
Citation: Wang, M.; Tang, J.; Zhao,

H.; Li, Z.; Xie, S. Automatic

Compression of Neural Network

with Deep Reinforcement Learning

Based on Proximal Gradient Method.

Mathematics 2023, 11, 338. https://

doi.org/10.3390/math11020338

Academic Editor: Florin Leon

Received: 17 December 2022

Revised: 2 January 2023

Accepted: 4 January 2023

Published: 9 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Automatic Compression of Neural Network with Deep
Reinforcement Learning Based on Proximal Gradient Method
Mingyi Wang 1,2, Jianhao Tang 1,2, Haoli Zhao 1,3,*, Zhenni Li 1,2 and Shengli Xie 4,5

1 School of Automation, Guangdong University of Technology, Guangzhou 510006, China
2 Guangdong-Hong Kong-Macao Joint Laboratory for Smart Discrete Manufacturing,

Guangzhou 510006, China
3 111 Center for Intelligent Batch Manufacturing Based on IoT Technology (GDUT), Guangzhou 510006, China
4 Key Laboratory of Intelligent Detection and The Internet of Things in Manufacturing,

Guangzhou 510006, China
5 Guangdong Key Laboratory of IoT Information Technology, Guangzhou 510006, China
* Correspondence: zhaohli@gdut.edu.cn

Abstract: In recent years, the model compression technique is very effective for deep neural network
compression. However, many existing model compression methods rely heavily on human experi-
ence to explore a compression strategy between network structure, speed, and accuracy, which is
usually suboptimal and time-consuming. In this paper, we propose a framework for automatically
compressing models through the actor–critic structured deep reinforcement learning (DRL) which
interacts with each layer in the neural network, where the actor network determines the compression
strategy and the critic network ensures the decision accuracy of the actor network through predicted
values, thus improving the compression quality of the network. To enhance the prediction perfor-
mance of the critic network, we impose the L1 norm regularizer on the weights of the critic network
to obtain a distinct activation output feature on the representation, thus enhancing the prediction
accuracy of the critic network. Moreover, to improve the decision performance of the actor network,
we impose the L1 norm regularizer on the weights of the actor network to improve the decision
accuracy of the actor network by removing the redundant weights in the actor network. Furthermore,
to improve the training efficiency, we use the proximal gradient method to optimize the weights of
the actor network and the critic network, which can obtain an effective weight solution and thus
improve the compression performance. In the experiment, in MNIST datasets, the proposed method
has only a 0.2% loss of accuracy when compressing more than 70% of neurons. Similarly, in CIFAR-10
datasets, the proposed method compresses more than 60% of neurons, with only 7.1% accuracy loss,
which is superior to other existing methods. In terms of efficiency, the proposed method also cost the
lowest time among the existing methods.

Keywords: automatic compression; proximal gradient; network compression; structured pruning

MSC: 93C95

1. Introduction

Deep neural networks (DNNs) are widely used in computer vision and machine
learning, such as image recognition [1–3], action detection [4–6], target detection [7–9],
or semantic segmentation [10–12]. To achieve better performances on these tasks, the design
of DNNs becomes more and more complex in terms of depth and width, which hinders the
application of DNNs in resource-constrained mobile environments or embedded devices.
To overcome this problem, model compression emerges as a promising method to obtain a
compact network.

Popular model compression techniques include quantization [13,14], which uses fewer
bits to represent network weights, and low-rank approximation [15,16] focuses on dividing

Mathematics 2023, 11, 338. https://doi.org/10.3390/math11020338 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11020338
https://doi.org/10.3390/math11020338
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11020338
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11020338?type=check_update&version=1

Mathematics 2023, 11, 338 2 of 19

a large original matrix into several smaller matrices. Thereby, the computation of the
original large matrix becomes the multiplication of several small matrices. Knowledge
distillation [17–19] is to train a compact network based on the knowledge of a teacher
network and pruning [20–22] is to develop a small and efficient neural network by re-
moving redundant weights in the weight matrix. The pruned network can be well em-
ployed in mainstream hardware to obtain considerable speed-up, so pruning has attracted
much attention.

There are two major branches of network pruning. One branch is unstructured prun-
ing [23,24], which prunes at the level of individual weights. The other branch is structured
pruning [25–28], which prunes at the level of neurons (or channels). Unstructured pruning
usually reduces more weight than structured pruning [29]. However, it has the drawback
that the resulting weight matrices are irregular distribution, which requires dedicated
hardware for deployment. For structured pruning, it realizes network compression by
pruning one row or one column in the weight matrix, so that the weight matrices are in
regular distribution regular, and easy to deploy to practical applications and calculations.

Structured pruning is divided into the following three categories.

(1) One is the pruning method driven by regularization, for example, ref. [25] uses the
group sparse lasso penalty to prune network neurons. However, the compression rate
is dependent on the adjustment of hyperparameters, and the hyperparameters require
analysis and adjustment empirically. Moreover, the layers in networks are correlated,
which causes the compression rate of each layer will affect to the other layers. So,
the compression rate is designed by adjusting the parameters without considering the
relationship among layers of networks.

(2) The second is a pruning method driven by auxiliary parameters, such as Auto-
Prune [28], which takes a set of auxiliary parameters and optimally trains them
to prune the network instead of the original weights, and reduces the dependence
on the networks and the time for trial on hyperparameters. However, pruning the
network through a set of auxiliary parameters, the corresponding hyperparameters
still need to be adjusted, so manual empirical is still required.

(3) The third is a deep reinforcement learning (DRL)-based pruning method, such as
AMC [30], which achieves network pruning by making decisions on the compression
rate of the neural network through DRL without complex hyperparameter tuning.
However, the redundant weights in the DRL network can lead to the problem of an
inefficient pruning process.

Overall, the existing methods rely heavily on the prior knowledge of experts, which is
not only suboptimal but also very time-consuming. As the layer in deep neural networks
are interconnected with each other, and have different sensitivities to compression rates,
adjusting the parameters to design the compression rate will ignore the integrity of the
neural networks. This will affect compression performance. Although DRL methods
can effectively alleviate these problems, the redundant weights in DRL still affect the
compression efficiency. Therefore, it is necessary to implement an automatic and efficient
model compression.

In this paper, we propose a new automatic pruning method based on deep rein-
forcement learning (DRL). Specifically, we employ DRL to interact with each layer in the
network, and adaptively determine the compression rate of each layer in the network.
In the compression process, the relationship between the various layers of the network is
taken into account, which improves the performance of the compression model. In DRL,
there are the critic network and the actor network, where the actor network is the deci-
sion network and the critic network assists the actor network in making more accurate
decisions by predicting the value. We imposed the L1 norm regularizer on the weights of
the actor network and the critic network and optimized their weights using the proximal
gradient method to remove the redundant weights. As a result, to remove the redundant
weights which affect both efficiency and representation accuracy of the network. Therefore,
the compact DRL can provide more accurate pruning decisions efficiently.

Mathematics 2023, 11, 338 3 of 19

As shown in Figure 1, we implement the proposed method by modeling the pruning
process as a Markov decision process. Specifically, within a training batch, the agent
obtains the state information St of the Lt layer of the neural network from the pruning
environment, and then outputs the pruning rate as the action at. The agent performs
neuron compression on the current layer by at. Then, the reward is obtained and returned
to the agent by validating on the validation set. Similarly, the agent interacts with the
next layer Lt+1 of the neural network to obtain the state information St+1 of the next layer
and the reward. The training batch ends when the agent has finished interacting with the
last layer of the network. If the DRL has converged, the training is finished, otherwise,
the training continues in the next training batch. To demonstrate the effectiveness of the
proposed method, we completed experiments on two network models (LeNet-300-100
(784-300-100-10), MLP (3072-1024-1024-10)) and three datasets (MNIST, Fashion MNIST,
CIFAR-10). The results show that the proposed method can compress more than 70% of
neurons and maintain good performance. Moreover, it takes less time to achieve higher
compression rates. In short, the proposed method can obtain a better lightweight network
through automatic and efficient means.

Layer t

Layer t+1

Layer t-1
 ! =[!,",#,$#]

Action:pruning

rate !

Reward

Environment neurons

pruning

State

Critic Network

Actor Network

 ! + | ! |"

Traning Network by

Proximal Gradient

 ! + | ! |"

#$%&'(=)*, -
&..

$/0$.1&..
2 " + 3)*, -

,.'

$/0$.1,.'
2 "

4: Current Layer Index
 : Number of neurons in the current layer

 : Size of all parameters when moving to the

current layer

 ! : Current layer parameter size

 !!: Compression accuracy
 !": neurons compression rate

 !" #$%&&: expect accuracy

 !" #$%&': expect neurons compression rate

Agent

Figure 1. Neural network compression based on deep reinforcement learning (where the dotted line
indicates the neurons that are pruned off and the corresponding weights).

We propose a new DRL-based automatic pruning method. In the actor–critic structure
of DRL, the compression rate of each layer of the network is automatically determined
by the actor network and the critic network evaluates the decision accuracy of the actor
network by predicting the value. The contributions have the following three points:

(1) To improve the predictive performance of the critic network, we impose the L1 norm
regularizer on the weights of the critic network, so that the activation output can
obtain distinct features in representations, thus improving the prediction accuracy of
the critic network.

(2) To improve the decision performance of the actor network, we impose the L1 norm
regularizer on the weights of the actor network such that the insignificant weights
converge to 0, which can reduce the redundant weights in the actor network and
improve the decision accuracy of the actor network.

(3) To improve the training efficiency and automatic compression performance of DRL,
the proximal gradient method is employed to optimize the objective function of
DRL by updating the weight parameters of the critic network and the actor net-
work. A DRL-based automatic compression algorithm was obtained by the proximal
gradient optimization method to achieve automatic compression of the network.

In the following, we first discuss the related work in Section 2, and then introduce our
method in detail in Section 3. The experimental results of our method are provided and
analyzed in Section 4. Finally, conclusions are given in Section 5.

Mathematics 2023, 11, 338 4 of 19

2. Related Work

Network pruning is mainly divided into unstructured pruning and structured pruning.
From a broader perspective, such as parameter quantization and low-rank factorization
can be combined with network pruning to achieve higher compression and speed-up.
Below we briefly discuss some related works.

Unstructured pruning removes the individual weight in the neural networks. Re-
gression via the lasso [23] uses lasso as a regular term to punish unimportant weights in
the network. Regularization with a non-convex penalty [24] uses a non-convex function
to replace the usual convex function as a regular term. Although these methods achieve
good pruning results, unstructured pruning causes an irregular distribution of weights and
requires customized hardware to support the practical speed-up.

In contrast, structured pruning is especially advantageous by removing one row or one
column in the weight matrix, which makes the weight distribution regular after pruning. It
requires no additional operational processing for the application and is therefore easy to
deploy on the application.

To this end, a regularization-driven pruning method is proposed, which reduces the
model complexity by manually constraining the network to be retrained. Yoon et al. [26]
used both exclusive sparse regularization based on L(1,2) norm and group sparse regular-
ization based on L(2,1) norm on network weights, such that exclusive sparsity enforces
the network weights to use input neurons that are as different as possible from the other
weights. Louizos et al. [27] pruned the network by adding the L0 norm as a regular term to
the objective function, thereby encouraging the weight matrix to be exactly zero.

Auxiliary parameters drive pruning is also an effective means, which is not a direct
regularization weight, but an auxiliary parameter for regularized aggregation gradient
perturbation. In this way, the problem of inaccurate pruning due to instability and non-
most hyperparameters can be solved, which significantly improves the effectiveness of
pruning. Xiao et al. [28], which is based on a set of auxiliary parameters to prune the neural
network. During the training of the auxiliary parameters, the network weights are not
affected by instability and noise, which makes the pruning process less affected by noise
and hyperparameters. So, it reduces the time for trial and the dependence of the network
on hyperparameters.

Deep reinforcement learning (DRL) driven pruning methods are used to improve the
quality of model compression by efficiently sampling the design space with reinforcement
learning, enabling automatic compression without any manual effort. He et al. [30] explore
the compression rate of a neural network by training a deep reinforcement learning model
and compressing the network by the compression rate. Its limitation is that it uses a
traditional network pruning technique based on fixed regularization and only filter pruning
is considered in the pruning process. As we will see later, the incompatibility between the
adopted DRL framework and the problem to be solved affects the achievement of high
pruning rates (the maximum reported pruning rate in (He et al. [30]) is only 5× and is
non-structured pruning).

Compared with regularization-driven pruning, the novelty of our method is twofold.
First, the compression rate of each layer is automatically determined through DRL, with-
out any manual effort. Second, the automatically decided compression rates consider the
connection between the various layers of the network, which is better than the compression
rate set by human experience. Compared with the pruning driven by auxiliary parameters,
our novelty is to remove the dependence of the pruning process on the hyperparameters
and improve the compression performance. Compared with DRL-based pruning methods,
our novelty is the optimization of the DRL model. The redundant weights in DRL are
removed and the weights are trained by the proximal gradient method to obtain the optimal
weight solution. This improves the compression efficiency and performance.

Mathematics 2023, 11, 338 5 of 19

3. Automatic Compression of Neural Network with Deep Reinforcement Learning
Based on Proximal Gradient Method

Deep reinforcement learning (DRL) can automatically determine the compression
rate of each layer with the state information of each layer in the neural network, and then
perform pruning. For the training of the DRL, regularize the DRL using the L1 norm,
and using the proximal gradient method to update its parameters, which can obtain a more
efficient weight parameters and improve the decision performance of the DRL. To promise
compression efficiency, a reward that balances the compression rate and accuracy of the
neural network is designed, which is used as feedback to the DRL after the networks are
compressed. According to the reward, the DRL is constantly training decision performance.
We model the network compression process as a Markov Decision Process, and determine
the compression policy by implementing the Markov chain.

3.1. Markov Decision Problem Based Pruning Technology

Markov Decision Problem (MDP) is constructed by the interaction of the agent and the
environment, and its elements include states, strategies, actions, and rewards. In MDP sim-
ulation, the agent perceives the current system state to obtain a policy and then implements
actions on the environment according to the policy. Finally, the corresponding reward is
obtained from the changed environment. The agent adjusts the actions by the rewards.

We redefine each element in MDP, which will be introduced separately below.

3.1.1. State

We express the state through a set of feature lists S = [t,n,p,lp]. The features in this list
express the information of a certain layer in the neural networks. Among them, t is the
index of the current layer, n is the number of neurons in the current layer, p is the size of
all parameters moved to the current layer, and lp is the parameter size of the current layer.
This set of feature lists is to allow the agent to distinguish the differences in information in
each layer of the neural networks, so as to make the best decision for each layer.

3.1.2. Action

The action space is composed of actions, and each action corresponds to the sparsity
at that determines how many neurons are pruned in the t-th layer. The pruning standard
is to sort from small to large according to the L1 norm size of each neuron in each layer,
and then determine which neurons to be pruned by the action sparsity at. When at is taken
for the layer, the pruned neuron is given by Equation (2).

Sortn = Sort(||Wnt ||1) (1)

NeuronsPrunedt(at) = atSortn (2)

where ||Wnt ||1 represents the L1 norm of each neuron in the t-th layer, and Sortn represents
the sorting result of the t-th layer.

3.1.3. Reward

Since the DRL agent learns the sparsity strategy with the goal of reward maximization,
designing rewards can help the agent converge faster [31]. In order to balance the accuracy
and sparsity of the network, we design the following reward function:

r(t) = min(− acc(t)
expectacc

, 1) + βmin(− ncr(t)
expectncr

, 1) (3)

where acc(t) and ncr(t) represent the Validation accuracy and neuron compression rate at
the moment of state t. expectacc and expectncr represent the expected accuracy and neuron

Mathematics 2023, 11, 338 6 of 19

compression rate set by the user. β is the factor that balances the compression rate and
accuracy of the network.

3.2. Pruning Based on DRL with the Proximal Gradient

In order to solve the Markov problem, we choose agents among many commonly
DRL algorithms. Commonly used agents are Deep Q-Network (DQN) [32,33], which
is a form of Q-learning [34,35]. Although the exploration is fast, it is not stable. Both
Deep Deterministic Policy Gradient (DDPG) [30,36] and Proximal Policy Optimization
(PPO) [37,38] are agents for solving continuous control problems, but the output of PPO is a
probability distribution, while the output of DDPG is directly an action. The accuracy of the
deep neural network is sensitive to the sparsity of each layer, resulting in an action space
that should not be obtained too large [30]. Therefore, instead of considering the exploration
on discrete spaces, we employ a DDPG, which is essentially a continuous control strategy,
as an agent. The compression strategy is learned by trial and error: penalizing the loss of
accuracy while driving the network to shrink. DDPG includes a value strategy network
(critic) and a learning strategy network (actor). The learning strategy network is responsible
for outputting actions, and the value strategy network is responsible for evaluating actions
by output Q value. In addition, the action value and Q value of the next state are required.
Therefore, two target networks (target actor and target critic) are used to obtain the action
value and Q value of the next state.

The objective functions of the actor network and the critic network as follows:

LOSS =
1
N ∑

i
[(Q(Si, µθt(Si)|θQ))] (4)

LOSS =
1
N ∑

i
[rt + γQwt targ

(Si+1, µθt targ
(Si+1)|θQ)

−Qwt(Si, µθt(Si)|θQ)]2 (5)

where µθt (.) is the actions in the current state output by the actor, and µθt targ
(.) is the action

in the next state output by the target actor. Qwt targ
(.) is Q value in the next state output by

the target critic, and Qwt (.) is Q value in the current state output by the critic.
Actor–critic (AC) [39,40] is an important learning framework in deep reinforcement

learning. To improve the learning efficiency and convergence of deep reinforcement
learning, AC learning control with regularization [41] proposed a learning-control method
based on regularization and feature selection, which effectively improved the learning
performance of deep reinforcement learning. Inspired by this, we propose to impose the L1
norm regularizer on the weights of the actor network and the critic network, and employ
the proximal gradient method to update the weight. The main idea of the proximal gradient
method is to solve the sub-problem that is more efficient than the original problem by
iteratively updating the proximal operator. The proximal gradient method includes the
proximal gradient ascent method and the proximal gradient descent method. The proximal
gradient method is usually used to optimize an objective function composed of a smooth
term loss function and a non-smooth penalty function. The proximal gradient method for
the regularization target first obtains the intermediate variable Wt+ 1

2 by gradient ascent or
descent using the gradient obtained only based on the loss function calculation, and then
optimizes the regularization term when performing the Euclidean projection on it to the
solution space. So, Equations (4) and (5) are transformed as follows:

min
θt

J(θt) =
1
N ∑

i
[(Q(Si, µθt(Si)|θQ))] + ||θt||1 (6)

Mathematics 2023, 11, 338 7 of 19

min
wt

J(wt) =
1
N ∑

i
[rt + γQwt targ

(Si+1, µθt targ
(Si+1)|θQ)

−Qwt(Si, µθt(Si)|θQ)]2 + ||wt||1 (7)

The actor network minimizes the objective function to update its parameters θt,
and similarly, the critic network minimizes the objective function to update its param-
eters wt. Therefore, θt and wt can be updated iteratively via proximal gradient ascent and
proximal gradient descent:

θt+ 1
2 ← θt + α∇J(θt) (8)

wt+ 1
2 ← wt − δ∇J(wt) (9)

θt+1 ← sign(θt+ 1
2)max(|θt+ 1

2 | − λlr, 0) (10)

wt+1 ← sign(wt+ 1
2)max(|wt+ 1

2 | − λlr, 0) (11)

here, λ, α, and δ is coefficient. lr is the learning rate. θt+ 1
2 and wt+ 1

2 is the intermediate
variable.

In addition, the parameters update of the target network is as follows:

θt
targ ← τθt + (1− τ)θt

targ (12)

wt
targ ← τwt + (1− τ)wt

targ (13)

here, τ is the learning rate.

3.3. Proposed Algorithom

For the deep reinforcement learning agent to accurately determine the compression
strategy of the neural network, the agent needs to be trained extensively. In the beginning,
the agent conducts a preliminary exploration of the network and obtains a large amount of
training data. We have an experience pool, which is used to store the training data that the
agent explores in the early stage. When the data reaches a certain amount, the agent will
use the training data for learning and training, and constantly update the parameters of
the actor network and the critic network. The agent also keeps learning and training in the
exploration and repeats it until the training converges. For a detailed description, please
refer to Algorithm 1 and Figure 2.

Figure 2. Training process of deep reinforcement learning compressed neural network.

Mathematics 2023, 11, 338 8 of 19

Algorithm 1 Neural network pruning algorithm by deep reinforcement learning

Initialization:
t : current layer
st: current state
at: pruning rate be created by Actor
st+1: next state
rt: reward of pruning one layer
bu f f ersize: desired size of data to be collected
replay: experience pool
replaysize: experience pool size

Pruning:
1: done = true
2: while done do
3: t = 0
4: at← Actor (st)
5: Pruning t layer by (1)(2) with at
6: rt← Verify network acc and ncr
7: replay←[st,at,rt,st+1,done]
8: if (t+1) is last layer then
9: done = false

10: if replaysize < bu f f ersize then
11: continue
12: end if
13: else
14: t = t+1
15: end if
16: for batch in replay do
17: use batch update actor and critic by the proximal gradient (8)–(11)
18: end for
19: Actortarg← Actor by (12)
20: Critictarg← Critic by (13)
21: Clear replay
22: if all parameters is convergence then
23: done = false
24: else
25: continue
26: end if
27: end while

4. Experiments

All experiments in this paper are based on the python programming language for
simulation. The operating system is Windows, and all algorithms are coded in pytorch
1.1.0. CUDA 10.0.

4.1. Experimental Setup

This paper mainly uses three public experiment datasets and two different neural
networks.

4.1.1. MNIST Datasets

The dataset is composed of 70,000 handwritten digital grayscale images with a size
of 28 × 28. Each category has 6000 training examples and 1000 test examples. There
are 10 categories in total, representing numbers 0 to 9. For the basic network, this article
uses the LeNet300-100 neural network, which has four layers, an input layer, an output
layer, and two hidden layers. The input layer has 784 neurons, the two hidden layers

Mathematics 2023, 11, 338 9 of 19

have 300 neurons and 100 neurons, respectively, and the output layer has 10 neurons
(784-300-100-10).

4.1.2. Fashion MNIST Datasets

There are 10 types of images in the Fashion MNIST dataset: t-shirts, jeans, pullovers,
skirts, coats, sandals, shirts, sneakers, bags, and boots. The training dataset has 6000 samples
of each of the above 10 types, while the test dataset has 1000 samples of each of the above
10 types. Thus, there are a total of 60,000 samples in the training dataset and a total of
10,000 samples in the test dataset. For the basic network, the LeNet300-100 neural network
(784-300-100-10) is also used.

4.1.3. Cifar-10 Datasets

The dataset is composed of 60,000 pictures with a size of 32 × 32. The pictures have
10 animal and vehicle categories. Among them, 50,000 pictures are used for training and
10,000 pictures are used for testing. Therefore, for the basic network, this paper uses a
custom neural network with four layers, an input layer, an output layer, and two hidden
layers. The input layer has 3072 neurons, the two hidden layers have 1024 neurons, and the
output layer has 10 neurons (3072-1024-1024-10).

4.2. Experimental Comparison and Evaluation Index

We implement the state-of-the-art algorithms, namely, Combined Group and Exclusive
Sparsity (CGES) [26], AutoPrune [28], Automl for Model Compression (AMC) [30], and L0
norm [27] to compare with our proposed algorithm Automatic Compression of Neural
Network (ACNN). CGES regularizes the neurons in the network by L(2,1) norm, so that
some neurons are eliminated. The L0 norm regularizes the network through the L0 norm.
During the training process, the network is pruned by encouraging the weight of the
neuron to be exactly zero. AutoPrune, which prunes the network with a set of optimized
auxiliary parameters. It reduces the complexity of relying on a priori knowledge and
reduces trial and error time. AMC interacts with the network through deep reinforcement
learning to decide the compression rate of each layer of the network and achieves network
compression based on the compression rate.

In order to better verify the effect of the proposed method, we also compared the
proposed method without the proximal operator. There are three evaluation indicators
for comparison: accuracy loss (Error), neurons compression rate (NCR), and running time
(time). The accuracy loss represents the recognition performance of the neural network,
which is defined by the loss of the sparse network accuracy relative to the original network
accuracy. The neurons compression rate represents the ratio of the total number of original
neurons in the network to the total number of neurons remaining in the network after
compressed, and the efficiency represents the time spent by different compression methods.
Other indicators in the experiment include: pruned layer neurons distribution (layers),
the network sparsity of DRL (DRL spa), and the floating point computation degree of the
compressed network (flops).

4.3. Convergence of Deep Reinforcement Learning in Pruning

Figure 3 show the learning and training in the process of deep reinforcement learning
exploration and decision-making under different datasets. When DRL explores, we set the
learning rate to 0.001, and because the complexity of each dataset is different, the iteration
cycle we design is also different. As shown in the figure, as the number of iterations in-
creases, the loss of the deep reinforcement learning network training continues to converge,
and finally stabilizes.

Mathematics 2023, 11, 338 10 of 19

(a) (b) (c)

Figure 3. The above shows the training loss of DRL on MNIST (a), Fashion MNIST (b), and Cifar-10 (c),
respectively.

4.4. Balance Factor of the Reward

From Equation (5), it is clear that the training of the critic network is positively corre-
lated with the reward r. Therefore, the performance of the neural network after automatic
compression by DRL is also positively correlated with reward r. For this reason, we set
the reward R as shown in Equation (3), where β is used to balance the compression rate
and accuracy of the compressed neural network. To explore better automatic compression
results, we adjust the β as shown in Figure 4. As the β increases, the compression rate of
the neural network keeps increasing, and conversely, the corresponding accuracy keeps
decreasing. Therefore, the best balance of compression rate and accuracy can be obtained
by adjusting the β to make the best result after automatic compression.

2 4 6 8 10

Beta

1.5

2

2.5

3

3.5

4

4.5

5

N
c
r

54

55

56

57

58

59

60

A
c
c

Figure 4. Network performance with beta after auto-compression.

4.5. Convergence of Reward

Figure 5 show the reward convergence of DRL during exploration and training with
different datasets. As shown in the figures, the rewards obtained by DRL gradually
converge after about 100 iterations of training. This indicates that DRL is able to obtain a
stable compressed model after training with a large amount of training data.

(a) (b) (c)

Figure 5. The above shows the reward of DRL on MNIST (a), Fashion MNIST (b), and Cifar-10 (c),
respectively.

4.6. Results and Analysis
4.6.1. Pruning Performance on Mnist

As shown in Table 1 and Figure 6, the performance of our method is generally better
than the other four methods. Compared with the other four methods, the neuron compres-

Mathematics 2023, 11, 338 11 of 19

sion rate of CGES is 2.87, and the accuracy loss is 0.36%. The neuron compression rate
of the L0 norm is 3.06, and the accuracy loss is 0.23%. The neuron compression rate of
AutoPrune is 3.23, and the accuracy loss is 0.22%. The neuron compression rate of AMC
is 3.3 and the accuracy loss is 0.3. Our method can reach the highest neuron compression
rate of 3.46, which compresses 16 neurons more than AMC, and the accuracy loss is only
0.22%. For the floating point computation degree, the proposed method in this paper also
requires the lowest floating point computation degree of only 28% while achieving the
lowest accuracy loss. The results show that the proposed method in this paper requires less
computational resources while improving the compression performance.

Table 1. Comparison of Different Neuron Pruning Techniques in MNIST. (The best results are shown
in bold).

Methods Error (%) Layers NCR FLOPS (%)

CGES [26] 0.36 221-97-94 2.87 35
L0 norm [27] 0.23 266-88-33 3.06 33

AutoPrune [28] 0.22 244-85-37 3.23 31
AMC [30] 0.30 225-88-45 3.30 30

ACNN 0.20 219-81-43 3.46 28

0 20 40 60 80 100

Iteration

95

96

97

98

99

A
c
c
u

ra
c
y

CGES

L0 norm

AutoPrue

AMC

ACNN

Figure 6. Accuracy comparison of each method under the MNIST dataset.

The method proposed in this paper takes the least amount of time. For non-DRL
methods, the method proposed in this paper automatically explores the compression
strategy using DRL and adaptively decides the compression rate of each layer in the neural
network, which can effectively improve the compression efficiency of the network. For the
DRL method, the proposed method optimizes the DRL. The redundant weights of the
policy network in DRL are removed, which improves the decision efficiency of DRL and
shortens the decision time. These can be see in Figure 7.

As shown in Table 2, the proposed method in this paper has an advantage over the
AMC method in all aspects of performance. The main reason is that the method in this
paper optimizes the actor network and critic network in DRL using proximal operation,
which makes the decision making of the actor network more efficient and the prediction
of the critic network more accurate by sparse of the network. In addition, the sparsity
of actor network and critic network reaches 50%, which also reduces the computational
memory of DRL in the pruning process and reduces the time needed to be spent on pruning,
and improves the pruning efficiency.

Mathematics 2023, 11, 338 12 of 19

Table 2. Performance comparison with unoptimized DRL compression model on MNIST. (The best
results are shown in bold).

Methods Error (%) NCR Time (s) DRL SPA (%)

AMC [30] 0.30 ± 0.12 3.30 ± 0.20 1835.00 ± 15.72 0.00 ± 0.00
ACNN 0.20 ± 0.16 3.46 ± 0.14 455.00 ± 2.88 96.00 ± 0.74

0

500

1000

1500

2000

A
lg

o
ri

th
m

 S
p

e
n

d
ti

m
e

 (
S

)

CGES L0 norm AutoPrune AMC ACNN

Methods

0

0.1

0.2

0.3

0.4

N
o

n
-z

e
ro

 N
e

u
ro

n
s

/T
o

ta
l

N
e

u
ro

n
s

Figure 7. Network density and time spent on pruning in MNIST.

4.6.2. Pruning Performance on Fashion MNIST

For the Fashion MNIST dataset, as the dataset complexity scale becomes larger, the ac-
curacy loss of the compressed model will be greater. As shown in Table 3 and Figure 8,
among these methods, the highest accuracy loss is as high as 13.5%, but our method can
obtain the lowest accuracy loss of 2.22%. This proves that the connection between the layers
is taken into account in the compression process, which can reduce the large accuracy loss
caused by compression.

Table 3. Comparison of different neuron pruning techniques in Fashion MNIST. (The best results are
shown in bold).

Methods Error (%) Layers NCR FLOPS (%)

CGES [26] 13.50 702-15-7 1.64 60
L0 norm [27] 6.25 295-80-25 2.96 34

AutoPrune [28] 4.33 285-85-19 3.04 32
AMC [30] 2.40 141-81-42 4.48 23

ACNN 2.22 185-35-20 4.92 20

0 20 40 60 80 100

Iteration

30

40

50

60

70

80

90

A
c

c
u

ra
c

y

CGES

L0 norm

AutoPrue

AMC

ACNN

Figure 8. Accuracy comparison of each method under the Fashion MNIST dataset.

Mathematics 2023, 11, 338 13 of 19

When the network compresses neurons that exceed 70% of the original network,
the loss of accuracy only increases by 2.22%. For the other four methods, the model
compression rate after using them are 1.64, 2.96, 3.04, and 4.48, respectively. The method
proposed in this paper can reach the highest neuron compression rate of 3.75, which
compresses 75 neurons more than AutoPrune, and the accuracy loss is only 2.22%. This is
because the reward we designed balances the accuracy of the compression model with the
compression rate, so that a compression model with both accuracy and compression rate
can be explored.

In terms of efficiency, our method is nearly five times better than AutoPrune, and it
takes less time than other methods when the compression ratio reaches the highest. This is
due to the adaptive decision of the compression rate through deep reinforcement learning,
removing artificial prior knowledge, shortening the trial and error time, and improving
the compression quality. For the floating point computational degree, the computational
complexity required by the method proposed in this paper is lower than all the other four
methods by only 20%. This is mainly due to the sparse optimization of the actor network
in DRL by the method in this paper, which makes the decision performance of the actor
network improved and enables a higher degree of neural compression. These can be seen
in Figure 9.

0

1000

2000

3000

4000

5000

A
lg

o
ri

th
m

 S
p

e
n

d
ti

m
e

 (
S

)
CGES L0 norm AutoPrune AMC ACNN

Methods

0

0.2

0.4

0.6

0.8

N
o

n
-z

e
ro

 N
e

u
ro

n
s

/T
o

ta
l

N
e

u
ro

n
s

Figure 9. Network density and time spent on pruning in Fashion MNIST.

As shown in Table 4. Compared with AMC, the proposed method in this paper,
after optimizing the actor network and critic network in DRL has only 2.22% accuracy
loss and is able to achieve a compression rate of neurons of 4.92. This is mainly due to
the improved decision making ability of the actor network on the compression rate of
the layers in the neural network and the prediction of the compression rate by the critic
network after using the proximal operation on DRL The DRL can make better decisions.
Moreover, we design a reward that can balance the compression rate and accuracy, so that
the compressed network model can have both a high compression rate and high prediction
accuracy. In addition, the method proposed in this paper takes only one-tenth of the
time of AMC, because the redundant weights in DRL are removed, reducing unnecessary
computation time.

Table 4. Performance comparison with unoptimized DRL compression model on Fashion MNIST.
(The best results are shown in bold).

Methods Error (%) NCR Time (s) DRL SPA (%)

AMC [30] 2.40 ± 0.10 4.48 ± 0.05 4210.00 ± 11.40 0.00 ± 0.00
ACNN 2.22 ± 0.08 4.92 ± 0.04 544.00 ± 4.15 97.00 ± 0.50

Mathematics 2023, 11, 338 14 of 19

4.6.3. Pruning Performance on Cifar-10

In order to verify the performance of the sparse neural network on more complex
classification tasks, we introduce the Cifar-10 dataset for experiments. The Cifar-10 dataset
is an image with three channels, so we customize a deep neural network (3072-1024-1024-
10) for compression experiments. In this experiment, the Cifar-10 dataset has the highest
complexity, so the accuracy loss after network compression is greater than the above
two datasets.

As shown in Table 5 and Figure 10, after using CGES, L0, AutoPrune, and AMC
methods to compress the network, the accuracy loss reached 28.7%, 26.04%, 24.04%, 7.63%,
and the neuron compression rate was 1.61, 3.23, 3.6, 3.55, respectively. For the method
proposed in this paper, the accuracy loss can be reduced to 7.1%, and the accuracy perfor-
mance is significantly improved, and the neuron compression rate is higher than the other
four methods, reaching 3.77, which is equivalent to 57 more neurons compressed than
AutoPrune. Our method automatically explores the sparse structure of the network through
deep reinforcement learning takes into account the integrity of the network, and improves
the quality of the compression model. Therefore, for more complex recognition tasks,
the compression model still has obvious performance advantages.

Table 5. Comparison of different neuron pruning techniques in Cifar-10. (The best results are shown
in bold).

Methods Error (%) Layers NCR FLOPS (%)

CGES [26] 28.70 3035-142-3 1.61 62
L0 norm [27] 26.04 1036-260-290 3.23 31

AutoPrune [28] 24.04 900-240-282 3.60 28
AMC [30] 7.63 890-317-235 3.55 27

ACNN 7.10 857-256-245 3.77 25

0 50 100 150 200

Iteration

0

10

20

30

40

50

60

A
c
c
u

ra
c
y

CGES

L0 norm

AutoPrue

AMC

ACNN

Figure 10. Accuracy comparison of each method under the Cifar-10 dataset.

The time efficiency of the compression process also has been improved by nearly
6 times that can be seen in Figure 11. As shown in Table 6, there is a significant advantage in
both accuracy loss, neuron compression rate or time consumed after optimization of DRL.

The above verification results show that our method can find a sparse network archi-
tecture with balanced performance and efficiency on simple and complex datasets.

Mathematics 2023, 11, 338 15 of 19

Table 6. Performance comparison with unoptimized DRL compression model on Cifar-10. (The best
results are shown in bold).

Methods Error (%) NCR Time (s) DRL SPA (%)

AMC [30] 7.63 ± 0.65 3.55 ± 0.25 4157.00 ± 11.30 0.00 ± 0.00
ACNN 7.10 ± 0.26 3.77 ± 0.21 756.00 ± 5.94 97.00 ± 0.60

0

1000

2000

3000

4000

5000

A
lg

o
ri

th
m

 S
p

e
n

d
ti

m
e
 (

S
)

CGES L0 norm AutoPrune AMC ACNN

Methods

0

0.2

0.4

0.6

0.8

N
o

n
-z

e
ro

 N
e
u

ro
n

s
/T

o
ta

l
N

e
u

ro
n

s

Figure 11. Network density and time spent on pruning in Cifar-10 dataset.

4.7. Ablation Study

As shown in Table 7, ablation experiments were conducted in this paper for optimized
DRL with and without proximal gradient. From the table, it can be obtained that the
compression performance of the network is improved in terms of compression accuracy
and compression rate after using the proximal gradient for DRL optimization. This is
because the actor networks and the critic networks in DRL can train better weight solutions
after using proximal gradient, which improves their decision performance and prediction
performance, resulting in a better structure of the network after compression by DRL.

Table 7. Performance comparison between using proximal and not using proximal with different
datasets. (The best results are shown in bold).

Dateset Method Error (%) Ncr

MNIST ACNN without pro 0.21 ± 0.08 3.25 ± 0.07
ACNN 0.20 ± 0.16 3.46 ± 0.14

Fashion MNIST ACNN without pro 2.75 ± 0.62 3.62 ± 0.22
ACNN 2.22 ± 0.08 4.92 ± 0.04

Cifar-10 ACNN without pro 7.71 ± 0.35 3.60 ± 0.06
ACNN 7.10 ± 0.26 3.77 ± 0.21

4.8. Weight Distribution

Figures 12 and 13 show the distribution of weights in the layers of the neural network
before and after compression by ACNN. The shaded part of the figure indicates that the
weights are non-zero and the non-shaded part indicates that the weights are zero. As shown
in the figures, the neural network has a dense and redundant distribution of weights before
compression. After compression using the method proposed in this paper, the weights
in the network are highly compressed and distributed regularly. This shows that the
optimization of DRL improves the decision performance of the actor and achieves high
compression of the network.

Mathematics 2023, 11, 338 16 of 19

Figure 12. Distribution of neural network weights before compression by ACNN.

Figure 13. Distribution of neural network weights after compression by ACNN.

5. Conclusions

In this paper, we propose a new automatic pruning method based on proximal gra-
dient. The purpose is to automatically compress the network by training an actor-critic
structured DRL agent, which automatically decides the compression rate of each layer
in the neural network by the actor network and guarantees the accurate decision of the
actor network by the critic network prediction value. It not only improves the compression

Mathematics 2023, 11, 338 17 of 19

efficiency and quality but also removes the reliance on the human experience. To improve
the prediction performance of the critic network in the agent, we impose the L1 norm
regularizer on the weights of the critic network to make the activation output can obtain
distinct features in representations, thus enhancing the prediction accuracy of the critic
network. In addition, to improve the decision performance of the actor network in the
agent, we impose the L1 norm regularizer on the weights of the actor network to enhance
the decision accuracy of the actor network by retaining only the significant weights in the
actor network. To further improve the training efficiency, we use the proximal gradient
method to update the weights of the actor network and the critic network, which can obtain
an effective distribution of weights and, thus, improve the compression performance. We
show the performance comparison of the optimized agent and the unoptimized agent on
the compression task, which demonstrates that the optimized agent improves all aspects of
compression performance. Moreover, we also show ablation experiments using the proxi-
mal gradient method to update the DRL network weights. The results show that updating
the weights using the proximal gradient method can obtain a better DRL compression agent
and improve the performance of the network after compression. Compelling results have
been demonstrated for LeNet300-100, and MLP(3072-1024-1024-10) on MNIST, Fashion
MNIST, and Cifar-10. The proposed method can achieve a higher compression rate than
existing methods with a lower loss of accuracy. A large number of experiments have proved
the reliability and advantages of the proposed method, which can compress the network
more effectively, obtain a better lightweight structure, and achieve better performance.
The performance improvement in the experimental results also proves that automatic
compression of neural networks using DRL is effective. Moreover, using the proximal
gradient method to update the DRL can further improve the compression performance.

Author Contributions: Writing—original draft, M.W.; Investigation, J.T.; Formal analysis, H.Z.;
Methodology, Z.L.; Supervision, S.X.; Writing—review and editing, M.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research is supported in part by National Natural Science Foundation of China
under Grants 62273106, 62203122, in part by China Postdoctoral Science Foundation funded project
2022M720840, and in part by Foreign Expert Project of Ministry of Science and Technology of China
under Grants DL2022030011L, G2022030041L.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the data and models employed and/or generated during the study
appear in the submitted article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brock, A.; De, S.; Smith, S.L.; Simonyan, k. High-performance large-scale image recognition without normalization. In Proceedings

of the International Conference on Machine Learning, PMLR, Virtual, 18–24 July 2021; pp. 1059–1071.
2. Ding, X.; Xia, C.; Zhang, X.; Chu, X.; Han, J.; Ding, G. Repmlp: Re-parameterizing convolutions into fully-connected layers for

image recognition. arXiv 2021, arXiv:2105.0. [CrossRef]
3. Liang, W.; Long, J.; Li, K.C.; Xu, J.; Ma, N.; Lei, X. A fast defogging image recognition algorithm based on bilateral hybrid filtering.

ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2021, 17, 1–16. [CrossRef] [CrossRef]
4. Zhang, W.; Wang, J.; Lan, F. Dynamic hand gesture recognition based on short-term sampling neural networks. IEEE/CAA J.

Autom. Sin. 2021, 8, 110–120. [CrossRef] [CrossRef]
5. Kim, S.; Hwang, S.; Hong, S.H. Identifying shoplifting behaviors and inferring behavior intention based on human action

detection and sequence analysis. Adv. Eng. Inf. 2021, 50, 101399. [CrossRef] [CrossRef]
6. Yang, W.; Zhang, T.; Mao, Z.; Zhang, Y.; Tian, Q.; Wu, F. Multi-scale structure-aware network for weakly supervised temporal

action detection. IEEE Trans. Image Process. 2021, 30, 5848–5861. [CrossRef] [CrossRef] [PubMed]
7. Erhan, D.; Szegedy, C.; Toshev, A.; Anguelov, D. Scalable object detection using deep neural networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2147–2154.

https://doi.org/10.48550/arXiv.2105.01883
.
http://doi.org/10.1145/3391297
.
http://dx.doi.org/10.1109/JAS.2020.1003465
.
http://dx.doi.org/10.1016/j.aei.2021.101399
.
http://dx.doi.org/10.1109/TIP.2021.3089361
http://www.ncbi.nlm.nih.gov/pubmed/34152986

Mathematics 2023, 11, 338 18 of 19

8. Cai, Z.; Fan, Q.; Feris, R.S.; Vasconcelos, N. A Unified Multi-Scale Deep Convolutional Neural Network for Fast Object Detection;
Springer: Berlin/Heidelberg, Germany, 2016; pp. 354–370.

9. Muzahid, A.A.M.; Wan, W.; Sohel, F.; Wu, L.; Hou, L. CurveNet: Curvature-Based Multitask Learning Deep Networks for 3D
Object Recognition. IEEE/CAA J. Autom. Sin. 2021, 8, 1177–1187. [CrossRef] [CrossRef]

10. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

11. Arbeláez, P.; Hariharan, B.; Gu, C.; Gupta, S.; Bourdev, L.; Malik, J. Semantic segmentation using regions and parts. In Proceedings
of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3378–3385.

12. Peng, C.; Zhang, X.; Yu, G.; Luo, G.; Sun, J. Large kernel matters–improve semantic segmentation by global convolutional network. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 22–25 July 2017; pp. 4353–4361.

13. Chen, W.; Wilson, J.; Tyree, S.; Weinberger, K.; Chen, Y. Compressing neural networks with the hashing trick. In Proceedings of
the International Conference on Machine Learning, PMLR, Lille, France, 6–11 July 2015; pp. 2285–2294.

14. Wang, K.; Liu, Z.; Lin, Y.; Lin, J.; Han, S. Haq: Hardware-aware automated quantization with mixed precision. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 8612–8620.

15. Kim, H.; Khan, M.U.K.; Kyung, C.M. Efficient neural network compression. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 12569–12577.

16. Denton, E.L.; Zaremba, W.; Bruna, J.; LeCun, Y.; Fergus, R. Exploiting linear structure within convolutional networks for efficient
evaluation. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December
2014; pp. 1269–1277.

17. Mirzadeh, S.I.; Farajtabar, M.; Li, A.; Levine, N.; Matsukawa, A.; Ghasemzadeh, H. Improved knowledge distillation via teacher
assistant. AAAI Conf. Artif. Intell. 2020, 34, 5191–5198. [CrossRef]

18. Wang, D.; Li, Y.; Wang, L.; Gong, B. Neural networks are more productive teachers than human raters: Active mixup for
data-efficient knowledge distillation from a blackbox model. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1498–1507.

19. Tavakolian, M.; Tavakoli, H.R.; Hadid, A. Awsd: Adaptive weighted spatiotemporal distillation for video representation.In
Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November
2019; pp. 8020–8029.

20. Zhao, H.; Wu, J.; Li, Z.; Chen, W.; Zheng, Z. Double Sparse Deep Reinforcement Learning via Multilayer Sparse Coding and
Nonconvex Regularized Pruning. IEEE Trans. Cybern. 2022, 1–14 . [CrossRef] [CrossRef] [PubMed]

21. Li, Z.; Su, W.; Xu, M.; Yu, R.; Niyato, D.; Xie, S. Compact Learning Model for Dynamic Off-Chain Routing in Blockchain-Based
IoT. IEEE J. Sel. Areas Commun. 2022, 40, 3615–3630. [CrossRef] [CrossRef]

22. Chen, C.; Tung, F.; Vedula, N.; Mori, G. Constraint-aware deep neural network compression. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 400–415.

23. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [CrossRef]
[CrossRef]

24. Vettam, S.; John, M. Regularized deep learning with a non-convex penalty. arXiv 2019, arXiv:1909.05142. [CrossRef]
25. Scardapane, S.; Comminiello, D.; Hussain, A.; Uncini, A. Group sparse regularization for deep neural networks. Neurocomputing

2017, 241, 81–89. [CrossRef] [CrossRef]
26. Yoon, J.; Hwang, S.J. Combined group and exclusive sparsity for deep neural networks. In Proceedings of the International

Conference on Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017; pp. 3958–3966.
27. Louizos, C.; Welling, M.; Kingma, D.P. Learning sparse neural networks through L0 regularization. arXiv 2017, arXiv:1712.01312.

[CrossRef]
28. Xiao, X.; Wang, Z. Autoprune: Automatic network pruning by regularizing auxiliary parameters. In Proceedings of the Advances

in Neural Information Processing Systems 32 (NeurIPS 2019), Vancouver, BC, Canada, 8–14 September 2019; Volume 32.
29. Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; Darrell, T. Rethinking the value of network pruning. arXiv 2018, arXiv:1810.05270.

[CrossRef]
30. He, Y.; Lin, J.; Liu, Z.; Wang, H.; Li, L.J.; Han, S. Amc: Automl for model compression and acceleration on mobile devices. In

Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 784–800.
31. Ng, A.Y.; Harada, D.; Russell, S. Policy invariance under reward transformations: Theory and application to reward shaping. Icml

1999, 99, 278–287.
32. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep reinforcement

learning. arXiv 2013, arXiv:1312.5602. [CrossRef]
33. Gupta, M.; Aravindan, S.; Kalisz, A.; Chandrasekhar, V.; Jie, L. Learning to Prune Deep Neural Networks via Reinforcement

Learning. arXiv 2020, arXiv:2007.04756. [CrossRef]
34. Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef] [CrossRef]
35. Hasselt, H. Double Q-learning. Adv. Neural Inf. Process. Syst. 2010, 23, 2613–2621.
36. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep

reinforcement learning. arXiv 2015, arXiv:1509.02971. [CrossRef]

.
http://dx.doi.org/10.1109/JAS.2020.1003324
http://dx.doi.org/10.1609/aaai.v34i04.5963
.
http://dx.doi.org/10.1109/TCYB.2022.3157892
http://www.ncbi.nlm.nih.gov/pubmed/35316206
.
http://dx.doi.org/10.1109/JSAC.2022.3213283
.
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
 https://doi.org/10.1016/j.rinam.2022.100256
.
http://dx.doi.org/10.1016/j.neucom.2017.02.029
https://doi.org/10.48550/arXiv.1712.01312
https://doi.org/10.48550/arXiv.1810.05270
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.48550/arXiv.2007.04756
.
http://dx.doi.org/10.1007/BF00992698
 https://doi.org/10.48550/arXiv.1509.02971

Mathematics 2023, 11, 338 19 of 19

37. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,
arXiv:1707.06347. [CrossRef]

38. Pizzocaro, F.; Torreggiani, D.; Gilardi, G. Inhibition of apple polyphenoloxidase (PPO) by ascorbic acid, citric acid and sodium
chloride. J. Food Process. Preserv. 1993, 17, 21–30. [CrossRef] [CrossRef]

39. Qiu, S.; Yang, Z.; Ye, J.; Wang, Z. On finite-time convergence of actor-critic algorithm. IEEE J. Sel. Areas Inf. Theory 2021, 2, 652–664.
[CrossRef] [CrossRef]

40. Wen, J.; Kumar, S.; Gummadi, R.; Schuurmans, D. Characterizing the gap between actor-critic and policy gradient. In Proceedings
of the International Conference on Machine Learning, PMLR, Virtual, 18–24 July 2021; pp. 11101–11111.

41. Li, L.; Li, D.; Song, T.; Xu, X. Actor–Critic Learning Control With Regularization and Feature Selection in Policy Gradient
Estimation. IEEE Trans. Neural Networks Learn. Syst. 2020, 32, 1217–1227. [CrossRef] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.48550/arXiv.1707.06347
.
http://dx.doi.org/10.1111/j.1745-4549.1993.tb00223.x
.
http://dx.doi.org/10.1109/JSAIT.2021.3078754
.
http://dx.doi.org/10.1109/TNNLS.2020.2981377

	Introduction
	Related Work
	Automatic Compression of Neural Network with Deep Reinforcement Learning Based on Proximal Gradient Method
	Markov Decision Problem Based Pruning Technology
	State
	Action
	Reward

	Pruning Based on DRL with the Proximal Gradient
	Proposed Algorithom

	Experiments
	Experimental Setup
	MNIST Datasets
	Fashion MNIST Datasets
	Cifar-10 Datasets

	Experimental Comparison and Evaluation Index
	Convergence of Deep Reinforcement Learning in Pruning
	Balance Factor of the Reward
	Convergence of Reward
	Results and Analysis
	Pruning Performance on Mnist
	Pruning Performance on Fashion MNIST
	Pruning Performance on Cifar-10

	Ablation Study
	Weight Distribution

	Conclusions
	References

