2(E12 + 2E66)
∂4w0

∂x2∂y2 − E22
∂4w0
∂x4 − F11

∂4ψ

∂x4 − 2(F12 + 2F66)
∂4ψ

∂x2∂y2

−F22
∂4ψ

∂y4 + J44
∂2ψ

∂y2 + J55
∂2ψ

∂x2 +
(

C11
Rx

+ C12
Ry

)
∂2w
∂x2 +

(
C12
Rx

+ C22
Ry

)
∂2w
∂y2

 = 0 (19)

The stiffnesses coefficients can be expressed as:{
Aij, Bij, Cij, Dij, Eij, Fij

}
=
∫

Qij

{
1, z, f (z), z2, z f (z), ( f (z))2

}
dxdydz, (i, j = 1, 2, 6)

Jii =
∫

Qii( f ′(z))2dxdydz, (i = 4, 5)
(20)
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4. Analytical Solution

Based on the proposed four-variable HSDT in conjunction with nonlocal strain gradi-
ent theory, an analytical solution was developed by employing a Galerkin approach for
various boundary conditions. Galerkin expressions of displacements can be stated as [31]:

u0 =
∞
∑

m=1

∞
∑

n=1
Umn

∂Xm(x)
∂x Yn(y)

v0 =
∞
∑

m=1

∞
∑

n=1
VmnXm(x) ∂Yn(y)

∂y

{w0, ψ} =
∞
∑

m=1

∞
∑

n=1
{Wmn, Ψmn}Xm(x)Yn(y)

(21)

where Umn, Vmn, Wmn, and Ψmn are arbitrary parameters; and m and n are mode num-
bers (m = n = 1). The functions Xm(x) and Yn(y) that satisfy the simply supported and
clamped boundary conditions are expressed in Table 1.

Table 1. The admissible functions Xm(x) and Yn(y) for different boundary conditions.

Boundary Conditions Functions Xm and Yn

At x = 0, a At y = 0, b Xm(x) Yn(y)

SSSS Xm(0) = X′′m(0) = 0
Xm(a) = X′′m(a) = 0

Yn(0) = Y′′n (0) = 0
Yn(b) = Y′′n (b) = 0 sin(αx) sin(βy)

CCCC Xm(0) = X′m(0) = 0
Xm(a) = X′′m(a) = 0

Yn(0) = Y′′n (0) = 0
Yn(b) = Y′′n (b) = 0 sin2(αx) sin2(βy)

CCSS Xm(0) = X′m(0) = 0
Xm(a) = X′′m(a) = 0

Yn(0) = Y′n(0) = 0
Yn(b) = Y′′n (b) = 0 sin(αx)[cos(αx)− 1] sin(βy)[cos(βy)− 1]

Note: α = mπ/a and β = nπ/b.

By inserting Equation (21) into Equations (16)–(19), the following is obtained:

[K]4×4


Umn
Vmn
Wmn
Ψmn

 =


0
0
0
0

 (22)

The elements Kij of the matrix [K] are expressed in detail in Appendix A.

5. Numerical Results

Consider a spherical FG shell composed of a mixture of metal and ceramic subjected
to an in-plane load in two directions (biaxial loads)

(
N0

xx = χ1Ncr, N0
yy = χ2Ncr,

)
. χ1

and χ2 are the intensities of the applied loads in the x and y directions, respectively. The
combination of materials consists of aluminum and alumina (Al/Al2O3) in the ambient
temperature with the following material properties:

Aluminum (Al): Em = 70 Gpa and υm = 0.3; and alumina (Al2O3): Ec = 380 Gpa and
υc = 0.3.

The dimensionless critical buckling load N in function of the dimensional buckling
load Ncr is defined by:

N =
Ncra

102Emh3 (23)

5.1. Comparison Studies

A comparison was carried out for the simply supported ceramic rectangular plate(
Rx/a = Ry/b = ∞, p = k = e = 0

)
subjected to biaxial in-plane loadings. Table 2 shows

the comparisons of the critical buckling loads obtained using the present theory with those
given by Thai and Choi [35] based on the polynomial HSDT. It can be seen that the present
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results were in excellent agreement with those obtained by Thai and Choi [35] for all values
of the aspect ratio b/a and the thickness ratio a/h.

Table 2. Comparison of the dimensionless critical buckling loads for simply supported Al2O3 ceramic
plates (p = k = e = 0 and Rx/a = Ry/b = ∞ ).

a/b Theories
N

a/h=5 a/h=10 a/h=20 a/h=50 a/h=100

0.5
Thai and Choi [35] 5.3762 5.9243 6.0794 6.1244 6.1308

Present 5.3774 5.9246 6.0795 6.1244 6.1308

1
Thai and Choi [35] 8.0105 9.2893 9.6764 9.7907 9.8073

Present 8.0135 9.2900 9.6766 9.7907 9.8073

1.5
Thai and Choi [35] 11.6820 14.6084 15.5887 15.8876 15.9312

Present 11.6895 14.6105 15.5892 15.8876 15.9312

2
Thai and Choi [35] 15.7235 21.5050 23.6970 24.3944 24.4974

Present 15.7400 21.5097 23.6983 24.3946 24.4975

5.2. Effects of Material Distribution

The influence of the ceramic/metal combination by varying the material inhomogene-
ity parameters p, k, and e is shown in Table 3. The five FG shell schemes were examined.
The FG-B and FG-C distribution patterns were bidirectional; this can explain, as shown
in Table 2, that one of the material inhomogeneity parameters p, k, and e was neglected,
whereas for the unidirectional FG-D and FG-E distribution patterns, two material inho-
mogeneity parameters were neglected. For example, the parameter p was neglected for
the FG bidirectional coated (bicoated) shells due to the absence of the gradual distribution
of materials through the thickness of the shell. The same applied to the FG-C shells by
neglecting the effect of the parameter e, whereas the parameters “k, e” and “p, e” were
neglected for the case of the FG-D and FG-E patterns, respectively, due to the unidirectional
distribution of materials.

To understand more about the combination of the gradient materials that was related
to the inhomogeneity parameters p, k, and e, Figure 4 was plotted to present the ceramic
constituent proportion (%) in the various coated FG structures. This will help to explain
the response of the mechanical nanoshells in the next analysis.

Table 3. Dimensionless critical buckling load N of FG shells versus exponents p, k, and e(
SSSS. R = 5, b = a = 10h and µ = λ = Gζ = Gη = Kw = 0

)
p k e

N Hard Core N Soft Core

FG-A FG-B FG-C FG-D FG-E FG-A FG- B FG-C FG-D FG-E

2

2
2 2.5031 3.9768 3.0811 3.9472 5.2953 6.0809 4.6360 5.4681 4.4814 3.3175
5 2.7922 4.6360 3.0811 3.9472 5.2953 5.7767 3.9768 5.4681 4.4814 3.3175

10 2.9235 4.9357 3.0811 3.9472 5.2953 5.6371 3.6771 5.4681 4.4814 3.3175

5
2 2.7922 4.6360 3.5142 3.9472 6.2842 5.7767 3.9768 4.9913 4.4814 2.3287
5 3.1533 5.4601 3.5142 3.9472 6.2842 5.3900 3.1527 4.9913 4.4814 2.3287

10 3.3174 5.8347 3.5142 3.9472 6.2842 5.2107 2.7781 4.9913 4.4814 2.3287

10
2 2.9235 4.9357 3.7110 3.9472 6.7337 5.6371 3.6771 4.7655 4.4814 1.8792
5 3.3174 5.8347 3.7110 3.9472 6.7337 5.2107 2.7781 4.7655 4.4814 1.8792

10 3.4963 6.2433 3.7110 3.9472 6.7337 5.0115 2.3695 4.7655 4.4814 1.8792
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Table 3. Cont.

p k e
N Hard Core N Soft Core

FG-A FG-B FG-C FG-D FG-E FG-A FG- B FG-C FG-D FG-E

5

2
2 3.0731 3.9768 3.9382 5.2354 5.2953 5.5250 4.6360 4.6407 3.2550 3.3175
5 3.5057 4.6360 3.9382 5.2354 5.2953 5.0844 3.9768 4.6407 3.2550 3.3175

10 3.7023 4.9357 3.9382 5.2354 5.2953 4.8832 3.6771 4.6407 3.2550 3.3175

5
2 3.5057 4.6360 4.5869 5.2354 6.2842 5.0844 3.9768 3.9645 3.2550 2.3287
5 4.0463 5.4601 4.5869 5.2354 6.2842 4.5291 3.1527 3.9645 3.2550 2.3287

10 4.2920 5.8347 4.5869 5.2354 6.2842 4.2741 2.7781 3.9645 3.2550 2.3287

10
2 3.7023 4.9357 4.8817 5.2354 6.7337 4.8832 3.6771 3.6488 3.2550 1.8792
5 4.2920 5.8347 4.8817 5.2354 6.7337 4.2741 2.7781 3.6488 3.2550 1.8792

10 4.5601 6.2433 4.8817 5.2354 6.7337 3.9928 2.3695 3.6488 3.2550 1.8792

10

2
2 3.4254 3.9768 4.4676 6.0308 5.2953 5.1816 4.6360 4.1316 2.5294 3.3175
5 3.9465 4.6360 4.4676 6.0308 5.2953 4.6573 3.9768 4.1316 2.5294 3.3175

10 4.1834 4.9357 4.4676 6.0308 5.2953 4.4185 3.6771 4.1316 2.5294 3.3175

5
2 3.9465 4.6360 5.2492 6.0308 6.2842 4.6573 3.9768 3.3385 2.5294 2.3287
5 4.5979 5.4601 5.2492 6.0308 6.2842 3.9999 3.1527 3.3385 2.5294 2.3287

10 4.8940 5.8347 5.2492 6.0308 6.2842 3.7000 2.7781 3.3385 2.5294 2.3287

10
2 4.1834 4.9357 5.6045 6.0308 6.7337 4.4185 3.6771 2.9741 2.5294 1.8792
5 4.8940 5.8347 5.6045 6.0308 6.7337 3.7000 2.7781 2.9741 2.5294 1.8792

10 5.2169 6.2433 5.6045 6.0308 6.7337 3.3714 2.3695 2.9741 2.5294 1.8792
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Figure 4. The proportion of ceramic (%) in various types of FG structures (p = k = e).

Figure 5 plots the variation in the critical buckling load N of various configurations
of coated FG shells influenced by the various inhomogeneity material exponents p, k,
and e (p = k = e). The case of p = k = e = 0 for the hard core shells meant that the shells
were fully metal, while for the soft core shells, they were fully ceramic. For the hard core
coated FG shells, it was seen that the buckling loads increased due to the increase in the
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various material exponents p, k, and e wherever the FG shell scheme was. The maximum
and the minimum critical buckling load values were for the b-coated FG-E shell and the
tridirectional coated (tricoated) FG-A shell, respectively. The distribution of the materials in
conjunction with the proportion of the materials played an important role in the response
of the FG shell; this could explain the low stiffness of the FG-A shell and therefore the high
buckling load. In the same case, the proportion of the ceramic was very high in the entire
shell compared to the other shells (See Figure 4), and the top and bottom surfaces were
fully ceramic. The inverse response was observed for the soft core shells.
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Figure 5. Dimensionless critical buckling load N of FG shells for various material exponents p, k, and
e
(
SSSS, R = 5, b = a = 10h, µ = λ = Gζ = Gη = Kw = 0

)
.

5.3. Effects of Geometrical Parameters and the Extensity of the Applied Loads

The effects of the radius of curvature “R”, the thickness and aspect ratios “a/h” and
“b/a”, and different boundary conditions on the various types of coated FG shells are
presented in Tables 4–6, respectively, and for further clarification, the obtained results were
translated into Figures 6–8.

The impact of the radius of curvature ratio Rx/a (Rx = Ry) and various coating
schemes on the buckling response of the hard core or soft core coated shells is plotted in
Figure 6. It should be noted that an increase in the radius of curvature R necessarily meant
that the shell gradually lost its curvature until the shell became a plate (R = ∞). As shown
in Figure 6, the values of the critical buckling loads were reduced by the increase in the
radius of curvature for both the hard core and soft core shells. The effect of the ratio Rx/a
was neglected for values more than 18.

In Figure 7, the action of the side-to-thickness “a/h” and aspect “b/a” ratios on the
buckling loads of various patterns of simply supported soft core coated FG shells is plotted.
It is clear that the increase in both the aspect “b/a” and side-to-thickness “a/h” ratios
increased the dimensionless critical loads.

The impact of the intensity χ2 of the axially applied load on the dimensionless critical
buckling load N of the coated FG shells is presented in Figure 8. It can be seen that for all
of the coated shell types, the increase in the intensity of the applied loads led to a decrease
in the critical buckling load.



Mathematics 2023, 11, 409 11 of 25

Table 4. Dimensionless critical buckling load N of FG shells for various radii of curvature(
SSSS. b = a = 10h. µ = λ = Gζ = Gη = Kw = 0

)
.

R p, k, e
N Hard Core N Soft Core

FG-A FG-B FG-C FG-D FG-E FG-A FG-B FG-C FG-D FG-E

5
2 2.5031 3.9768 3.0811 3.9472 5.2953 6.0809 4.6360 5.4681 4.4814 3.3175
5 4.0463 5.4601 4.5869 5.2354 6.2842 4.5291 3.1527 3.9645 3.2550 2.3287
10 5.2169 6.2433 5.6045 6.0308 6.7337 3.3714 2.3695 2.9741 2.5294 1.8792

10
2 2.2571 3.6610 2.7653 3.5267 4.8748 5.6429 4.2679 5.1000 4.2180 3.0541
5 3.6673 5.0265 4.1533 4.7364 5.7852 4.2242 2.9024 3.7141 3.0701 2.1437
10 4.7566 5.7476 5.1087 5.4961 6.1990 3.1479 2.1814 2.7859 2.3802 1.7299

20
2 2.1956 3.5821 2.6864 3.4216 4.7697 5.5335 4.1759 5.0079 4.1521 2.9882
5 3.5725 4.9181 4.0449 4.6117 5.6604 4.1480 2.8398 3.6515 3.0239 2.0975
10 4.6415 5.6236 4.9848 5.3624 6.0653 3.0920 2.1343 2.7389 2.3429 1.6926

50
2 2.1784 3.5600 2.6643 3.3921 4.7403 5.5028 4.1501 4.9822 4.1337 2.9698
5 3.5460 4.8878 4.0145 4.5768 5.6255 4.1267 2.8223 3.6340 3.0109 2.0846
10 4.6093 5.5889 4.9501 5.3250 6.0279 3.0763 2.1212 2.7257 2.3324 1.6822

Inf.
2 2.1751 3.5557 2.6600 3.3865 4.7347 5.4970 4.1452 4.9772 4.1301 2.9663
5 3.5409 4.8820 4.0088 4.5701 5.6188 4.1226 2.8189 3.6307 3.0085 2.0821
10 4.6031 5.5823 4.9435 5.3179 6.0207 3.0734 2.1186 2.7232 2.3304 1.6802

Table 5. Dimensionless critical buckling load N of FG shells versus the aspect and the thickness ratios(
SSSS, p = k = e = 2, R = 5, µ = λ = Gζ = Gη = Kw = 0

)
.

a/h b/a
N Hard Core N Soft Core

FG-A FG-B FG-C FG-D FG-E FG-A FG-B FG-C FG-D FG-E

5

0.5 2.0494 3.0425 2.5433 3.2787 4.0513 4.4176 3.5469 3.7871 2.6684 2.5382
1 2.0338 3.1724 2.5059 3.2113 4.2242 4.7605 3.6983 4.1995 3.2154 2.6465
2 2.6661 4.2377 3.2758 4.1878 5.6427 6.4389 4.9402 5.7433 4.5493 3.5352
3 3.5344 5.6555 4.3373 5.5385 7.5306 8.6245 6.5931 7.7154 6.1625 4.7180

10

0.5 2.6661 4.2377 3.2758 4.1878 5.6427 6.4389 4.9402 5.7433 4.5493 3.5352
1 2.5031 3.9768 3.0811 3.9472 5.2953 6.0809 4.6360 5.4681 4.4814 3.3175
2 3.1362 5.0203 3.8557 4.9341 6.6848 7.7127 5.8525 6.9643 5.7839 4.1880
3 3.9711 6.4337 4.8694 6.2159 8.5668 9.9341 7.5002 9.0012 7.5321 5.3671

20

0.5 3.1362 5.0203 3.8557 4.9341 6.6848 7.7127 5.8525 6.9643 5.7839 4.1880
1 3.5512 5.3879 4.4182 5.7185 7.1742 8.1096 6.2811 7.2328 5.8971 4.4947
2 4.3208 6.5940 5.3696 6.9427 8.7803 9.9540 7.6871 8.8973 7.2960 5.5009
3 4.8820 7.6663 6.0307 7.7535 10.2080 11.7140 8.9372 10.5560 8.7994 6.3954

30

0.5 3.6462 5.7138 4.5054 5.7938 7.6083 8.7175 6.6611 7.8447 6.5074 4.7666
1 5.2034 7.5219 6.5376 8.5388 10.0160 11.0840 8.7688 9.7450 7.7275 6.2749
2 6.2196 9.0419 7.8060 10.1850 12.0400 13.3600 10.5410 11.7700 9.3781 7.5430
3 6.3104 9.5121 7.8628 10.1910 12.6660 14.2870 11.0890 12.7310 10.3870 7.9352

Table 6. Dimensionless critical buckling load N of FG shells for various boundary conditions(
R = 5, b = a = 10h. µ = λ = Gζ = Gη = Kw = 0

)
.

BCs. p, k, e
N Hard Core N Soft Core

FG-A FG-B FG-C FG-D FG-E FG-A FG-B FG-C FG-D FG-E

SSSS
2 2.5031 3.9768 3.0811 3.9472 5.2953 6.0809 4.6360 5.4681 4.4814 3.3175
5 4.0463 5.4601 4.5869 5.2354 6.2842 4.5291 3.1527 3.9645 3.2550 2.3287
10 5.2169 6.2433 5.6045 6.0308 6.7337 3.3714 2.3695 2.9741 2.5294 1.8792
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Table 6. Cont.

BCs. p, k, e
N Hard Core N Soft Core

FG-A FG-B FG-C FG-D FG-E FG-A FG-B FG-C FG-D FG-E

CCCC
2 5.9277 9.3193 7.3005 9.3540 12.4090 14.0940 10.8640 12.5300 9.8541 7.7744
5 9.5520 12.7950 10.8300 12.3630 14.7270 10.4240 7.3882 9.0171 7.1748 5.4570
10 12.2810 14.6310 13.1940 14.1990 15.7800 7.7670 5.5528 6.8014 5.7010 4.4037

CCSS
2 4.4115 6.9682 5.4305 6.9554 9.2785 10.5790 8.1234 9.4414 7.5222 5.8130
5 7.1184 9.5673 8.0698 9.2113 11.0110 7.8440 5.5243 6.8117 5.4737 4.0803
10 9.1638 10.9400 9.8449 10.5940 11.7990 5.8434 4.1519 5.1295 4.3197 3.2927

CSCS
2 4.5756 7.2742 5.6246 7.1946 9.6859 11.0740 8.4801 9.9016 7.9195 6.0683
5 7.3949 9.9874 8.3810 9.5640 11.4950 8.2252 5.7668 7.1549 5.7662 4.2595
10 9.5375 11.4200 10.2460 11.0250 12.3170 6.1291 4.3342 5.3868 4.5446 3.4373

CSSS
2 3.6672 5.8362 4.5092 5.7699 7.7712 8.9058 6.8037 7.9840 6.4533 4.8687
5 5.9294 8.0131 6.7202 7.6691 9.2225 6.6243 4.6268 5.7787 4.6945 3.4175
10 7.6492 9.1625 8.2171 8.8418 9.8821 4.9343 3.4774 4.3442 3.6781 2.7578
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In Figure 9, the effects of the various boundary conditions and the intensity of the
applied load χ1 on the dimensionless critical buckling load N of the coated FG-A shells is
illustrated. The minimal required loads to buckle were observed for the case of the simply
supported shells (SSSS) due to their low rigidity, whereas the maximum buckling loads
were observed for the case of the fully clamped coated shells (CCCC). It is worth noting that
the analytical solution proposed by Melaibari et al. [30] was used to calculate the critical
buckling loads of the shells with asymmetrical boundary conditions (CCSS and CSSS).
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Figure 8. Effect of the intensity of the applied load χ2 on the dimensionless critical buckling load N
of FG shells

(
SSSS, χ1 = 1, R = 5, p = k = e = 2, b = a = 10h, µ = λ = Gζ = Gη = Kw = 0

)
.
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Figure 9. Effect of the intensity of the applied load χ1 on the dimensionless critical buckling load
N of tricoated FG-A shells for various boundary conditions ( R = 5, p = k = e = 2, b = a = 10h,
µ = λ = Gζ = Gη = Kw = 0).

5.4. Effect of the Nanoscale

The dimensionless critical buckling load “N” of the simply supported coated FG
nanoshells influenced by the nonlocal and length-scale parameters is shown in Table 7 for
various distribution patterns.

Table 7. Dimensionless critical buckling load N of FG nanoshells versus nonlocal and length-scale
parameters

(
SSSS, p = 2, R = 5, b = a = 10h, Gζ = Gη = Kw = 0

)
.

µ λ
N Hard Core N Soft Core

FG-A FG-B FG-C FG-D FG-E FG-A FG-B FG-C FG-D FG-E

0

0 2.5031 3.9768 3.0811 3.9472 5.2953 6.0809 4.6360 5.4681 4.4814 3.3175
0.5 2.8680 4.5179 3.5369 4.5392 6.0158 6.8845 5.2669 6.1768 5.0397 3.7690
1 3.2390 5.0680 4.0003 5.1411 6.7483 7.7018 5.9082 6.8978 5.6090 4.2279

1.5 3.6146 5.6251 4.4696 5.7507 7.4900 8.5296 6.5575 7.6284 6.1869 4.6926
2 3.9939 6.1875 4.9434 6.3664 8.2390 9.3656 7.2133 8.3665 6.7715 5.1618

0.5

0 2.2782 3.6196 2.8043 3.5926 4.8196 5.5346 4.2196 4.9769 4.0788 3.0195
0.5 2.6103 4.1121 3.2192 4.1314 5.4754 6.2661 4.7938 5.6219 4.5870 3.4304
1 2.9480 4.6128 3.6409 4.6793 6.1421 7.0099 5.3774 6.2782 5.1052 3.8481

1.5 3.2899 5.1198 4.0681 5.2341 6.8172 7.7634 5.9685 6.9431 5.6311 4.2710
2 3.6352 5.6317 4.4994 5.7945 7.4989 8.5243 6.5653 7.6149 6.1632 4.6981

1

0 2.0904 3.3212 2.5732 3.2965 4.4224 5.0784 3.8718 4.5667 3.7426 2.7706
0.5 2.3952 3.7731 2.9538 3.7909 5.0241 5.7496 4.3986 5.1585 4.2089 3.1476
1 2.7050 4.2326 3.3408 4.2936 5.6359 6.4321 4.9342 5.7607 4.6844 3.5309

1.5 3.0187 4.6978 3.7327 4.8027 6.2553 7.1235 5.4765 6.3709 5.1670 3.9190
2 3.3355 5.1675 4.1285 5.3169 6.8808 7.8217 6.0242 6.9873 5.6552 4.3109

1.5

0 1.9312 3.0683 2.3772 3.0454 4.0856 4.6917 3.5770 4.2189 3.4576 2.5597
0.5 2.2128 3.4858 2.7289 3.5022 4.6415 5.3118 4.0637 4.7657 3.8884 2.9080
1 2.4990 3.9102 3.0864 3.9666 5.2067 5.9423 4.5585 5.3220 4.3276 3.2620

1.5 2.7889 4.3400 3.4485 4.4370 5.7790 6.5810 5.0595 5.8857 4.7735 3.6206
2 3.0815 4.7740 3.8141 4.9120 6.3568 7.2261 5.5654 6.4552 5.2245 3.9826
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Table 7. Cont.

µ λ
N Hard Core N Soft Core

FG-A FG-B FG-C FG-D FG-E FG-A FG-B FG-C FG-D FG-E

2

0 1.7946 2.8512 2.2090 2.8300 3.7965 4.3597 3.3238 3.9204 3.2130 2.3785
0.5 2.0562 3.2392 2.5358 3.2544 4.3131 4.9359 3.7761 4.4285 3.6132 2.7022
1 2.3222 3.6336 2.8680 3.6860 4.8383 5.5219 4.2359 4.9454 4.0214 3.0312

1.5 2.5915 4.0329 3.2045 4.1230 5.3700 6.1153 4.7015 5.4692 4.4357 3.3644
2 2.8635 4.4362 3.5442 4.5644 5.9070 6.7147 5.1716 5.9984 4.8548 3.7008

By considering the size-dependent impact, the buckling response (N) of the soft core
coated FG nanoshells was plotted in Figure 10 by varying the length scale and the nonlocal
parameters. It is worth mentioning that the stiffness of the nanoshell was influenced by the
length scale and the nonlocal parameters: the augmentation of the nonlocal parameter µ
led to a decrease in the critical buckling loads due to the reduction in the rigidity of the
nanoshell. The inverse impact was detected as an increase in the length-scale parameter
where the rigidity was augmented wherever the shell scheme was.
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)
.

Figure 11 presents the combination effect of the nanoshell size and the simply sup-
ported and/or clamped boundary conditions on the buckling behavior of the soft core
coated FG-A nanoshells. In this figure, it can be observed that the fully clamped nanoshell
was more rigid than the simply supported one, and this could explain the highest values of
the critical buckling loads of the CCCC nanoshells.

5.5. Effect of the Winkler/Orthotropic Elastic Foundation

In order to examine the mechanical response of the coated FG shells resting on a Win-
kler/orthotropic foundation, a parametric study was performed by varying the foundation
parameters such the Winkler foundation parameter Kw, the two orthotropic Pasternak
foundation parameters Gζ and Gη , and the orthotropy direction θ (which was changed
from 0◦ to 90◦). Table 8 illustrates the influence of the mentioned parameters on the critical
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buckling load. For a better view of the impact of the elastic foundation on the buckling
responses of the coated FG shells, Figures 11–14 were plotted.
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Table 8. Dimensionless critical buckling load N of tricoated FG-A shells rested on orthotropic
foundation (SSSS, p = k = e = 2, R = 5, b = 2a = 20h, µ = λ = 0).

Kw Gζ Gη
N Hard Core N Soft Core

θ = 0◦ θ = 30◦ θ = 45◦ θ = 60◦ θ = 90◦ θ = 0◦ θ = 30◦ θ = 45◦ θ = 60◦ θ = 90◦

10

5
5 3.5087 3.5087 3.5087 3.5087 3.5087 8.0852 8.0852 8.0852 8.0852 8.0852

10 3.5728 3.6209 3.6689 3.717 3.7651 8.1493 8.1973 8.2454 8.2935 8.3416
20 3.7010 3.8452 3.9895 4.1337 4.2779 8.2775 8.4217 8.5659 8.7102 8.8544

10
5 3.7651 3.717 3.6689 3.6209 3.5728 8.3416 8.2935 8.2454 8.1973 8.1493

10 3.8292 3.8292 3.8292 3.8292 3.8292 8.4057 8.4057 8.4057 8.4057 8.4057
20 3.9574 4.0536 4.1497 4.2459 4.3420 8.5339 8.630 8.7262 8.8223 8.9185

20
5 4.2779 4.1337 3.9895 3.8452 3.7010 8.8544 8.7102 8.5659 8.4217 8.2775

10 4.3420 4.2459 4.1497 4.0536 3.9574 8.9185 8.8223 8.7262 8.63 8.5339
20 4.4702 4.4702 4.4702 4.4702 4.4702 9.0467 9.0467 9.0467 9.0467 9.0467

50

5
5 3.7165 3.7165 3.7165 3.7165 3.7165 8.2930 8.2930 8.2930 8.2930 8.2930

10 3.7806 3.8287 3.8768 3.9249 3.9729 8.3571 8.4052 8.4533 8.5013 8.5494
20 3.9088 4.0531 4.1973 4.3415 4.4858 8.4853 8.6295 8.7738 8.9180 9.0622

10
5 3.9729 3.9249 3.8768 3.8287 3.7806 8.5494 8.5013 8.4533 8.4052 8.3571

10 4.0370 4.0370 4.0370 4.0370 4.0370 8.6135 8.6135 8.6135 8.6135 8.6135
20 4.1652 4.2614 4.3576 4.4537 4.5499 8.7417 8.8379 8.934 9.0302 9.1263

20
5 4.4858 4.3415 4.1973 4.0531 3.9088 9.0622 8.918 8.7738 8.6295 8.4853

10 4.5499 4.4537 4.3576 4.2614 4.1652 9.1263 9.0302 8.934 8.8379 8.7417
20 4.6781 4.6781 4.6781 4.6781 4.6781 9.2545 9.2545 9.2545 9.2545 9.2545

100

5
5 3.9763 3.9763 3.9763 3.9763 3.9763 8.5528 8.5528 8.5528 8.5528 8.5528

10 4.0404 4.0885 4.1366 4.1847 4.2327 8.6169 8.6650 8.7131 8.7611 8.8092
20 4.1686 4.3129 4.4571 4.6013 4.7456 8.7451 8.8893 9.0336 9.1778 9.322

10
5 4.2327 4.1847 4.1366 4.0885 4.0404 8.8092 8.7611 8.7131 8.6650 8.6169

10 4.2968 4.2968 4.2968 4.2968 4.2968 8.8733 8.8733 8.8733 8.8733 8.8733
20 4.4250 4.5212 4.6173 4.7135 4.8097 9.0015 9.0977 9.1938 9.2900 9.3861

20
5 4.7456 4.6013 4.4571 4.3129 4.1686 9.3220 9.1778 9.0336 8.8893 8.7451

10 4.8097 4.7135 4.6173 4.5212 4.4250 9.3861 9.2900 9.1938 9.0977 9.0015
20 4.9379 4.9379 4.9379 4.9379 4.9379 9.5143 9.5143 9.5143 9.5143 9.5143
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One of the objectives of this work was an in-depth analysis of the effects of various
coefficients of the orthotropic elastic foundation on the buckling response of the coated
shells (Figures 12–15). Figure 12 shows the effects of the orthotropy direction “θ”, the
orthotropic elastic foundation parameter Gζ , and the Winkler foundation parameter Kw on
the dimensionless buckling load N of the hard core coated FG-A shells. It can be seen that
the orthotropic foundation parameter Gζ had a greater influence on the buckling response
than any other foundation parameter: the increase in the Winkler/orthotropic foundation
parameters led to an increase in the stiffness of the shell; therefore, the critical buckling
load increased.

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 30 
 

 

The same analysis is presented in Figure 15, but this time the effect of the aspect ratio 

was replaced with the axial load intensity 𝜒2. It is worth mentioning that the critical buck-

ling loads increased with the increase in the orthotropic elastic foundation parameters 𝐺𝜁 

and 𝐺𝜂 in a linear manner. In addition, the axial load intensity had an important impact 

where the critical buckling loads decreased due to the augmentation of 𝜒2. 

 

Figure 14. Effect of the orthotropic elastic foundation parameters 𝐺𝜁 and 𝐺𝜂 for various aspect ra-

tios b/a (𝐹𝐺 − 𝐴, 𝑆𝑆𝑆𝑆, 𝑅 = 5, 𝑝 = 𝑘 = 𝑒 = 2, 𝑎 = 10ℎ, 𝜇 = 𝜆 = 0, 𝜃 = 0°, 𝐾𝑤 = 10). 

 

Figure 15. Effect of the orthotropic elastic foundation parameters 𝐺𝜁 and 𝐺𝜂 for various values of 

load intensity 𝜒2 (𝑆𝑆𝑆𝑆, 𝑅 = 5, 𝑝 = 𝑘 = 𝑒 = 2, 𝑏 = 𝑎/2 = 5ℎ, 𝜇 = 𝜆 = 0, 𝜃 = 0°, 𝐾𝑤 = 10). 

6. Conclusions 

In the present work, an analytical analysis was developed for the buckling problem 

of tricoated FG spherical nanoshells resting on an orthotropic elastic foundation. A math-

ematical model of tricoated FG structures was proposed in this paper for the first time. 

Two patterns of material distribution were studied; namely, hard core and soft core bidi-

rectionally coated shells, and a total of five schemes were considered. Based on the HSDT, 

a modified field of displacement was suggested based on four unknowns instead of five 

unknowns. To capture the size-dependent effect, the nonlocal strain gradient theory was 

Figure 15. Effect of the orthotropic elastic foundation parameters Gζ and Gη for various values of
load intensity χ2 (SSSS, R = 5, p = k = e = 2, b = a/2 = 5h, µ = λ = 0, θ = 0◦, Kw = 10).
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For further analysis, Figure 13 was plotted to view the action of the aspect ratio on
the intensity of the orthotropy direction “θ” and therefore the critical buckling loads. The
orthotropy direction “θ” was changed from 0◦ to 90◦. It can be seen that the orthotropy
direction had no influence on the buckling response in the case of shells with equal edges
(b/a = 1); therefore, the increase in the ratio b/a supported the effect of the orthotropy direc-
tion on the buckling loads, which were augmented by the augmentation of the orthotropy
direction “θ”.

Figure 14 presents the impact of the orthotropic elastic foundation parameters Gζ and
Gη on the buckling response of the simply supported hard core coated FG-A shells for
various aspect ratios b/a. The same effect of the orthotropic elastic foundation parameters
Gζ and Gη was observed in the case of aspect ratio b/a=1; whereas for the other cases when
the ratio b/a ≥ 1, the influence of the parameter Gζ was greater than the influence of the
parameter Gη .

The same analysis is presented in Figure 15, but this time the effect of the aspect
ratio was replaced with the axial load intensity χ2. It is worth mentioning that the critical
buckling loads increased with the increase in the orthotropic elastic foundation parameters
Gζ and Gη in a linear manner. In addition, the axial load intensity had an important impact
where the critical buckling loads decreased due to the augmentation of χ2.

6. Conclusions

In the present work, an analytical analysis was developed for the buckling prob-
lem of tricoated FG spherical nanoshells resting on an orthotropic elastic foundation. A
mathematical model of tricoated FG structures was proposed in this paper for the first
time. Two patterns of material distribution were studied; namely, hard core and soft core
bidirectionally coated shells, and a total of five schemes were considered. Based on the
HSDT, a modified field of displacement was suggested based on four unknowns instead of
five unknowns. To capture the size-dependent effect, the nonlocal strain gradient theory
was employed. By applying the virtual work principle, the equilibrium equations were
performed, and the obtained differential equations were solved by applying the Galerkin
technique to cover all possible boundary conditions. The proposed Winkler/orthotropic
elastic foundation was defined based on three parameters: one spring constant and two
shear parameters referring to the orthotropy directions. Based on the obtained numerical
results, the following results were revealed:

â Increasing material exponents p, k, and e led to an increase in the critical buckling
loads of the hard core structure and a decrease in the critical buckling loads of the soft
core structure wherever the FG shell scheme was.

â The critical buckling loads were reduced by the increase in the radius of curvature.
â The increase in the intensity of the applied loads led to a decrease in the critical

buckling loads.
â The minimal values of the critical buckling loads were for the simply supported

shells (SSSS), whereas the maximum buckling loads were for the fully clamped coated
shells (CCCC).

â The increase in the nonlocal parameter µ led to an increase in the critical buckling
loads due to the reduction in the rigidity of the nanoshell, while the inverse impact
was detected with an increase in the length-scale parameter.

â The increase in the Winkler/ortho tropic foundation parameters led to an increase in
the critical buckling loads; among various orthotropic foundation parameters, Gζ had
a greater impact on the buckling response than any other foundation parameter.
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Appendix A

Orthotropic foundation:

fe = kw

(
a∫

a

b∫
0

XmYnXmYn dxdy− µ

[
a∫

0

b∫
0

∂2Xm
∂x2 YnXmYn dxdy +

a∫
a

b∫
0

Xm
∂2Yn
∂y2 XmYn dxdy

])

−GQ

[
cos2 θ

a∫
0

b∫
0

∂2Xm
∂x2 YnXmYn dxdy + 2 cos θ sin θ

a∫
0

b∫
0

∂Xm
∂x

∂Yn
∂y XmYn dxdy

+ sin2 θ
a∫

0

b∫
0

Xm
∂2Yn
∂y2 XmYn dxdy

]

−Gς

[
sin2 θ

a∫
0

b∫
a

∂2Xm
∂x2 YnXmYn dxdy− 2 cos θ sin θ

a∫
a

b∫
0

∂Xm
∂x

∂Yn
∂y XmYn dxdy

+ cos2 θ
a∫

0

b∫
0

Xm
∂2Yn
∂y2 XmYn dxdy

]

−µ

[
GQ

[
cos2 θ

a∫
0

b∫
0

∂4Xm
∂x4 YnXmYn dxdy + 2 cos θ sin θ

a∫
0

b∫
0

∂3Xm
∂x3

∂Yn
∂y XmYn dxdy

+ sin2 θ
a∫

0

b∫
0

∂2Xm
∂x2

∂2Yn
∂y2 XmYn dxdy

]

−Gζ

[
sin2 θ

a∫
0

b∫
0

∂4Xm
∂x4 YnXmYn dxdy− 2 cos θ sin θ

a∫
a

b∫
0

∂3Xm
∂x3

∂Yn
∂y XmYn dxdy

+ cos2 θ
a∫

0

b∫
0

∂2Xm
∂x2

∂2Yn
∂y2 XmYn dxdy

]

+GQ

[
cos2 θ

a∫
0

b∫
0

∂2Xm
∂x2

∂2Yn
∂y2 XmYn dxdy + 2 cos θ sin θ

a∫
0

b∫
0

∂Xm
∂x

∂3Yn
∂y3 XmYn dxdy

+ sin2 θ
a∫

0

b∫
0

Xm
∂4Yn
∂y4 XmYn dxdy

]

−Gζ

[
sin2 θ

a∫
0

b∫
a

∂2Xm
∂x2

∂2Yn
∂y2 XmYn dxdy− 2 cos θ sin θ

a∫
0

b∫
a

∂Xm
∂x

∂3Yn
∂y3 XmYn dxdy

+ cos2 θ
a∫

0

b∫
0

Xm
∂4Yn
∂y4 XmYn dxdy

]]

The elements Kij:

K11 = A11

a∫
0

b∫
0

∂3Xm
∂x3 Yn

∂Xm
∂x Yn dxdy + A66

a∫
0

b∫
0

∂Xm
∂x

∂2Yn
∂y2

∂Xm
∂x Yn dxdy

−λ

[
(A11 + A66)

a∫
0

b∫
0

∂3Xm
∂x3

∂2Yn
∂y2

∂Xm
∂x Yn dxdy + A11

a∫
0

b∫
0

∂5Xm
∂x5 Yn

∂Xm
∂x Yn dxdy

+A66

a∫
0

b∫
0

∂Xm
∂x

∂4Yn
∂y4

∂Xm
∂x Yn dxdy

]
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K12 = (A12 + A66)

(
a∫

0

b∫
0

∂Xm
∂x

∂2Yn
∂y2

∂Xm
∂x Yn dxdy

−λ

[
a∫

0

b∫
0

∂3Xm
∂x3

∂2Yn
∂y2

∂Xm
∂x Yn dxdy +

a∫
0

b∫
0

∂Xm
∂x

∂4Yn
∂y4

∂Xm
∂x Yn dxdy

])

K13 =
(

A11
Rx

+ A12
Ry

)( a∫
0

b∫
0

∂Xm
∂x Yn

∂Xm
∂x Yn dxdy− λ

[
a∫

0

b∫
0

∂3Xm
∂x3 Yn

∂Xm
∂x Yn dxdy +

a∫
0

b∫
0

∂Xm
∂x

∂2Yn
∂y2

∂Xm
∂x Yn dxdy

])
−B11

a∫
0

b∫
0

∂3Xm
∂x3 Yn

∂Xm
∂x Yn dxdy− (B12 + 2B66)

a∫
0

b∫
0

∂Xm
∂x

∂2Yn
∂y2

∂Xm
∂x Yn dxdy

−λ

[
−(B12 + 2B66 + B11)

a∫
0

b∫
0

∂3Xm
∂x3

∂2Yn
∂y2

∂Xm
∂x Yn dxdy− B11

a∫
0

b∫
0

∂5Xm
∂x5 Yn

∂Xm
∂x Yn dxdy

]

K14 = −C11

a∫
0

b∫
0

∂3Xm
∂x3 Yn

∂Xm
∂x Yn dxdy− (C12 + 2C66)
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0

b∫
0

∂Xm
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∂2Yn
∂y2

∂Xm
∂x Yn dxdy

−λ

[
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0

b∫
0
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∂x3

∂2Yn
∂y2
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∂x Yn dxdy− B11

a∫
0
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0
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0

b∫
0

∂2Xm
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−λ
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∂Yn
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∂Yn
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0
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0
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∂x2
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∂y3 Xm

∂Yn
∂y dxdy

])

K22 = A22

a∫
0

b∫
0

Xm
∂3Yn
∂y3 Xm

∂Yn
∂y dxdy + A66

a∫
0
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0

b∫
0
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∂Yn
∂y Xm

∂Yn
∂y dxdy

−λ

[
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∂y3 Xm

∂Yn
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0
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0
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∂y dxdy
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a∫
0
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∂Yn
∂y Xm

∂Yn
∂y dxdy

]

K23 =
(
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)( a∫
0

b∫
0

Xm
∂Yn
∂y Xm

∂Yn
∂y dxdy− λ

[
a∫

0
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0

∂2Xm
∂x2

∂Yn
∂y Xm

∂Yn
∂y dxdy +

a∫
0
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0

Xm
∂3Yn
∂y3 Xm

∂Yn
∂y dxdy

])
−B22

a∫
0
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0

Xm
∂3Yn
∂y3 Xm

∂Yn
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0
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0
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∂Yn
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−λ
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∂2Yn
∂y2 Xm
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0
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∂Yn
∂y dxdy
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K24 = −C22
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0
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0
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∂y3 Xm

∂Yn
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a∫
0

b∫
0
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∂Yn
∂y Xm

∂Yn
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−λ
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a∫
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∂y dxdy +

a∫
0

b∫
0
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∂y dxdy

)
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(
a∫

0

b∫
0

∂4Xm
∂x4

∂Yn
∂y Xm
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∂y dxdy +
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0
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0

∂2Xm
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∂3Yn
∂y3 Xm
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K31 = −
(

A11
Rx

+ A12
Ry

)( a∫
0

b∫
0

∂2Xn
∂x2 YnXmYn dxdy− λ

[
a∫

0

b∫
0

∂4Xn
∂x4 YnXmYn dxdy +

a∫
0

b∫
0

∂2Xn
∂x2

∂2Yn
∂y2 XmYn dxdy

])
+B11

a∫
0

b∫
0

∂4Xn
∂x4 YnXmYn dxdy + (B12 + 2B66)

a∫
0

b∫
0

∂2Xm
∂x2

∂2Yn
∂y2 XmYn dxdy

−λ

[
B11

a∫
0

b∫
0

∂6Xn
∂x6 YnXmYn dxdy + (B11 + B12 + 2B66)
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0

b∫
0

∂4Xm
∂x4

∂2Yn
∂y2 XmYn dxdy
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a∫

0

b∫
0
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∂y4 XmYn dxdy
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K23 = −
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+ A22
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0
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∂x2
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a∫
0

b∫
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0
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−λ
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∂y4 XmYn dxdy
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0
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0
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∂y6 XmYn dxdy
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−λ
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0
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∂x4 YnXmYn dxdy

−D22

(
a∫

0

b∫
0

Xm
∂4Yn
∂y4 XmYn dxdy

)
− 2(D12 + 2D66)

a∫
0

b∫
0

∂2Xm
∂x2

∂2Yn
∂y2 XmYn dxdy
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K34 = −
(

C11
Rx

+ C12
Ry

)( a∫
0

b∫
0

∂2Xn
∂x2 YnXmYn dxdy− λ
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0
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0

b∫
0

Xm
∂4Yn
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