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Abstract: Due to the high randomness and volatility of renewable energy sources such as wind
energy, the traditional thermal unit commitment (UC) model is no longer applicable. In this paper,
in order to reduce the possible negative effects of an inaccurate wind energy forecast, the chance-
constrained programming (CCP) method is used to study the UC problem with uncertainty wind
power generation, and chance constraints such as power balance and spinning reserve are satisfied
with a predetermined probability. In order to effectively solve the CCP problem, first, we used the
sample average approximation (SAA) method to transform the chance constraints into deterministic
constraints and to obtain a mixed-integer quadratic programming (MIQP) model. Then, the quadratic
terms were incorporated into the constraints by introducing some auxiliary variables, and some
second-order cone constraints were formed by combining them with the output characteristics of
thermal unit; therefore, a tighter mixed-integer second-order cone programming (MISOCP) formula-
tion was obtained. Finally, we applied this method to some systems including 10 to 100 thermal units
and 1 to 2 wind units, and we invoked MOSEK in MATLAB to solve the MISOCP formulation. The
numerical results obtained within 24 h confirm that not only is the MISOCP formulation a successful
reformulation that can achieve better suboptimal solutions, but it is also a suitable method for solving
the large-scale uncertain UC problem. In addition, for systems of up to 40 units within 24 h that do
not consider wind power and pollution emissions, the numerical results were compared with those
of previously published methods, showing that the MISOCP formulation is very promising, given its
excellent performance.

Keywords: unit commitment; stochastic wind power; chance-constrained programming; sample
average approximation; mixed-integer second-order conic programming

MSC: 94C60

1. Introduction
1.1. Motivation and Incitement

Unit commitment (UC) in a power system is an important aspect of optimization that
has been studied for a long time. It determines the on–off status and outputs of generation
units over a scheduling planning horizon while minimizing the total operational cost
of the system [1–4]. In recent years, owing to the dramatic reduction in fossil fuels and
the increased demand for cleaner energy, renewable energy sources such as wind and
solar energy have attracted widespread attention, with significantly increased used in
power systems [5]. As a typical representative of renewable energy, the use of wind
energy has rapidly increased, and it is considered one of the most promising alternative
energies. However, wind energy has a strong randomness and uncertainty and is usually
difficult to accurately predict. The implementation of large-scale wind power brings many
difficulties to the operation of a power system. Therefore, it is worth establishing rapid
and effective solutions to the thermal UC problem, in combination with wind generation.
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In this paper, a mixed-integer second-order conic programming formulation of chance-
constrained UC with wind power uncertainty is proposed, which can be effectively solved
by related software. The proposed method is suitable for solving the large-scale uncertain
UC problem.

1.2. Literature Review

The thermal UC problem is usually modeled as a large-scale mixed-integer non-linear
program in mathematics [6], and it can be effectively solved by the metaheuristic method [7],
Lagrange relaxation method [8], outer approximation method [9], etc. In recent years, as an
increasing number of renewable energy generations have been incorporated into power sys-
tems, the related UC model has become increasingly complex and random, and the related
problem has become more difficult to effectively solve. With the creation of stochastic opti-
mization algorithms that achieve good numerical performance, the number of published
studies addressing renewable energy generation in the thermal UC problem has increased.
Zhu et al. [10] presented a stochastic programming model for the related UC problem, and
the uncertainties of renewable energy generation were thoroughly simulated in the form
of synthetic ensemble forecasts and scenario trees. Vatanpour and Yazdankhah [11] also
presented a stochastic security constrained UC model that included a wind power farm and
energy storage systems, and the problem was solved by a scenario-based method that incor-
porated the Benders decomposition technique. Shahbazitabar and Abdi [12] considered a
stochastic UC model with an electric vehicle parking plot, and a priority-list-based heuristic
method was used to solve the model. However, these scenario-based methods require a
large number of scenarios to achieve high accuracy. As a result, the related mathematical
models are very large and difficult to solve. To address this problem, some robust models
have been proposed by researchers for the related UC problem. Zhou et al. [13] presented
a robust UC model for a hybrid AC/DC power system in which the problem was formu-
lated as mixed-integer second-order cone programming with a data-adaptive uncertainty
set, and extreme scenarios were introduced to reformulate the robust optimization. Sun
et al. [14] presented an optimal day-ahead wind–thermal generation-scheduling method
that considered the statistical and predicted features of wind speeds. Ref. [15] proposed
a data-driven adaptive robust optimization (ARO) framework for the UC problem inte-
grating wind power, and the model was formulated as a four-level optimization problem
to be solved. However, the conservatism of these robust optimization methods needs to
be improved.

Chance-constrained programming (CCP) is an effective method for solving the stochas-
tic problem that has been applied to the relevant UC problem. Ref. [16] proposed a chanced-
constrained model for the related UC with high wind energy penetration and used two
approximation approaches—the quantile-based approximation approach and p-efficient
point—to solve CCP. Ref. [17] proposed a chance-constrained UC model to guarantee the
utilization of wind power, and the chance constraints were transformed into sample aver-
age reformulations by the sample average approximation algorithm. Ref. [18] presented
a chance-constrained two-stage stochastic programming UC problem that considers the
uncertainties of loads and wind power, and the problem was converted into an equivalent
deterministic formulation by a sequence of approximations and verification. In ref. [19],
a Gaussian mixture model was used to deal with wind power forecast errors, and the
Newton method was proposed to obtain the quantiles and transform chance constraints
into deterministic constraints. In these studies, the outputs of wind power generation are
considered random variables with a probability distribution, and CCP ensures that the
probability of the constraints with random variables is not less than a given confidence
level. However, with respect to the uncertainty of wind power output, there are still two
major challenges associated with solving the CCP formulation. One is that an accurate
probabilistic model of random variables is needed; the other is how it efficiently transforms
the chance constraint into an equivalent deterministic formulation.
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1.3. Contribution and Paper Organization

It is very difficult to directly solve CCP, and a popular technique is to transform it
into a deterministic formulation via a sample average approximation (SAA). Ref. [20]
reformulated the chance constraints as mixed-integer non-linear programming; the integer
variables were relaxed into continuous variables and regularized by expanding the feasible
region. Ref. [21] reviewed recent developments in mixed-integer linear formulations of
CCP with finite discrete distributions. In this paper, we consider the CCP model of the
UC problem with the uncertainty of wind power output, which addresses stochastic wind
power output by introducing chance constraints. An equivalent mixed-integer second-
order conic reformulation of an original chance-constrained UC model is derived. The
main contributions of this paper are summarized as follows.

(i) By introducing some auxiliary variables, the quadratic terms in objective function are
incorporated into the constraints, and some rotating second-order cone constraints
with better compactness are obtained, which combine the constraint characteristics,
such as the upper and lower bounds of thermal unit output.

(ii) Using the SAA method, we derive a mixed-integer formulation of a chance-constrained
model of the considered UC problem with finite discrete distributional information.
Then, an equivalent deterministic reformulation for the related UC problem is ob-
tained, which can be readily solved with state-of-the-art optimization software.

(iii) The proposed method is tested on systems that contain between 10 and 100 thermal
units and 1 to 2 wind units, and the deterministic reformulation is solved by MOSEK
in MATLAB. The simulation results show that the presented method is suitable for
the large-scale stochastic chance-constrained UC problem.

The remainder of this paper is organized as follows. In Section 2, the chance-constrained
model of the stochastic UC problem with wind power is introduced. The solution pro-
cedure is described in Section 3. Numerical tests and simulation results are presented to
illustrate the performance of the proposed method in Section 4. The maximum penetration
rate of wind power analysis and a discussion of practical implementation are provided in
Section 5. Conclusions are drawn in Section 6.

2. Mathematical Formulation of Chance-Constrained UC
2.1. Objective Function

The UC problem with stochastic wind power consists of thermal generators and wind
power farms. The objective of the related UC problem is to acquire the optimal on–off
schedule and output for thermal generators over the scheduled time horizon so that the
overall operation cost can be minimized. The overall operation cost consists of three parts
and can be expressed as follows:

minFC = f1(Pi,t) + f2(Pi,t) + Si,t (1)

where the fuel cost is f1(Pi,t) = ∑N
i=1 ∑T

t=1 [αiui,t + βiPi,t + γi(Pi,t)
2]; the pollutant emission

cost is f2(Pi,t) = ∑T
t=1 ∑N

i=1 [aiui,t + biPi,t + ci(Pi,t)
2]; and the startup cost (Si,t) is incurred

when a thermal unit is put into operation, which depends on how long the unit has been
inactive, i.e., Si,t only depends on the binary variable associated with the on/off state of
generating units. The startup cost (Si,t) can be approximated by the following linearization
inequalities [1,2]:{

Si,t ≥ ki,τ

[
ui,t −∑τ

j=1 ui,t−j

]
Si,t ≥ 0, i = 1, · · · , N; t = 1, · · · , T; τ = 1, · · · , ND,i

(2)

where ND,i is a given parameter, and the coefficient ki,τ is represented by the following
piecewise function:
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ki,τ =

{
Chot,i , τ = 1, · · · , To f f ,i + Tcold,i
Ccold,i , τ = To f f ,i + Tcold,i+1, · · · , ND,i

It is worth noting that the objective function (1) can be assigned different weighting
factors according to the importance of each cost.

2.2. Constraints

The UC problem with wind power uncertainty essentially involves system chance
constraints and thermal generator constraints; the physical constraints for thermal genera-
tors are described in detail in Ref. [1]. The mathematical expression of these constraints are
as follow:

(1) Power balance chance constraint:

Pr
{
∑N

i=1 Pi,t + ∑Nw
j=1 Pξ,t

j ≥ PD,t

}
≥ 1− ε (3)

where the random variable Pξ,t
j is the actual wind power output value of wind unit j

at time period t, and ε ∈ (0, 1) is a given confidence level. Due to the randomness of
wind power, it must be guaranteed with a high probability for the power balance of the
power system.

(2) Spinning reserve chance constraint:

Pr{∑N
i=1 ui,tPi + ∑Nw

j=1 Pξ,t
j ≥ PD,t + Rt} ≥ 1− ε (4)

which is necessary in the operation of a power system. If the load is interrupted or suddenly
increases, the power quality is guaranteed by the maximum available capacity of the active
thermal units.

(3). Thermal generator output constraint:

ui,tPi ≤ Pi,t ≤ ui,tPi (5)

which represents the output value of thermal unit i at time period t and must be limited to
a certain range.

(4) Thermal generator ramping-up rate constraint:

Pi,t − Pi,t−1 ≤ ui,t(Pup,i + Pi)− ui,t−1Pi + si,t(Pstart,i − Pup,i − Pi) (6)

(5) Thermal generator ramping-down rate constraint:

Pi,t−1 − Pi,t ≤ ui,t−1(Pdown,i + Pi)− ui,tPi + di,t(Pshut,i − Pdown,i − Pi) (7)

The power output of a thermal unit cannot fluctuate too rapidly, and the ramp-up/down
rate reflects the maximum load increase/decrease in the two successive time periods.

(6) Thermal generator minimum uptime constraint:

∑t
ω=[t−Ton,i ]

++1 si,ω ≤ ui,t, t ∈ [Ui + 1, . . . , T] (8)

where Ui = [min[T, ui,0
(
Ton,i − Ti,0

)
]]+, and [a]+ = max[0, a].

(7) Thermal generator minimum downtime constraint:

∑t
ω=[t−To f f ,i ]

++1 di,ω ≤ 1− ui,t, t ∈ [Li + 1, . . . , T] (9)

where Li = [min[T, ui,0

(
To f f ,i + Ti,0

)
]]+. Constraints (8) and (9) indicate that the thermal

generators must remain in the on/off state for several consecutive time periods after
startup/shutdown.
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(8) State constraint:
si,t − di,t = ui,t − ui,t−1 (10)

Based on the analysis presented above, the mathematical model of the UC problem with
wind power uncertainty can be expressed as the following chance-constrained program:

min Fc = ∑N
i=1 ∑T

t=1

[
(αi + ai)ui,t + (βi + bi)Pi,t + (γi + ci))(Pi,t)

2 + Si,t

]
(2)− (10)

ui,t, si,t, di,t ∈ {0, 1}, Pi,t, Si,t ≥ 0, Pξ,t
j ≥ 0 is a random variable , i ∈ N, t ∈ T

 (11)

Chance constraints (3) and (4) of wind power uncertainties are vital for (11), but
it is difficult to solve these. In this paper, the SAA method is employed to solve the
chance constraints, and the chance-constrained model (11) can be transformed into an
equivalently and deterministically mixed-integer quadratic program. Furthermore, it can
be reformulated as a mixed-integer second-order conic problem by introducing some
auxiliary variables.

3. Solution Procedure
3.1. Deterministic Reformulation of Chance Constraints

For the sake of convenience and a given probability space (Ω,F ,P), we take the
following chance-constrained program (CCP) as an example to introduce the basic ideas of
deterministic reformulation [21].

mincTx
s.t.Pr{x ∈ ρ(ξ)} ≥ 1− ε

x ∈ X
(12)

where c ∈ Rn is the coefficient vector of the objective function, ξ ∈ Ω is a random vector
with a known distribution (P), ε ∈ (0, 1) is a confidence level given by the decision maker,
X ⊂ Rn is a compact set, and the polyhedron ρ(ξ) is the set of solutions that are safe or
desirable. Let

ρ(ξ)
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min 𝑐𝑇𝑥 (15) 

{x| Tx ≥ r(ξ)} (13)

where T is an m× n deterministic matrix, and r(ξ) is a random column vector in Rm.
Consider CCP (12) under a finite discrete probability space; the true distribution can

be approximated by finite empirical distribution. For ease of description, we assume that
the K samples are independent and identically distributed and consider the following SAA
formulation of CCP (12):

mincTx
s.t. 1

K ∑K
k=1 Θ(x /∈ ρ(ξk)) ≤ ε

x ∈ X
(14)

where Θ(.) is an indicator function and equals 0 or 1. From the formulation (14), it is evident
that the use of finite discrete distribution avoids the difficulty of assessing the probability
when the distribution is not precisely given. Under non-equal probability scenarios, the
part I constraint of (14) is simply:

∑K
k=1 pkΘ(x /∈ ρ(ξk)) ≤ ε

By introducing binary variables (zk(k = 1, . . . , K)) and letting Tx = t, the Formu-
lation (14) can be transformed into the following mixed-integer linear program (MILP):
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mincTxs.t.
x ∈ X, Tx− t = 0

tj + r
(

ξ
j
k

)
zk ≥ r

(
ξ

j
k

)
, ∀k = 1, . . . , K, ∀j = 1, . . . , m

1
K ∑K

k=1 zk ≤ ε

z ∈ {0, 1}K


(15)

Because (15) contains big-M constraints (tj + r
(

ξ
j
k

)
zk ≥ r

(
ξ

j
k

)
, ∀k = 1, . . . , K, ∀j =

1, . . . , m), it is NP-hard. Therefore, it is necessary to obtain the strengthening formulation of
SAA to scale up the problem size. An important substructure in this formulation (15) is
given for a fixed j. Let the following mixed set with cardinality constraint be

MC
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(
tj, z
)
∈ R+ × {0, 1}K : tj ≥ r

(
ξ

j
k

)
(1− zk),

1
K ∑K

k=1 zk ≤ ε, ∀k = 1, . . . , K}

Sort the values of r
(

ξ
j
k

)
for k (k = 1, . . . , K) to obtain a permutation (σ) such that

r
(

ξ
j
σ1

)
≥ r
(

ξ
j
σ2

)
≥ . . . ≥ r

(
ξ

j
σK

)
By reason of the cardinality constraint ( 1

K ∑K
k=1 zk ≤ ε), we have tj ≥ r

(
ξ

j
σk+1

)
; then,

we can replace the inequalities (tj ≥ r
(

ξ
j
k

)
(1− zk)) ofMC with the following inequalities:

tj +
[
r
(

ξ
j
k

)
− r
(

ξ
j
σk+1

)]
zk ≥ r

(
ξ

j
k

)
, ∀k = 1, . . . , K

Consider the subset {s1, s2, . . . , sl} ⊆
{

σ1, σ2, . . . , σq
}

such that r
(

ξ
j
sk

)
≥ r
(

ξ
j
sk+1

)
for

k = 1, 2, . . . , l, where q
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be approximated by finite empirical distribution. For ease of description, we assume that 

the K samples are independent and identically distributed and consider the following 

SAA formulation of CCP (12): 

min 𝑐𝑇𝑥 

𝑠. 𝑡.  
1

𝐾
∑ Θ(𝑥 ∉ 𝜌(𝜉𝑘))
𝐾
𝑘=1 ≤ 𝜀  

𝑥 ∈ 𝑋 

(14) 

where Θ(. ) is an indicator function and equals 0 or 1. From the formulation (14), it is 

evident that the use of finite discrete distribution avoids the difficulty of assessing the 

probability when the distribution is not precisely given. Under non-equal probability sce-

narios, the part I constraint of (14) is simply: 

 ∑ 𝑝𝑘Θ(𝑥 ∉ 𝜌(𝜉𝑘))
𝐾
𝑘=1 ≤ 𝜀   

By introducing binary variables (𝑧𝑘(𝑘 = 1,… , 𝐾)) and letting 𝑇𝑥 = 𝑡, the formulation 

(14) can be transformed into the following mixed-integer linear program (MILP): 

min 𝑐𝑇𝑥 (15) 

[Kε], and s1 = σ1, sl+1 = σq+1. Then, a strong valid inequality for
MC is given by

tj + ∑l
k=1 [r

(
ξ

j
sk

)
− r
(

ξ
j
sk+1

)
]zsk ≥ r

(
ξ

j
s1

)
Therefore, the MILP Formulation (15) with big-M constraints can be further trans-

formed as follows:

mincTxs.t.
x ∈ X, Tx− t = 0

tj + ∑l
k=1

[
r
(

ξ
j
sk

)
− r
(

ξ
j
sk+1

)]
zsk ≥ r

(
ξ

j
s1

)
1
K ∑K

k=1 zk ≤ ε

z ∈ {0, 1}K


(16)

3.2. The Convex Hull Description of a Simple Mixed-Integer Set

It is well known that the main techniques used in computing software for solving
integer problems are branch-and-bound and cutting-plane; the tighter the relaxed set, the
better the efficiency of the software. Consider the following simple mixed-integer set:

C =
{
(s, y, z)|s2 − y ≤ 0, zs ≤ s ≤ zs, 0 < s < s , z ∈ {0, 1}

}
(17)

where the continuous relaxation of C is

CCR =
{
(s, y, z)|s2 − y ≤ 0, zs ≤ s ≤ zs, 0 < s < s , 0 ≤ z ≤ 1

}
Evidently, C ⊂ CCR, and CCR is less effective. Refs. [22,23] provide a better set

representing the convex hull of C:

Cconv =
{
(s, y, z)|s2 − zy ≤ 0, zs ≤ s ≤ zs, 0 < s < s , y ≥ 0, 0 ≤ z ≤ 1

}
(18)
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Let
Csub =

{
(s, y, z)|s2 − y ≤ 0, zs ≤ s ≤ zs, 0 < s < s , 0 < z < 1

}
The sets listed above have the following relationship:

Csub ⊂ CCR; Csub ∩ Cconv = ∅; C ⊂ Cconv ⊂ CCR

which shows that Cconv is a better relaxed set for C.

3.3. Scenario Generation

In this subsection, we study the probability distribution of wind power output based
on the historical data and first use Monte Carlo sampling technology to generate wind
power scenarios. Various probability distribution types of wind power have been discussed
in recent years, and the multivariate normal distribution is widely used to construct the
probability distribution of random wind power output [24], which can be denoted by
N ∼

(
µ, σ2). The probability distribution function of wind power is defined by

f (x) =
1

σ
√

2π
exp

(
− x− µ

2σ2

)
,−∞ < x < ∞

where µ = E[ξ] and σ = D[ξ] are the average values and variance of random variables,
respectively. Then, a number of wind power scenarios can be generated by Monte Carlo
sampling technology with the same probability. For ease of description, we generated
4000 sample points subject to a normal distribution with µ = 120 and σ = 15; the
numerical simulation results are shown in the Figure 1. However, we know that the normal
distribution fitted by the Monte Carlo method has considerable variance, as shown in
Figure 1. Therefore, we used a Latin hypercube method to generate 4000 sample points, for
which the numerical simulation results are shown in the Figure 2. Figure 2 shows that the
hypercube method has a better fitting effect [25]. Then, some scenarios with errors can be
eliminated, and some typical scenarios can be retained; therefore, the original scenarios are
reduced, and the evaluation accuracy is unaffected.
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We assumed that the wind power output is subject to multivariate normal distributed,
with the hourly forecasted wind power ranging between 0 and 120, which gives a standard
deviation of 10% of the expected values. Then, we used Latin hypercube sampling to
generate 4000 scenarios for 24 h wind power generation, and the K-means clustering
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algorithm was employed to classify these scenarios into five types. The corresponding
wind power outputs are shown in Figure 3.
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Suppose that the probability of each wind power scenario is the same as

pk

(
ξk = Pj,k

ξ,t

)
=

1
K

and the corresponding random variables (Pj
ξ,t) in the chance constraints (3), (4) are replaced

by Pj,k
ξ,t for 1 ≤ k ≤ K. Then, the following SAA formulations can be obtained:

1
K ∑K

k=1 Θ
(
∑N

i=1 Pi,t + ∑Nw
j=1 Pj,k

ξ,t < PD,t

)
≤ ε (19)
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1
K ∑K

k=1 Θ
(
∑N

i=1 ui,tPi + ∑Nw
j=1 Pj,k

ξ,t < PD,t + Rt

)
≤ ε (20)

By introducing some binary variables, (19) and (20) can be reformulated as:

∑N
i=1 Pi,t − PD,t + Mzk ≥ −∑Nw

j=1 Pj,k
ξ,t

∑N
i=1 ui,tPi − (PD,t + Rt) + Mzk ≥ −∑Nw

j=1 Pj,k
ξ,t

1
K ∑K

k=1 zk ≤ ε
zk ∈ {0, 1}

 (21)

This Formulation (21) contains the big-M constraints and is difficult to solve; therefore,
we need to further strengthen the formulation. First, we define Wk

ξ,t = −∑Nw
j=1 Pj,k

ξ,t , and the

values of Wk
ξ,t are reordered to obtain a σ permutation:

Wσ1
ξ,t ≥Wσ2

ξ,t ≥ . . . ≥WσK
ξ,t (22)

Consider a subset ({s1, s2, . . . , sl} ⊆
{

σ1, σ2, . . . , σq
}

) such that W
sj
ξ,t ≥W

sj+1
ξ,t for any j =

1, . . . , l and q
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𝐾
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[Kε]. Because we have reordered the random variables, the order of the
corresponding zk also changes; therefore, we introduce a new set of binary variables (η

sj
t )

and obtain the following strong and valid inequalities.

η
sj
t − η

sj+1
t ≥ 0, j = 1, . . . , l, t = 1, 2, . . . , T

zsj − η
sj
t ≥ 0, j = 1, . . . , l, t = 1, 2, . . . , T

ΣN
i=1Pi,t + Σl

j=1

(
W

sj
Σ,t −W

sj+1
Σ,t

)
η

sj
t ≥ PD,t + Ws1

ξ,t, t = 1, 2, . . . , T

ΣN
i=1ui,tPi + Σl

j=1

(
W

sj
Σ,t −W

sj+1
Σ,t

)
η

sj
t ≥ (PD,t + Rt) + Ws1

Σ,t, t = 1, 2, . . . , T
1
K ∑K

k=1 zk ≤ ε, zk ∈ {0, 1}


(23)

Let u = (ui,t), P = (Pi,t), S = (Si,t), s = (si,t), d = (di,t), η =
(

η
sj
t

)
, and z = (zk),

representing vectors composed of corresponding variables; the constraints (2), (5)–(10), and
(23) can be abbreviated by:

Auu + APP + ASS + Ass + Add + Aηη + Azz ≤ b1
Auu + APP + ASS + Ass + Add + Aηη + Azz = b2

}
(24)

where Au, AP, AS, As, Ad, Aη , Az are coefficient matrices, and b1, b2 are constant vectors.
Based on the analysis presented above, the chance-constrained model (11) of the related
UC problem can be expressed as the following mixed-integer quadratic program (MIQP):

min F = ∑N
i=1 ∑T

t=1

[
(αi + ai)ui,t + (βi + bi)Pi,t + (γi + ci)(Pi,t)

2 + Si,t

]
s.t. Auu + APP + ASS + Ass + Add + Aηη + Azz ≤ b1

Auu + APP + ASS + Ass + Add + Aηη + Azz = b2

Pi,t, Si,t ≥ 0, ui,t, si,t, di,t, η
sj
t , zk ∈ {0, 1}, i = 1, . . . , N, t = 1, . . . , T, j = 1, . . . , l

 (25)

The MIQP model (25) is a large-scale optimization problem, and solving it may lead to
excessive relaxation. Therefore, we deduced an improved reformulation of (25).

3.4. A Mixed-Integer Second-Order Cone Programming Formulation of the Related UC

In this subsection, the convex hull of related constraints is derived according to the
characteristics themselves, and a mixed-integer second-order cone program (MISOCP) is
obtained for the related UC problem, which can be effectively solved by the relevant solvers.

First, the quadratic term in the objective function of (25) can be input into the con-
straints by introducing auxiliary variables, and the MIQP (25) is reformulated as:
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min F =
N
∑

i=1

T
∑

t=1
[(αi + ai)ui,t + (βi + bi)Pi,t + (γi + ci)vi,t + Si,t]

s.t. (Pi,t)
2 − vi,t ≤ 0, i = 1, . . . , N, t = 1, . . . , T

Auu + APP + ASS + Ass + Add + Aηη + Azz ≤ b1
Auu + APP + ASS + Ass + Add + Aηη + Azz = b2

Pi,t, Si,t, vi,t ≥ 0, ui,t, si,t, η
sj
t , di,t, zk ∈ {0, 1} , i = 1, . . . , N, t = 1, . . . , T, j = 1, . . . , l)


By combining (Pi,t)

2 − vi,t ≤ 0 with the generator output constraints (5) to form set C,
we obtain:

C , { (Pi,t, vi,t, ui,t)
∣∣∣ (Pi,t)

2 − vi,t ≤ 0, ui.tPi ≤ Pi,t ≤ ui.tPi, 0 < Pi < Pi, ui,t ∈ {0, 1} }

C agrees with the characteristics of (17). We can obtain the following convex hull of C
according to (18):

Cconv , { (Pi,t, vi,t, ui,t)| (Pi,t)
2 − vi,t ui.t ≤ 0, ui.tPi ≤ Pi,t ≤ ui.tPi, 0 < Pi < Pi, 0 ≤ vi,t, 0 ≤ ui,t ≤ 1}

where (Pi,t)
2 − vi,t ui.t ≤ 0 is a rotational second-order cone constraint. Therefore, the

related UC problem can be reformulated as the following MISOCP model:

min F =
N
∑

i=1

T
∑

t=1
[(αi + ai)ui,t + (βi + bi)Pi,t + (γi + ci)vi,t + Si,t]

s.t. (Pi,t)
2 − vi,tui.t ≤ 0, i = 1, . . . , N, t = 1, . . . , T

Auu + APP + ASS + Ass + Add + Aηη + Azz ≤ b1
Auu + APP + ASS + Ass + Add + Aηη + Azz = b2

Pi,t, Si,t, vi,t ≥ 0, ui,t, si,t, di,t, η
sj
t , zk ∈ {0, 1}, i = 1, . . . , N, t = 1, . . . , T, j = 1, . . . , l


(26)

3.5. Solution Framework

Suppose that the wind power output is subject to multivariate normal distribution. The
wind power scenarios generated by Latin hypercube sampling and the K-means clustering
algorithm are used for scenario reduction; then, a deterministic equivalent MIQP can be
obtained using the SAA method. In order to achieve better results, we reformulated the
MIQP as an MISOCP, which can be effectively solved by MOSEK.

The general solution procedure of the related UC problem is shown in the following
Figure 4 based on the analysis presented above.
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4. Numerical Simulation

In this section, we describe the testing of the proposed MISOCP formulation on
systems that contain between 10 and 100 thermal units and a wind unit, with a scheduling
time horizon of 24 h. The basic data of 10 thermal units and load demands for each period
were taken from reference [26], the relevant data for between 20 and 100 thermal units
were obtained by copying the basic parameters of 10 thermal units, the forecasted power
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generation values of wind power were taken from reference [25], and the pollutant emission
parameters of thermal units were taken from [27]. All numerical tests were performed
at different confidence levels and scenario sizes, and the results were compared. The
algorithm was coded in a computer with an Intel R7-5800U, 4.4GHz, and 16GB RAM,
and the deterministic MISOCP model was solved by MOSEK (ver.9.2) [28] in MATLAB
R2018a [29].

In the CCP model for the related UC problem, we assumed that wind power generation
is subject to a multivariate normal distribution. For each time period (t), the hourly
predicted wind power generation ranged from 0 to 120 MW, and the standard deviation
was taken as 10% of the expected value. In order to verify the effectiveness of the MISOCP
model, we used the Latin hypercube sampling method to generate 4000 wind power
scenarios, then classified these scenarios into 100, 300, and 500 types using a K-means
clustering algorithm. We tested the proposed method at different confidence levels and
compared the results of objective function value, which are shown in Table 1. As shown in
the table, the higher the confidence level, the lower the value of the objective function for
the same number of scenarios. The results show that with a lower confidence level, there is
a higher probability of the chance constraint needing to be satisfied, and the requirements
of spinning are reserved. To ensure the safe operation of the system, the safety operator
limits the amount of wind power generation. As a result, the total operating cost of the
system increases.

Table 1. Comparison of total system costs under different confidence levels.

Scenarios Confidence Level ε Obj (USD) Time (s)

S = 100
0.10 744,042 1.27
0.15 740,200 1.57
0.20 734,886 1.23

S = 300
0.10 744,473 1.11
0.15 737,891 1.64
0.20 734,292 1.52

S = 500
0.10 740,724 1.26
0.15 739,653 1.43
0.20 735,902 1.51

To demonstrate the practicality of MISOCP for a given confidence level (ε = 0.2), we
set 100 scenarios and compared the total system costs under two conditions, i.e., whether
wind power generation was considered. As indicated by numerical results shown in Table 2,
the total cost of the system is significantly lower when a wind power farm is added to the
traditional thermal UC model, and the grid connection of wind power has considerable
economic benefits. In addition, the results show that the CCP model proposed in this paper
is suitable for the UC problem with stochastic wind power.

Table 2. Comparison of total system cost (USD) of two UC models.

Number of
Thermal Units

Wind Power
Considered Time (s) Wind Power

Not Considered Time (s)

10 734,886 1.23 787,624 1.32
20 1,524,279 1.04 1,588,005 1.50
30 2,315,149 1.65 2,382,328 1.67
50 3,860,107 1.87 3,972,125 1.89
70 5,462,460 2.06 5,566,106 2.07

100 7,831,083 3.57 7,957,026 2.32

In order to further illustrate the effectiveness of the proposed method, we compared
the results of MISOCP and MIQP, as shown in Table 3. Because the convex hull of the
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relevant constraints is included in the MISOCP model, it can obtain better results than
MIQP, and MISOCP is suitable for large-scale UC problems.

Table 3. Comparison of the total system cost for MISOCP and MIQP (USD).

10 20 30 50 70 100

MISOCP 734,886 1,524,279 2,315,149 3,860,107 5,462,460 7,831,083
MIQP 767,659 1,531,570 2,328,793 3,902,795 5,494,713 7,843,934

For systems of up to 40 units with 24 h generation that do not consider wind power
and pollution emissions, we compared the numerical results with those of previously
published methods, as shown in Table 4, which indicates that the MISOCP formulation can
provide the same or lower objective values compared to other methods.

Table 4. Comparison of solution results without wind power and pollution emissions.

Methods Obj (USD) Obj (USD) Obj (USD)

10 Units 20 Units 40 Units

HAS [30] 563,977 1124715 2,248,740
GA [31] 565,825 1126243 2,251,911

BGSA [32] 564,379 — —
BPSO [32] 564,280 — —
ABC [33] 641,303 — —
MIQP [2] 573,631 — —

BGWO [34] 563,937 1,124,553 2,248,138
MISOCP 563,977 1,124,503 2,246,737

In order to describe the output of thermal units in detail, we provide the specific
output of 10 thermal units within 24 time periods in Table 5, which reflects the influence of
wind power generators on traditional thermal unit systems.

We also tested some systems that include two wind units; the data on wind units were
taken from refs. [25]. We compared the total costs of a system with two wind units with
those of a system with one wind unit, as shown in Table 6. As shown in the table, the more
wind power is used, the lower the total cost of the system.

Table 5. System scheduling plan of 10 thermal power units in 24 h.

T
N

1 2 3 4 5 6 7 8 9 10

1 298 283 0 40 40 0 0 0 0 0
2 286 270 0 66 66 0 0 0 0 0
3 307 292 0 92 92 0 0 0 0 0
4 329 313 0 118 118 0 0 0 0 0
5 296 280 50 130 130 40 0 0 0 0
6 322 306 82 130 130 56 0 0 0 0
7 315 300 115 130 130 72 0 0 0 0
8 320 305 147 130 130 80 0 0 0 0
9 347 332 162 130 130 80 50 0 0 0

10 395 380 162 130 130 80 67 0 0 0
11 386 371 162 130 130 80 84 20 0 0
12 412 398 162 130 130 80 67 20 20 0
13 395 380 162 130 130 80 50 0 0 0
14 371 356 162 130 130 80 0 0 0 0
15 322 307 162 130 130 80 0 0 0 0
16 277 262 143 130 130 80 0 0 0 0
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Table 5. Cont.

T
N

1 2 3 4 5 6 7 8 9 10

17 267 252 137 130 130 80 0 0 0 0
18 305 289 159 130 130 80 0 0 0 0
19 327 311 162 130 130 80 50 0 0 0
20 411 396 162 130 130 80 67 0 20 0
21 379 364 162 130 130 80 50 0 0 0
22 288 273 149 130 130 80 0 0 0 0
23 326 0 162 130 130 80 0 0 0 0
24 274 0 141 130 130 80 0 0 0 0

Table 6. Comparison of the total system costs of a system with one vs. two wind units (USD).

Number
of Wind

Units

Number of Thermal Units

10 20 30 50 70 100

1 734,886 1,524,279 2,315,149 3,860,107 5,462,460 7,831,083
2 672,413 1,451,220 2,259,199 3,826,990 5,370,384 7,729,517

5. Maximum Penetration Rate of Wind Power Analysis and Discussion of
Practical Implementation

In order to ensure the safe and stable operation of a power system after wind power
integration, it is necessary to study the penetration rate of wind power, which is the
percentage of wind power relative to the regional grid power. The wind power penetration
rates of a system with one wind unit and two wind units at different time periods are
shown in Figure 5. As shown in the figure, the wind power penetration rates of a system
with two wind units are much higher than those of a system with one wind unit, and the
maximum wind power penetration level of a system with two wind units exceeds 20%.
Despite the higher the wind power penetration rate, the lower the total cost, the more
challenges faced by a power system with high penetration of wind power, owing to the
high volatility and intermittency of wind power. Therefore, curtailing of wind has to be
considered to ensure secure operation of the system in some circumstances from the total
cost point of view.

Based on the analysis presented above, it can be seen that for the stochastic UC problem
with wind power, the CCP model considered in this paper is relatively simple; the average
wind power permeability within 24 h is lower than 20%. In order to improve wind power
utilization and ensure the safe operation of a power system, as suggested in [35,36], other
energy sources and energy storage solutions can be combined to construct a more practical
CCP model. However, the MISOCP derived in this paper is still a valid reformulation for
the relevant CCP model.
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6. Conclusions

Herein, we proposed a CCP model for the related UC problem that considers stochastic
wind power and pollutant emission costs of thermal units. Chance constraints were
introduced to describe the uncertainty output of wind power, and the system constraints
were guaranteed by the satisfied probability. The CCP model was transformed into a
deterministic equivalent form by Latin hypercube sampling and the K-means clustering
algorithm, as well as the SAA method. A better formulation, MISOCP, was derived, which
is based on the convex hull theory and can be effectively solved using the correct software.
Numerical test results illustrate that the method presented in this paper is effective and
suitable for solving the large-scale uncertain UC problem. However, the CCP model
proposed in this paper is relatively simple, and an actual model closer to real-life scenarios
will be constructed in future research.
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Nomenclature
The main nomenclature and notations used in this paper are listed below for quick reference.
A. Sets and indices
N set of thermal units indexed by i
T set of scheduling time periods indexed by t
Nw set of wind units (or wind farms) indexed by j
B. Constants
αi, βi, γi coefficients of the quadratic production cost function of thermal unit i
ai, bi, ci coefficients of the quadratic pollutant emission function of thermal unit i
ki,τ startup cost coefficient of thermal unit i during time period t
Chot,i hot startup cost of thermal unit i
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Ccold,i cold startup cost of thermal unit i
Ti,t consecutive off hours of thermal unit i during time period t
To f f ,i minimum down time of thermal unit i
Ton,i minimum up time of thermal unit i
Tcold,i cold-start time of thermal unit i
PD,t system load demand during time period t (MW)
Rt system spinning reserve requirement during time period t (MW)
Pi maximum power output of thermal unit i (MW)
Pi minimum power output of thermal unit i (MW)
Pup,i ramp-up limit of thermal unit i
Pdown,i ramp-down limit of thermal unit i
Pstart,i startup ramp limit of thermal unit i
Pshut,i shutdown ramp limit of thermal unit i
ui,0 initial commitment state of thermal unit i (1 if it is online, 0 otherwise)
Ti,0 t number of time periods that thermal unit i has been online (+) or offline (−) prior to the

first period of the time span (end of period 0)
C. Variables
(1) Binary Variables
ui,t commitment status of unit i during period t, which is equal to

1 if unit i is online during time period t and 0 otherwise
si,t startup status of unit i during time period t, which takes the value of 1 if the unit starts

up during period t and 0 otherwise
di,t shutdown status of unit i during time period t, which takes the value of 1 if the unit

shuts down during period t and 0 otherwise
(2) Positive and Continuous Variables
Pi,t power output of unit i during time period t
Si,t startup cost of unit i during time period t
(3) Random Variables
Pξ,t

j actual wind power output value of wind unit j during time period t
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