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Abstract: The close relation between spatial kinematics and line geometry has been proven to be
fruitful in surface detection and reconstruction. However, methods based on this approach are
limited to simple geometric shapes that can be formulated as a linear subspace of line or line element
space. The core of this approach is a principal component formulation to find a best-fit approximant
to a possibly noisy or impartial surface given as an unordered set of points or point cloud. We
expand on this by introducing the Gaussian process latent variable model, a probabilistic non-linear
non-parametric dimensionality reduction approach following the Bayesian paradigm. This allows us
to find structure in a lower dimensional latent space for the surfaces of interest. We show how this
can be applied in surface approximation and unsupervised segmentation to the surfaces mentioned
above and demonstrate its benefits on surfaces that deviate from these. Experiments are conducted
on synthetic and real-world objects.

Keywords: surface approximation; surface segmentation; surface denoising; gaussian process latent
variable model; line geometry; line elements
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1. Introduction

Extracting structural information as shapes or surfaces from an unordered set of 3D
coordinates (point cloud) has been an important topic in computer vision [1]. It is a crucial
part of many applications such as autonomous driving [2], scene understanding [3], reverse
engineering of geometric models [4], quality control [5], simultaneous localization and
mapping (SLAM) [6] and matching point clouds to CAD models [7]. Over the last decade,
hardware developments have made the acquisition of those point clouds more affordable.
As the availability, ease of use and hence the popularity of various 3D sensors increases so
does the need for methods to interpret the data they generate.

However, in this work, we mainly focus on detecting simple geometrical surfaces such
as planes, spheres, cylinders, cones, spiral and helical surfaces, surfaces of revolution, etc.
as described in [8]. Examples of these surfaces can be found in Figure 1. In [8], the close
relation between these shapes, spatial kinematics and line geometry are formulated. A
point cloud, as a set of noisy points on a surface, is transformed into a set of normals (also
referred to as normal lines or normal vectors) that show exploitable properties for that
surface. For instance, the normals of a sphere intersect in a single point, the normals of a
surface of revolution intersect in an axis of rotation, and the normals of a helical surface can
be seen as path normals of a helical motion. These insights led to applications in surface
reconstruction and robotics [8,9]. Later, their method was refined in [10,11] to address
pipe surfaces, profile surfaces and developable surfaces in general. In [12], the authors
introduced principal component analysis (PCA) to approximate the set of normals. This
laid the groundwork for a more general approach in [13] using so-called line elements.
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These are constructed for every point of the point cloud. They are formed by the (Plücker)
coordinates of the normal line and the surface point which lies on that line. The key insight
of their work is that the line elements of simple geometric surfaces lie on a linear subspace
in R7, which can be found by solving an ordinary eigenvalue problem. We elaborate more
on this approach in Section 2.2.

(a) Cylinder of revolution (b) Cone of revolution (c) Spiral cylinder

(d) Cylinder without revolu-
tion

(e) Cone without revolution (f) Surface of revolution

(g) Helical surface (h) Spiral surface

Figure 1. Examples of equiform kinematic surfaces.

Although a mathematically very elegant way to describe 3D surfaces, this approach
does have several drawbacks. First, the surface classification is strict. This means that
only very primitive shapes can be treated. Real-world objects do not always fall neatly
into one of these categories. For example, imperfect shapes like a slight bend plane, a
sphere with a dent or shapes found in nature or human anatomy. Blindly following this
method, results in a misrepresentation of the data. Second, because PCA minimises an
L2-norm, it is very sensitive to outliers. This can be mitigated by iterative RANSAC or by
downweighting the outliers. However, this comes at the cost of increased computation
time. Third, real-world point clouds show various other imperfections like non-uniform
sampling, noise, missing regions, etc. This highly affects the quality of the representation.
Fourth, the authors of [10–13] propose to look for small eigenvalues. The obvious question
arises: when is an eigenvalue small? Even though some guidelines are provided, these
threshold values remain domain specific and are challenging to set.
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Most of these drawbacks can be attributed to the eigenvalue problem (or its PCA
formulation) used to find an appropriate linear subspace in R7. In essence, this is a linear
dimensionality reduction from the seven-dimensional space of line elements to a lower-
dimensional latent space. In this work, we build on that method by introducing the
Gaussian process latent variable model (GPLVM) [14] as an alternative. This allows for
a non-linear relationship between a latent space and a higher dimensional data space,
where observations are made. We implement a multi-output Gaussian process (seven
outputs in this case) and try to find a mapping from a lower dimensional latent space to
the line elements. Several variants on this theme exist, which we explain in more depth in
Section 2.5. No longer confined by the linearity of PCA, our models can handle a wider
range of shapes. Moreover, Gaussian processes handle noise very well, even in low data
regimes [15]. The GPLVM places a Gaussian process prior to the mapping from the latent
to the observed space. By exploiting strong priors, we can significantly reduce the amount
of data needed for equally accurate predictions.

In our approach, we can handle shapes (or surfaces) that fall in the categories described
in [8–13] but also shapes that significantly deviate from these. For instance, a surface of
revolution whose central axis is not a straight line or an imperfect plane with one of the
corners slightly bent. In fact, we drop the strict classification and allow for shapes that can
be seen as somewhere in between the categories. This makes our methods more appropriate
for handling surfaces that can be found in nature or when modelling the human body.
Moreover, our formulation can handle multiple types of subsurfaces at once. This means
we can perform segmentation in the latent space.

For completeness, we mention that in recent years various deep learning techniques
have been successfully introduced to discover objects in point clouds. A thorough overview
can be found in [16] and more recently in [1,17]. These techniques vary from ordinary
multilayer perception models (MLP) to convolutional- and graph-based models. Numerous
datasets have been made public to encourage the field further to develop new models
(e.g., ScanObjectNN [18], ShapeNet [19], ScanNet [20], KITTI Vision Benchmark Suite [21],
ModelNet40 [22,23], . . . ). Generally, these data-driven models are trained on more complex
shapes: vehicles, urban objects, and furniture, . . . These models are specifically designed for
detecting obstacles, such as vehicles in autonomous driving, but not so for accurate object
reconstruction from detailed 3D scanning. In this work, we focus on the latter. Moreover,
whenever a new shape has to be learned, the underlying model has to be trained again.

To summarise, for every point on a given point cloud, we can formulate a so-called
line element. Dimensionality reduction on the set of line elements reveals the characteristics
of the surface captured by that point cloud. Existing methods rely on PCA, which is a linear
mapping. In contrast, our model is built on the Gaussian process latent variable model,
which allows for non-linear mapping. This results in a more nuanced way of representing
the surface. The main contributions of this work are the following:

• We expand existing methods based on kinematic surfaces and line element geometry
by introducing GPLVM to describe surfaces in a non-linear way.

• We apply our method to surface approximation.
• We test our method to perform unsupervised surface segmentation.
• We demonstrate our method to perform surface denoising.

All of our 3D models, sets of line elements, trained GPLVM, notebooks with code
and many more experiments and plots can be found on our GitHub repository (https:
//github.com/IvanDeBoi/Surface-Approximation-GPLVM-Line-Geometry, accessed on
10 January 2023).

The rest of this paper is structured as follows. In the next section, we give some
theoretical background on line element geometry, kinematic surfaces, approximating the
data, Gaussian processes and Gaussian process latent variable models in particular. The
third section describes the results of our method applied to surface approximation, surface
segmentation and surface denoising. Section four presents a discussion of our findings.

https://github.com/IvanDeBoi/Surface-Approximation-GPLVM-Line-Geometry
https://github.com/IvanDeBoi/Surface-Approximation-GPLVM-Line-Geometry
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2. Materials and Methods
2.1. Line Element Geometry

In projective 3-space P3, a straight line L can be represented by a direction vector l and
an arbitrary point x on that line. The so-called moment vector l̄ for that line with respect to
the origin, can be written as

l̄ = x× l, (1)

where x are the coordinates of x in R3. The Plücker coordinates for a line are defined as
(l, l̄) = (l1 : l2 : l3 : l4 : l5 : l6) [24]. These are homogeneous coordinates, meaning they
are scale invariant. Notice that the scale factor is determined by the norm of the direction
vector. Moreover, they are independent of the choice of x. Since we are not concerned
about the orientation, (l, l̄) and (−l,−l̄) describe the same line, which also follows from
the homogeneity.

For example, a line L is spanned by two given points x and y, possibly at infinity. By
following the notation in [24], we write the homogenous coordinates for x and y as (x0, x)
and (y0, y) respectively. Then, the homogenous Plücker coordinates for L are found as

L := (l, l̄) = (x0y− y0x, x× y) ∈ R6. (2)

Not every combination of six numbers yields a straight line. To do so, the following
condition is necessary and sufficient:

l · l̄ = 0. (3)

This is called the Grassmann–Plücker relation. Plücker coordinates can also be regarded
as homogeneous points coordinates in projective 5-space P5, where straight lines are points
lying on a quadric given by the equation

l1l4 + l2l5 + l3l6 = 0. (4)

This quadric is called the Klein quadric and is denoted as M4
2. The interpretation of

points in projective 5-space has proved useful in a variety of line geometry applications [24].
Plücker coordinates of a line in R3 can be extended to line elements by adding a specific

point x on that line [13]. To do so, we start by choosing an orientation for the unit direction
vector l of the line. A seventh coordinate λ is needed to locate x on that line, which can be
defined as

λ = x · l. (5)

Notice that the norm of l matters, which is why we work with the (normalised) unit
direction vector. This yields the seven-tuple (l, l̄, λ) of coordinates for a line element based
on a line and a point, in which ‖l‖ = 1 and l · l̄ = 0.

Each point on a smooth surface Φ of a 3D volume has an outward unit normal vector
n. For every point x on that surface, a line element can be defined as (n, x× n, x · n). These
line elements constitute an associated surface Γ(Φ) in R7. An important property of many
simple geometrical shapes in R3 (planes, spheres, cones, . . . ), is that their Γ(Φ) is contained
in a linear subspace of R7. We will see in Section 2.2 that this aspect can be exploited in
surface approximation, surface segmentation and surface denoising.

2.2. Kinematic Surfaces

Rigid body motions can be seen as a superposition of rotations and translations. These
can be extended by adding a scaling, making them the family of equiform motions, also
known as similarities [10]. Such a one-parameter motion M(t) is either a rotation, translation,
a central similarity, a spiral motion or a combination of any of them. The velocity vector
field of M(t) is constant (time-independent) and can be written as

v(x) = c̄ + γx + c× x, (6)
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where c̄, γx and c× x are the translation, scale and rotation component of the velocity vector
v at a point x. A curve undergoing an equiform motion forms an equiform kinematic surface.

As defined in [13], a linear complex of line elements is the set of line elements whose
coordinates (l, l̄, λ) satisfy the linear equation

c̄ · l + c · l̄ + γλ = 0, (7)

where (c, c̄, γ) is de coordinate vector of the complex. The following theorem from [25]
shows the relation between linear complexes of lines and equiform kinematics:

Theorem 1. The surface normal elements of a regular C1 surface in R3 are contained in a linear
line element complex with coordinates (c, c̄, γ) if and only if the surface is part of an equiform
kinematic surface. In that case, the uniform equiform motion has the velocity vector field as given in
Equation (6).

Here, we will give an overview of such motions M(t) and their corresponding surfaces
Φ. For a thorough explanation of these (and multiple applications), we refer the reader to
the works [8,10–13,25,26].

• γ = 0:

– c = 0, c̄ = 0: M(t) is the identical motion (no motion at all).
– c = 0, c̄ 6= 0: M(t) is a translation along c̄ and Φ is a cylinder (not necessarily of

revolution).
– c 6= 0, c · c̄ = 0: M(t) is a rotation about an axis parallel to c and Φ is a surface of

revolution.
– c 6= 0, c · c̄ 6= 0: M(t) is a helical motion about an axis parallel to c and Φ is a

helical surface.

• γ 6= 0:

– c 6= 0: M(t) is a spiral motion and Φ is a spiral surface.
– c = 0: M(t) is a central similarity, and Φ is a conical surface (not necessarily of

revolution).

Examples of these surfaces can be found in Figure 1.
This alternative way of describing surfaces as linear complexes of line elements opens

up a new way of studying them, as explained below.

2.3. Approximating the Complex

Suppose a scanning process results in a set of points X (a point cloud), i.e., the results
of the scanning process. The aim is to determine the type of surface Φ on which these
points lie. This knowledge would allow us to reconstruct the surface using its underlying
geometrical properties. For instance, if we know our points result from the scan of a surface
of revolution, we could determine the central axis etc. So, we are interested in the (linear)
complex (of line elements) that best describes the given points. Its coordinates (c, c̄, γ)
determine the type of surface [13].

First, we calculate the unit normal vectors from the point cloud at every point. This
topic has been very well documented in the literature. We refer the reader to [27] for a more
in-depth discussion. For each xi in X with i = 1, 2, . . . , N we obtain a unit normal vector
ni. From these normal vectors and corresponding points, we calculate their line elements
(ni, xi × ni, xi · ni).

Second, according to Equation (7), a complex with coordinates (c, c̄, γ) that best fits
these line elements minimises

F(c, c̄, γ) =
N

∑
i=1

(c̄ · li + c · l̄i + γλi)
2, (8)
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under the condition c2 + c̄2 + γ2 = 1. We follow the notation used in [12], in which
a2 = a · a. For this condition to make sense, we normalise our point cloud such that
max‖xi‖ ≈ 1. We also centre it around the origin. We can rewrite this as

F(c, c̄, γ) = (c, c̄, γ)M(c, c̄, γ)T , (9)

where M = ∑N
i=1(l̄i, li, λi)

T(l̄i, li, λi). This is an ordinary eigenvalue problem. The small-
est eigenvalue of M corresponds to an eigenvector (ĉ, ˆ̄c, γ̂) which best approximates
Equation (7) for the given (li, l̄i, λi).

Some surfaces are invariant under more than one one-parameter transformation [8,10–
13,25,26]. In that case, k small eigenvalues appear as solutions to Equation (8). The corre-
sponding eigenvectors can be seen as a basis for a subspace in R7. We list the possibili-
ties below:

• k = 4: Only a plane is invariant to four independent uniform motions.
• k = 3: A sphere is invariant to three independent uniform motions (all rotations).
• k = 2: The surface is either a cylinder of revolution, a cone of revolution or a spiral

cylinder.
• k = 1: The surface is either a cylinder without revolution (pure translation), a cone

without revolution (central similarity), a surface of revolution, a helical surface or a
spiral surface.

Further examination of the coordinate (c, c̄, γ) determines the exact type of surface, as
described in Section 2.2. Multiple examples, applications and variations on this theme can
be found in above mentioned references.

Although this is a very elegant and powerful approach, some issues are discussed in
the works listed above. First, this method is very sensitive to outliers. A solution proposed
by the authors is to apply a RANSAC variant or to downweigh the outliers by iteratively

M =
1

∑ σi

N

∑
i=1

σi(l̄i, li, λi)
T(l̄i, li, λi). (10)

This obviously results in longer computation times. Second, numerical issues can
arise calculating the eigenvalues (especially for planes and spheres). Third, some shapes
do not fall into the classification of these simple geometric forms. This is certainly the
case for organic surfaces that can be found in nature or when modelling the human body.
Reconstructing a surface based on a simple geometric shape is obviously only valid if
the surface resembles the shape well. Fourth, some shapes are either a combination or
a composition of the elementary simple shapes (e.g., pipe constructions). In this case,
the question arises of what constitutes as a small eigenvalue and where to draw the line
between steadily increasing values. Even though some guidance is given in the literature,
these thresholds are often application-specific parameters.

Our approach provides a solution for these issues, by finding a representative lower
dimensional latent space for the line elements in a more flexible non-linear way. This is no
longer a linear subspace in R7.

2.4. Gaussian Processes

By definition, a Gaussian process (GP) is a stochastic process (a collection of random
variables), with the property that any finite subset of its variables is distributed as a
multivariate Gaussian distribution. It is a generalization of the multivariate Gaussian
distribution to infinitely many variables. Here, we only give an overview of the main
aspects. We refer the reader to the book [15] for a more detailed treatise.

Let a dataset D = {X, y} consist of n observations, where X =
[
x1, x2, . . . , xn

]T is

an n× d matrix of n input vectors of dimension d and y =
[
y1, y2, . . . , yn

]T is a vector of
continuous-valued scalar outputs. These data points are also called training points. In
regression, the aim is to find a mapping f : Rd → R,
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y = f (x) + ε, ε ∼ N (0, σ2
ε ), (11)

with ε being identically distributed observation noise. In this work, this mapping is
implemented by a Gaussian process. As stated above, a Gaussian process generalises the
multivariate Gaussian distribution to infinitely many variables. Just like the multivariate
Gaussian distribution is fully defined by its mean vector and covariance matrix, a Gaussian
process is fully defined by its mean as a function m(x) and covariance function k(x, x′). It is
generally denoted as f (x) ∼ GP(m(x), k(x, x′)). The covariance function is parametrised
by a vector of hyperparameters θ. By definition, a GP yields a distribution over a collection
of functions that have a joint normal distribution [15],[

f
f∗

]
∼ N

([
mX
mX∗

]
,
[

KX,X KX,X∗
KX∗ ,X KX∗ ,X∗

])
, (12)

where X are the input vectors of the n observed training points and X∗ are the n∗ input
vectors of the unobserved test points. The mean value for X is given by mX. Likewise,
the mean value for X∗ is given by mX∗ . The covariance matrices KX,X , KX∗ ,X∗ , KX∗ ,X and
KX,X∗ are constructed by evaluating the covariance function k at their respective pairs of
points. In real-world applications, we do not have access to the latent function values. We
are depending on noisy observations y.

The conditional predictive posterior distribution of the GP can be written as:

f∗|X, X∗, y, θ, σ2
ε ∼ N (E(f∗),V(f∗)), (13)

E(f∗) = mX∗ + KX∗ ,X

[
KX,X + σ2

ε I
]−1

f, (14)

V(f∗) = KX∗ ,X∗ −KX∗ ,X

[
KX,X + σ2

ε I
]−1

KX,X∗ . (15)

The hyperparameters θ are usually learned by using a gradient-based optimisation
algorithm to maximise the log marginal likelihood,

log p(y|θ, X) ∝ −1
2

[
yT
[
KX,X + σ2

ε I
]
y + log |KX,X + σ2

ε I)|
]
, (16)

which is a combination of a data fit term and complexity penalty and, thus, automatically in-
corporates Occam’s Razor [15]. This guards the Gaussian process model against overfitting.
In our experiments, we use BFGS, a quasi-Newton method described in [28]. The linear
system

[
KX,X + σ2

ε I
]
y is often calculated by first calculating the Cholesky decomposition

factor L of
[
KX,X + σ2

ε I
]

and then solving[
KX,X + σ2

ε I
]
y = LT \ (L \ y). (17)

In the literature, many kernel functions have been extensively studied and reviewed.
An overview can be found in [29]. A very popular kernel is the squared exponential
kernel. It is suited for a wide range of applications because it is infinitely differentiable and,
thus, yields smooth functions. Moreover, it only has two tunable hyperparameters. It has
the form:

kSE(x, x′) = σ2
f exp

(
−|x− x′|2

2l2

)
, (18)

in which σ2
f is a scale factor and l is the length-scale that controls the decline of the

influence of the training points with distance. For the squared exponential kernel the
hyperparameters θSE are

{
σ2

f , l
}

. For the function k : X × X → R to be a valid kernel, it



Mathematics 2023, 11, 380 8 of 20

must be positive semi-definite (PSD), which means that for any vector x ∈ Xd, the kernel
matrix K is positive semi-definite. This implies that xTKx ≥ 0 for all x ∈ Rd.

In this work, we do implement a different length-scale parameter for every input
dimension. This technique is called automatic relevance determination (ARD) and allows
for functions that vary differently in each input dimension [29]. The kernel has the form:

kSEARD(x, x′) = σ2
f exp

−1
2

d

∑
j=1


∣∣∣xj − x′j

∣∣∣
lj

2, (19)

in which lj is a separate length-scale parameter for each of the d input dimensions.

2.5. Gaussian Process Latent Variable Models

Principal component analysis (PCA) transforms a set of data points to a new coordinate
system, in which the greatest variance is explained by the first coordinate (called the first
principal component), the second greatest variance by the second coordinate, etc. This
reprojection of the data can be exploited in dimensionality reduction by dropping the
components with the smallest variance associated. The result will still contain most of the
information of the original data. This method can also be explained as a statistical model
known as probabilistic PCA (PPCA) [30], which implies that the principal components
associated with the largest variance also maximise the likelihood of the data.

In dimensionality-reduction, the representation of the original data by its retained
principal components can be interpreted as a latent variable model, in which the n latent
variables X =

[
x1, x2, . . . , xn

]T are of a dimension k that is lower than the dimension d
of the original data. PPCA requires a marginalisation of those latent variables and an
optimisation of the mapping from the latent space to the data (observation) space. For n
d-dimensional observations Y =

[
y1, y2, . . . , yn

]T we can write

yi = Wxi + ε, ε ∼ N (0, σ2
ε ), (20)

in which xi is a k-dimensional latent variable with k < d, W is a d×k matrix representing
the mapping and ε is observation noise.

In [14,31], a dual approach is proposed by marginalising the mapping W and opti-
mising the latent variables X. This approach is called the Gaussian process latent variable
model (GPLVM) and is achieved by maximising the Gaussian process likelihood L with
respect to the latent variables. We optimise

L(X) = −dn
2

log 2π − d
2

log |K| − 1
2

tr(K−1YY>), (21)

with respect to X. It is proved in [14] that this approach is equivalent to PCA when using a
linear kernel to compose K, which can be written as

klinear(x, x′) = xTx′. (22)

However, by choosing a nonlinear kernel, we can establish a nonlinear relationship
between the latent variables X and the observations Y. This relationship can also be seen
as placing a Gaussian process prior on each column of the n×d matrix Y and allows for a
more flexible mapping between latent and data space.

In the original GPLVM, the unobserved inputs are treated as latent variables which
are optimised. Another approach is to variationally integrate them and compute a lower
bound on the exact marginal likelihood of the non-linear variable model. This is known
as the Bayesian Gaussian process latent variable model (BGPLVM) [32]. It is more robust
to overfitting and can automatically detect the relevant dimensions in the latent space.
These dimensions are characterised by a larger Automatic Relevance Determination (ARD)
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contribution, which is the inverse of the length-scales lj in Equation (19). Every component
in data space is a vector whose components are formed by as many Gaussian processes
as there are input dimensions. These ARD contributions determine the weight of the
outcomes of each of the Gaussian processes and, thus, its corresponding input dimension.
Less relevant dimensions result in longer length scales and are pruned out. In this work, we
exploit this by performing this Bayesian non-linear dimensionality reduction on the seven-
dimensional line elements. For most shapes in 3D, a lower-dimensional representation in a
latent space can be found, as we show below.

The GPLVM is a map from latent to data space. As such, it preserves local distances
between points in the latent space. However, this does not imply that points close by in the
data space are also close by in the latent space. To incorporate this extra feature, one can
equip the GPLVM with a so-called back constraint [33]. This constraint is accomplished by
introducing a second distance-preserving map from the data to the latent space. We refer
to this model as the back-constrained Gaussian process latent variable model (BCGPLVM).
A thorough review of GPLVM and its variants, including more than the ones mentioned
here, can also be found in [34,35] and more recently in [36,37].

2.6. Our Approach

In this section, we explain how all of the above-mentioned concepts come together in
our approach. To recap, we can represent a straight line in 3D space by Plücker coordinates,
which are six-tuples. By adding a seventh component, we can specify a point on that line.
We can do this for every n point in a given point cloud. The line we choose through each
point is the normal line to the surface that is captured by that point cloud. We, thus, obtain
a set of seven-dimensional line elements, that captures the information about the surface
we want to examine.

The theory of kinematic surfaces links the line elements that are contained in a linear
line element complex to an equiform kinematic surface. Finding this complex comes down
to solving an ordinary eigenvalue problem. The dimensionality of the linear subspace, in
which the line elements live, and the resulting eigenvalues determine the type of surface. In
essence, this is dimensionality reduction on the seven-dimensional line elements via PCA.

However, PCA is a linear mapping. In contrast, our model is built on the Gaussian
process latent variable model (GPLVM), which allows for non-linear mapping. This results
in a more nuanced way of representing the surface. Our model is only given the seven-
dimensional line elements and finds the mapping from a latent (unobserved) space to
these line elements. Each of the seven dimensions of the line elements is assigned to a
Gaussian process (GP). The outputs (predictions) of those GPs are the components of the
line elements. The inputs (training data) are the latent points, which are treated as variables
of the overall model and are optimised (or integrated out in the Bayesian formulation).

In the next section, we will describe in more detail how we compose the datasets and
elaborate on our experiments.

3. Results

All 3D models, datasets, plots and trained GP models described below can be found
in our GitHub repository. These include supplementary experiments and plots we omitted
here, so we do not overload the text.

To assess the latent representation of various 3D shapes, we composed a collection of
both synthetically generated point clouds and real-world scanned objects. An overview
can be found in Table 1. The synthetically generated point clouds are based on objects
drawn in the free and open source Blender 3.3 LTS (https://www.blender.org/, accessed on
10 January 2023). Point clouds resulting from real-world scans were created on an Android
mobile phone using the photogrammetry KIRI engine (https://www.kiriengine.com/,
accessed on 10 January 2023) and imported in Blender, where they are cleaned up by
dissolving disconnected points, removing the background and subsampling using standard
Blender tools. However, they still contain some overlapping triangles and other mesh

https://www.blender.org/
https://www.kiriengine.com/
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irregularities. Synthetic models were made noisy by first subdividing the mesh several
times and then applying the Blender Randomize tool on the vertices. This breaks the lattice
structure of the vertices. Moreover, this makes them resemble a real-world scan, where
imperfections are inevitable. In this paper, we restrict ourselves to one noise level and
leave the effect of the amount of noise on our point clouds as future work. The noiseless
and noisy bend torus are the same as their ordinary torus variant with a Simple Deform
modifier of 45° applied to it. All models are exported in the Polygon File Format format
(.ply), resulting in files consisting of points and unit normals for those points.

The line elements are calculated in Matlab R2020b and exported as comma-separated
values (.csv). These serve as the data space for the GPLVM models, which are implemented
using the python GPy library (http://sheffieldml.github.io/GPy/, accessed on 10 January
2023). Some point clouds were subsampled uniformly for performance reasons. All
GPLVM models were initialised with the results from a PCA. The BCGPLVM models were
implemented with an MLP mapping with five hidden layers. The details are in Table 1. All
code for training the models, as well as the trained models themselves, are available via
notebooks in the GitHub repository.

Table 1. An overview of the surfaces and their corresponding GPLVM and properties. Larger point
clouds are subsampled uniformly to a smaller set. The number of points retained for training is given
in # Train. Noise is the Gaussian noise variance hyperparameter for the GPLVM model, which is
either a fixed value or a value that has to be learned along with the other hyperparameters. The
number of inducing points for the Bayesian GPLVM is shown in # Ind. To make sure we do not end
up in local minima, we restarted the training of the model a number of times given in # Restarts.

Model # Vertices # Train Noise # Ind # Restarts

Cylinder of revolution BGPLVM 2176 2176 1× 10−4 15 10
Cone of revolution BGPLVM 2176 2176 free 50 10
Spiral cylinder BGPLVM 2210 2210 free 25 10
Cylinder w/o revolution BGPLVM 1717 1717 free 50 10
Cone w/o revolution BGPLVM 2210 2210 free 50 10
Surface of revolution BGPLVM 2816 2500 free 50 10
Helical surface BGPLVM 2582 2500 free 25 10
Spiral surface BGPLVM 1842 1842 free 50 10
Torus BGPLVM 2048 2048 free 50 10
Torus bend BGPLVM 2048 2048 free 25 10
Pear BGPLVM 6356 5000 free 50 5
Mixture 1 BCGPLVM 10,653 1000 1× 10−6 NA 3
Mixture 2 BCGPLVM 6555 1000 1× 10−6 NA 3
Mixture 3 BCGPLVM 15,681 1000 1× 10−4 NA 3
Hinge BGPLVM 22,282 5000 free 50 3
Torus bend noisy BGPLVM 8192 8192 free 50 3

3.1. Surface Approximation

We trained a Bayesian Gaussian process latent variable model for all examples of the
equiform kinematic surfaces listed in Section 2.2. As can be seen by the ARD contributions
in Figure 2, these surfaces can be represented by a lower dimensional representation. These
dimensions are characterised by the largest ARD contribution and, thus, the smallest
length scales. A 2D plot of the surface points in their latent space is given by Figure 3.
The Supplementary Material also includes plots in 3D latent space and provides PCA bar
charts for comparison. They are omitted here not to overload this text with too many plots.
These experiments were repeated for the noisy variants of the surfaces as well. The same
underlying structure can be observed. Again, we refer to the Supplementary Material.

All surfaces show a clear structure in their latent space. Note that the number of small
eigenvalues does not necessarily correspond with the number of relevant dimensions in
latent space. The latter is the result of an optimization algorithm in which both the latent
points and the kernel hyperparameters are found. This can be seen in the ARD contribution

http://sheffieldml.github.io/GPy/
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plot for the helical surface. The plot for the cylinder of revolution even has a significant
value for all seven dimensions. This effect can be thought of as overfitting [37], as the
model attributes importance to more latent dimensions than needed. In our experiments,
we tried to lower this effect by making the model less flexible. We added a fixed noise term
to the hyperparameters and lowered the number of inducing points. For details per surface,
we refer to Table 1. All trained models are available in the Supplementary Material on the
GitHub repository.

Another important remark is that the mapping from latent to data space is non-linear.
Care must be taken when interpreting the 2D latent space plots. For instance, the spiral
surface clearly has a one-dimensional subspace. However, the 2D plot shows a scattered
cloud of points. This is an artefact of the visualization. The ARD plot indicates that only
dimension 1 has a significant contribution. Another example is given by the cylinder
without revolution. Its subspace in R7 is one-dimensional, which manifests itself as a
curve-like trail of points in the 2D latent space.

(a) Cylinder of revolution (b) Cone of revolution (c) Spiral cylinder

(d) Cylinder without revolu-
tion

(e) Cone without revolution (f) Surface of revolution

(g) Helical surface (h) Spiral surface

Figure 2. ARD contributions for the dimensions of the latent space for the examples of equiform
kinematic surfaces.
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(a) Cylinder of revolution (b) Cone of revolution (c) Spiral cylinder

(d) Cylinder without revolu-
tion

(e) Cone without revolution (f) Surface of revolution

(g) Helical surface (h) Spiral surface

Figure 3. A 2D representation of the points of the kinematic surfaces in their latent space. The amount
of black in the background indicates the posterior uncertainty of the BGPLVM.

So far, nothing has been gained by this new Bayesian GPLVM way of representing
surfaces. The difference with the approach described in Section 2.2, is that we are no longer
restricted to the simple geometric surfaces of Figure 1 and their linear subspaces of R7.
We can now also describe surfaces that do not fall into the categories listed above. We
investigate two cases.

First, we apply our method to a bend torus. This is a surface of revolution, which we
altered using the Simple Deform modifier in Blender to bend it 45° around an axis perpen-
dicular to the axis of rotational symmetry of the original torus. This removes the rotational
symmetry altogether. The results can be seen in Figure 4. We notice that the BGPLVM only
deemed one dimension as significant. The 2D plot reveals the latent structure.

(a) A bend torus (b) ARD contributions (c) 2D latent space

Figure 4. Results for a bend torus. One latent dimension is found to be dominant.

Second, we look at the surface of the point cloud obtained by scanning a pear as
described above. This is an organic shape, so it possesses the same challenges as working
with shapes that can be found in other items from nature or when modelling the anatomy
of humans and animals. We are only interested in the shape of the body, so we removed
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the stalk and the bottom part when cleaning up the 3D model. In this case, the 3D
shape resembles a surface of revolution, but the axis is bent irregularly and the rotational
symmetry is broken (not all normals intersect the axis of rotation). The results can be seen
in Figure 5. The darker region in the 2D latent plot indicates more posterior uncertainty.
In the latent space, we observe a set of points similar to what we saw for a cylinder of
revolution with an additional distortion in a third latent dimension.

(a) A real-world pear (b) ARD contributions (c) 2D latent space

Figure 5. Results for a real world pear scanned with a mobile phone app.

Both the bend torus and the pear can not be described by an equiform kinematic
surface. Applying the methods of Section 2.2 (i.e., approximating by a linear complex of
line elements) for classification is numerically still possible. A small set of eigenvalues can
be found. However, their interpretation would be faulty. The bend torus shows one small
eigenvalue, c 6= (0, 0, 0), γ = 0 and c · c̄ ≈ 0. Unsurprisingly, these values fit a surface of
revolution. They resemble the values for the torus or the torus with noise. However, blindly
using the methods from [10] would result in a perfect surface of revolution. The same
reasoning can be applied to the scanned pear’s point cloud. Below, we show how to exploit
our newfound GPLVM representation in surface approximation, surface segmentation and
surface denoising.

3.2. Surface Segmentation

A major challenge in point cloud classification is the segmentation of sub-regions
within that cloud. Once points are grouped together in simpler shapes, the underlying
structure can be found via either our method or the methods described in [8,10–13,25,26].
In these works, several approaches are described for discovering the sub-regions. Mostly,
they are based on time-consuming trial and error RANSAC. Here, we show that working
in a latent space can be beneficial. The challenge is to group points together, whose line
elements show similar behaviour.

As we want to separate coherent groups of points in latent space, we care about
their local distances. Points close by in the latent space should be close by in the data
space as well. Therefore, we expand our GPLVM with a back constraint as described in
Section 2.5. We implement both an RBF kernel with ARD and a multi-layer perceptron
(MLP) mapping to capture the back constraint [33,37]. The details for the different 3D
models can be found in Table 1. As before, all code is available in the GitHub repository. The
notebooks also include 3D plots made with the python open source graphing library Plotly
(https://plotly.com/python/, accessed on 10 January 2023), that allow user interaction
such as 3D rotations. By rotating the viewpoint, we can clearly see how separable the latent
points are.

To demonstrate our approach, we first designed three objects composed of different
simpler geometric shapes. They can be found in Figure 6. The parts of these three models

https://plotly.com/python/
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fall under the different categories described in Section 2.2. The aim of surface segmentation
is to find those parts in an unsupervised manner.

(a) Mixture 1 (b) Labelled points (c) Latent space

(d) Mixture 2 (e) Labelled points (f) Latent space

(g) Mixture 3 (h) Labelled points (i) Latent space

Figure 6. Three synthetically generated 3D models by combining primitive surfaces. The BCGPLVM
is able to show distinguishable structures for points in latent space.

First, we created a 3D model called Mixture 1, which consists of a cylinder and cone,
neither without rotational symmetry. Both of those shapes individually show one small
eigenvalue and a clearly distinguishable curve in their 2D latent space, as can be seen in
Figure 3. Combined, their latent space looks like two curves, shown in Figure 6. Notice that
the 3D points that lie both on the cylinder and the cone, fall into both categories. Moreover,
their normal is inconsistent with either of the two shapes. For this cylinder, all normals are
horizontal. For the cone, normals for points on a line connecting the cone’s apex and its
generating curve, are parallel. For points on the intersection of the cylinder and the cone,
the normals are weighted with their neighbouring points. This results in a latent space that
is not easily separable by clustering.

Second, the 3D model named Mixture 2 consists of a noisy cylinder of revolution
where one end is closed by a demi-sphere. The former is characterised by two small
eigenvalues and the latter by three. Again, this behaviour can be clearly observed in the
latent space. Notice how the BCGPLVM formulates latent shapes for each part that are
consistent with the kinematic surface described in Section 2.2. For the sphere, we observe
a 2D shape. For the cylinder of revolution, an annulus can be seen. The supplementary
material includes an interactively rotatable 3D plot where this cloud of latent points can
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be observed in more detail. We also see that the region for the tip of the demi-sphere has
a darker background in the 2D latent plot, indicating more uncertainty in this region of
the posterior. This can be explained by the fact that the normals of a sphere all intersect
at the centre of the sphere. As such, no normals are parallel. This results in line elements
whose vector components vary more. Points with normals that lie in parallel planes, as
is the case for a cylinder, have more similarity in the direction components of their line
elements. Moreover, the hyperparameters in the mapping from latent to data space are
optimised globally. This means for all latent points simultaneously. The strong structure in
the cylinder part renders the large variations in the tip of the demi-sphere part as less likely.
Hence the larger posterior variance.

Finally, in the 3D model Mixture 3, we grouped together the upper half of a sphere,
a cone of revolution, a cone without revolution and a cylinder without revolution. These
parts have three, two, one and one small eigenvalues, respectively. As this model consists
of four different parts, the segmentation is more complex. Nonetheless, the BCGLVM is
able to find distinct substructures in the latent space, even in just two dimensions.

For a real-world and more challenging example, we scanned a metal hinge, as de-
scribed above. It can be found in Figure 7. The original 3D model and the cleaned-up one
can be found in the supplementary material. The 3D model is a collection of a cylinder of
revolution, two planes and a cone-like aperture. It is important to notice that the scan itself
is of poor quality, mainly due to the shininess of the metal and the lack of distinct features.
There are holes and bumps in the surface, even after cleaning up the model in Blender.
Moreover, the cone-like aperture does not have a lot of vertices (the region around the apex
is completely missing). The latent space still shows the formation of clusters, especially
when three dimensions are taken into account.

(a) Render of hinge (b) Labelled points (c) Latent space

Figure 7. The results for a real-world scanned metal hinge. Again, the BGPLVM is able to separate
the points in latent space.

Once a latent space is found, the segmentation can be done via either a manual selec-
tion of the latent points or a form of unsupervised learning. In the case of separable clusters,
we can perform the well-studied k-means clustering algorithm or draw (hyper)planes
determined by support vector machines (SVM). The details of these are outside the scope
of this work. The reader is referred to [38] and [39], respectively. This segmentation can
then be the basis for fitting simple geometric surfaces to each cluster of points. As we
can observe from the plots, some of the latent points do not belong to any of the found
substructures. In practice, these can be ignored or filtered out. We are left with enough
points to perform the best fit. Afterwards, we can determine whether or not such a rogue
point belongs to the best-fit subsurface or not.

3.3. Surface Denoising

In general, a Gaussian process can handle noise very well, even in low data regimes [15].
This means our technique is beneficial to denoise point clouds. Once a mapping is found
from a latent space to a data space, it can be queried to predict new points in the data
space. This can be used to handle missing data [36,37]. Here, we take advantage of this
feature by correcting noisy points in the lower dimensional latent space and predicting their
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counterparts in the data space. The smooth mapping allows re-predict the line elements for
every latent point.

From a predicted line element (l, l̄, λ), with ‖l‖ = 1, we can calculate a corresponding
3D coordinate x for a point x using

x = l× l̄ + λl. (23)

To demonstrate this, we again work on the bend torus model. We introduce random
noise with the Blender Randomize tool and select a hundred vertices at random, which
we translate to simulate shot noise. The results can be seen in Figure 8. The 3D model,
the .ply file with the point coordinates and unit normal vectors, the .csv file with the line
elements and the notebook with the executed code for the BGPLVM can be found in the
supplementary material. Once the BGPLVM is trained on the noisy point cloud, we use
it to predict line elements for the latent point. From these line elements, we extract 3D
coordinates for points via Equation (23). We observe that the BGPLVM is able to smooth
out the translated vertices. This approach can also be used to detect and remove outliers.

(a) Deformed bend torus (b) Denoised bend torus

Figure 8. A bend torus. Noise is added to the entire surface. Moreover, A hundred vertices were
translated. (b) The BGPLVM is able to smooth out the surface. Blue are the noisy points. Red are the
denoised points.

4. Discussion

This work presented the first findings for this new GPLVM approach to describe 3D
surfaces. In this manuscript, we wanted to focus on the theoretical principles themselves
and not overload the paper with additional research questions that determine the limits of
this idea. Even though these are both interesting and important in real-world applications,
we leave them for future work.

We have shown surface segmentation for surfaces that are the combination of a few
different simpler geometrical shapes. The question remains how many sub-regions can be
detected and what the complexity of those regions can be?

We presented the Bayesian GPLVM and the GPLVM with back constraints. There
are more variations on this topic investigated in the literature. A recent paper describes a
generalised GPLVM with stochastic variational inference [37]. They also present models
for applying these techniques on a larger dataset. This would be most applicable to larger
point clouds, which are often obtained in real-world applications.

A line element is formed by a line and a point on that line. By working with normal
lines for points on a surface, we effectively introduced a second so-called view for those
points, where we follow the terminology used in [34,36]. Those works present a multi-view
unsupervised learning technique called manifold relevance determination (MRD), which
offers another worthwhile approach.
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The prediction as seven-tuples made by the model does not automatically follow the
Grassmann–Plücker relationship in Equation (3) for their direction and moment vector.
This leads to faulty line elements. In other words, the first six components of a line element
vector are the Plücker coordinates of the line where the point of the line element lies on.
Not all six-tuples represent a straight line in P3. In general, a screw centre C can be written
as (c, c̄). The pitch of C is defined as

ρ =
c · c̄
‖c‖2 . (24)

This only holds for c not being the zero vector, in which case C would be a line at
infinity. The pitch can be thought of as the deviation of the screw to a perfectly straight line.
We can always write C as

C = (c, c̄− ρc) + (0, ρc) = A + (0, ρc), (25)

in which A is called the Poinsot or central axis of the screw centre C. The term (0, ρc)
represents the line at infinity where the planes perpendicular on A meet. Since A does
satisfy the Grassmann–Plücker relation, it is a straight line in P3. This allows us to correct
the predicted six tuples (by six distinct Gaussian processes) into straight lines via

A = C− (0, ρc). (26)

This approach is taken in [40]. Another way to ensure the Grassmann–Plücker relation
is given in [41], where constraints are built in the kernel functions of the Gaussian process
themselves, although at a considerable extra computational cost. A representation that does
not suffer from this hurdle is the stereographic projection of a line [24]. In this approach,
the line is made to intersect two arbitrary parallel planes. Only the 2D coordinates on those
planes are kept as data points. Predictions on those planes, a point on each, are then used to
calculate the Plücker coordinates of the predicted line. By doing so, the Grassmann–Plücker
relation is always ensured. The problem herein is that the line parallel to the two planes
can not be captured. Numerically, a line close to being parallel to the two planes also
causes issues. As 3D surfaces can have normals in any direction, this latter approach is not
recommended in a general setting.

5. Conclusions

We provided a theoretical introduction to kinematic surfaces and showed how they
could be used to perform surface detection. Many simple geometric shapes manifest
themselves as linear subspaces of line or line element space. This approach is limited by the
linearity of the underlying eigenvalue problem. We expanded on this by reformulating this
as a probabilistic non-linear non-parametric dimensionality reduction technique known
as the Gaussian process latent variable model. We showed how this could be applied
to many simple geometric surfaces, as well as surfaces that do not fall into any of these
categories. Moreover, we showed the benefits of unsupervised surface segmentation and
surface denoising. We presented findings on synthetically generated surfaces and scanned
real-world objects.

The main goal of the current study was to determine the feasibility of applying the
Gaussian process latent variable model to line element geometry. Even though several
experiments are explained, and several more are included in the supplementary material,
considerably more work will need to be done to determine the limits of this method. For
instance, it remains an open question how noise affects the overall representation in the
latent space. Moreover, we did not implement any optimizations on the training part
of the underlying models, which is paramount for real-world settings. We leave this as
future work.
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Another natural progression of this work is to exploit further the found latent space
in the case of missing data. Point clouds sometimes have missing regions, caused by bad
lighting conditions, occluded areas or areas that simply can not be reached by the scanning
device. Finding the 3D coordinates for the missing points is a classic example of the missing
data problem. In our case, it manifests itself as a region in the latent space that is missing
values. If the found structure in the latent space is enough to reconstruct those missing
latent points, then according to data space points can also be inferred by the Gaussian
process latent variable model.

More broadly, we plan to study the benefits of working on latent spaces not just for
line elements, but for the lines themselves (in which case, we drop the point on the line and
only keep the description of the line). This technique could be used in the calibration of
various devices that are built on the usage of straight lines. Cameras, for instance, produce
images in which a pixel is the result of a single incoming ray of light. Another example is
galvanometric laser scanners, which guide a laser beam by means of two rotating mirrors.
Calibrating such a device means finding the relationship between the two angles of the
mirrors and the outgoing beam. So, in this case, a 2D latent space must exist. This would
be a fruitful area for further work.

Supplementary Materials: All of our 3D models, sets of line elements, trained GPLVM, note-
books with code and many more experiments and plots can be found on our GitHub repository
https://github.com/IvanDeBoi/Surface-Approximation-GPLVM-Line-Geometry (accessed on
10 January 2023).
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