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Abstract: It is known that feature selection/screening for high-dimensional nonparametric models
is an important but very difficult issue. In this paper, we first point out the limitations of existing
screening methods. In particular, model-free sure independence screening methods, which are defined
on random predictors, may completely miss some important features in the underlying nonparametric
function when the predictors follow certain distributions. To overcome these limitations, we propose
an ensemble screening procedure for nonparametric models. It elaborately combines several existing
screening methods and outputs a result close to the best one of these methods. Numerical examples
indicate that the proposed method is very competitive and has satisfactory performance even when
existing methods fail.
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1. Introduction

In this paper, we study the feature screening problem for nonparametric models when
the number of predictors, p, is larger than the number of observations, p. The nonparametric
models we focus on include nonparametric interpolation, regression, and classification
models. Interpolation is commonly used in modeling computer simulation experiments [1]
and spatial data [2]. Nonparametric regression and classification are basic issues in statistics
and machine learning [3]. High-dimensional problems are commonly encountered in
these areas.

For linear regression models with p > n, Fan and Lv proposed the sure independence
screening (SIS) method to screen the subsets of important/active
features/predictors/variables [4]. This method was extended to generalized linear mod-
els [5], nonparametric additive models [6], and varying coefficient models [7]. Many
model-free SIS-type methods were also provided in the literature, see, e.g., [8–12], and
they can be used for the aforementioned high-dimensional nonparametric models. These
SIS-type methods consider random predictors and screen active predictors by ranking
some independence indices, which describe the independence between each predictor and
the response.

For nonparametric interpolation models with p > n, Li, Chen, and Xiong proposed
the linear screening method [13]. Their idea stems from the method of selecting important
variables via the main effects in the experimental design literature [14]. This method adopts
linear regression to model the data from nonlinear models and uses the `0-screening [15,16]
or `1-screening principle [17] for the linear model to screen the active variables. Li, Chen,
and Xiong proved that the linear screening method is asymptotically valid under some
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conditions [13]. Numerical simulations show that this method performs better than SIS-type
methods in most cases for interpolation models.

Note that the linear screening method can also be used for other nonparametric
problems, including regression and classification. In this paper, we first discuss the two
classes of nonparametric screening methods, the SIS-type and linear screening methods,
and then point out their own limitations. For the SIS-type methods, we provide an example
where the regression function depends on a variable while the random version of this
variable is independent of the response. Therefore, any independence index-based SIS-
type method cannot screen this important variable of the regression model. For the linear
screening method, we show that when the function is not close to a linear norm and the
predictors are correlated, it may perform very poorly. To overcome these limitations, we
propose an ensemble procedure to combine the two classes of methods. This procedure
conducts the linear screening methods with linear and quadratic basis functions first and
uses R2 to evaluate their performance. If the values of R2 are low, then we further conduct
an SIS-type method and output the result of this SIS-type method. Otherwise, we output
the subset selected by the linear screening method corresponding to the higher R2. The
ensemble method is very simple and easy to implement. Simulations and several real
examples show that it is very competitive and has satisfactory performance even when the
SIS-type methods or the linear screening methods fail.

This article is organized as follows. Section 2 gives a general description of sparse func-
tion models. Section 3 discusses the limitations of the SIS-type and linear screening methods.
Section 4 presents the proposed ensemble method. Section 5 illustrates the methods with
several datasets. We conclude the paper with some concluding remarks in Section 6. More
simulation results and technical proofs are given in the Supplementary Materials.

2. Sparse Function Models

This section discusses some basic characteristics of sparse function models in a rigorous
mathematical manner. We will emphasize that the sparsity property of a function does not
depend on the distributions of the covariates/input variables.

Suppose the unknown function of interest is f (x), where the features/variables
x =

(
x1, . . . , xp

)′ ∈ I p, f is square integrable, i.e., f ∈ L2(I p), I ⊂ R is an interval,
and ‘denotes the transpose. Without loss of the generality, let I = (0, 1), and our discussion
can straightforwardly be modified to accommodate general I such as (0, ∞) or R. To make
the following notation clear, let Ij = (0, 1) denote the range of xj for j = 1, . . . , p.

We need further definitions and notation. Let Zp = {1, . . . , p}. For a setA, |A| denotes
its cardinality. For x ∈ Rp and A ⊂ Zp, let xA denote the sub-vector corresponding to A
and let IA = ∏j∈A Ij. Note that L2(I p) is a closed Hilbert space with the inner product
< f , g >=

∫
I p f (x)g(x)dx for f , g ∈ L2(I p). We write f = g in the sense of the norm in

L2(I p), i.e.,
∫
I p [ f (x)− g(x)]2dx = 0. For A ⊂ Zp, define

L(A) =
{

f ∈ L2(I p) : f (x) does not depend on xZp\A for all x ∈ I p
}

,

which is a closed subspace of L2(I p). It can be seen that L(A) and L2(IA) are isomorphic.
Define fA to be the projection of f onto L2(IA), i.e.,

fA(xA) = arg min
g∈L2(IA)

∫
I p
[ f (x)− g(xA)]

2dx.

We know that fA is the unique projection in the sense of the norm in L2(I p) [18].
We make the following sparsity assumptions. Denote A0 = {1, . . . , p0} with p0 < p.

Assumption 1. f = fA0 .

Assumption 2. For each A & A0, fA0 6= fA.
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Proposition 1. Under Assumptions 1 and 2, if there exists A ⊂ Zp with |A| 6 p0 such that
f = fA, then A = A0.

Proposition 1 shows the uniqueness of A0. We call A0 the true subset of impor-
tant/active variables for the nonparametric model f . The goal of screening is to find a
subset A∗ ⊃ A0 with |A∗| = M < n. A suggestion for selecting M is M = [n/ log(n)] [4],
where [·] denotes the floor function.

Consider the situations where the variables x are random with a probability measure
P on I p.

Assumption 3. P has a density ψ with respect to the Lebesgue measure, and ψ is positive almost
everywhere.

Assumption 3 implies that P is not degenerate. Let

L2
P(I p) =

{
f defined on I p is measurable :

∫
I p
| f (x)|ψ(x)dx < ∞

}
.

Similarly define L2
P(IA) for A ⊂ Zp. For f , g ∈ L2(I p), denote f =P g if f and g are

identical in the sense of the norm in L2
P(I p), i.e.,

∫
I p [ f (x)− g(x)]2ψ(x)dx = 0. Define fA,P

to be the projection of f ∈ L2
P(I p) onto L2

P(IA), i.e.,

fA,P(xA) = arg min
g∈L2

P(IA)

∫
I p
[ f (x)− g(xA)]

2ψ(x)dx.

We know that fA,P is the unique projection in the sense of the norm in L2
P(I p). In

general, fA,P will vary as P varies for fixed f and A. However, we have the following
proposition showing the invariance property of sparsity.

Proposition 2. Under Assumption 3, for f ∈ L2(I p) ∩ L2
P(I p), the two following statements

are equivalent:

(i) f = fA0 and fA0 6= fA for each A & A0;
(ii) f =P fA0,P and fA0,P 6=P fA,P for each A & A0.

Proposition 2 indicates that the true subset A0 does not rely on the distribution P
of x, and that the sparsity is an essential property that only depends on f itself. In other
words, the true subset A0 uniquely exists and can be identified in theory no matter what
distribution the predictors follow. The above results can be extended to the cases where x
has some discrete components by making assumptions on P accordingly.

A selection principle A∗ ⊂ Zp depends on the distribution P of the variables x, i.e.,
A∗ = A∗(P). An ideal selection principle should satisfy the selection consistency property
A∗(P) = A0 for all reasonable P, where A0 is free of P by Proposition 2. For the cases of
p > n, the selection consistency property is usually relaxed as the sure screening property
A∗(P) ⊃ A0. Based on the sample version Pn of P, the sure screening property requires
that the probability of A∗(Pn) ⊃ A0 should tend to one as n → ∞ [4]. However, for
nonparametric function f, it is difficult to find an ideal selection principle. We will show
that there exist commonly-encountered P’s that cause popular screening methods do not
have the selection consistency property in the next section.

3. Discussion on Existing Methods

For a high-dimensional sparse function f discussed in the previous section, the feature
screening problem is to find an M-subset of these p variables that can include all the p0 active
variables based on data of sample size n (<p), where M (<n) is a pre-specified number.
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3.1. SIS-Type Methods

The SIS-type methods consider the situations with random predictors (covariates).
Let X = (X1, . . . , Xp)′ follow a probability measure P. The SIS-type methods use the
selection principle

A∗SIS(P) = {j ∈ Zp : Xj is not independent of Y}, (1)

where Y is the corresponding random response depending on the underlying function f.
For instance, we review Li, Zhong, and Zhu [9]’s method as follows.

Li, Zhong, and Zhu used the distance correlation (DC) to screen the important vari-
ables [9]. For two random variables U and V, the DC between them is denoted by
dcorr(U, V). Székely, Rizzo, and Bakirov showed that dcorr(U, V) = 0 if and only if
U and V are independent [19] and that dcorr(U, V) can be computed by

dcorr(U, V) =
dcov(U, V)√

dcov(U, U)dcov(V, V)
,

where dcov2(U, V) = S1 + S2 − 2S3, S1 = E{|U − Ũ||V − Ṽ|}, S2 = E{|U − Ũ|}E{|V −
Ṽ|}, S3 = E{E(|U − Ũ| | U)E(|V − Ṽ| | V)}, and (Ũ, Ṽ) is an independent copy of (U, V).

Suppose that {(Ui, Vi), i = 1, . . . , n} is a random sample from the population (U, V).
The DC dcorr(U, V) can be estimated by

d̂corr(U, V) =
d̂cov(U, V)√

d̂cov(U, U)d̂cov(V, V)
, (2)

where d̂cov
2
(U, V) = Ŝ1 + Ŝ2 − 2Ŝ3, Ŝ1 = ∑n

i=1 ∑n
j=1 |Ui − Uj||Vi − Vj|/n2, Ŝ2 =(

∑n
i=1 ∑n

j=1 |Ui − Uj|/n2)(∑n
i=1 ∑n

j=1 |Vi − Vj|/n2), Ŝ3 = ∑n
i=1 ∑n

j=1 ∑n
k=1 |Ui − Uk||Vj −

Vk|/n3.
For p random predictors X1, . . . , Xp and the response Y, we have the sample {(Xi, Yi), i =

1, . . . , n}, where Xi =
(
Xi1, . . . , Xip

)′. The DC-SIS method first computes d̂corr(Xj, Y) for
j = 1, . . . , p by (2), and then screens the subset A∗ with M variables corresponding to the
M largest values among

{∣∣∣d̂corr(Xj, y)
∣∣∣}

j=1,...,p
.

We can see from (1) that the SIS-type methods greatly depend on the distribution of
X. As discussed in Section 2, the sparsity property of a function does not depend on the
distributions of the covariates/input variables. The following example shows that the
dependency-based selection principle does not have the selection consistency property.

Example 1. Let f (x1, x2) = x1 and Y = f (X1, X2). If X1 is not independent of X2, then
A∗SIS(P) = {1, 2} 6= A0 = {1}, where P is the joint distribution of (X1, X2)

′.

In the above example, we can say that A∗SIS(P) possesses at least the sure screening
property A∗SIS(P) ⊃ A0. However, we have the following fact, which can be shown by
Example 2.

Fact 1. The SIS-type methods may lack the screening property, i.e., some important features may
be missed.

Example 2. Let

f (x1, x2) = Φ−1(x1) + 2Φ−1(x2), (x1, x2)
′ ∈ (0, 1)2, (3)

in a regression model
y = f (x1, x2) + ε
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with ε ∼ N(0, 1), where Φ denotes the cumulative distribution function of the standard nor-
mal distribution. Consider the random (X1, X2)

′, independent of ε, generated as follows. First
generate X1 ∼ U(0, 1), the uniform distribution on (0, 1). Then generate W, given X1, from
N(−Φ−1(X1)/2, 3/4), and let X2 = Φ(W). We have(

Φ−1(X1)
Φ−1(X2)

)
∼ N

((
0
0

)
,
(

1 −1/2
−1/2 1

))
,

which implies cov(Y, Φ−1(X1)) = cov(Φ−1(X1)+ 2Φ−1(X2)+ ε, Φ−1(X1)) = 0. Therefore, the
response Y is independent of X1. We cannot find the important variable x1 in f in (3) via dependency.

The case provided in Example 2 seems to be extreme since it depends on special f and
P. In fact, for cases that are not so extreme, the performance of the SIS-type methods may
be unsatisfactory. This is because they are all marginal methods and may miss the impor-
tant variables with weak marginal effects in finite-sample cases. Recently Azadkia and
Chatterjee proposed a model-free variable selection method via a measure of conditional
dependence [20]. Their method possesses appealing theoretical properties. However, our
numerical experience indicates that its finite-sample performance is not good for large p,
small n problems. SIS-type methods such as DC-SIS outperform it in many cases. Some
examples are given in our simulations in the Supplementary Materials.

3.2. Linear Screening Methods

Li, Chen, and Xiong proposed the linear screening method for nonparametric inter-
polation models [13]. Unlike the marginal SIS-type methods, this method is based on
linear approximations of the underlying nonparametric function. Linear screening uses
a linear regression model with specific basis functions to fit the interpolation data and
applies the `0 or `1 methods for linear regression models to screen the active variables in the
nonparametric function f. Li, Chen, and Xiong showed that under some mild conditions,
the set of active variables in f is identical to that in the linear projection of f [13]. Therefore,
the linear screening method is valid for many cases. Since methods based on dependence
and conditional dependence, such as SIS-type methods, suffer from very slow convergence
in high dimensions, linear screening can be viewed as an alternative for finite-sample cases.

Li, Chen, and Xiong [13] only discussed the case where the predictors x = X ∼ U(0, 1)p.
This subsection further studies the linear screening methods with a general distribution P
of x, where P satisfies Assumption 3.

For a basis function b ∈ L2
P(I) that is not a constant, define

Lb =

{
g(x) = φ0 +

p

∑
j=1

φjb(xj) for x ∈ I p : φ0, φ1, . . . , φp ∈ R
}

,

which is a closed subspace of L2
P(I p). Consider the projection of f ∈ L2(I p) ∩ L2

P(I p) onto
Lb with respect to the norm of L2

P(I p),

β0(P) +
p

∑
j=1

β j(P)b(xj) = arg min
g∈Lb

∫
I p
[ f (x)− g(x)]2ψ(x)dx. (4)

Denote

u =

(∫
I p

b(x1)ψ(x)dx, . . . ,
∫
I p

b(xp)ψ(x)dx
)′

,

v =

(∫
I p

b(x1) f (x)ψ(x)dx, . . . ,
∫
I p

b(xp) f (x)ψ(x)dx
)′

,

Σ =

(∫
I p

b(xi)b(xj)ψ(x)dx
)

i,j=1,...,p
.
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Note that the matrix
(

1 u′

u Σ

)
is invertible (see the proof of Lemma B.3 in the

Supplementary Materials). By solving the quadratic optimization problem in (4), we have(
β0(P)
β(P)

)
=

(
1 u′

u Σ

)−1( ∫
I p f (x)ψ(x)dx

v

)
, (5)

where β(P) = (β1(P), . . . , βp(P))′. The selection principle of linear screening with basis
b is

A∗LS(P) = {j ∈ Zp : β j(P) 6= 0}.

The following proposition is obvious.

Proposition 3. Under Assumptions 1 and 2, if f ∈ Lb, then A∗LS(P) = A0 for all P satisfying
Assumption 3.

Proposition 3 provides an ideal selection principle. However, the condition of f in the
proposition is very strong. For general f, the following assumptions are needed to make the
linear screening method have the selection consistency.

Assumption 4. ψ(x) = ∏
p
j=1 ϕ(xj) for all x ∈ I p, where ϕ is a density function on I .

Assumption 5. For j = 1, . . . , p0,
∫
I p b(xj) fA0(xA0)ψ(x)dx 6=

∫
I b(x)ϕ(x)dx

∫
I p fA0

(xA0)ψ(x)dx.

Proposition 4. Under Assumptions 1–5, A∗LS(P) = A0.

The following example shows that, without Assumption 4, Proposition 4 may not hold.

Example 3. Let f (x1, x2) = x2
1 and b(x) = x. For X1 and X2 both generated from U(0, 1), by (5),

some algebra shows that β2(P) = 0 if and only if E(X1X2) = E(X1)E(X2) = 1/4, where P is
the joint distribution of (X1, X2)

′. Therefore, if X1 and X2 are correlated, then β2(P) 6= 0, which
implies A∗LS(P) 6= A0.

By Lemma B.3 in the Supplementary Materials, under Assumptions 1–4, Assumption 5
is the sufficient and necessary condition of A∗LS(P) = A0. We give an example when
Assumption 5 does not hold.

Example 4. Let

f (x) =
p0

∏
j=1

(2xj − 1) (6)

with p0 > 1. Suppose P is the probability measure of U(0, 1)p, which satisfies Assumption 4. For
j = 1, . . . , p0,

∫
I p b(xj) fA0(xA0)ψ(x)dx =

∫
I p0 b(xj)(2xj − 1)∏k 6=j(2xk − 1)dx1 · · · dxp0 =∫

I b(xj)(2xj − 1)dxj ∏k 6=j
∫
I (2xk − 1)dxk = 0, and

∫
I p fA0(x)ψ(x)dx = ∏

p0
k=1

∫
I (2xk −

1)dxk = 0. Therefore, Assumption 5 does not hold for any basis function b. In fact, the lin-
ear screening method selects the variables whose main effects exist, while there are only interactions
in Function (6).

The above two examples actually show the following fact.

Fact 2. The linear screening methods may lack the screening property when Assumption 4 or
Assumption 5 does not hold.



Mathematics 2023, 11, 362 7 of 14

Generally speaking, Assumption 4 is not easy to hold but is relatively easy to verify.
When Assumption 4 holds, Assumption 5 holds for most cases except for some extreme
cases such as Example 4. This is because inequality is usually easier to hold than equality.
For example, if f is assumed to be a realization from a Gaussian process, then Assumption 5
holds with a probability of one.

From the discussion in this subsection, we draw the overall conclusions. (a) By
Proposition 3, if f is close to Lb, then the linear screening method with basis b performs well
for most P. (b) By Proposition 4, if X1, . . . , Xp are identically and independently distributed,
then the linear screening method is good for many cases. (c) If neither (a) nor (b) holds,
then linear screening may be poor.

4. Ensemble Screening

In the previous section, we have pointed out the limitations of the SIS-type and linear
screening methods for nonparametric models. To overcome these limitations, here we
propose an ensemble procedure that combines the two classes of methods. First consider
the linear screening methods, and we know that they perform very well when f is close to
its linear approximation. We can use some fitting index to check whether f is close to its
linear approximation or not. If the linear screening method with a candidate b passes the
check, then we select it to output the screening result; otherwise, we consider the SIS-type
methods. The fitting index is selected as the R-square

R2 =
∑n

i=1(Ŷi − Ȳ)2

∑n
i=1(Yi − Ȳ)2 , (7)

where Ȳ = ∑n
i=1 Yi/n and Ŷi is the ith prediction value of the response from the linear

screening method.
Specifically, for interpolation and regression problems, we use the lasso method [17] for

the linear model to screen the important feature variables. The ten-fold cross-validation is
used to specify the tuning parameter in the lasso. If the number of selected features is larger
than M, we only keep the features with the largest M absolute values of coefficients. Let
A∗LS denote the set of selected features. Then (Ŷ1, . . . , Ŷn)′ = β̂01n + b(X)A∗LS

β̂ used in (7),
where 1n denotes the n-vector whose components are all 1’s, b(X)A∗LS

is the sub-matrix

of b(X) = (b(Xij))i=1,...,n,j=1,...,p corresponding to A∗LS, and (β̂0, β̂
′
)′ is the least squares

estimator under the selected sub-model A∗LS.
For classification problems with y ∈ {0, 1}, we use the lasso method for the linear lo-

gistic model to screen the important features. Then (Ŷ1, . . . , Ŷn)′ = logit
(

β̂01n + b(X)A∗LS
β̂
)

used in (7), where (β̂0, β̂
′
)′ is the maximum likelihood estimator under the selected sub-

model A∗LS and logit(z1, . . . , zn) =
(

exp(z1)/[1 + exp(z1)], . . . , exp(zn)/[1 + exp(zn)]
)′.

A number of definitions of R-square for logistic regression, including that in (7), were
compared in [21]. Here we recommend using (7), which is consistent with the regression
cases, by our numerical experience.

The detailed steps of the ensemble screening procedure are described as follows. Let
δ ∈ (0, 1) be a threshold value.

Step 1: Conduct the linear screening method with the linear basis b(x) = x. Obtain the
subset A∗LSLB and the corresponding R2

LSLB.

Step 2: Conduct the linear screening method with the quadratic basis b(x) = x2. Obtain
the subset A∗LSQB and the corresponding R2

LSQB.

Step 3: If max(R2
LSLB, R2

LSQB) < δ, then conduct DC-SIS, and output A∗ = A∗DC−SIS;
if R2

LSLB > δ and R2
LSLB > R2

LSQB, then output A∗ = A∗LSLB (if the size of A∗LSLB,
denoted by |A∗LSLB|, is less than M, then add the first M− |A∗LSLB| variables selected
by DC-SIS to A∗);
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if R2
LSQB > δ and R2

LSQB > R2
LSLB, then output A∗ = A∗LSQB (if the size of A∗LSQB is

less than M, then add the first M− |A∗LSQB| variables selected by DC-SIS to A∗).

There is no feasible method to find the optimal basis function in the linear screen-
ing methods [13]; see also Section 3.2. Here we only consider the two basic linear and
quadratic basis functions. The linear basis function corresponds to the method of selecting
important variables via the main linear effects. This basis is commonly used with two-level
supersaturated designs [14,22] when the predictors can be designed. The linear screening
method with the quadratic basis selects important variables via the main quadratic effects
and is relevant to three-level supersaturated designs [23]. Unlike the two basis functions,
other basis functions do not have clear interpretations. We also try other basis functions,
including high-order polynomials and some random functions. Our numerical experience
shows that more than two basis functions do not lead to significant improvement. In fact,
the linear screening method with only the linear basis has much better performance than
SIS-type methods in most cases under interpolation models [13]. From a practical point of
view, for a new dataset, at first, one usually uses a linear model (with the linear basis) to fit
it. The use of the linear basis in the proposed method is consistent with this manner.

Furthermore, we try a number of feasible implementations in the linear screening
method. If we use different basis functions for different variables, similar to the non-
parametric additive model or use parametric interaction models [24] to conduct variable
screening, then there are too many basis functions (»p) in the linear model, and this will
lead to poor screening performance since p itself is large. Therefore, these more complex
models are not recommended in linear screening methods.

Note that SIS-type methods are all marginal methods based on independence ranking
and have similar performance in most cases. Among them, DC-SIS seems to have good
performance for situations where linear screening fails, in our experience. In Step 3, we
choose DC-SIS in our method.

The proposed ensemble method stems from some natural ideas. For high-dimensional
settings, the data are not enough to build a complex model, and we should first try linear
models. If the linear model fits the data well, we use it to screen active features. Otherwise,
we consider an SIS-type method, which acts as the “last” method because of its slow
convergence in high-dimensional nonparametric settings. We also consider other ensemble
strategies combining the two classes of screening methods, including the method that takes
a union set of the results from the two classes of methods, the method that uses other
criteria such as the prediction performance instead of R-square, and others. Our numerical
comparisons indicate that the proposed ensemble method outperforms these strategies.

After screening the active features, an important work is the post-selection infer-
ence, including forming valid confidence intervals for the selected coefficients and testing
whether all relevant variables have been included in the model [25]. For nonparametric
settings, the post-selection inference problem is quite challenging. It is a valuable topic
to develop effective post-selection inference methods that can be applied to the proposed
ensemble procedure in the future.

5. Numerical Examples

In this section, we apply the proposed screening method to analyze several simulated
and real datasets. The real datasets are all from the UC Irvine Machine Learning Repository.
More numerical examples can be found in the Supplementary Materials.

5.1. Simulations for Interpolation

This subsection considers the following test functions,
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(I) f (x) =
p0

∑
j=1

jx2
j ,

(II) f (x) = −20 exp

−1
5

√√√√ 1
p0

p0

∑
j=1

x2
j

− exp

(
1
p0

p0

∑
j=1

cos(2πxj)

)
+ 20 + exp(1),

(III) f (x) =

(
p0

∑
j=1
|xj|
)

exp

[
−

p0

∑
j=1

sin
(

x2
j

)]
,

(IV) f (x) =
p0

∑
j=1

x2
j +

(
p0

∑
j=1

jxj/2

)2

+

(
p0

∑
j=1

jxj/2

)4

,

(V) f (x) =
p0

∏
j=1

(2xj − 1).

Function (I) is known as the weighted sphere model, Function (II) is Ackley’s model,
Function (III) is Yang’s model, and Function (IV) is Zakharov’s model [26]. Function (V)
is given in (6), which can make the linear screening methods fail. The data of predic-
tors are generated as X1, . . . , Xn identically and independently distributed from U(0, 1)p.
Combinations of (n, p, p0) in our simulations can be found in Table 1.

Table 1. Coverage rates in interpolation.

Function (I)

n = 100, p = 150 n = 200, p = 500 n = 400, p = 2000
p0 = 5 p0 = 10 p0 = 5 p0 = 10 p0 = 5 p0 = 10

DC-SIS 0.298 0.004 0.423 0.012 0.596 0.034
MDC-SIS 0.328 0.003 0.461 0.018 0.669 0.039

LSLB 0.998 0.401 1.000 0.656 1.000 0.930
LSQB 1.000 0.984 1.000 1.000 1.000 1.000

ensemble
(δ = 0.6) 1.000 0.984 1.000 1.000 1.000 1.000

ensemble
(δ = 0.7) 1.000 0.984 1.000 1.000 1.000 1.000

ensemble
(δ = 0.8) 1.000 0.984 1.000 1.000 1.000 1.000

Function (II)

n = 100, p = 150 n = 200, p = 500 n = 400, p = 2000
p0 = 5 p0 = 10 p0 = 5 p0 = 10 p0 = 5 p0 = 10

DC-SIS 0.979 0.175 0.999 0.892 1.000 1.000
MDC-SIS 0.981 0.231 1.000 0.951 1.000 1.000

LSLB 1.000 0.871 1.000 1.000 1.000 1.000
LSQB 0.897 0.161 0.986 0.817 1.000 1.000

ensemble
(δ = 0.6) 1.000 0.872 1.000 1.000 1.000 1.000

ensemble
(δ = 0.7) 0.999 0.872 1.000 1.000 1.000 1.000

ensemble
(δ = 0.8) 0.997 0.855 1.000 1.000 1.000 1.000
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Table 1. Cont.

Function (III)

n = 100, p = 150 n = 200, p = 500 n = 400, p = 2000
p0 = 5 p0 = 10 p0 = 5 p0 = 10 p0 = 5 p0 = 10

DC-SIS 0.981 0.296 1.000 0.933 1.000 1.000
MDC-SIS 0.988 0.372 1.000 0.962 1.000 1.000

LSLB 1.000 0.999 1.000 1.000 1.000 1.000
LSQB 1.000 1.000 1.000 1.000 1.000 1.000

ensemble
(δ = 0.6) 1.000 1.000 1.000 1.000 1.000 1.000

ensemble
(δ = 0.7) 1.000 1.000 1.000 1.000 1.000 1.000

ensemble
(δ = 0.8) 1.000 1.000 1.000 1.000 1.000 1.000

Function (IV)

n = 100, p = 150 n = 200, p = 500 n = 400, p = 2000
p0 = 5 p0 = 10 p0 = 5 p0 = 10 p0 = 5 p0 = 10

DC-SIS 0.277 0.003 0.420 0.026 0.537 0.042
MDC-SIS 0.286 0.004 0.411 0.013 0.621 0.055

LSLB 0.829 0.158 0.976 0.354 1.000 0.541
LSQB 0.860 0.134 0.981 0.320 1.000 0.470

ensemble
(δ = 0.6) 0.841 0.158 0.974 0.354 1.000 0.541

ensemble
(δ = 0.7) 0.841 0.158 0.974 0.354 1.000 0.541

ensemble
(δ = 0.8) 0.841 0.158 0.972 0.351 1.000 0.540

Function (V)

n = 100, p = 100 n = 200, p = 300 n = 400, p = 800
p0 = 3 p0 = 5 p0 = 3 p0 = 5 p0 = 3 p0 = 5

DC-SIS 0.775 0.155 0.978 0.573 1.000 0.998
MDC-SIS 0.045 0.003 0.016 0.002 0.005 0.000

LSLB 0.009 0.000 0.009 0.001 0.002 0.000
LSQB 0.012 0.002 0.014 0.001 0.001 0.000

ensemble
(δ = 0.6) 0.747 0.151 0.980 0.567 1.000 0.996

ensemble
(δ = 0.7) 0.772 0.155 0.982 0.573 1.000 0.998

ensemble
(δ = 0.8) 0.775 0.155 0.982 0.573 1.000 0.998

Fix M = [n/ log(n)] suggested by [4]. Five methods are compared, including two
SIS-type methods, two linear screening methods, and the proposed ensemble method. The
two SIS-type methods are Li, Zhong, and Zhu [9]’s DC-SIS and Shao and Zhang [10]’s
martingale difference correlation (MDC)-SIS method. The two linear screening methods,
denoted by linear screening with linear basis (LSLB) and linear screening with quadratic
basis (LSQB), respectively, adopt the linear and quadratic basis functions and use the lasso
method, conducted with the Matlab package glmnet [27], to screen the important features.
We use ten-fold cross-validation to specify the tuning parameter in lasso and only keep
the variables with the largest M absolute values of coefficients if the number of selected
features is larger than M. In our method, three values of the threshold δ, 0.6, 0.7, and 0.8,
are used. The values of δ are selected by experience.

The coverage rates that the selected subset include for the true submodel over 1000 rep-
etitions are given in Table 1. It can be seen from the table that MDC-SIS is slightly better
than DC-SIS for Functions (I)–(IV) but performs poorly for Function (V). LSLB and LSQB
have clear differences for some cases, which indicates that the selection of basis influences
the performance of the linear screening methods. Although the linear screening methods
have better overall performance than the SIS-type methods, they do not work for Function
(V), which is pointed out in Example 4. For the proposed ensemble method, we find that
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the value of δ does not heavily influence its performance. In addition, ensemble screening
overcomes the limitations of the SIS-type and linear screening methods and performs very
close to the best method among DC-SIS, MDC-SIS, LSLB, and LSQB for all the cases.

As mentioned in Section 3.1, Azadkia and Chatterjee proposed a forward variable
selection method for nonparametric models via a measure of conditional dependence [20].
This method usually yields very sparse selection results and has relatively good perfor-
mance for p < n problems in our numerical experience. Note that we can use it as a
screening method when conducting it until M variables have been selected. However, as a
screening method, this forward method performs poorly when p > n. For example, for
(n, p, p0) = (100, 150, 5) and M = [n/ log(n)], its coverage rates of correct screening over
1000 repetitions for Functions (I)–(III) are only 0.048, 0.116, and 0.019, respectively.

We also conduct simulations for regression and classification problems with the test
functions and report the results in the Supplementary Materials. It can be seen from
the regression and classification results that the main findings are similar to those in the
interpolation cases.

The dataset in this subsection contains N = 9568 data points collected from a Combined
Cycle Power Plant (CCPP) over 6 years (2006–2011) [28], when the power plant was set to
work with a full load. Features consist of hourly average ambient variables Temperature,
Ambient Pressure, Relative Humidity, and Exhaust Vacuum to predict the net hourly
electrical energy output of the plant.

We first standardize the data of the four features into [0, 1]4 via the linear transforma-
tion xij ← (xij −mink=1,...,N xkj)/(maxk=1,...,N xkj −mink=1,...,N xkj) for i = 1, . . . , N, j =
1, 2, 3, 4. Then, we randomly draw a subsample {xij}i=1,...,200,j=1,2,3,4 of 200 data points from
the whole dataset, and add 296 noisy variables to construct the test dataset of n = 200 and p
= 300 to evaluate the screening methods. To generate the noisy features, we draw a number
J among {1, 2, 3, 4} with equal probabilities, and let xij = max{min{xi J + z, 1}, 0}, i =

1, . . . , n, j = 5, . . . , p, where z ∼ N(0.5, 0.42). It can be seen that the noisy variables are
correlated with the true features. We repeat the process of generating the test datasets 1000
times and report the coverage rates for which the screening methods correctly select the
four true features with different M in Figure 1.

It can be seen from the results that the two SIS-type methods perform very similarly.
The two linear screening methods perform poorly. However, with their help, the proposed
method outperforms DC-SIS and MDC-SIS.
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Figure 1. Coverage rates in Section 5.2.

5.2. Computer Tomography Images

The dataset in this subsection was retrieved from a set of 583 computer tomography
images from a person. Each computer tomography slice is described by two histograms
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in polar space. The first histogram has 240 components describing the location of bone
structures in the image. The second histogram has 144 components, describing the location
of air inclusions inside the body. Both histograms are concatenated to form the final feature
vector. The response variable is the relative location of an image on the axis, which was
constructed by manually annotating up to 10 different distinct landmarks in each computer
tomography volume with a known location. A more detailed description of the dataset
can be found in [29]. Among those 583 images, 350 of them are randomly selected as the
training sample, and the remaining 233 are set as the test sample. Therefore, the sample
size n is 350, less than the number of variables, p = 384, in the feature vector.

Based on the training sample, we conduct the screening methods to reduce the number
of predictors from p to M. Like in [20], we then use the random forest (RF) algorithm [30],
conducted by the Matlab function TreeBagger with 500 decision trees in the ensemble,
to predict the response on the test sample. The mean test errors of these methods over
100 replications are presented in Figure 2. We also show the test errors of random forest
without the screening step.

20 40 60 80 100 120 140 160 180
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M

te
st

 e
rr

or

 

 

RF without screening
RF after DC−SIS
RF after MDC−SIS
RF after LSLB
RF after LSQB
RF after ensemble

Figure 2. Test errors in Section 5.2.

It can be seen from the results that, for a small M, the two SIS-type methods perform
very poorly. The proposed method always yields the smallest test errors among the five
methods. In particular, with about 70 variables selected by our method, the test error is very
close to that with all 384 variables, while DC-SIS and MDC-SIS need about 110 variables to
achieve a similar result.

5.3. Voice Rehabilitation

The dataset from a study on objective automatic assessment of rehabilitative speech
treatment in Parkinson’s disease contains 126 data points with 310 predictors. The pre-
dictors are all continuous values, and the response is binary. Detailed information on the
predictors and response can be found in [31]. Among those 126 data, we randomly selected
100 of them as the training sample, and the remaining 26 were set as the test sample.

In addition to the methods compared in the previous subsections, we add Cui, Li, and
Zhong [32]’s MV-SIS method, which is a model-free feature screening approach for high-
dimensional classification problems. Similarly, we conducted the six screening methods to
reduce the number of predictors from 310 to 15. Then the random forest algorithm was
used to predict the response on the test sample. The mean test errors of these methods over
100 replications are presented in Table 2. We also show the test errors of random forest
without the screening step. From Table 2, we find that the two linear screening methods
and the ensemble method effectively reduce the dimensionality: their test errors are less
than that from random forest without the screening step. In addition, the performance
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of the ensemble screening method is very close to the best method, LSQB, among these
screening methods. This point is consistent with our findings in simulations with test
functions in the Supplementary Materials.

Table 2. Test errors of RF in the real data example.

Full
Model DC-SIS MDC-SIS MV-SIS LSLB LSQB Ensemble

Mean 0.163 0.232 0.231 0.361 0.142 0.136 0.138
Standard
deviation 0.069 0.083 0.086 0.109 0.058 0.057 0.053

6. Concluding Remarks

For the screening problem in nonparametric settings, SIS-type methods have some
limitations. The linear screening methods, from the perspective of applied statistics or
data analytics, are alternatives. A natural idea is to combine the two classes of methods to
overcome their shortcomings. The ensemble method proposed in this paper follows this
line. Numerical investigations indicate that it performs stably even when existing methods
fail. For highly correlated predictors, the threshold δ in ensemble screening can be set as
0.8 or larger, while for other cases, δ = 0.7 seems to be a good choice. This paper focuses on
continuous and binary responses. The method proposed here can be applied to other types
of responses, such as counting or multivariate responses, without any extra difficulties.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/math11020362/s1, Table S1: Coverage rates in regression; Table S2:
Coverage rates in classification, and the reference in Supplementary Materials was cited in Ref. [32].
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