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Abstract: In this study, the Casson fluid flow through an inclined, stretching cylindrical surface is
considered. The flow field is manifested with pertinent physical effects, namely heat generation,
viscous dissipation, thermal radiations, stagnation point flow, variable thermal conductivity, a
magnetic field, and mixed convection. In addition, the flow field is formulated mathematically. The
shooting scheme is used to obtain the numerical data of the heat transfer coefficient at the cylindrical
surface. Further, for comparative analysis, three different thermal flow regimes are considered. In
order to obtain a better estimation of the heat transfer coefficient, three corresponding artificial neural
networks (ANN) models were constructed by utilizing Tan-Sig and Purelin transfer functions. It was
observed that the heat transfer rate exhibits an inciting nature for the Eckert and Prandtl numbers,
curvature, and heat generation parameters, while the Casson fluid parameter, temperature-dependent
thermal conductivity, and radiation parameter behave oppositely. The present ANN estimation will
be helpful for studies related to thermal energy storage that have Nusselt number involvements.

Keywords: thermal energy; mixed convection; thermal radiation; nusselt number; artificial neural
networking; casson fluid

MSC: 76R10; 76-10; 65K05

1. Introduction

It is a well-known fact among researchers that the study of heat transfer has numerous
applications, such as in combustion chambers, furnaces, individual nuclear reactors, heat
exchangers with high temperatures, and recuperating thermal energy storage systems, to
name just a few. In this regard, the heat transfer coefficient, namely the Nusselt number,
contributed to a better heat exchange rate. Due to this motivation, various researchers
investigate the heat transfer aspects of the Casson fluid model [1], such as Casson fluid
flow in the vicinity of a stagnation point in the direction of a stretched sheet as described
by Meraj et al. in [2]. The analysis is also done on the properties of heat transmission
with viscous dissipation. In addition, through appropriate transformations, the equations
describing heat transport in Casson fluid were reduced. The Casson fluid, velocity ratio
parameters, Prandtl and Eckert numbers were the factors controlling the flow. The ho-
motopy analysis method (HAM) was used to calculate the analytical solutions across the
entire geographical domain. The Nusselt number and the skin friction coefficient were
computed and analyzed. The heat transfer in Casson fluid flow across a nonlinearly ex-
tending surface was investigated by Swati [3]. The momentum and energy equations were
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transformed into reduced equations by utilizing the appropriate transformations. Further,
with the aid of the shooting approach, numerical solutions were obtained. The velocity
field was suppressed while temperature increased toward the Casson parameter. The
heat transmission in a Casson fluid past a symmetric wedge with mixed convection was
examined by Swati et al. [4]. The graphical representations of a representative collection of
graphic outcomes were produced by the shooting method. It was discovered that while the
temperature fell with a higher Falkner-Skan exponent, the velocity increased. Although the
temperature was observed to drop in this situation. The temperature is found to decrease as
the Prandtl number rises. Pramanik [5] looked into the boundary layer flow of Casson fluid
combined with heat transfer in the presence of suction or blowing at the surface toward an
exponentially extending surface. The equation for the temperature field included a factor
for thermal radiation. The momentum and heat transmission equations were reduced by
using suitable transformations. Then, numerical answers to these equations were discov-
ered. Both velocity and temperature show an opposite nature toward the Casson fluid
parameter. The temperature rises as a result of thermal radiation, which improves effective
thermal diffusivity. Mahdy [6] offered numerical solutions for heat transfer in Casson fluid
past a cylinder. Additionally, by using similarity transformations, the controlling partial
differential equations were reduced to ordinary differential equations, and the resulting
equations were then numerically solved using the shooting method. The primary goal was
to look into how the governing variables affected the velocity, temperature profiles, skin
friction coefficient, and temperature gradient at the surface.

In an unstable flow of a Casson fluid approaching a stagnation point across a stretch-
ing/shrinking sheet in the presence of thermal radiation, Abbas et al. [7] provided the heat
and mass transfer study for Casson fluid. They took into account the linear Rosseland
approximation for thermal radiation. In considering chemical reactions as a function of
temperature, the influence of binary chemical reactions with Arrhenius activation energy
was also taken into account. The bivariate spectral collocation quasi-linearization approach
was used to produce the numerical solutions of the system of nonlinear PDEs that are
constant throughout the entire domain and at all times. Subsequently, the numerical results
for a number of relevant physical parameters were visually discussed as fields of velocity,
temperature, and concentration. A moving wedge containing gyrotactic microorganisms
was the subject of the study by Raju et al. [8] on the effects of thermophoresis and Brownian
motion on two-dimensional magnetohydrodynamics (MHD) radiative Casson fluid. Using
Runge-Kutta and Newton’s methods, numerical results were presented graphically as well
as in tabular form. In the two flow instances of suction and injection, the effects of pertinent
parameters on the distributions of velocity, temperature, concentration, and density of
motile organisms were given and addressed. Further, in comparing the obtained results
to the existing prior studies, the results were validated and determined to be in good
agreement. The temperature and concentration field are increased as the thermophoresis
parameter values rise. The fact that gyrotactic microorganisms can speed up mass and heat
transfer rates was a significant discovery of the present study. Reddy et al. [9] examined
the consequences of conjugate heat transfer (CHT) on the idea of a heat function. The
Casson fluid was physically represented as it passed through a thin, vertical cylinder. The
hollow cylinder’s inner wall was kept at a constant temperature. Additionally, by using
an implicit methodology, the solutions to the linked, non-linear governing equations are
discovered. All of the governing parameters were shown graphically in the flow charts. The
Casson fluid parameters’ steady-state times were prolonged. The heat function contours
were concentrated near the leading edge at the cylinder’s hotter wall. Furthermore, by
increasing the values of all the regulating parameters, the heat lines’ departures from the
hot wall continue to decrease. In comparison to the Newtonian fluid, the Casson fluid
is more important at the hot wall. The influence of nanoparticles suspended in the flow
regime of Casson fluid towards an inclined plate was presented by Sulochana et al. [10].
The frictional heating, heat generation, and thermal radiation effects were all included
in the energy and diffusion equations. TiO2-water and CuO-water were considered two
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different types of nanofluids to make the analysis more interesting. The analytical solutions
to the transmuted governing partial differential equations (PDEs) were achieved by using
the regular perturbation approach. In using graphical and tabular representations, the
effects of relevant flow variables on thermal, momentum, mass transport, and mass and
thermal transport rates were studied. According to the findings, heat radiation and limits
on chemical reactions tend to increase the rates of thermal and mass transmission. Ali
et al. [11] investigated the micropolar-Casson fluid flow in a restricted channel with MHD.
The governing model of the issue was converted into a formulation based on the vorticity-
stream function, and a finite difference method was used to solve it numerically. The
effects of wall shear stress (WSS), axial velocity, and micro-rotation velocity on various flow
regulating parameters, such as the Strouhal, Hartmann, porosity, micropolar, and Casson
fluid parameters, were illustrated graphically and discussed. With increasing porosity
parameter values, the WSS declines. It was discovered that the flow separation region was
significantly influenced by the Hartman number as well. All of the axial locations had
parabolic velocity profiles. The greatest velocity value was found near the throat of the
constriction.

Gbadeyan et al. [12] looked at the impacts of nonlinear radiation, non-Darcian porous
media, and variable thermal conductivity and viscosity on MHD Casson MHD nanofluid
flow for vertical surfaces. The resulting flow equations were transformed into ordinary
differential equations. The set of equations that resulted from this was then solved using the
Galerkin weighted residual method (GWRM). The temperature, velocity, and nanoparticle
volume percent were calculated using numbers (nanoparticle concentration). It is observed
that as the nanoparticle volume fraction and temperature decrease, the viscosity and
thermal conductivity increase. Alizadeh et al. [13] examined the impinging Casson fluid
flow over a cylinder manifested with porous material, Soret, and Dufour effects. The
flow equations were numerically solved, and Sherwood, Nusselt, and Bejan numbers
were predicted. The results demonstrate that the Nusselt number decreased significantly,
although the Sherwood number decreased less. It was also established that the fluid’s
improved non-Newtonian properties had a considerable impact on flow, temperature, and
mass transfer irreversibilities. In terms of heat transport and entropy, Jamshed et al. [14]
explored the Casson time-independent nanofluid. The impact of slip state and solar
thermal transport on Casson nanofluid flow convection was comprehensively examined.
The nanofluid was treated on a slippery surface with convective heat to evaluate the flow
characteristics and thermal transport. The equations defining the flow problem were
written using PDEs. After converting the equations to ODEs, their self-similar solution was
discovered using a numerical approach known as the Keller box. The copper-water and
titanium-water mixtures are two unique groups of nanofluids under consideration for the
study. The numerical results for several flow parameters, such as skin friction, heat transfer,
Nusselt number, and entropy, were visually depicted. Furthermore, increasing the Reynolds
number enhanced the entropy in the system. In the case of the Casson phenomenon, rather
than normal fluid, thermal conductivity increases. The recent developments on the subject
enclosed above can be accessed in Refs. [15–18].

Additionally, on the basis of the literature reported above on non-Newtonian fluid,
namely Casson fluid, we offer an estimation of the heat transfer coefficient at an inclined
cylindrical surface. Further, mixed convection-casson fluid with a stagnation point is
considered. The heat transfer aspects include heat generation, viscous dissipation, thermal
radiation, and temperature-dependent variable thermal conductivity effects. The three
different thermal flow fields and magnetic field assumptions are formulated mathematically.
The obtained flow equations are reduced in terms of order and solved by using the shooting
method. A Nusselt number as a heat transfer coefficient is predicted by using ANN models.
The present article will help researchers obtain an accurate estimation of heat transfer
coefficients from thermal engineering standpoints.
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2. Mathematical Formulation

The heat transfer aspects of mixed convective magnetized Casson fluid flow over a
stretching cylindrical surface are considered. Heat generation, viscous dissipation, thermal
radiation, and temperature-dependent thermal conductivity are the key thermal effects
held by energy equations. The mathematical formulation [9,10,13] concluded in this regard
is as follows:

∂(r̃ũ)
∂x̃

+
∂(r̃ṽ)
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∂ũ
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with endpoint conditions:

ũ(x̃, r̃) = Ũw = ax̃, ṽ(x̃, r̃) = 0, T̃ = T̃w at r̃ = c,
ũ = ũe = dx̃ , T̃ → T̃∞ as r̃ → ∞.

(4)

The relation between thermal conductivity and radioactive heat flux is as follows:

κ
(
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)
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(
1 + ε

T̃ − T̃∞

∆T

)
, where ∆T = T̃w − T̃∞. (5)
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. (6)

For the solution of Equations (1)–(4), we have variables [13].

ṽ = − c
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L f ′(η),
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.

(7)

Equations (1)–(3) under Equation (7) take the form

(1 + 1/β)( f ′′′ (1 + 2γη) + 2γ f ′′ )− f ′2 + f f ′′ −M2( f ′ − A) + A2 + Gθ cos(α) = 0, (8)
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f ′′ 2 + Pr f θ′ + PrHθ = 0,

(9)

while the reduced boundary conditions are:

f ′ = 1, f = 0, θ = 1 at η = 0,
f ′ = A, θ = 0 as η → ∞.

(10)

The mathematical relation for the Nusselt number is as follows:
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2.1. Formulation without Thermal Radiation

In the present case, the heat transfer is examined in the absence of thermal radi-
ation [7,14]. The flow field includes physical effects such as viscous dissipation, heat
generation, temperature-dependent thermal conductivity, mixed convection, an externally
applied magnetic field, and a stagnation point. The flow field is mathematically concluded
as follows:
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while endpoint conditions for the present case are:

ũ(x̃, r̃) = Ũw = ax̃, ṽ(x̃, r̃) = 0, T̃ = T̃w at r̃ = c,
ũ = ũe = dx̃ , T̃ → T̃∞ as r̃ → ∞.

(16)

The relation for thermal conductivity is given as follows:

κ
(

T̃
)
= κ∞

(
1 + ε

T̃ − T̃∞

∆T

)
, where ∆T = T̃w − T̃∞. (17)

To obtain the solutions of Equations (1)–(3), we have used the variables given in
Equation (7).

The reduced set of equations to describe the heat transfer in Casson fluid flow over
the inclined surface are concluded as follows:

(1 + 1/β)( f ′′′ (1 + 2γη) + 2γ f ′′ )− f ′2 + f f ′′ −M2( f ′ − A) + A2 + Gθ cos(α) = 0, (18)

(θ′′ (1 + 2ηγ) + 2γθ′) + ε
(
(θθ′′ + θ′2)(1 + 2ηγ) + 2γθθ′

)
+ PrEc(1 + 2ηγ)

(
1 + 1

β

)
f ′′ 2

+Pr f θ′ + PrHθ = 0,
(19)

while the respective boundary conditions are:

f ′ = 1, f = 0, θ = 1 at η = 0,
f ′ = A, θ = 0 as η → ∞.

(20)

Since the thermal radiations are not considered, the mathematical relation for Nusselt
number reduces to

Nu =
x̃qw

κ(T̃w − T̃∞)
, qw = −κ

(
∂T̃
∂r̃

)
r̃=c

. (21)

Nu√
Rex̃

= −θ′(0) (22)

2.2. Formulation without Heat Generation

In this case, we have considered the thermal flow regime without the heat gener-
ation effect. The energy equation is carried in the presence of temperature-dependent
thermal conductivity and viscous dissipation, while the momentum equation makes as-
sumptions about stagnation point flow, mixed convection, and the magnetic field [15,16].
The concluding mathematical equations in this regard are as follows:

∂(r̃ũ)
∂x̃

+
∂(r̃ṽ)

∂r̃
= 0, (23)
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ũ
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with boundary conditions:

ũ(x̃, r̃) = Ũw = ax̃, ṽ(x̃, r̃) = 0, T̃ = T̃w at r̃ = c,
ũ = ũe = dx̃ , T̃ → T̃∞ as r̃ → ∞.

(26)

The relation for thermal conductivity and radioactive heat flux is the same as in
Equations (5) and (6), respectively. In changing the order of Equations (24) and (25), we
used variables given in Equation (7). The ultimate outcome in this regard is as follows:

(1 + 1/β)( f ′′′ (1 + 2γη) + 2γ f ′′ )− f ′2 + f f ′′ −M2( f ′ − A) + A2 + Gθ cos(α) = 0, (27)(
θ′′ (1 + 2ηγ) + 2γθ′

)(
1 +

4
3

R
)
+ ε
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(θθ′′ + θ′

2
)(1 + 2ηγ) + 2γθθ′

)
+ PrEc(1 + 2ηγ)

(
1 +

1
β

)
f ′′ 2 + Pr f θ′ = 0, (28)

The reduced boundary conditions are as follows:

f ′ = 1, f = 0, θ = 1 at η = 0,
f ′ = A, θ = 0 as η → ∞.

(29)

In following all thermal flow fields, it should be noted that heat generation coefficient,
free stream velocity, dynamics viscosity, temperature, electrical conductivity, fluid density,
uniform magnetic field, inclination, gravitational acceleration, thermal exponential coeffi-
cient, mean absorption coefficient, kinematic viscosity, Stefan-Boltzmann constant, Eckert
number, heat generation parameter, Prandtl number, mixed convection, magnetic field,
ratio of free stream to stretching velocity, and radiation parameters are denoted as Q0, ũe, µ,
T̃, ρ, σ, B0, α, g0, βT , k∗, υ, σ∗, Ec, H, Pr, G, M, A, and R, respectively. Further, the involved
flow parameters are defined as follows:

M =

√
σB2

0 L
ρU0

, G = g0βT(T̃w−T̃∞)L2

U0 x̃ , Pr = µcp
κ ,

β = µ
√

2πc
τr

, R = 4σ∗ T̃3
∞

κk∗ , γ =
√

υL
c2U0

, A = d
a ,

H = LQ0
U0ρcp

, Ec = U2
0 (x̃/L)2

cp(T̃w−T̃∞)
.

(30)

3. Numerical Method

In the ANN Model-I, the characteristics of heat transfer for mixed convective mag-
netized Casson fluid flow are considered. The main thermal effects held by energy equa-
tions include heat generation, viscous dissipation, thermal radiation, and temperature-
dependent thermal conductivity. Subject to these physical effects, Equations (1)–(6) are
the ultimate flow-narrating differential equations. The reduced system obtained by means
of Equation (7) is given in Equations (8)–(10). The dimensionless relation for the Nusselt
number is given in Equation (12). In the ANN Model-II, the heat transfer aspects with-
out thermal radiation are addressed. The Equations (13)–(17) represent the mathematical
formulation for ANN Model-II, which is heat transfer aspects without thermal radiations.

In addition, using Equation (7), the dimensionless differential equations for the ANN
Model-II are summarized as Equations (18)–(20). In the absence of thermal radiations, the
dimensionless form of the Nusselt number is offered in Equation (22). In ANN Model-III,
we considered heat transfer aspects in the absence of a heat generation effect for the Casson
fluid flow over a stretched surface. The originating partial differential equation for ANN
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Model-III is concluded in Equations (23)–(26). The reduced differential system for ANN
Model-III is summarized as Equations (27)–(29). In the absence of the heat generation
effect, the Nusselt number relation holds as it does for Model-I. Our key interest is to
obtain the numerical data of the Nusselt number for each case, namely ANN Model-I,
ANN Model-II, and ANN Model-III. Firstly, we deal with the major case, which is ANN
Model-I. Various schemes [19–22] exist to narrate the fluid flow problems, but to execute
the shooting method [23,24] along with the Runge-Kutta scheme, the following necessary
procedure is carried out:

Y1 = f (η), Y2 = f ′(η), Y3 = f ′′ (η), Y4 = θ(η), Y5 = θ′(η). (31)

Owning Equation (31) in Equations (8) and (9), one has

Y1
′ = Y2,

Y2
′ = Y3,

Y3
′ = 1(

1+ 1
β

)
(1+2ηγ)

[
−2γy3

(
1 + 1

β

)
+ Y2

2 −Y1Y3 − GY4 cos α + M2(Y2 − A)− A2
]
,

Y4
′ = Y5,

Y5
′ = − 1

(1+ 4
3 R)(1+2ηγ)+ε(1+2ηγ)Y4

[
(1 + 4

3 R)(2γY5) + ε((1 + 2ηγ)Y2
5 + 2γY4Y5)+

PrY1Y5 + PrEc(1 + 2ηγ)(1 + 1
β )Y

2
2 + PrHY4

]
.

(32)

and
Y1 = 0, Y2 = 1, Y4 = 1 at η = 0,

Y2 → A, Y4 → 0 as η = ∞.
(33)

Then the self-coding is implemented in Matlab, and outcomes are reported for ANN
Model-I in terms of graphs and tables. Similarly, we find numerical solutions for ANN
Model-II and ANN Model-III.

4. Development of ANN Models (I,II,III)

The ANN models were created using the multilayer perceptron (MLP) method, one
of the models that researchers frequently adopt due to its strong learning capabilities. In
terms of structure, MLP networks consist of three linked primary layers.

The prediction data is derived from the input layer, the hidden layer, and the output
layer, which are the first, second, and third layers, respectively. In the developed ANN
model, MLP structures with a single hidden layer are preferred. In the performance
analysis of the designed ANN model, it has been shown that, in order to achieve ideal
results, the number of hidden layers is sufficient and that it is not necessary to experiment
on MLP models with multiple hidden layer structures. An MLP network model’s symbolic
architecture is depicted in Figure 1. In each of the three distinct MLP network models,
different input parameters were defined in order to estimate Nu values. Table 1 displays the
input and output parameters of three distinct ANN models that were created. Moreover,
R1 and R2 represent the thermal radiation parameter values 0 and 0.5, respectively. The
same is the case for heat generation parameters H1 and H2. The performance of forecasts is
impacted by the best data optimization during the building of ANN models. According to
the grouping technique frequently employed in the literature, the data utilized in ANN
models, each of which was produced with a different number of data sets, were segmented.
A total of 15% of the data is set aside for validation, 15% for testing, and 70% is set aside
for training. Table 2 provides details about the data set used to create three distinct ANN
models. The optimization of the computational component known as the neuron in the
hidden layer of MLP models is one of the challenges. Further, there is no model or guideline
for calculating the number of neurons, which is the fundamental cause of this challenge.
In the hidden layer, the number of neurons between 5 and 25 was tested. The MLP
network model with 10 neurons in the hidden layer was chosen after the performances
of other MLP networks with various numbers of hidden layer neurons were assessed. In
determining the optimal number of neurons, parameters such as deviation rates, mean
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squared error (MSE) values, and coefficient of determination (Rm) values were taken into
account. The Levenberg-Marquardt method, a popular training technique with excellent
estimate performance, served as the ANN model’s training procedure [25]. In the hidden
and output layers, respectively, there are Tan-Sig and Purelin functions acting as transfer
functions. The transfer function mathematical expressions are shown below [26]:

f (x) =
1

1 + e−x , (34)

Pureline(x) = x. (35)
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Figure 1. The symbolic architecture of an MLP network model.

Table 1. Output and input values of three different ANN models.

Inputs Output

ANN Model-I β γ Ec Pr ε R H Nu

ANN Model-II β γ Ec Pr ε H R1 R2 Nu

ANN Model-III β γ Ec Pr ε R H1 H2 Nu

Table 2. Information about the data set used in the development of three different ANN models.

ANN Model-I ANN Model-II ANN Model-III

Training Data 48 84 84

Validation Data 11 18 18

Test Data 11 18 18

Total Data 70 120 120

The MSE, Rm, and margin of deviation (MoD) metrics, which are often used in the
literature, were chosen to examine the estimated performance of three ANN models.
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The following lists the mathematical formulas [27–30] used to calculate the performance
parameters:

MSE =
1
N

N

∑
i=1

(Xnum(i) − XANN(i))
2. (36)

Rm =

√√√√√√√√1−

N
∑

i=1
(Xnum(i) − XANN(i))

2

N
∑

i=1
(Xnum(i))

2
, (37)

MoD(%) =

[
Xnum − XANN

Xnum

]
. (38)

5. Comparative Analysis

The aim of this study is to predict the values of the heat transfer coefficient at a
cylindrical surface when a non-Newtonian fluid passes over the surface. A total of three
different flow regimes have been considered when constructing the corresponding ANN
models. The ANN Model-I is developed by considering the Casson fluid flow over an
inclined stretching cylinder along with the involved physical effects, namely an externally
applied magnetic field, stagnation point flow, mixed convection, heat generation, viscous
dissipation, thermal radiations, and variable thermal conductivity. In this model, we
consider seven inputs and the Nusselt number as an output. The ANN Model-II is used to
predict the Nusselt number values for two different thermal regimes, namely, the thermal
regime with radiations and the thermal regime without radiations. The ANN Model-III
offers the prediction of the Nusselt number for two different thermal regimes, namely,
thermal regimes with and without heat generation. In using the shooting method, we
obtained the numerical values of the Nusselt number for three different models (see
Tables 3–21). The impact of the Casson fluid parameter on the Nusselt number is presented
in detail in Table 3. The numerical information for the Nusselt number for a positive
iteration of the curvature parameter is presented in Table 4. Table 5 demonstrates the
influence of Eckert number on Nusselt number, and as can be observed, Nusselt number
exhibits a direct relationship with larger Eckert number values, i.e., Nusselt number grows
in magnitude as Eckert number rises. Table 6 shows how Pr affects the Nusselt number.

Table 3. Effect of Casson fluid parameter on Nusselt number.

β θ
′
(0) −[1 + 4/3R] θ

′
(0), R = 0.2

0.2 −2.0221 2.5613

0.3 −1.9371 2.4536

0.4 −1.8933 2.3982

0.5 −1.8664 2.3641

0.6 −1.8481 2.3409

0.7 −1.8347 2.3239

0.8 −1.8246 2.3112

0.9 −1.8165 2.3009

01 −1.8100 2.2927

02 −1.7794 2.2539
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Table 4. Impact of curvature parameter on Nusselt number.

γ θ
′
(0) −[1 + 4/3R] θ

′
(0), R = 0.2

0.2 −0.9511 1.2047

0.3 −1.0468 1.3259

0.4 −1.1443 1.4494

0.5 −1.2441 1.5759

0.6 −1.3466 1.7057

0.7 −1.4515 1.8386

0.8 −1.5587 1.9744

0.9 −1.6681 2.1129

01 −1.7794 2.2539

02 −2.9651 3.7559

Table 5. Impact of Eckert number on Nusselt number.

Ec θ
′
(0) −[1 + 4/3R] θ

′
(0), R = 0.2

0.2 −1.9015 2.4086

0.3 −2.0216 2.5608

0.4 −2.1397 2.7104

0.5 −2.2560 2.8577

0.6 −2.3705 3.0027

0.7 −2.4832 3.1455

0.8 −2.5943 3.2862

0.9 −2.7037 3.4247

01 −2.8116 3.5615

02 −3.2282 4.0892

Table 6. Impact of Prandtl number on Nusselt number.

Pr θ
′
(0) −[1 + 4/3R] θ

′
(0), R = 0.2

0.2 −1.3536 1.7146

0.3 −1.3813 1.7496

0.4 −1.4084 1.7840

0.5 −1.4348 1.8175

0.6 −1.4607 1.8502

0.7 −1.4861 1.8824

0.8 −1.5109 1.9139

0.9 −1.5353 1.9448

01 −1.5593 1.9752

02 −1.7794 2.2540
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Table 7. Impact of variable thermal conductivity on Nusselt number.

ε θ
′
(0) −[1 + 4/3R] θ

′
(0), R = 0.2

0.2 −3.0653 3.8828

0.3 −2.8466 3.6057

0.4 −2.6458 3.3514

0.5 −2.4588 3.1146

0.6 −2.2821 2.8907

0.7 −2.1121 2.6754

0.8 −1.9457 2.4646

0.9 −1.7794 2.2540

01 −1.6097 2.0390

02 −1.0271 1.3010

Table 8. Impact of radiation parameter on Nusselt number.

R θ
′
(0) −[1 + 4/3R] θ

′
(0)

0.2 −1.7794 2.2539

0.3 −1.6752 2.3452

0.4 −1.5591 2.3906

0.5 −1.4325 2.3875

0.6 −1.2956 2.3320

0.7 −1.1483 2.2200

0.8 −0.9895 2.0449

0.9 −0.8162 1.7956

01 −0.6202 1.4471

02 −0.3629 1.3306

Table 9. Influence of heat generation parameter on Nusselt number.

H θ
′
(0) −[1 + 4/3R] θ

′
(0), R = 0.2

0.2 −1.8322 2.3208

0.3 −1.8836 2.3859

0.4 −1.9338 2.4495

0.5 −1.9827 2.5115

0.6 −2.0305 2.5720

0.7 −2.0772 2.6312

0.8 −2.1230 2.6892

0.9 −2.1678 2.7459

01 −2.2118 2.8017

02 −2.2421 2.8401
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Table 10. Impact of curvature parameter on Nusselt number for non-radiative and radiative flow fields.

γ θ
′
(0) −[1 + 4/3R] θ

′
(0)

R = 0 R = 0.5 R = 0 R = 0.5

0.2 −1.0677 −0.9493 1.0677 1.5822

0.3 −1.3171 −1.2061 1.3171 2.0105

0.4 −1.5766 −1.4739 1.5766 2.4569

0.5 −1.8443 −1.7494 1.8443 2.9163

0.6 −2.1182 −2.0306 2.1182 3.3851

0.7 −2.3970 −2.3160 2.3970 3.8607

0.8 −2.6796 −2.6045 2.6796 4.3417

0.9 −2.9653 −2.8953 2.9653 4.8264

1.0 −3.2535 −3.1881 3.2535 5.3146

2.0 −6.2049 −6.1651 6.2049 10.277

Table 11. Impact of Casson fluid parameter on Nusselt number for radiative and non-radiative flow fields.

β θ
′
(0) −[1 + 4/3R] θ

′
(0)

R = 0 R = 0.5 R = 0 R = 0.5

0.2 −3.3407 −3.2765 3.3407 5.4619

0.3 −3.3106 −3.2453 3.3106 5.4099

0.4 −3.2950 −3.2294 3.2950 5.3834

0.5 −3.2854 −3.2196 3.2854 5.3660

0.6 −3.2788 −3.2130 3.2788 5.3561

0.7 −3.2740 −3.2081 3.2740 5.3479

0.8 −3.2703 −3.2044 3.2703 5.3417

0.9 −3.2674 −3.2015 3.2674 5.3369

1.0 −3.2650 −3.1992 3.2650 5.3331

2.0 −3.2535 −3.1881 3.2535 5.3145

Table 12. Impact of Eckert number on Nusselt number for radiative and non-radiative flow fields.

E θ
′
(0) −[1 + 4/3R] θ

′
(0)

R = 0 R = 0.5 R = 0 R = 0.5

0.2 −3.2969 −3.2327 3.2969 5.3889

0.3 −3.3403 −3.2773 3.3403 5.4632

0.4 −3.3836 −3.3219 3.3836 5.5376

0.5 −3.4270 −3.3665 3.4270 5.6119

0.6 −3.4704 −3.4111 3.4704 5.6863

0.7 −3.5138 −3.4558 3.5138 5.7608

0.8 −3.5572 −3.5004 3.5572 5.8352

0.9 −3.6006 −3.5451 3.6006 5.9096

1.0 −3.6440 −3.5898 3.6440 5.9841

2.0 −4.0787 −4.0372 4.0787 6.7301
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Table 13. Impact of Prandtl number on Nusselt number for non-radiative and radiative flow fields.

Pr θ
′
(0) −[1 + 4/3R] θ

′
(0)

R = 0 R = 0.5 R = 0 R = 0.5

0.2 −3.0932 −3.0717 3.0932 5.1205

0.3 −3.1265 −3.0956 3.1265 5.1604

0.4 −3.1592 −3.1191 3.1592 5.1995

0.5 −3.1912 −3.1424 3.1912 5.2384

0.6 −3.2227 −3.1654 3.2227 5.2767

0.7 −3.2535 −3.1881 3.2535 5.3145

0.8 −3.2839 −3.2105 3.2839 5.3519

0.9 −3.3137 −3.2326 3.3137 5.3887

1.0 −3.3431 −3.2546 3.3431 5.4254

2.0 −3.6149 −3.4617 3.6149 5.7706

Table 14. Impact of variable thermal conductivity on Nusselt numbers for radiative and non-radiative
flow fields.

ε θ’(0) −[1 + 4/3R] θ
′
(0)

R = 0 R = 0.5 R = 0 R = 0.5

0.2 −2.7937 −2.7799 2.7937 4.6341

0.3 −2.5894 −2.5450 2.5894 4.2425

0.4 −2.4047 −2.3224 2.4047 3.8714

0.5 −2.2353 −2.1076 2.2353 3.5134

0.6 −2.0777 −1.8965 2.0777 3.1614

0.7 −1.9285 −1.6847 1.9285 2.8084

0.8 −1.7848 −1.4671 1.7848 2.4456

0.9 −1.6436 −1.2373 1.6436 2.0625

1.0 −1.5720 −0.9852 1.5720 1.6423

2.0 −1.2825 −0.6896 1.2825 1.1496

Table 15. Impact of heat generation parameter on Nusselt number for radiative and non-radiative
flow fields.

H θ
′
(0) −[1 + 4/3R] θ

′
(0)

R = 0 R = 0.5 R = 0 R = 0.5

0.2 −3.2670 −3.2020 3.2670 5.3377

0.3 −3.2805 −3.2159 3.2805 5.3609

0.4 −3.2938 −3.2298 3.2938 5.3841

0.5 −3.3072 −3.2436 3.3072 5.4071

0.6 −3.3204 −3.2573 3.3204 5.4299

0.7 −3.3337 −3.2709 3.3337 5.4526

0.8 −3.3468 −3.2845 3.3468 5.4753

0.9 −3.3599 −3.2981 3.3599 5.4979

1.0 −3.3730 −3.3116 3.3730 5.5204

2.0 −3.5007 −3.4432 3.5007 5.7398
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Table 16. Impact of Casson fluid parameter on Nusselt number with and without heat generation.

β θ
′
(0) −[1 + 4/3R] θ

′
(0), R = 0.2

H = 0 H = 0.5 H = 0 H = 0.5

0.2 −3.2951 −3.3603 4.1739 4.2565

0.3 −3.2642 −3.3305 4.1347 4.2187

0.4 −3.2483 −3.3152 4.1146 4.1994

0.5 −3.2386 −3.3058 4.1023 4.1875

0.6 −3.2319 −3.2994 4.0938 4.1794

0.7 −3.2271 −3.2947 4.0877 4.1734

0.8 −3.2233 −3.2911 4.0829 4.1688

0.9 −3.2204 −3.2883 4.0793 4.1653

1.0 −3.2180 −3.2860 4.0762 4.1624

2.0 −3.2066 −3.2750 4.0618 4.1484

Table 17. Impact of curvature fluid parameter on Nusselt number with and without heat generation.

γ θ
′
(0) −[1 + 4/3R] θ

′
(0), R = 0.2

H = 0 H = 0.5 H = 0 H = 0.5

0.2 −0.9679 −1.1551 1.2256 1.4632

0.3 −1.2281 −1.3848 1.5556 1.7542

0.4 −1.4969 −1.6307 1.8961 2.0656

0.5 −1.7722 −1.8885 2.2448 2.3922

0.6 −2.0528 −2.1552 2.6003 2.7299

0.7 −2.3372 −2.4286 2.9605 3.0763

0.8 −2.6248 −2.7070 3.3248 3.4289

0.9 −2.9147 −2.9895 3.6921 3.7867

1.0 −3.2066 −3.2750 4.0618 4.1484

2.0 −6.1786 −6.2150 7.8264 7.8725

Table 18. Impact of Eckert number on Nusselt number with and without heat generation.

E θ
′
(0) −[1 + 4/3R] θ

′
(0), R = 0.2

H = 0 H = 0.5 H = 0 H = 0.5

0.2 −3.2508 −3.3182 4.1177 4.2032

0.3 −3.2950 −3.3613 4.1737 4.2577

0.4 −3.3392 −3.4045 4.2297 4.3125

0.5 −3.3835 −3.4477 4.2858 4.3672

0.6 −3.4277 −3.4909 4.3418 4.4219

0.7 −3.4720 −3.5341 4.3979 4.4766

0.8 −3.5162 −3.5773 4.4539 4.5313

0.9 −3.5605 −3.6206 4.4501 4.5862

1.0 −3.6048 −3.6638 4.5662 4.6409

2.0 −4.0481 −4.0967 5.1277 5.1893
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Table 19. Impact of Prandtl number on Nusselt number with and without heat generation.

Pr θ
′
(0) −[1 + 4/3R] θ

′
(0), R = 0.2

H = 0 H = 0.5 H = 0 H = 0.5

0.2 −3.0786 −3.0996 3.8996 3.9263

0.3 −3.1050 −3.1360 3.9331 3.9724

0.4 −3.1310 −3.1717 3.9661 4.0176

0.5 −3.1566 −3.2068 3.9984 4.0621

0.6 −3.1818 −3.2412 4.0304 4.1058

0.7 −3.2066 −3.2750 4.0618 4.1484

0.8 −3.2311 −3.3083 4.0928 4.1906

0.9 −3.2553 −3.3410 4.1234 4.2321

1.0 −3.2791 −3.3732 4.1536 4.2728

2.0 −3.5026 −3.6719 4.4367 4.6512

Table 20. Impact of variable thermal conductivity on Nusselt number with and without heat generation.

ε θ
′
(0) −[1 + 4/3R] θ

′
(0), R = 0.2

H = 0 H = 0.5 H = 0 H = 0.5

0.2 −2.7477 −2.8195 3.4805 3.5715

0.3 −2.5369 −2.6115 3.2135 3.3079

0.4 −2.3414 −2.4194 2.9658 3.0646

0.5 −2.1571 −2.2393 2.7324 2.8365

0.6 −1.9804 −2.0679 2.5086 2.6194

0.7 −1.8079 −1.9017 2.2901 2.4088

0.8 −1.6357 −1.7376 2.0719 2.2011

0.9 −1.4601 −1.5721 1.8495 1.9914

1.0 −1.2761 −1.4015 1.1664 1.7751

2.0 −0.8518 −1.0240 1.0789 1.2971

Table 21. Impact of thermal radiation parameter on Nusselt number with and without heat generation.

R θ
′
(0) −[1 + 4/3R] θ

′
(0)

H = 0 H = 0.5 H = 0 H = 0.5

0.2 −3.2066 −3.2750 4.0618 4.1484

0.3 −3.1941 −3.2629 4.4717 4.5681

0.4 −3.1833 −3.2526 4.8799 4.9862

0.5 −3.1740 −3.2436 5.2911 5.4071

0.6 −3.1658 −3.2356 5.6984 5.8241

0.7 −3.1585 −3.2286 6.1054 6.2408

0.8 −3.1519 −3.2222 6.5141 6.6593

0.9 −3.1459 −3.2164 6.9209 7.0761

1.0 −3.1404 −3.2111 7.3265 7.4915

2.0 −3.1012 −3.1731 11.372 11.635
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The impact of the temperature-dependent variable viscosity parameter on the Nusselt
number is inspected and given in Tables 7–9 shows the impact of heat generation and
thermal radiation parameters on the Nusselt number. In detail, larger values of the thermal
radiation parameter cause a decline in the Nusselt number while for large heat generation
parameter, the Nusselt number shows inciting values.

Collectively, for Tables 3–9, it has been observed that the heat transfer normal to the
cylindrical surface enhances for curvature parameter, Prandtl number and heat generation
parameter while for Casson fluid, thermal conductivity, radiation parameters and Eckert
number. In addition, it behaved in opposition to the impact of the curvature parameter on
the Nusselt number is observed for two different values of the thermal radiation parameter
that is R = 0 and R = 0.5 see Table 10. Further, for the two alternative values of the thermal
radiation parameter, R = 0 and R = 0.5, are used to examine the impact of the Casson fluid
parameter on the Nusselt number. Table 11 is provided in this context. It was observed that
the Nusselt number dramatically decreases for positive Casson fluid parameter fluctuation.
In both the presence and non-existence scenarios of thermal radiations, the influence of the
Eckert number on the Nusselt number is seen see Table 12. Table 13 offers the impact of Pr
on the Nusselt number for both radiative and non-radiative cases. Furthermore, in both
cases, the Nusselt number is an increasing function of positive variation in Pr. Table 14
examines and provides information on the impact of a temperature-dependent variable
viscosity parameter on the Nusselt number. The effects of heat generation on the Nusselt
number are shown in Table 15. In this case, there were higher values of the heat production
parameter reveal increasing levels for the Nusselt number. Collectively for Tables 10–15,
the magnitude of heat transfer normal to the cylindrical surface is higher for the case of
presence of the thermal radiation effect. Table 16 offered the influence of the Casson fluid
parameter on the Nusselt number is noticed for two different values namely H = 0 and
H = 0.5. Further, H = 0 corresponds to the non-existence of the heat generation effect while
H = 0.5 implied the existence of heat generation effect. In both cases, it is seen that the
Nusselt number shows an inverse relation towards Casson fluid parameter.

The effects of the curvature fluid parameter on the Nusselt number are shown in
Table 17 for two distinct values, H = 0 and H = 0.5. In addition, the Nusselt number is
stronger in the case of the heat generating effect.

For two distinct scenarios, a thermal flow field with heat generation and a thermal
flow field without heat generation, the impact of the Eckert number on Nusselt is explored
see Table 18. The finding on the Nusselt number toward a positive fluctuation in the Prandtl
number is presented in Table 19. As seen by past events, the Nusselt number rises sharply
when provoked. Both the presence and absence of the heat generating effect are noted
by such measurements. Additionally, it is noted that the Nusselt number’s magnitude is
greater for thermal flow fields with heat generating effects. For both thermal fields, namely
thermal flow regimes with and without heat generating effect, the effect of changing
thermal conductivity parameter on Nusselt number is perceived. To that end, Table 20 is
provided. When there is a thermal flow regime and a heat generating impact, the Nusselt
number is larger. The observation of the Nusselt number toward a positive fluctuation in
the thermal radiation parameter is shown in Table 21. Both the presence and absence of the
heat generating effect are observed and recorded. Furthermore, it is shown that the Nusselt
number magnitude is a little bit bigger when the influence of heat generation is present.
While the heat transfer normal to the cylindrical surface exhibits encouraging values for the
Prandtl number, curvature parameter, Eckert number, and thermal radiations, the Casson
fluid parameter and the temperature dependent variable viscosity parameter exhibit the
opposite behavior. Furthermore, we have shown that the magnitude of the Nusselt number
is larger when thermal radiations are present. The estimated MSE and R values for every
ANN model for the training, validation, and testing phases are displayed in Table 22. The
fact that the R-value is extremely near to 1 and the MSE value is low demonstrates the great
accuracy with which the generated ANN models can predict the Nusselt number. For each
flow regime, we have constructed ANN models and the procedure is supported graphically.
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In particular, the validation that the training period, which began with the entrance of
the data into the system, is ideally finished, is the first stage in the construction of ANN
models. In Figure 2a, the ANN Model-I training performance graphs are created while the
training performance of the ANN Model-II is developed in Figure 2b. Figure 2c provides
the training performance of the ANN model-III. In networks with MLP design, the training
cycle is repeated until there is the minimal error between the target data and the prediction
data acquired in the output layer. With each epoch, the MSE values, which are large at
the start of the training phase, go smaller. The findings shown in Figure 2a–c demonstrate
that the constructed ANN models for predicting the Nusselt number have successfully
completed their training phases. The examination of error histograms are a further step in
evaluating the training performance of ANN models to forecast the Nusselt number. The
error histograms for ANN models I, II, and III are shown in Figure 3a–c, respectively. The
error histograms display the discrepancies between the goal values attained during the
training phase and the anticipated values. The errors obtained for each ANN model are
shown to cluster around the zero-error line, according to our observations. The numerical
quantities of the inaccuracies are also relatively modest, which should be emphasized.

Table 22. Performance results for ANN models.

MSE Rm

Training Validation Test Training Validation Test

ANN Model-I 9.88 × 10−3 3.87 × 10−2 3.24 × 10−3 0.98624 0.96049 0.96282

ANN Model-II 3.34 × 10−4 1.31 × 10−3 2.11 × 10−3 0.99993 0.99972 0.99201

ANN Model-III 3.59 × 10−4 1.73 × 10−2 1.78 × 10−3 0.99993 0.99576 0.99861
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developed using data sets with different data numbers.  

Figure 3. (a) Error histograms for of ANN model-I. (b) Error histograms for of ANN model-II.
(c) Error histograms for of ANN model-III.

The findings from the error histograms demonstrate that a little error is carried out
throughout the training stages of the three distinct ANN models that were created to predict
the Nusselt number. Figure 4a–c depict the output values and target values obtained from
the ANN models, designated as Model-I, Model-II and Model-III, each of which was
developed using data sets with different data numbers.

In the analysis of each data point, it is evident that the goal data and the data from the
ANN models (I,II,III) are in perfect harmony. The generated ANN models can estimate the
Nusselt number with great accuracy, as demonstrated by the perfect match of the outputs
derived from the ANN estimations with the target data. Figure 5a. Figure 5b,c display
the MoD values that represent the proportional deviation between the target data and the
outputs from three distinct ANN models created for predicting Nusselt number parameters
based on various input parameters.

It can be noted that the data points are typically close to the zero-deviation line and
have low values when the data points reflecting the MoD values for ANN Models I, II, and
III are inspected. The average MoD values calculated for Model-I, Model-II and Model-III
are obtained as 0.01%, 0.01% and 0.06%, respectively. The low MoD values show that there
is relatively little variation between the goal values and the projected values derived from
the created ANN models. In addition to the MoD values, the disparities between the target
values and the ANN models’ outputs are examined for each output value in Figure 6a–c.
Each ANN model has, in general, relatively modest differences when the different values
obtained for each data point utilized in ANN model training are taken into account. The
findings from the analysis of MoD and difference values show that both ANN models
(I,II,III) developed can predict Nusselt number with very low errors. Figure 7a–c titled
Model-I, Model-II, and Model-III, respectively, illustrate the targeted and ANN outputs
for each of the three ANN models. The data for each ANN model is often found on the
zero-error line when the positions of the data points are taken into account. Additionally, it
should be mentioned that the data points fall within a 10% error range. It is noticed that in
the absence of magnetic field and heat generation effects, our problems reduced to Hayat
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et al. [31]. Additionally, for comparison, the Nusselt number is taken into consideration. In
this direction, Table 23 is offered in this regard. A perfect match that yields the surety of
the present study was found.
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Table 23. Comparison of Nusselt number with Hayat et al. [31].

ε β γ Hayat et al. [31] Present Study

0.0 1.0 0.2 0.5276 0.5054

0.0 1.4 0.2 0.5316 0.5203

0.0 1.8 0.2 0.5336 0.5124

0.0 2.0 0.0 0.5442 0.5220

0.0 2.0 0.12 0.5336 0.5213

0.0 2.0 0.19 0.5279 0.5016

0.0 2.0 0.19 0.5739 0.5216

0.2 2.0 0.19 0.5308 0.5124

0.3 2.0 0.19 0.5123 0.5061
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6. Conclusions

An artificial neural networking models are developed to predict the heat transfer
normal to the cylindrical surface for the incompressible flow of a two-dimensional mixed
convection Casson fluid. The magnetic field is generated outside. In addition, it is presumed
that the surface temperature is stronger than the surrounding fluid temperature. Further,
the energy equation is carried with viscous dissipation, variable thermal conductivity, heat
production, and thermal radiations. The following are the main results:

• Nusselt number shows inciting nature towards the Eckert number, curvature parame-
ter, Prandtl number, and heat generation parameter

• Nusselt number admits declining trends toward the Casson fluid parameter, temperature-
dependent thermal conductivity, and radiation parameters.

• The MSE and R values for Models I, II, and III are low and hence the developed ANN
models can predict the Nusselt number with good accuracy.

• MoD outcomes show that there is not much of a discrepancy between the predicted
and targeted values of the Nusselt number produced by the ANN models I, II, and III.

• The data points are often positioned on the zero-error line and fall within the 10%
error region for ANN models I, II, and III to forecast the Nusselt number.

• Obtaining future data by using ANN models can provide many advantages in terms
of both time and finance. In particular, obtaining specific parameters that can be
obtained as a result of experimental studies by using ANN models can be considered
an important advantage in both industrial applications and scientific studies.
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Nomenclature

ũ, ṽ Velocity components M Magnetic field parameter
υ Kinematic viscosity R Radiation parameter
x̃, r̃ Cylindrical coordinates G Mixed convection parameter
β Casson fluid parameter Pr Prandtl number
βT Thermal expansion coefficient τr Yield stress
g0 Gravitational acceleration A Velocities ratio parameter
α Angle of inclination γ Curvature parameter
T̃∞ Ambient temperature R Radiation parameter
T̃ Temperature of fluid Ec Eckert number
B0 Magnetic field constant Nu Nusselt number
ũe Free stream velocity σ∗ Stefan-Boltzmann constant
σ Fluid electrical conductivity Q0 Heat generation
cp Specific heat at constant pressure L Characteristic length
ρ Fluid density ε Small parameter
q Radiative heat flux c Radius of cylinder
κ Variable thermal conductivity U0 Reference velocity
µ Dynamic viscosity

T̃w Surface temperature
θ(η) Fluid temperature
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