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Abstract: In the field of autonomous driving, millimeter-wave (MMW) radar is often used as a
supplement sensor of other types of sensors, such as optics, in severe weather conditions to provide
target-detection services for autonomous driving. RODNet (A Real-Time Radar Object-Detection
Network) is one of the most widely used MMW radar range–azimuth (RA) image sequence target-
detection algorithms based on Convolutional Neural Networks (CNNs). However, RODNet adopts
an object-location similarity (OLS) detection method that is independent of the number of targets
to obtain the final target detections from the predicted confidence map. Therefore, it gives a poor
performance on missed detection ratio in dense pedestrian scenes. Based on the analysis of the
predicted confidence map distribution characteristics, we propose a new generative model-based
target-location detection algorithm to improve the performance of RODNet in dense pedestrian
scenes. The confidence value and space distribution predicted by RODNet are analyzed in this paper.
It shows that the space distribution is more robust than the value distribution for clustering. This
is useful in selecting a clustering method to estimate the clustering centers of multiple targets in
close range under the effects of distributed target and radar measurement variance and multipath
scattering. Another key idea of this algorithm is the derivation of a Gaussian Mixture Model with
target number (GMM-TN) for generating the likelihood probability distributions of different target
number assumptions. Furthermore, a minimum Kullback–Leibler (KL) divergence target number
estimation scheme is proposed combined with K-means clustering and a GMM-TN model. Through
the CRUW dataset, the target-detection experiment on a dense pedestrian scene is carried out, and
the confidence distribution under typical hidden variable conditions is analyzed. The effectiveness of
the improved algorithm is verified: the Average Precision (AP) is improved by 29% and the Average
Recall (AR) is improved by 36%.

Keywords: RODNet; target detection; Gaussian mixture model; KL divergence; maximum likelihood

MSC: 68T01

1. Introduction

Millimeter-wave radar is one of the main sensors for vehicle and pedestrian detection
in the field of intelligent transportation. Compared with other sensors such as optical
cameras and lidars, millimeter-wave radars are more robustly resistant to environmental
changes such as different weather and lighting conditions. However, due to the complex
scattering effects of clutter, distributed target, and multipath propagation with limited
target resolution [1–3], it is difficult for millimeter-wave radar data to describe the semantic
features of the scene, including the shape of the target, the relationship between targets, etc.
The key target-detection problem of millimeter-wave radar is optimizing both false alarm
and missed detection [4].

The existing radar data processing flow is mainly as follows. First, the radar raw
data are subjected to range and azimuth (RA) Fast Fourier Transform (FFT), and then a
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Constant False Alarm Rate Detection (CFAR) is performed in the range–azimuth domain
data to obtain target point cloud, velocity, and RCS information [5], as shown in Figure 1.
Unfortunately, the target-scattering response in nature scenes is more complex than the
simplified clutter background model used in CFAR. The local signature of target-scattering
response is destroyed after CFAR, which leads to less priori information such as target
size and radar measurement accuracy being used to optimize both false alarm and missed
detection. Sparser point cloud makes it worse [6].
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Figure 1. CFAR-based radar target-detection flow chart. 
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Recent development of machine-learning techniques, such as CNNs [7–14], enable
new methods for radar target detection used in the microwave and optical high-resolution
remote-sensing community [15–24]. Refs. [7–11] highlighted that over recent years, a lot of
studies have been published pursuing multi-sensor fusion with various deep convolutional
neural networks and obtaining a state-of-the art performance in object detection and
recognition. DCNNs were first introduced by K. Fukushima [12], using the concept of
a hierarchical representation of receptive fields from the visual cortex, as presented by
Hubel and Wiesel. Afterward, Weibel et al. Ref. [13] proposed convolutional neural
networks (CNNs) that share weights with temporal receptive fields and Backpropagation
training methods. Later, Y. LeCun [14] presented the first CNN architecture for document
recognition. The DCNN models typically accept 2D images or sequential data as the
input. Based on radar image, Ref. [19] designed an aggregation module to merge the
data from all chirps in the same frame to make full use of radar data in object detection
and various Gaussian noises with different parameters are employed to increase data
diversity and reduce over-fitting based on the analysis of training data. Ref. [20] proposed a
novel cross-modality deep-learning framework for the radar object detection task using the
Squeeze-and-Excitation network. A novel noise detection approach is also explored in the
study to increase the model’s ability to handle noise. Ref. [21] proposed novel scene-aware
sequence mix augmentation (SceneMix) and scene-specific post-processing to generate
more robust detection results. Ref. [22] proposed a dimension apart network (DANet)
for a radar object detection task to be lightweight and capable of extracting temporal–
spatial information from the RAMap sequences. Ref. [23] also proposed a lightweight,
computationally efficient, and effective network architecture to conquer the question of
the trade-off between computational efficiency and performance of radar object-detection
tasks. The radar cube is introduced in [24] to maximize the use of radar input data. The
aforementioned literature is mainly on the use of data and network lightweight research,
but no one has studied improvement methods based on target number.

Spatial bias is a type of inductive bias in CNNs that assumes a certain type of spatial
structure present in the data, which can be used to learn the local signature of target-
scattering response in the RA image sequence. However, the use of CNNs in low-resolution
data such as a Multiple-Input Multiple-Output (MIMO) radar image in the automatic
driving scenario presents certain challenges. RODNet firstly introduces CNNs into MIMO
radar image feature expression [25]. It uses a chirp-merging module (M-Net), and a
temporal deformable convolution (TDC) operation directly learns and encodes the target
features from the range–azimuth images to improve the limitation of low resolution MIMO
radar image. The M-Net is designed to enhance the SNR of input data using multi-chirp
RA images. In addition, the TDC uses the deformable convolution network (DCN) [26] to
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accomplish the 3D CNN [8,9,27,28] to handle the radar object dynamic motion within the
input RA images per frame.

After encoding the multi-chirp RA images for each frame, the RODNet will generate
a confidence map (ConfMap) of predicated target locations and classes from the merged
image signature codes. The value of ConfMap is assumed to be a Gaussian distribution
representing the possibility of point target-detection results occurring at a range–azimuth
location. The final detection result is then obtained by the position-processing method.
The sorting process is shown in Figure 2. However, RODNet is a cross-supervised training
scheme that is characterized by a lack of bounding box. This makes it difficult for RODNet
to predict the boundary of the target in the RA coordinate system based on ConfMap.
The object-location similarity (OLS) metric, which is like an intersection over union
(IoU) [29–36], is proposed to estimate the position of the point target. As it depends
only on the sparse high ConfMap value information, the unknown effects on the ConfMap
from multi-target, multipath scattering and poor resolution make it difficult to balance
the false alarm and missed detection in the dense scenes, as shown in Figure 3. RODNet
detects the two proximal pedestrian targets as one because their ConfMaps are overlapped.
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Figure 3. RODNet radar data target-detection results from left to right are optical image, radar RA
map (Input data, two walking persons in red box), and radar detection results.

The ConfMap of a certain class predicated by CNNs-based RODNet is believed to
indicate the probability of target in an RA grid. However, the OLS method ignores the
fact that the number of targets is a hidden variable of the target location. This makes the
complex scattering of dense scenes affect the distribution of ConfMap values, which in turn
affects the accuracy of target number estimation and ultimately leads to errors in target
detection. In order to avoid this problem, this paper intends to independently estimate
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the target number using ConfMap value distribution and estimate target location using
the occupied grid spatial distribution of ConfMap. This new algorithm can improve the
detection accuracy by correcting the wrong target estimation number.

Overall, our main contributions are the following:

• Based on the actual data, we analyze the characteristics of ConfMap predicated by
RODNet and the limitations of the OLS target-location detection method. The rela-
tionship among ConfMap value distribution, occupied grid spatial distribution, and
target number is analyzed.

• GMM-TN, a target-state likelihood model with ConfMap value for observation is
introduced for simulating the conditional ConfMap value and occupied grid spatial
distribution with target number as condition.

• The KL distance measure between the predicated ConfMap of RODNet and the
simulated ConfMap under the condition of the given target number is derived, and
the maximum posteriori target number estimation is constructed. The CRUW dataset
is used to verify the improved missed detection and false alarm of the method.

This paper is organized as follows: the relationship between the value of ConfMap,
the spatial distribution of occupied grids, and the number of targets is analyzed by actual
data in Section 2. Section 3 describes the method of establishing the GMM-TN model and
constructs the maximum for a posteriori target number estimation method. In Section 4, the
experiment applied to the CRUW dataset scenarios is introduced. Finally, we summarize
our algorithm and experiment results.

2. RODNet ConfMap Characteristics and Limitations
2.1. ConfMap Characteristic Analysis

The RODNet is implemented based on a 3D CNN with an autoencoder architecture.
The network architecture first uses some basic three-dimensional convolution structures,
then adds a skip connection layer [37] and implements a three-dimensional convolution
neural network based on the Hourglass (HG) architecture to ensure that each new convolu-
tion operation is not inferior to the previous one. In order to better apply the information
contained in all chirps, the author proposes a chirp-merging module (M-NET). Given that
the relative motion between the radar and the target causes the radar reflection mode to
change with time and the multi-level features are fused, a temporal deformable convo-
lutional (TDC) layer is added to the network [26]. Finally, the network achieved a better
classification result. Its encoder and decoder schematic are shown in Figures 4 and 5.

In the decoder shown in Figure 5, we perform feature restoration through deconvo-
lution operations to expand the size of the feature map. At the same time, a convolution
operation is performed after each layer of deconvolution, which can effectively extract
features while expanding the size of the feature map.

The value of the predicated ConfMap of RODNet can be equivalent to the probability
Pcls(r, a) that a specific class cls of target will appear on the grid (r, a). RODNet can detect
three classes of targets, namely cars, cyclists, and pedestrians. The three classes of target
ConfMaps can be obtained from the three channels of RODNet output after normalized
processing. The network framework of RODNet is built based on CNNs. Due to the
characteristics of CNNs, the predicated ConfMap of RODNet will have local relevance.
Figure 6 is a visual representation of a ConfMap.
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Figure 4. Hourglass three-dimensional convolutional neural network encoder with temporal incep-
tion convolution layers.
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Figure 6. ConfMap diagram of a single pedestrian. The value for each grid in the figure corresponds
to the probability that the target is a pedestrian. Because the channel where the pedestrian is located
corresponds to the first channel in three-primary colors (RGB), the higher the probability value, the
deeper the corresponding grid red.

2.2. Object-Location Similarity (OLS) Limitation Analysis

In the process of target-location processing [25], the author proposes a peak detection
algorithm. The algorithm traverses ConfMap through a 3 × 5 sliding window and obtains
the final location result by filtering the peak and recursively calculating OLS. The flow
chart for target-location detection using OLS is shown in Figure 7.
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The formula of OLS proposed in [25] is as follows:

OLS = exp

{
−d2

2(s× kcls)
2

}
(1)

where d is the distance (in meters) between any two points in a radar RA image; s is the
object distance from the radar sensor, representing object scale information; and κcls is a
per-class constant that represents the error tolerance for class cls, which can be determined
by the object average size of the corresponding class. κcls is a priori setting such that OLS
can be reasonably distributed between 0 and 1.

The OLS can be interpreted as a Gaussian distribution, with distance d as the bias and
(s × κcls)2 as the variance. Therefore, OLS is a similarity measure which also considers
object size and distance, so it is more reasonable than other traditional distance measures
(such as Euclidean distance, Mahalanobis distance, etc). This OLS metric is also used to
match detections and ground truth for evaluation purposes.

According to the OLS target-location detection method, we can infer that the author
makes three assumptions as follows:

• Point target hypothesis;
• No point target overlap will occur in ConfMap;
• The value distribution of ConfMap is related to the corresponding probability distri-

bution of point target location and class;
• Considering the above assumptions, there are several typical cases, which can be

analyzed as below.

Case (1): Single target in ConfMap
There is only one target in the ConfMap area, but multiple grids with high proba-

bility values appear. In this case, we first need to analyze the reasons for this situation.
Because the input of RODNet is radar RA map frames, that is, the original radar data are
obtained by FFTs transforms, each frame of the radar RA map is obtained by multiple
chirp combinations, and each chirp acquisition is affected by the randomness of radar
positioning, that is, the radar accuracy itself is a random quantity, which may cause the
process of extracting features in multiple chirp combinations to be extracted into multiple
high probability points. In addition, because the target collected by the radar itself should
be a distributed target during the acquisition process, the point target assumption is not
satisfied, which will result in multiple strong points in the data and eventually be extracted
into multiple high probability grids. Finally, the adjacent target may produce a multipath
effect, which will also affect the point target hypothesis. The above results in the situation
of case (1).

For a single pedestrian target, because such targets are small, the initial screening
process can directly obtain the peak value, so the method can obtain good results. Figure 8
shows this case.
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Case (2): No overlapped multiple targets in ConfMap
There are two targets in the region of the ConfMap; they are far apart, and each of the

two targets has a peak. The schematic diagram of this case is shown in Figure 9. When
the initial screening is completed, two peaks can be obtained. In the process of calculating
OLS, the larger the d is, the smaller the exponential part is, and the OLS is closer to 0. This
target-location processing method can also give accurate results.

Case (3): Type 1 overlapped multiple targets in ConfMap
There are two targets in the region of the ConfMap, but there is only one grid with

a high probability value. Case (3) is shown in Figure 10. Because only one peak point is
retained during the initial screening process, the result is missed.

Case (4): Type 2 overlapped multiple targets in ConfMap
There are two targets in the region of the ConfMap, but the high probability grid

points are close, or even overlap. Case (4) is shown in Figure 11. When two grids with
high probability appear at the same time at close range, d will become smaller in OLS
calculation, the index part will approach 0, and OLS will become larger. When the threshold
is exceeded, another strong point will be suppressed. In this case, OLS will also result in
missed detection.
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Figure 10. Case (3) data. (a) Optical photo of case (3). (b) A 2D ConfMap of case (3). (c) A 3D
ConfMap of case (3). The red box in (c) represents a 3 × 5 slider, and the blue box represents the
result of the primary screening peak. The area corresponding to (c) is the position indicated by the
green box in (a,b).
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In summary, in cases (1) and (2), the OLS-based location detection method performs
well. However, in cases (3) and (4), the method has missed detection and has been ver-
ified by measured radar data, confirming the limitations of the method. The reason for
case (3) is the missed detection of the sliding window. Furthermore, the reason for case
(4) is that the d in Equation (1) is too small, which causes the value of OLS to become larger
than the threshold, so one point is wrongly suppressed. We have considered increasing
the OLS threshold or modifying the size of the sliding window. Although the former can
ensure the adjacent peak point is retained, it may also lead to an error that should be
suppressed. The latter situation may cause the peak point to be missed in dense cases (or
overlapping). Simple adjustments cannot directly solve the problem, so a new method
needs to be proposed. In the next chapter, we will introduce our new method in detail.

3. Dense Target-Location Detection Method Based on Maximum
Likelihood Estimation

To solve the problem of missed detection of RODNet, we developed the Gaussian
Mixture Model with target number (GMM-TN). It can be considered that this is also a
clustering algorithm that automatically detects the best number of overlapping clusters.
The K-means algorithm is the part of it which is used only to find the centroids of the
assumed cluster number. Then, the Gaussian Mixture Model is used to simulate the
ConfMap under this assumption. For each cluster number assumption, the KL distance
between the simulated ConfMap and the ConfMap generated by RODNet is calculated.
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If the KL distance is the shortest, the corresponding cluster number assumption will be
considered as the best number of clusters.

3.1. Gaussian Mixture Model with Target Number

The assumptions used in the GMM-TN model are listed as follows:

• Point target hypothesis;
• Point target overlap may occur in ConfMap;
• Both the value distribution and occupied grid spatial distribution of ConfMap are

related to the corresponding probability distribution of point target location and class.

The simulated ConfMap Pcls(a, r) can be equivalent to the full probability of occurrence
of class cls point targets at grid (a, r) in a 128 × 128 grid image (refer to the radar RA map
in Figure 3) is shown in Equation (2).

Pcls(a, r) =
1
B

N

∑
n=0

Pn,cls(a, r) (2)

where a and r are the column index and row index of radar RA map, respectively; B is the
normalized coefficient of probability; and N is the number of targets in a single radar RA
map. Pn,cls(a, r) is the probability of occurrence of nth point target of class cls at grid (a, r),
which is related with several hidden variable conditions and can be rewritten as follows

Pn,cls(a, r) = P((a, r)|σcls, a0(n), r0(n))

=
1

2π
exp

{
− [(r− r0(n))× 2]2 + (a− a0(n))

2]

2(σcls)
2

}
(3)

σcls = 2arctan(
lcls
2r

)× ccls (4)

where r0(n) and a0(n) are the row and column grid index of nth point target, respectively.
The condition hidden variable σcls, as shown in Equation (4), represents the standard
deviation of the size of the target in the ConfMap which is approximate to a Gaussian
distribution, where lcls is a class-related prior information, a pedestrian is 1, a cyclist is 2,
and a car is 3. ccls is also priori information. The value of pedestrians is 15, the value of
cyclists is 20, and the value of cars is 30. The denominator is multiplied by 2 because the
reflection pattern in the radar RA image is usually elliptical.

Considering that the key operation for dense target detection depends mainly on the
azimuth resolution ability, we also can use the marginal probability distribution in azimuth
direction. The two-dimensional probability density Equation (2) becomes:

Pcls(a) =
1
C

128

∑
r=1

Pcls(a, r) (5)

where C is the normalized coefficient of probability.
The overall flow chart is shown in Figure 12. In the classification stage, we make

use of exactly the same feature extraction part of RODNet—the network and weights of
original RODNet to generate a ConfMap, as shown in Figure 12a. Because the problem
we are dealing with is the location processing, our improvements to RODNet are shown
in Figure 12b.
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3.2. Target Number Estimation Method

Based on the simulation method mentioned in Section 3.1, we combine clustering and
KL distance to construct a set of target number determination methods. We first perform
the following operations on the output results with ConfMap:

(1) Sort the scores of the results;
(2) Calculate the distance between each coordinate and the highest score coordinate

in turn;
(3) If the threshold is exceeded, the grid coordinate is saved to another list; otherwise, the

coordinates and the surrounding area greater than 0.3 enter our algorithm;
(4) Loop steps (2) and (3) until the last one is over and repeat steps (2) and (3) in the

‘another list’.

Our target-location detection algorithm process is shown in the Figure 13.
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The overall process of the method is as follows. First, the ConfMaps output from the
RODNet network is extracted. Because the number of targets and the location of point
targets are unknown in the ConfMap with overlap, the Maximum A Posteriori parame-
ter estimation framework is constructed by combining the GMM-TN and the predicted
ConfMap as a condition to determine the number and location of point targets. Because we
aim at the part of the network after the completion of the classification of the ConfMap, no
matter how the network structure is designed, this method can ensure that after classifica-
tion, our target-location detection will improve the accuracy of the results. The subsequent
experimental section will involve further discussion of the results.

In order to obtain r0(n) and a0(n) in Equation (3), we assume each clustering center
of a ConfMap occupied grid spatial distribution as the nth point target center with target
number as a predefined condition. There are four categories of clustering method: the par-
tition clustering method, the density-based clustering method, the hierarchical clustering
method, and the new method. K-means, which is used to perform this operation, is one of
the most widely used partition clustering algorithms [38,39]. It should be noted that not
only the K-means method but also any clustering algorithm with a pre-defined number of
clusters and based on the geometric distance between sample points can be applied to the
GMM-TN algorithm to find the clustering centroids.

After determining the target center and the simulation method, it is necessary to
measure the difference between two kinds of distribution: one is the normalized ConfMaps
predicated by RODNet, expressed by PRODNet

cls (a, r). Another distribution is the simulated
ConfMap Pcls(a, r) defined in Equation (2).

KL divergence is a widely used measure of the similarity between two probability
distributions. In this paper, the two-dimensional KL divergence is defined as:

KL2D = D(PRODNet
cls (a, r)||Pcls(a, r)) =

128

∑
a=1

128

∑
r=1

PRODNet
cls (a, r) log2

PRODNet
cls (a, r)

Pcls(a, r)
(6)

As the KL divergence is asymmetric, we can modify Equations (6) to (7):

KL2D = D(PRODNet
cls (a, r)||Pcls(a, r)) + D(Pcls(a, r)||PRODNet

cls (a, r))

=
128
∑

a=1

128
∑

r=1
PRODNet

cls (a, r) log2
PRODNet

cls (a,r)
Pcls(a,r) +

128
∑

a=1

128
∑

r=1
Pcls(a, r) log2

Pcls(a,r)
PRODNet

cls (a,r)

(7)

According to Equation (7), the smaller the KL2D is, the smaller two-dimensional
probability distribution difference is, and vice versa.

Based on Equation (5), it is reasonable to consider the azimuth-only case; therefore,
the one-dimensional KL divergence can be defined as:

KL1D = D(PRODNet
cls (a)||Pcls(a)) + D(Pcls(a)||PRODNet

cls (a))

=
128
∑

a=1
PRODNet

cls (a) log2
PRODNet

cls (a)
Pcls(a) +

128
∑

a=1
Pcls(a) log2

Pcls(a)
PRODNet

cls (a)

(8)

Two maximum likelihood target-number estimation methods are proposed based on
two-dimensional and one-dimensional symmetric KL divergence Equations (7) and (8),
which are named the 2DMLKL and 1DMLKL method, respectively.

At last, the estimated number of targets with the smallest one-dimensional or two-
dimensional symmetric KL divergence can be calculated by Equation (9) or (10):

N̂ = Argmin
N∈{0,1,··· ,Nmax}

KL1D (9)

N̂ = Argmin
N∈{0,1,··· ,Nmax}

KL2D (10)

where Nmax is the predefined maximum possible number of targets in a radar RA image.
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The final target number and the corresponding cluster center result are taken as the
output, and the probability value corresponding to the cluster center in the predicted
ConfMap is taken as the final score.

4. Experiments and Analysis
4.1. Experimental Data and Processing Steps

The dataset used in this paper is part of an open-source dataset called Camera-Radar of
the University of Washington (CRUW) [40], which uses the format of radar RA images. The
sensor platform includes a pair of stereo cameras and a 77 GHz millimeter-wave FMCW
radar. The assembled and mounted sensors are well calibrated and synchronized. The
stereo camera setup is designed to provide ground truth values for the dataset. The dataset
contains over 3 h of 30 FPS (approximately 400 K frames) camera radar data for different
driving scenarios, including campus roads, city streets, highways, parking lots, etc. In
addition, it also includes several visual failure scenes with very poor image quality, namely
darkness, strong light, blur, etc.

For the content of this paper, we reconstruct the CRUW dataset and divide it into two
parts: Dense Pedestrian scene (for short DP scene) and Non-Dense Pedestrian scene (for
short NDP scene). It should be mentioned that in the original CRUW dataset, the data
containing pedestrians accounts for about 50% of the total CRUW. In the data containing
pedestrians, the scene with dense pedestrians accounts for about 8%.

The specific experimental arrangements are as follows. First, we trained RODNet.
The encoding–decoding structure we use is shown in Figures 4 and 5. RODNet is based
on PyTorch [41]. The models are optimized with an Adam optimizer. The network is
trained with a batch size of 2 on NVIDIA RTX2080Ti GPU. The initial learning rate was
1 × 10−5, and the learning rate step was 5. The optimization is set to stop after 100 epochs.
Then we select the best model in the training effect and test with target-location detection
using OLS, 2DMLKL and 1DMLKL, respectively. Finally, we will show the four typical
cases mentioned in Section 2 with typical scene data. The result graph will show the
ConfMap results under the assumption of different target numbers simulated by GMM-TN
and K-means clustering, and it can be visually compared with the ConfMap predicted
by RODNet.

Later, we will introduce the process of our method in detail and show the comparison
of the results of target-location detection using OLS and target-location detection using
2DMLKL and 1DMLKL, respectively, for typical scene data. Then, we will compare and
verify the difference between the 1DMLKL and 2DMLKL methods and finally give the
overall evaluation.

4.2. Typical Sample Results and Analysis
4.2.1. GMM-TN Model Based ConfMap Simulation Results

The process is shown in Figure 13. We take the predicated ConfMap of RODNet as
input. For better simulation, we set a threshold of 0.3. The grids with values exceeding the
threshold are retained, and those less than the threshold are no longer considered, and the
values in these grids less than the threshold are changed to 0. Finally, we normalize the
ConfMap after threshold filtering.

Because the value of the ConfMap grid is the probability value that the grid has a
target, instead of the probability value that the grid belongs to a certain cluster, it cannot be
used as the input of the cluster. Therefore, in the process of clustering, we only consider
occupying the grid and use the K-means method to determine the target center. The
evolution of clustering iteration is shown in Figure 14.
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Figure 14. Evolutionary Graph of Clustering Iteration. The horizontal and vertical coordinates in
the figure represent range grid coordinates and azimuth grid coordinates, respectively. (1a–3a) are
processed predicated ConfMap of RODNet. We use the assumed number of targets as the input of
clustering, randomly select the grid corresponding to the number of targets as the initial clustering
center, and then cluster according to the principle of K-means. (1b–3b) are the clustering result graphs
corresponding to the three assumed target numbers.

Using the GNN-TN method mentioned above, we simulate several hypothetical
ConfMaps, as shown in Figure 15.

4.2.2. Target Number Estimation Compared with the Other Clustering Methods

The ConfMaps simulated by GMM-TN model are compared with the ConfMap of
RODNet by using the KL divergence. It is worth mentioning that because KL divergence > 0,
we need to normalize the ConfMaps. Then we are going to calculate the 2DKL divergence
using Equation (7) and the 1DKL divergence using Equation (8). After obtaining the
corresponding KL divergence value, we use Equations (9) and (10), respectively, to obtain
the final number of targets. Then, we output the corresponding position results and scores.

This algorithm is similar to the other clustering algorithms which can find the best
number of clusters automatically, such as Mean-shift [42], DBSCAN [39,43], OPTICS [44,45],
and BIRCH [46]. Therefore, it is necessary to compare their performance with the GMM-
TN algorithm. We randomly take a group of single and double pedestrian data from
CRUW for analysis. For the typical single-pedestrian case, the automatic target number
estimation results of K-means-based GMM-TN, Gaussian-mixtures-based GMM-TN, Mean-
shift, DBSCAN, OP-TICS, and BIRCH are shown in Figure 16. For the double pedestrian
case, their responses in ConfMap are overlapped, and their results are shown in Figure 17.
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According to the two cases results, we find the GMM-TN algorithm developed in
this paper can provide accurate automatic target numbers, either using the K-means or
the Gaussian mixtures clustering. Their centroids are somewhat different. However,
the Mean-shift and BIRCH algorithms tend to cluster single target into multiple targets,
which will lead to a false detection problem. In contrast, the DBSCAN and OPTICS
algorithms tend to cluster double targets into single target, which will lead to a missed
detection problem.

From the graph signatures of spatial distribution shape, the single target ConfMap
generated by RODNet usually satisfies the elliptic hypothesis. For two adjacent targets,
their spatial distribution of ConfMap can be modeled as two ellipses overlapping together.
We believe that this is related to the FFTs operation used in radar RA map processing
and the CNN-based RODNet. This kind of spatial distribution shape feature facilitates
clustering methods such as K-means and Gaussian mixtures, which separate samples
in n groups of equal variances, minimizing a criterion known as the inertia or within-
cluster sum-of-squares. In addition, the KL distance between the simulated ConfMap and
the ConfMap generated by RODNet is sensitive to different target number assumptions.
However, other clustering algorithms are not directly related to the number of targets but
to cluster density or bandwidth.

4.2.3. Detection Results Comparison for Dense and Non-Dense Pedestrian Scenes

We experimented with our methods in various typical scenarios and compared it with
the RODNet method. The results are shown in Figure 18. The experiment selected typical
results for the four cases mentioned above.

In order to ensure that the method mentioned in this paper will not have a negative
impact on non-dense target situation, we also conducted experiments on NDP scenes, such
as Case (1) and Case (2).
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From the diagram, it can be found that for Case (1), both the target-location detection
using OLS and using the 2DMLKL (Equation (7)) and 1DMLKL (Equation (8)) methods
we proposed perform well. In Case (2), we found that there was a false detection in the
detection of 2DMLKL in some frames. The correct number of targets is 2, whereas the
number of detected targets is 3. Moreover, the 1DMLKL method accurately detected two
targets. For Case (3) and Case (4), both of our methods can detect two dense targets well,
whereas the target-location detection using OLS gave an unsatisfactory result.

According to Equations (7) and (8), the larger the assumed target number is, the
stronger the corresponding randomness is, which is also confirmed from the results. In
addition, because the main influencing factor that makes dense pedestrians unable to be
accurately detected is the azimuth axis, the range axis has little effect on the results, so the
effect has been improved after using 1DMLKL. In the following paper, we will further use
the evaluation indicators to evaluate and analyze the experimental results.
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4.3. Statistical Evaluation of Large Amounts of Data

First of all, it is worth mentioning that the author of [25] performed inference and
evaluation on the human-annotated data. The quantitative results are shown in Table 1. The
RODNet results are compared with the following baselines that also use radar-only inputs:
(1) a decision tree uses some handcrafted features from radar data [6]; (2) CFAR detection
is first implemented, and a radar object classification network with ResNet backbone [47]
is appended; and (3) similar to (2), a radar object classification network with VGG-16
backbone based on CFAR detections is mentioned in [6]. Therefore, we make use of exactly
the same network and weights of original RODNet to generate ConfMap.

Table 1. Radar object detection performance evaluated on CRUW dataset.

Methods AP AR

Decision Tree [6] 4.70 44.26
CFAR+ResNet [47] 40.49 60.56
CFAR+VGG-16 [6] 40.73 72.88

RODNet [25] 85.98 87.86

Because this article is derived from the optimization of the dense pedestrian situation
of RODNet, we use the original evaluation method, that is, OLS as an indicator to calculate
the average precision (AP) and average recall (AR). The formula of OLS is Equation (1). AP
and AR correspond to Equations (11) and (12). Here, true positive (TP) represents correctly
located and classified instances, false positive (FP) represents the false alarm, and false
negative (FN) represents the missed detection and/or incorrectly classified instance.

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

We first calculate OLS between each detection result and ground truth in every frame.
Then, we use different thresholds from 0.5 to 0.9 with a step of 0.05 for OLS and calculate
the AP and AR for different OLS thresholds, which represent different localization error
tolerance for the detection results. Here, we use AP and AR to represent the average values
among all different OLS thresholds from 0.5 to 0.9 and use APOLS and AROLS to represent
the values at a certain OLS threshold. Overall, we use AP and AR as our main evaluation
metrics for the radar object detection task, which is the same as the original.

Here are some comparison results in Table 2.

Table 2. Comparison of the results of the method proposed in this paper with those in the original paper.

Scene Evaluation Index RODNet ROD-2DMLKL ROD-1DMLKL

Dense pedestrian AP 55.70% 80.62% 84.59%
AR 52.27% 83.33% 88.28%

Non-dense pedestrian AP 93.43% 87.98% 92.68%
AR 94.72% 88.47% 93.32%

Through Table 2, we can find that under the new position processing method pro-
posed in this paper, the detection effect of RODNet in the case of the DP scene has been
significantly improved, but for the NDP scene, there are some declines. After the distance
direction is compressed into one dimension, the two scenes are further improved, and the
scene for NDP is also similar to the original method.
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We analyze the reason why our method causes the decrease of AP and AR in NDP
scenes. As shown in Figure 19, in the radar RA images, the target position in the label is in
the upper right part of the ‘ellipse’, as shown by the star in the Figure 19, and the target
center we obtain by clustering is in the positive center of the ‘ellipse’. In the CRUW dataset,
the author only introduces the CRF (camera–radar fusion) method, which is annotated by
the fusion of optical detection projection and radar peak point, without revealing more
details. The label may have an error with the actual position. In addition, OLS is also
applied to the evaluation process. Target number estimation and position estimation give
the evaluation results at the same time and are not carried out separately. Therefore, we
consider adding ‘target number accuracy’ (for short TNA) as another evaluation.
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Figure 19. Detection results with labels. Circles represent the test result, and stars represent the true
value of the ground.

We count the number of targets in the detection results of the three methods, and the
results are shown in Table 3. The statistical method of TNA is as follows: the ratio of the
number of frames correctly estimated by the target number to the number of frames in the
total dataset, which is shown as Equation (13), where t is the number of true frames and a
is the number of all frames.

TNA =
t
a

(13)

Table 3. Comparison of the TNA of the method proposed in this paper with those in the original paper.

Scene Evaluation Index RODNet ROD-2DMLKL ROD-1DMLKL

Dense pedestrian
TNA

52.63% 89.73% 96.21%

Non-dense pedestrian 89.70% 90.62% 95.59%
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From Table 3, we can conclude that the method proposed in this paper has significantly
improved the estimation of the number of targets.

5. Conclusions

Aiming at the problem of missed detection of RODNet in dense pedestrian scenes, this
paper proposes an improved method of a RODNet radar target-detection algorithm applied
to dense pedestrian scenes. Firstly, we analyze ConfMap predicted by RODNet and the
limitations of the OLS target-location detection method. The relationship between ConfMap
value distribution, occupied grid spatial distribution, and target number is analyzed as
well. Secondly, we propose a target state likelihood model called GMM-TN, which uses
ConfMap value for observation to simulate the conditional ConfMap value and occupied
grid spatial distribution with the target number as a condition. Finally, we propose a
maximum posteriori target number estimation based on KL divergence to obtain a new
number of targets. Then the CRUW dataset is used to verify the improved missed detection
and false alarm of the method.

Because we focus on dense pedestrian scenes, we reconstruct the CRUW dataset
into Dense Pedestrian (DP) scenes and Non-dense Pedestrian (NDP) scenes and design
experiments. We used the evaluation indicators AP and AR in RODNet for evaluation and
introduced a new indicator target-number accuracy rate to verify the method. The validity
of the three main contributions in this paper is verified by analysis. The missed detection
of DP scenes has been significantly improved, and our method also shows good robustness
in NDP scenes.

However, the feature extraction part of RODNet has not been improved. The method
proposed in this paper proves that ConfMap has the potential to provide more informa-
tion. In the subsequent research, we consider trying a new architecture and using the
subsequent information to optimize the previous feature extraction network. At the same
time, this paper verifies that this method can obtain an accurate number of targets, but
because the original dataset does not give a calibration method, the position estimation
method cannot judge whether it is accurate or not. In the future, we will consider evaluat-
ing the performance of position detection results by projecting the detection results into
optical images.
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Abbreviations
List of Acronyms: We sorted out the acronyms that appear in the article, as shown in the following:
Acronyms Full Name
MMW Millimeter-wave
RA Range–azimuth
CNNs Convolutional Neural Networks
OLS Object-Location Similarity
GMM-TN Gaussian Mixture Model with target number
KL divergence Kullback–Leibler divergence
AP Average Precision
AR Average Recall
CFAR Detection Constant False Alarm Rate Detection
FFT Fast Fourier Transform
TDC Temporal deformable convolution
MIMO Multiple-Input Multiple-Output
DCN Deformable convolution network
ConfMap Confidence Map
IoU Intersection over union
HG Hourglass
2DMLKL Two-dimensional symmetric KL divergence
1DMLKL One-dimensional symmetric KL divergence
CRUW [40] Camera-Radar of the University of Washington
DP scene Dense Pedestrian scene
NDP scene Non-Dense Pedestrian scene
CRF Camera-radar fusion
TNA Target Number Accuracy
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