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Abstract: One-dimensional and three-dimensional piecewise chaotic maps are used to propose an
image-encipher technique in this article. First, the logistic map is used to construct the pseudo-
random sequence. After that, this sequence is used to scramble the plain image. Next, the three-
dimensional piecewise chaotic map has produced a mask of the chaotic sequence. After doing some
preprocessing steps on the mask, a bit-wise XOR operation with the mask is applied to the shuffled
image. The suggested algorithm is used to encipher and decipher a different range of images. To
check the algorithm security and efficiency, the algorithm performance was calculated using multiple
statistical tests and compared to several recent algorithms. Furthermore, numerical simulations and
experimental data are also used to validate the proposed algorithm’s resistance to various attacks.

Keywords: image encipherment; image decipherment; chaotic maps; confusion-diffusion model
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1. Introduction

Data-sharing across open networks and the Internet is growing exponentially, and
keeping information secret is a major challenge. This information may include text, images,
audio, video, etc. Most multimedia applications in today’s world include images. Image
encipherment is one prospective way to hide an image’s information. Hence, different
encipherment methods for protecting sensitive images from unauthorised users have been
developed and used in recent years. In addition, chaotic maps are distinguished by their
unpredictability, bifurcation, and acute susceptibility to initial restrictions and parameters
of control. These characteristics allow chaotic maps to create a sequence of random numbers
that are unpredictable without strictly specifying initial conditions and parameters of con-
trol. As a result, chaotic systems are increasingly being used in recent image-encipherment
studies, because the secret key should be volatile, unforeseeable, and extremely sensitive to
even little value changes.Most encipherment algorithms are dependent on permutation,
substitution, or both. In any case, an image is enciphered and deciphered using the exact
secret key. In fact, most authors now use the permutation/substitution model. Certainly,
this would improve secrecy and make cracking the encipherment more difficult. The
permutation/substitution model has two stages. First, permutation, or confusion, is often
used to minimize pixel correlation. The value of the pixel is then modified using diffusion.

The first encipherment algorithm through the chaotic map was published in [1].
Many articles after that used chaotic maps of various types to produce strong image-
encipherment algorithms. These chaotic maps are of different dimensions—maybe one,
two, three, or more. Additionally, some of these are piecewise maps or non-piecewise maps.
The researchers suggested an image technique dependent on a 1D chaotic economic map
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in [2,3]. In [4], a 1D chaotic map relying on the Beta function was presented, which was
then used to create an image-encipherment algorithm. In [5], a new encipherment method
dependent on the Rijndael architecture that employs a 1D chaotic map and a block cipher
in an appropriate mode of operation is described. Ref. [6] used S-Box and a 1D logistic-sine
chaotic map to suggest a novel encipherment scheme. Additionally in [7], the authors
used a 1D sine-powered chaotic map to develop an encipher system. By combining the
logistic map with the sine map, an enhanced 1D sinusoidal chaotic scheme was presented
and used to construct a novel image-encipherment algorithm in [8]. All the prior works
used non-piecewise 1D chaotic maps for the proposed encipherment algorithms. Ref. [9]
presented an algorithm for image encipherment via a 1D piecewise chaotic tent map. In [10],
the authors used a novel chaotic system composed of two 1D piecewise chaotic maps. This
system uses one chaotic map to confuse another, then used the result as a basis of a novel
image-encipherment algorithm. The authors suggested a new scheme to encipher images
via a 1D piecewise chaotic map and the bisection method in [11]. A parallel image-encipher
algorithm was present in [12]. This method uses a piecewise linear chaotic map (1D map)
and a hyperchaotic map (4D non-piecewise map). The previous article employed a hybrid
system that included piecewise and non-piecewise chaotic maps of different dimensions.

Since the system behavior is rapidly changing in the chaotic maps with
high-dimensional and these have a huge key-space, they are safer than one-dimensional
chaotic maps. Therefore, a lot of researchers have proposed algorithms based on high-
dimensional maps, but most of them were non-piecewise chaotic maps. For example, if
we look at the non-piecewise high-dimensional chaotic maps, we find a lot of articles as
shown next. In [13], a new form of encipherment was presented. This form is based on 1D
and 2D chaotic maps and genetic operations. A novel image-encipherment technique using
keys generated from DNA and plain images via 1D and 2D chaotic maps was presented
in [14]. Ref. [15] designed an encipherment system that depended on 2D chaotic economic
and logistic maps. An encipherment algorithm using a recent 2D chaotic map that was
derived from two 1D chaotic maps in [16]. In [17], the authors present an encipherment
algorithm based on a 2D HCM (Henon–Chebyshev map). In [18], the authors created an
encipherment technique based on the Henon chaotic map, the Lü 3D chaotic map, and
double spiral scans. Ref. [19] took advantage of the Fisher–Yates shuffling algorithm
and a 3D chaotic economic map to suggest an encipher scheme. Ref. [20] proposed an
image-encipherment system based on the 3D Lorenz chaotic map. An image-encipherment
approach using a three-dimensional chaotic map and DNA encoding is suggested in [21].
In [22], an image-encipherment algorithm via a 3D infinite collapse map was introduced. A
3D chaotic map and a strong S-Box were used to build an image-encipherment algorithm
in [23]. A new image-encipherment method via the genetic algorithm-III (NSGA) and
a four-dimensional chaotic map was presented in [24]. The authors in [25] used a 6D
hyperchaotic map to propose an image-encipherment scheme.

In the field of cryptography, neural networks play a significant role. In particular, these
algorithms have improved pseudorandomness and complexity. Many authors studied
neural networks with image encryption. In [26], the authors introduced a chaotic cou-
pled neural network image-encipherment algorithm. An image-encipherment algorithm
based on a hyperchaotic memristive ring neural network is presented in [27]. In [28], the
researchers suggested an image-encipherment algorithm via a multiscroll memeristive
Hopfield neural network.

On the other hand, a few articles that used piecewise high-dimensional chaotic maps
mention some of them as following. Ref. [29] combine the chaotic system with Brownian
motion to design a new encipherment algorithm. This chaotic system is composed of two
chaotic maps. The first one is a basin chaotic map, and this is a 2D non-piecewise chaotic
map, but the other one is a gingerbread man chaotic map, and this is a 2D piecewise chaotic
map. A novel coupled 2D piecewise chaotic map was introduced in [30], then used to
propose a fast image cryptosystem. The authors in [31] suggested an image-encipherment
scheme via a nonlinear 2D piecewise smooth chaotic map. Additionally in [32], a fast
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image-encipher algorithm via the chaotic baker map was suggested. This map is a 3D
piecewise chaotic map.

From the above discussion, it was noticed that there are very few articles that use
high-dimensional piecewise chaotic maps for image-encipherment algorithms. This is
the reason for proposing an encipherment algorithm via a 3D piecewise chaotic map in
the current article. This algorithm has two parts. The first part uses a 1D logistic map to
permute the pixel positions to reduce the correlations between them. The other part used a
3D piecewise chaotic map to modify the pixel values of an image.

This article is separated into the sections mentioned below. In Section 2, a basic
overview of a 3D piecewise chaotic map is introduced. Section 3 concentrates on the
shuffling method that uses the sequence created via the logistic map. Section 4 discusses
the suggested encipherment and decipherment algorithms in more detail. Security investi-
gation and comparisons within the literature are given in Section 5 for related algorithms.
In Section 6 the conclusion is addressed.

2. 3D Piecewise Chaotic Map (3DPCM)

The 3D piecewise chaotic map is defined by [33]:

f (x, y, z) =





x̄
ȳ
z̄

=





y
z

c0 + c1x + c2y− |z|
(1)

where c0, c1, c2 are bifurcation parameters and they are real numbers. Therefore, the state
space (x, y, z) ∈ R3. For some values of its bifurcation parameters, this map shows chaotic
attractors. Suppose x = zt−2, y = zt−1 and z = zt, such that (xt, yt, zt); t = 0, 1, ... be a
trajectory of the map (1), the map can be converted into a difference equation of third
order as:

zt+1 = c0 + c1zt−2 + c2zt−1 − |zt| (2)

Two linear zones can be separated in space because of the form of map (1)’s vector field f .
Thus, map (1) can be rewritten as follows:

f (x, y, z) =








y
z

c0 + c1x + c2y− z


 , z ≥ 0




y
z

c0 + c1x + c2y + z


 , z < 0

If c1 + c2 − 2 6= 0 and c1 + c2 6= 0, then map (1) has two fixed points computed by:

S1 =
−c0

c1 + c2 − 2
(1, 1, 1), S1 =

−c0

c1 + c2
(1, 1, 1)

If c0 > 0 and c1 < 2− c2, the fixed point S1 is stable if and only if the following requirements
are met: { −1 < c1 < 1

c2 < c1 < 2− c2 < 3− c1 − c2
1

However, if c0 < 0 and c1 < 2− c2, the fixed point S2 is stable if and only if the following
requirements are met: { −1 < c1 < 1

c2 − 2 < c1 < −c2 < 1 + c1 − c2
1

If c1 + c2 6= 2 or c1 + c2 6= 0, the map (1) has possible limited orbits, otherwise, all the
orbits of the map (1) are unlimited [33]. Figure 1 shows the 3D piecewise chaotic map
bifurcation diagram of x plotted versus c0 ∈ [0, 1.5] with c1 = −0.29 and c2 = −0.9. The
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Largest Lyapunov Exponent(LLE) of the 3D piecewise chaotic map versus c0 ∈ [0, 2] with
c1 = −0.29 and c2 = −0.9 is presented in Figure 2.

Figure 1. The 3D piecewise chaotic map bifurcation diagram of x plotted versus c0 ∈ [0, 1.5] with
c1 = −0.29 and c2 = −0.9.

Figure 2. Changing of the LLE of the 3D piecewise chaotic map versus c0 ∈ [0, 2] with c1 = −0.29
and c2 = −0.9.
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The randomness of sequences generated by the 3DPCM is tested via NIST statistical
package. To do that, 100 sequences were generated by the 3DPCM and tested by NIST.
Table 1 shows the results of all 15 statistical tests. All tests have been passed.

Table 1. The statistical tests of NIST for 3DPCM.

Statistical Test 3DPCM Result

Frequency monobit test 100/100
√

Block frequency test 100/100
√

Rank test 99/100
√

Runs test 99/100
√

Longest runs test 98/100
√

Cumulative sums test 99/100
√

Discrete Fourier transform 100/100
√

Random excursion test 57/58
√

Random excursion variant test 56/58
√

Universal test 97/100
√

Approximate entropy 99/100
√

Linear complexity test 98/100
√

Serial 99/100
√

Non-Overlapping templates test 98/100
√

Overlapping templates test 100/100
√

3. Generate Shuffling Sequence Using Logistic Map

The plain image pixels are permuted to remove the strong correlations between pixels.
In this work, using the sequence created by the logistic map, the pixels’ locations are
permuted at random. To produce a random sequence of integer values via a logistic map,
the following steps are taken:

1. Generate MN random fraction numbers using the logistic map (xi+1 = µxi(1− xi))
where the plain image has the size M× N and µ close to 4.

2. Index the generated numbers from 1 to MN.
3. Sort the indexed sequence in ascending order.
4. Take the list of indices after sorting operation as a required sequence.

The 1× 15 size key generation is shown in Figure 3.

Figure 3. Generate random various values between 1 and 15 using logistic map xi+1 = 3.9998xi(1− xi)

and x0 = 0.1.
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4. The Proposed Work

This section has been devoted to the generation of the key and the two image algo-
rithms that are proposed. The first algorithm is to encipher the plain image, and the second
is to decipher the encrypted image.

4.1. The Generated Secret Key

Let A = (aij), i = 1, 2, ..., M, j = 1, 2, ..., N. To compute the secret key, we use the factor
of key mixing proportion (K) as follows [34]:

K =
1

256
mod

(
∑M

i=1 ∑N
j=1 aij

M× N
, 256

)
, (3)

The initial conditions x0, y0, z0, xr0, xc0, as well as the logistic map and map (1) parameters
are then evaluated using the following formulas:

x0 =
(x0 + K)

2
,

y0 =
(y0 + K)

2
,

z0 =
(z0 + K)

2
,

xr0 =
(xr0 + K)

2
,

xc0 =
(xc0 + K)

2
,

c0 = 0.9 + K

c1 = −1.29 + K

c2 = −1.9 + K

µ = 3.99 + 0.008 ∗ K





(4)

4.2. Encipherment Algorithm

Assume the plain image is A = (aij), with 1 ≤ i ≤ M, 1 ≤ j ≤ N, and aij being the
pixel value at location i, j. The designed algorithm to encipher the image A is introduced in
(Algorithm 1). This algorithm is denoted by 3DPCM algorithm from now. It consists of
three steps. As described in Section 3, the plan image pixels are first shuffled via the logistic
map. The second step is to create a random sequence using the 3D piecewise chaotic map
in (1). The last step is to XOR the pixels of the shuffled image with the randomly generated
sequence of the proposed map to diffuse them.

4.3. Decipherment Algorithm.

This is the opposite of the encipherment algorithm and restores the plain image.
Algorithm 2 is the suggested image-decipherment algorithm.
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Algorithm 1 Encipherment Algorithm

Input: Original image A, xr0, xc0 for Logistic map shuffling and c0, c1, c2, x0, y0, z0 for
map (1).

Output: Enciphered image E =
(

ei,j

)
, i = 1, 2, ..., M, j = 1, 2, ..., N.

Step 1: Input the Original image A then transform it to the grey image.
Step 2: Invoke a logistic map using initial values xr0, xc0 to generate permutations of numbers

at random {1, 2, ..., M} and {1, 2, ..., N}, Xp and Yp, respectively.
Step 3: Compute Shu f A as follows:

For i1 = 1 To M, For i2 = 1 To N
A(Xp(i1), Yp(i2)) = Shu f A(i1, i2)

End For, End For
Step 4: Change a Shu f A image into vector of size a 1×MN.
Step 5: Transform Shu f A to binary vector B = {b1, b2, ..., bMN}.
Step 6: Generate MN fractional values using 3D piecewise chaotic map and initial val-

ues c0, c1 and c2, as follows:
x1 = y0,
y1 = z0,
z1 = c0 + c1x0 + c2y0 − |(z0)|,
w1 =

f rac(x1)+ f rac(y1)+ f rac(z1)
3

For i = 1 To MN + 499
xi+1 = yi, yi+1 = z(i),

zi+1 = c0 + c1x(i) + c2y(i)− |z(i)|
wi+1 =

f rac(xi+1)+ f rac(yi+1)+ f rac(zi+1)
3

End For
Step 7: For the values in Step 6, perform the following preprocessing:

W = mod( f loor(w(500 : MN + 499)× 1014, 256))
Step 8: To compute the Map, transform W to a binary vector.
Step 9: Perform BMap = XOR(B, Map).
Step 10: Transform BMap to decimal vector D ={d1, d2, ..., dMN}.
Step 11: Change D into M× N array, which we will call E. E represents the enciphered im-

age.
Step 12: End

Algorithm 2 Decipherment Algorithm
Input: Enciphered image E, xr0, xc0 for logistic map shuffling and c0, c1, c2, x0, y0, z0 for 3D

piecewise chaotic map (map (1)).
Output: Original image A.
Step 1: Read the enciphered image and transform it into a vector with a size of 1×MN.
Step 2: Transform the array E to binary vector B = {b1, b2, ..., bMN}.
Step 3: Using initial values c0, c1 and c2, generate fractional values of size MN via map (1)

as follows:
x1 = y0, y1 = z0, z1 = c0 + c1x0 + c2y0 − |z0|
w1 =

f rac(x1)+ f rac(y1)+ f rac(z1)
3

For i = 1 To MN + 499
xi+1 = yi, yi+1 = z(i), zi+1 = c0 + c1x(i) + c2y(i)− |z(i)|
wi+1 =

f rac(xi+1)+ f rac(yi+1)+ f rac(zi+1)
3

End For
Step 4: Modify Step 3’s values as follows: W = mod( f loor(w(500 : MN + 499)× 1014, 256))
Step 5: Transform W to binary to evaluate the Map vector.
Step 6: Perform BMap = XOR(B, Map).
Step 7: Transform BMap to decimal vector D = {d1, d2, ..., dMN}.
Step 8: Change D into M× N array, say Shu fA as the Shuffling original image.
Step 9: Using initial values xr0, xc0, invoke a logistic map using to generate permutations

of numbers at random {1, 2, ..., M} and {1, 2, ..., N}, Xp and Yp, respectively.
Step 10: Compute A as follows:

For i1 = 1 To M, For i2 = 1 To N
A(Xp(i1), Yp(i2)) = Shu f A(i1, i2)

End For, End For
Step 11: End
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5. Security Analyses

Samples of different images were enciphered using 3DPCM algorithm. Then, some
statistical tests were applied to these enciphered images to check the security and perfor-
mance of 3DPCM algorithm. All the plain images in this article were chosen from the
image databases [35].

5.1. Histogram Analysis

Enciphered images must have a uniform pixel distribution according to the encipher-
ment scheme. This means that the cryptanalysts are having trouble extracting accurate
statistical data from the enciphered image. Histogram analysis of a set of several plain
images and their enciphered images is displayed in Figures 4 and 5. Original images and
their histograms, and enciphered images and their histograms, are displayed, respectively.

The enciphered image histograms are uniformly distributed (the last column of
Figures 4 and 5). As a result, the 3DPCM Algorithm is immune to statistical attacks. Addition-
ally, the χ2 test is applied to demonstrate the uniformity of the enciphered image histogram.
The chi-square value of the image is calculated using the formula:

χ2 =
255

∑
i=0

(Pi − F̄i)
2

F̄i
(5)

where:
Pi: the occurrence frequency that has been observed of pixel value i,
Fi: the occurrence frequency that has been expected of pixel value i in uniform dis-

tribution, and it computes (M × N)/256, where M represents the image height and N
represents its width.

α = 0.05: the level of significance.
The χ2 values are given in Table 2 using the enciphered images. In Table 2, the measured

χ2 values are below χ2(255, 0.05) ≈ 293. As a result, the enciphered image histograms have
uniform distributions.

Table 2. χ2 values of plain and enciphered images at c0 = 1, c1 = −0.29, c2 = −0.9, x0 = 2.10,
y0 = 2.10, z0 = 2.10, xr0 = 0.01, xc0 = 0.02 and µ = 3.998.

Image
χ2

Plain Image Enciphered Image

Lena(256×256) 3.0578× 104 246.4531
Lena(512×512) 1.5834× 105 233.4883
Cameraman(256×256) 1.1097× 105 279.6250
Cameraman(512×512) 4.1853× 105 267.8730
Barbara(512×512) 9.5549× 104 288.1602
Boat(512×512) 3.8397× 105 274.2891
Mandrill(512×512) 2.1137× 105 265.9980
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4. Histogram analysis: the plain images ((a) Lena(256×256), (e) Lena(512×512),
(i) Cameraman(256×256), and (m) Cameraman(512×512)) and their corresponding histograms (b,f,j,n),
the corresponding enciphered images (c,g,k,o) and their corresponding histograms (d,h,l,p).

5.2. Information Entropy Analysis

Entropy is a useful metric for evaluating the degree of randomness in an image.
With increasing image information entropy, the unpredictability of image information
distribution increases and visual information decreases.

The entropy, H, is measured as follows:

H(Y) = −
2n−1

∑
i=0

p(yi) log2 p(yi) (6)

where p(yi) is the probability of the ith possible value in Y; and the greyscale values are
represented by bit number n.

To estimate the randomness, the global entropy (GE) and actual block entropy (ABE)
are calculated. The image is separated into K non-intersecting blocks, each with a specified
number of pixels (T), to determine the actual block entropy. After that, each block’s entropy
is calculated, and the mean of the entropies for all blocks is computed to determine the
actual block entropy. The global entropy and actual block entropy at K = 100 and T = 16
of some enciphered images are displayed in Table 3. Table 4 displays comparison between
the global entropy of 3DPCM algorithm and some other new algorithms.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5. Histogram analysis: the plain images ((a) Barbara(512×512), (e) Boat(512×512), and
(i) Mandrill(512×512)) and their corresponding histograms (b,f,j), the corresponding enciphered images
(c,g,k) and their corresponding histograms (d,h,l).

Table 3. Entropy of enciphered images at c0 = 1, c1 = −0.29, c2 = −0.9, x0 = 2.10, y0 = 2.10,
z0 = 2.10, xr0 = 0.01, xc0 = 0.02 and µ = 3.998.

Image GE ABE
Theoretical ABE

α = 0.01 α = 0.05
7.1628 7.1663

Lena(256×256) 7.9973 7.2582
√ √

Lena(512×512) 7.9994 7.2602
√ √

Cameraman(256×256) 7.9969 7.2451
√ √

Cameraman(512×512) 7.9993 7.2968
√ √

Barbara(512×512) 7.9992 7.2889
√ √

Boat(512×512) 7.9992 7.2690
√ √

Mandrill(512×512) 7.9993 7.2422
√ √

Table 4. A comparison between GE via 3DPCM algorithm and some other new algorithms.

Image 3DPCM Algorithm Ref. [6] Ref. [14] Ref. [16]

Lena 7.9994 7.9971 7.9897 7.9971
Cameraman 7.9993 7.9978 7.9890 7.9976

5.3. Correlation Analysis

Usually, plain images have strong correlations between adjacent pixels in three
directions—horizontal, vertical, and diagonal. This must be reduced. Therefore, a good
encipherment algorithm must produce an enciphered image that has a correlation close to
zero between its neighbouring pixels. The correlation between two points is given by

ruv =
Cov(u, v)√
D(u)

√
D(v)

(7)
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where

Cov(u, v) =
1
N

N

∑
i=1

(ui − E(u))(vi − E(v)), (8)

D(u) =
1
N

N

∑
i=1

(ui − E(u))2, (9)

and

E(u) =
1
N

N

∑
i=1

ui. (10)

Figure 6 depicts the relationship distribution of two horizontally, vertically, and diago-
nally neighbouring pixels in Lena’s plain and enciphered images (512 × 512).

Mathematics 2023, 1, 0 11 of 19

encipherment algorithm must produce an enciphered image that has a correlation close to
zero between its neighbouring pixels. The correlation between two points is given by

ruv =
Cov(u, v)√
D(u)

√
D(v)

(7)

where

Cov(u, v) =
1
N

N

∑
i=1

(ui − E(u))(vi − E(v)), (8)

D(u) =
1
N

N

∑
i=1

(ui − E(u))2, (9)

and

E(u) =
1
N

N

∑
i=1

ui. (10)

Figure 6 depicts the relationship distribution of two horizontally, vertically, and diago-
nally neighbouring pixels in Lena’s plain and enciphered images (512 × 512).
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Figure 6. Correlation coefficients of neighbouring pixels for Lena(256×256) image in (a) Horizontal,
(b) Vertical and (c) Diagonal directions. Additionally, correlation coefficients of neighbouring pixels
for the enciphered image of Lena(256×256) in (d) Horizontal, (e) Vertical and (f) Diagonal directions.

Table 5 shows the correlations between neighbouring pixels in plain images and
enciphered images in the three directions. The correlation of all enciphered images using
the 3DPCM algorithm is close to zero, as shown in this table. In the plain images, it is near
one. Table 6 proposed a comparison based on correlation between neighbouring pixels in
the enciphered images between 3DPCM algorithm and some new encryption algorithms
in the literature. As seen in this table, the 3DPCM algorithm produces better results.

Figure 6. Correlation coefficients of neighbouring pixels for Lena(256×256) image in (a) Horizontal,
(b) Vertical and (c) Diagonal directions. Additionally, correlation coefficients of neighbouring pixels
for the enciphered image of Lena(256×256) in (d) Horizontal, (e) Vertical and (f) Diagonal directions.

Table 5 shows the correlations between neighbouring pixels in plain images and
enciphered images in the three directions. The correlation of all enciphered images using
the 3DPCM algorithm is close to zero, as shown in this table. In the plain images, it is near
one. Table 6 proposed a comparison based on correlation between neighbouring pixels in
the enciphered images between 3DPCM algorithm and some new encryption algorithms
in the literature. As seen in this table, the 3DPCM algorithm produces better results.
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Table 5. Two neighbouring pixels Correlation of plain and enciphered image at a = 1, b = −0.29,
c = −0.9, x0 = 2.1, y0 = 2.1, z0 = 2.1, xr0 = 0.01, xc0 = 0.02 and µ = 3.998.

Image
Plain Image Enciphered Image

H V D H V D

Lena(256×256) 0.9372 0.9671 0.9195 0.0231 0.0150 0.0017
Lena(512×512) 0.9740 0.9849 0.9591 −0.0079 −0.0070 0.0047
Cameraman(256×256) 0.9338 0.9579 0.9052 0.0162 0.0086 0.0045
Cameraman(512×512) 0.9846 0.9882 0.9742 −0.0002 −0.0008 0.0041
Barbara(512×512) 0.9126 0.9635 0.9042 −0.0034 −0.0116 0.0130
Boat(512×512) 0.9347 0.9714 0.9207 0.0130 0.0030 0.0143
Mandrill(512×512) 0.9379 0.9187 0.8742 −0.0053 0.0125 0.0140

Table 6. Correlations between two neighbouring pixels in the enciphered image Lena(512×512) via the
3DPCM algorithm, as well as new encipherment algorithms.

3DPCM Algorithm Ref. [18] Ref. [15]

H −0.0079 −0.0685 −0.0091
V −0.0070 0.0857 −0.0798
D 0.0047 0.0059 −0.0062

5.4. Sensitivity Analyses

The sensitivity of the encipherment algorithm to relatively few modifications in the
plain image and in the secret key is discussed in this section. In the effective encipherment
algorithm, any minor modifications in the plain image pixel values or the true secret key
should be displayed as the output of the non-identical enciphered image.

5.4.1. Key Sensitivity Analysis

A good encipherment algorithm needs to be extremely sensitive to its secret key to
withstand an intensive attack, which implies that even small changes in the secret key can
produce completely different enciphered images. As a result, if the decipherment key and
the encipherment key are slightly different, an enciphered image must be impossible to
decipher using the 3DPCM algorithm or recover any patterns from the plain image.

To see how sensitive the secret key is, after the plain image was enciphered with the
secret key, only one of the secret key parameters was updated by adding a very small value
to its original value, while the other parameters remained unmodified. The enciphered
image is then deciphered using the updated secret key.

To show the 3DPCM algorithm sensitivity to the secret key, a very small error (+10−14)
was added to just one parameter in the secret key, and the deciphered images with the
updated secret key were displayed in Figure 7a–i. It can be proven that no meaningful
information can be extracted from any deciphered image with the modified secret key.
Therefore, the plain image is recovered via the original secret key, as shown in Figure 7j.
The above discussion demonstrates the 3DPCM algorithm security.
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(a) False key c0 + 10−14 (b) False key c1 + 10−14 (c) False key c2 + 10−14

(d) False key x0 + 10−14 (e) False key y0 + 10−14 (f) False key z0 + 10−14

(g) False key xr0 + 10−14 (h) False key xc0 + 10−14 (i) False key µ + 10−14

(j) true key decipherment.

Figure 7. Key sensitivity analysis result.

5.4.2. Plain Image Sensitivity Analysis

To avoid differential attacks, the encipherment algorithm should be particularly sensi-
tive to the plain image. Consequently, if even one of the original image pixel is updated,
practically all the enciphered image pixels will change as well. If this occurs, the algorithm
is said to have the diffusion property. The efficiency to extend some small improvement
in the plain image over the entire enciphered image is known as the diffusion property.
NPCR and UACI are the two measurements used to compute the sensitivity of the 3DPCM
algorithm to small modifications in the plain images. They are determined as follows:

NPCR =

∑
u,v

D(u, v)

M× N
× 100% (11)

UACI =
1

M× N ∑
u,v

|E1(u, v)− E2(u, v)|
255

× 100% (12)

where:

D(u, v) =

{
0 if E1(u, v) = E2(u, v)
1 otherwise

(13)

where the image dimensions are M, N, and E1 and E2 are the results of running the
3DPCM algorithm to a plain image and a plain image that has been changed by one pixel,
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respectively. NPCR has a theoretical value of 99.61% and UACI has a theoretical value of
33.46%. NPCR and UACI are calculated for various tested images in Table 7. NPCR has an
average value of 99.6097% and UACI has an average value of 33.4666%, all of which are
similar to theoretical values. The 3DPCM is compared to various other novel algorithms
using NPCR and UACI measurements in Table 8.

Table 7. NPCR and UACI values for various tested images at c0 = 1, c1 = −0.29, c2 = −0.9,
x0 = 2.10, y0 = 2.10, z0 = 2.10, xr0 = 0.01, xc0 = 0.02 and µ = 3.998.

Image NPCR UACI

Lena(256×256) 99.6033% 33.3807
Lena(512×512) 99.6101% 33.4906
Cameraman(256×256) 99.5956% 33.4710
Cameraman(512×512) 99.6078% 33.5240
Barbara(512×512) 99.6048% 33.4007
Boat(512×512) 99.6315% 33.4815
Mandrill(512×512) 99.6151% 33.5175

Average 99.6097% 33.4666

Table 8. NPCR and UACI average values in the 3DPCM algorithm and several other new algorithms.

Algorithm NPCR UACI

Theoretical value 99.610% 33.460
3DPCM algorithm 99.6097% 33.4666
Ref. [15] 99.607% 33.427
Ref. [16] 99.630% 33.400
Ref. [14] 90.955% 30.433
Ref. [6] 99.655% 33.467

5.5. Key-Space Analysis

The key-space for a strong encipherment algorithm must be large enough to survive
a brute-force attack(≥2100). The key-space in the 3DPCM algorithm is composed of the
logistic map initial values and its parameter, the initial values of the 3D piecewise chaotic
map, and their parameters. Therefore, the key-space will be 10140(>> 2100) if the accuracy
was 10−14.

5.6. Noise Attack Analysis

A cryptanalyst can add noise or distribute it electronically via an enciphered image.
The efficiency of the 3DPCM algorithm against noise attack is analyzed in this section. To
test this, we add Gaussian noise with variances of 0.1 and 0.01 and Salt&Pepper noise with
densities of 0.1 and 0.05 to the chosen enciphered image.

Figure 8 shows deciphered images for all cases. Since pixels that have been altered by
noise do not spread throughout the deciphered image throughout the decipherment process,
the 3DPCM algorithm is productive against noise. The peak signal-to-noise ratio (PSNR)
and mean square error (MSE) are used to calculate the effect of noise on the enciphered
image. The following formulas define PSNR and MSE:

PSNR = 10log10

(
2552

MSE

)
. (14)

where

MSE =
1

M× N

M

∑
i=1

(
N

∑
j=1

(Pij − Dij)
2), (15)
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such that
Pij: the pixel value of the plain image, Dij: the pixel value of the deciphered image for

the noisy enciphered image. Table 9 compares the 3DPCM algorithm and the other two
algorithms based on MSE and PSNR values for Lena(256×256) image. The findings of the
3DPCM algorithm are superior to those of the other two algorithms for a large amount
of noise.

(a) Gaussian (v = 0.1) (b) Gaussian (v = 0.01)

(c) Salt&Pepper (d = 0.1) (d) Salt&Pepper (d = 0.05)

Figure 8. Deciphered image by applying multiple forms of noise to the enciphered image
Lena(256× 256).

Table 9. Noise analysis.

Noise
3DPCM Algorithm Ref. [15] Ref. [19]

MSE PSNR MSE PSNR MSE PSNR

Gaussian noise (µ = 0, σ2 = 0.1) 3212.2 13.1 5201.2 11.0 5272.1 10.9
Gaussian noise (µ = 0, σ2 = 0.01) 2370.6 14.4 2321.4 14.5 2348.4 14.4
Salt&Pepper noise (d = 0.1) 887.3 18.7 893.1 18.6 909.3 18.5
Salt&Pepper noise (d = 0.05) 449.6 21.6 437.9 21.7 444.1 21.7

5.7. Chosen Plain-Text Attack Analysis (CPTAA)

Since the 3DPCM algorithm is very sensitive to the initial values and parameters
of the logistic map and map (1), any update in the plain image pixel values causes a
significant change in the generated sequences by those maps. As a result, the 3DPCM
algorithm would be able to withstand this plain-text attack. To use this type of attack,
the cryptanalyst needs the enciphered image and a limited amount of time to use the
encipherment machine. Assuming P is the plain image, C is the corresponding enciphered
image and D = (dij); dij = 0; i = 1, 2, ..., M; j = 1, 2, ..., N is the designed image to find the
decimal array CD. Then, the following steps are taken to measure the algorithm impedance
to a CPA:
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Step 1: Encipher designed image D by 3DPCM Algorithm, the result is given the name CD.
Step 2: To restore the plain image, do a bit-wise XOR operation between the enciphered
image C and the enciphered image (CD). The result is named R.
Step 3: P is compared to R.

Figure 9 shows the reconstructed plain image is completely different from the plain
image. Consequently, the 3DPCM algorithm would be able to withstand the CPA.

(a) Designed image (b) Decimal code matrix (c) Enciphered image (d) Restored image

Figure 9. CPTAA for Lena(256×256) image.

5.8. Contrast Analysis

Contrast, in general, helps to identify the features in an image’s texture. An efficient
algorithm must generate an enciphered image with a high degree of contrast. It is mea-
sured by:

C = ∑
α,β
|α− β|2 pα,β (16)

such that the number of grey-level co-occurrence matrices was denoted by pα,β. The
enciphered image has a high degree of contrast because of the extent of the randomness
provided by the logistic map and map (1) in the 3DPCM algorithm. The high contrast of
different forms of enciphered images is displayed in Table 10.

Table 10. Contrast of some enciphered images at c0 = 1, c1 = −0.29, c2 = −0.9, x0 = 2.10, y0 = 2.10,
z0 = 2.10, xr0 = 0.01, xc0 = 0.02 and µ = 3.998.

Image
Contrast

Plain Image Enciphered Image

Lena(256×256) 0.4511 10.4663
Lena(512×512) 0.2288 10.5194
Cameraman(256×256) 0.5872 10.5518
Cameraman(512×512) 0.1862 10.5399
Barbara(512×512) 0.7356 10.5091
Boat(512×512) 0.3799 10.5354
Mandrill(512×512) 0.3476 10.5102

5.9. NIST Statistical Tests

There are some popular tests used for randomness assessment. The NIST statistical
tests are one of them. It has developed 15 tests to investigate the randomness of the
sequences created by encipherment algorithms. To verify our findings, we enciphered
100 copies of the Lena(256×256) image with random secret keys. Each enciphered image’s
resulting sequence is 524288 bits long. NIST is applied to ensure that the sequences are
random. The results are displayed in Table 11. We can see that all the sequences succeeded.
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Table 11. NIST statistical test for 100 enciphered images via the 3DPCM algorithm at c0 = 1,
c1 = −0.29, c2 = −0.9, x0 = 2.10, y0 = 2.10, z0 = 2.10, xr0 = 0.01, xc0 = 0.02 and µ = 3.998 and
random values of x0 between 0 and 1.

Statistical Test 3DPCM Algorithm Result

Frequency monobit test 100/100
√

Block frequency test 100/100
√

Runs test 98/100
√

Longest runs test 100/100
√

Rank test 99/100
√

Fast Fourier transform 98/100
√

Cumulative sums test 99/100
√

Random excursion test 51/51
√

Random excursion variant test 51/51
√

Approximate entropy 100/100
√

Universal test 99/100
√

Serial 100/100
√

Linear complexity test 99/100
√

Non-Overlapping templates test 99/100
√

Overlapping templates test 99/100
√

5.10. Computational Complexity Analysis

The total number of operations that are used in image confusion and diffusion is used
to compute the computational cost of the 3DPCM algorithm. The confusion process is
needed to (2×M× N) operations for the generating random sequence using the logistic
map and the shuffling process needs (M×N) operations. Additionally, for constructing the
sequences from the 3D piecewise chaotic map (4×M× N + 500) operations are required,
and the preprocessing sequences needs (M × N) operations. Lastly, for the diffusion
process, the XOR is needed for (M× N) operations. As a result, the 3DPCM algorithm
computing cost is θ(M× N).

5.11. Computational Time Analysis

MATLAB 2014a was used to evaluate the computational time on a laptop with a
2.20 GHz CPU, 8 GB of RAM. Table 12 shows the encipherment and decipherment times
for some tested images.

Table 12. Computational time analysis at c0 = 1, c1 = −0.29, c2 = −0.9, x0 = 2.10, y0 = 2.10,
z0 = 2.10, xr0 = 0.01, xc0 = 0.02 and µ = 3.998.

Image
Encipherment Decipherment

Time (s) Time (s)

Lena(256×256) 0.2151 0.1917
Lena(512×512) 0.7336 0.7336
Cameraman(256×256) 0.1930 0.2554
Cameraman(512×512) 0.6993 0.6962
Barbara(512×512) 0.6982 0.7129
Boat(512×512) 0.7003 0.7160
Mandrill(512×512) 0.6797 0.6852

6. Conclusions

This article introduces a new encipherment technique that combines a 1D chaotic map
with a 3D piecewise chaotic map. According to the results of the histogram, information
entropy analysis, and NIST test, the suggested algorithm can be used to effectively encipher
images. The key-space of the suggested algorithm is 10140, and the information entropies,
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the correlation coefficients, and the contrast of the enciphered images are close to 8, 0, and
10.5, respectively. It is demonstrated that the suggested algorithm has a high degree of
resistance to attacks based on the experimental analysis of key-space, various types of noise
attacks, CPAA, and sensitivity analyses. In future work, a quantum encipherment based
on a 3D piecewise chaotic map will be designed to improve the present algorithm security.
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