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Abstract: Software requirements specification is undoubtedly critical for the whole software life-cycle.
Currently, writing software requirements specifications primarily depends on human work. Although
massive studies have been proposed to speed up the process via proposing advanced elicitation and
analysis techniques, it is still a time-consuming and error-prone task, which needs to take domain
knowledge and business information into consideration. In this paper, we propose an approach,
named ReqGen, which can provide further assistance by automatically generating natural language
requirements specifications based on certain given keywords. Specifically, ReqGen consists of three
critical steps. First, keywords-oriented knowledge is selected from the domain ontology and is
injected into the basic Unified pre-trained Language Model (UniLM) for domain fine-tuning. Second,
a copy mechanism is integrated to ensure the occurrence of keywords in the generated statements.
Finally, a requirements-syntax-constrained decoding is designed to close the semantic and syntax
distance between the candidate and reference specifications. Experiments on two public datasets
from different groups and domains show that ReqGen outperforms six popular natural language
generation approaches with respect to the hard constraint of keywords’ (phrases’) inclusion, BLEU,
ROUGE, and syntax compliance. We believe that ReqGen can promote the efficiency and intelligence
of specifying software requirements.

Keywords: software requirements generation; knowledge injection; requirements syntax

MSC: 68N01; 46-04

1. Introduction

There is no doubt about the importance of software requirements to the whole software
life-cycle [1–3]. As the vital product of requirements analysis, software requirements
specifications act as the essential bridge between the requirements analysis stage and the
following development and testing. Currently, writing software requirements specifications
primarily relies on human work, and this work is complex and time-consuming due to the
following factors:

• Enough domain knowledge is required to state the right content, as well as to select
appropriate words and expressions. However, domain analysis typically requires
non-trivial human effort [4].

• Writing the specifications word-by-word is time-consuming, let alone that many
expressions are repeated, especially in similar or related requirements. Writing or
locating, copying, and then pasting the repeated content is a waste of human effort.

• Generally accepted requirements syntax, such as EARS [5], is suggested for writing
well-formed specifications. Learning and carefully applying non-business-related
knowledge is also a burden on requirements analysts.

Intuitively, it would be quite helpful to automatically recommend requirements spec-
ifications as long as the analysts can provide some simple related information almost
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effortlessly. To the best of our knowledge, most of the automated requirements specifi-
cations generation work focus on transforming software engineering models (e.g., the
i* framework [6,7], KAOS [8–10], UML models [11–13]) or other semi-structured inputs
(e.g., security goals in specific syntactic patterns [14]) into natural language requirements
specifications based on pre-defined rules, which are usually brittle and restrict the usability
of these approaches. What is more, constructing expressive and precise models is another
complex work as well.

Besides, much research has been conducted to speed up the requirements anal-
ysis process by identifying and analyzing requirements information from, for exam-
ple, domain documents [4,15–17], developers’ online chats [18], and product descrip-
tions [19,20]. The primary results of these studies are features [19–25], requirements-related
sentences [4,15,16,18,26–29], and requirements classifications [22,30,31]. Although these
resources are relevant and helpful for requirements acquisition and generation, they are
only separate pieces of information. Requirements analysts still need to spend significant
efforts to understand them, to integrate them with the project background, and then, to
specify the final requirements by following at least one requirements syntax [16].

In this work, we aim to automatically generate the requirements statement draft once
the analyst has an intuitive idea and can provide two or more keywords (phrases) of the
desired requirements. Optionally, the analyst can also suggest the syntax roles of part
of or all keywords. We hope to recommend the requirements specifications, although
requirements analysts probably need to revise our generation for the final acceptance.

In this paper, we propose an approach, named ReqGen, to generate requirements
specifications from the keywords (phrases) provided by requirements analysts. In particu-
lar, three critical designs are proposed based on the basic Unified pre-trained Language
Model (UniLM) [32], which was selected as the backbone of our framework because of its
promising performance in natural language generation (NLG) tasks [32–34]. Like other
pre-trained language models, UniLM can adapt to downstream tasks smoothly through
light fine-tuning [35]. What is more, its parameter sharing design makes the learned text
representations more general since the corpus context is utilized in different ways during
the pre-training procedure, which helps mitigate overfitting to any single LM task [32]. First,
we injected domain knowledge in the format of pseudo-sentences created from domain
ontologies into several selected layers of UniLM. Second, we used a copy mechanism in the
training phase and set the given keywords as a hard constraint to ensure that they occur in
the final statements. Last but not least, we designed a requirements-syntax-constrained
decoding approach to accommodate the requirements syntax constraints of the generated
statements, given that well-formed requirements should follow a certain syntax [5,36,37].

To illustrate our approach, we contrived one example from a requirements instance
of ISO/IEC/IEEE 29148:2018(E) [37], shown in Figure 1. Given that analysts can provide
three keywords (i.e., landing, internal simulator, and ground) and their syntax roles (i.e.,
event, agent, and input, respectively), our ReqGen will firstly retrieve the keywords-related
knowledge from the domain ontology and convert them into pseudo-sentences in the
first stage. Then, these pseudo-sentences will be injected into UniLM, and the candidate
requirements sentences will be produced in the second stage. In the third stage, ReqGen sorts
the candidate sentences based on the default scoring in UniLM and our syntax-constrained
measure in decoding and selects the final requirements draft. Finally, requirements analysts
can edit the draft to obtain the final requirements statement.
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Step 2: Candidate Sentences generation

UniLM

Step 3: UniLM and syntax-based selection

ontology

Edit

Final requirement

Step 1: keywords-related knowledge preparation

… …

When a landing UAV command
is assigned to a UAV, the internal 
simulator shall compute and move 
the UAV to the ground longitude 
latitude and latitude of the UAV.

When a UAV is landing the Internal Simulator 
shall return the ground longitude and latitude.

When a UAV is assigned the Internal Simulator 
shall assign the ground position to a landing UAV .

When a landing UAV is assigned to a UAV, the 
internal simulator shall compute the ground
longitude latitude and latitude of the UAV

When a landing UAV is assigned to a UAV, the 
internal simulator shall compute the ground
longitude latitude and latitude of the UAV

When a UAV is landing the Internal Simulator 
shall return the ground longitude and latitude.

When a UAV is assigned the Internal Simulator 
shall assign the ground position to a landing UAV .

The three background colors (i.e., pink, blue and green) indicate three candidate sentences generated from UniLM. 
Black dotted arrows indicate the transformation of keywords-related knowledge in triplets into pseudo-sentences.
Blue dotted arrow indicates the order change of the generated candidate sentence in Step 3.
Blue solid arrows indicate the input of specific steps.

Figure 1. One example showing the target of this work.

To evaluate our approach, we conducted experiments on public datasets consisting
of two domains, which were collected from previous work [38]. The results demonstrate
the promising performance of ReqGen, especially on the dataset with a larger knowledge
scale. The comparisons with six popular NLG approaches show that ReqGen obtains
better Bilingual Evaluation Understudy (BLEU), Recall-Oriented Understudy for Gisting
Evaluation (ROUGE), and requirements syntax compliance. We also show the effectiveness
of the three proposed components in ReqGen using an ablation experiment. The major
contributions of this work are as follows.

• An approach, ReqGen, for automatically generating software requirements statements
based on two or more keywords and their syntax roles.

• The evaluation of ReqGen on two public datasets from different domains with promis-
ing results and suggestions for knowledge injection into pre-trained models.

• The source code and experimental data made publicly available on Github https:
//github.com/ZacharyZhao55/ReqGen, accessed on 1 September 2022.

Significance: Requirements recommendation is a major concern in RE. Comparing with
the traditional approaches, we took a step forward by recommending the requirements
specification draft rather than only identifying the useful, but indirect information.

2. Background

This section describes three key techniques: UniLM, attention mechanisms, and
bidirectional long short-term memory (Bi-LSTM).

2.1. UniLM

We used UniLM [32] as the backbone of our approach because of its good NLG perfor-
mance [33,39]. UniLM is a multi-layer Transformer network with 786 hidden dimensions
and 16 attention heads. Its parameter size is 340M, and the activation function is the Gaus-
sian error linear unit (GeLU), the same as those of the Bidirectional Encoder Representation
from Transformers (BERT) [40]. It is pre-trained using two unidirectional language models
(LM), one bidirectional LM, and one seq2seq LM. For our requirements generation task, we
configured it using seq2seq LM (also known as the encoder–decoder model). UniLM uses
the 12-layer bidirectional Transformer encoder like BERT. Each encoder layer includes a
multi-head attention and a feed-forward neural network. During decoding, UniLM uses
beam search (the beam size is five in our implementation) to select the candidate tokens of
top-k scores in each step.

2.2. Attention Mechanism

The model with conventional encoders cannot pay attention to information outside
the input sequence. Our aim was to make the model able to pay more attention to the

https://github.com/ZacharyZhao55/ReqGen
https://github.com/ZacharyZhao55/ReqGen
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injected knowledge, in other words to let the model change the weights of the original
hidden state so that higher weights can be assigned to the injected knowledge.

Many attention methods exist, including the dot product model, scaled dot product
model, additive model, and bi-linear model. Moreover, the steps of these methods are
almost the same, including: (1) the calculation of the similarity between a Query and Key
and obtaining the weights; (2) normalization of the weights; and (3) summation of the
weights with a Value. The scaled dot product is the most-common, fastest, and most-space-
efficient attention mechanism [41], and we used it. This model has an input consisting of a
Query and Key with dk dimensions and a Value with dv dimensions. We first calculated the
dot product of the Query and Key (MatMul), then divided every Key by

√
dk (Scale). Finally,

we fed it to a softmax layer to obtain the weights corresponding to the Values.

2.3. Bi-LSTM

To better understand the injected knowledge, contextual information should be con-
sidered in the model. Before injection, we need to encode the knowledge. In our case, we
selected the ontology as the source of the supplemented knowledge for keywords. The
domain ontology is a graph structure, and most entities have both parent and child nodes.
In other words, the contextual information of the injected knowledge from the ontology is
bidirectional, not sequential. Therefore, in the method proposed in this paper, to obtain
a more comprehensive bidirectional representation of the injected knowledge, we used
Bi-LSTM [42] to perform the encoding, where the knowledge is embedded by BERT.

Bi-LSTM is a variant of the recurrent neural network, which combines two standard
LSTM [43] layers in opposite directions to learn the two-way representation. An LSTM
cell has three gates: the input, forget, and output gates. These three gates have different
functions, acting as filters that decide which information to keep and which to forget. This
increases the accessible information of the Bi-LSTM network, and hence, the model can
better understand the context of the knowledge.

3. Related Work

We first review the requirements generation research. Then, we describe the related
work on common NLG.

3.1. Automated Requirements Generation

The existing studies on automated requirements generation mainly focus on trans-
forming the (semi-)structured models (e.g., business process model in [44,45], i* framework
in [6,7], KAOS and Ojectiver in [8–10], UML models in [11–13]) or other representations
(e.g., security goals in [14]) into specific syntactic pattern-oriented natural language re-
quirements specifications, based on a set of pre-defined rules. They usually require precise
representation of the critical elements, such as the roles, inputs, outputs, and their relation-
ships in the business process model [44] or the security goals expressed as clauses with the
main verb + several security criteria + several target assets [14]. Both the (semi-) structured
inputs and the pre-defined rules restrict the application scope of these approaches.

Mohamed et al. [46] proposed to generate non-quality requirements based on gram-
matical rules and a supplied dictionary, to resolve small-scale requirements sets for current
requirements quality checking work.

There are very few studies on requirements specification generation from a few simple
keywords. Most available research on software requirements capturing and generation
concerns automatically collecting and/or analyzing requirements-related information with
the purpose of assisting requirements analysts to manually acquire, interpret, and specify
the final requirements statements. This information can be requirements-relevant sentences
obtained from domain documents [4,15–17,26,30], features and their relationships mined
from developer online chats [18], online reviews [23,24] and product descriptions [19,20],
or the classifications of types of user statements [22,31] and of obligation or non-obligation
statements in contracts [30]. Besides, better product descriptions can be automatically
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generated with the techniques of summarization from user reviews [47,48] and website
information [49]. Although these sources of information are definitely essential for require-
ments specification, analysts still need to invest significant time and effort in interpreting
this information and specifying the requirements clearly under the premise of knowing the
basic requirements syntax and the domain phrases involved in the requirements.

3.2. Automated NLG with Lexical Constraints

In an early work on lexical constraints generation, Mou et al. [50] proposed the
backward and forward language model (B/F-LM) and used the recurrent neural network
to generate previous and subsequent words conditioned on the given word. Liu et al. [51]
extended the B/F-LM by introducing a discriminator, but these two methods can generate
sentences with only one lexical constraint. To overcome this limitation, Hokamp et al. [52]
incorporated constraints by performing a grid beam search in the sentence space. The
CGMH framework [53] models local transitions (e.g., deletion and insertion) to achieve
better fluency, but it is slow to converge. Sha et al. [54] proposed an unsupervised lexical
constraint generation method, in which a series of differentiable loss functions was used to
calculate the fluency of the generated sentences and to determine whether they satisfy the
constraints. Ding et al. [55] proposed a framework to customize the message content for
appealing to different individuals.

Recently, the fine-tuning of pre-trained language models has provided more research
opportunities for small datasets in many domains. BERT [40] and RoBERTa [56] use masked
language modeling pre-training objectives for deep bidirectional representations by jointly
conditioning on both the left and right contexts in all layers. GPT-2/3 [57,58] and CTRL [59]
are causal language models, which use the auto-regressive language to model the target.
UniLM [32] and GLM [60] combine the advantages of the first two models and use a special
mask mechanism so that the tokens in the input sequence can focus on each other, whereas
the tokens in the output sequence can focus only on the tokens to the left. MASS [61],
T5 [62], and BART [63] are encoder–decoder models and adopt the standard Transformer
structure [41].

4. Our Approach: ReqGen

As shown in Figure 2, we selected UniLM as the backbone of ReqGen, because of its
advantages in natural language understanding and NLG [32]. On the basis of UniLM, four
components were designed and implemented to improve the compliance of the generated
statements with domain knowledge and software requirements syntax (as indicated by the
light blue rectangles in Figure 2):

• A knowledge preparation module that retrieves keywords-related information from
the domain ontology (in terms of triples consisting of entity pairs and their rela-
tionships), transforms all related information into pseudo-sentences, and selects the
knowledge to be injected into the different layers of UniLM.

• A knowledge-injection model to inject the knowledge produced by the knowledge
preparation module into UniLM. The injected knowledge sequence is encoded by a
Bi-LSTM structure using a BERT-based sentence embedding and is injected through
the attention mechanism.

• A keywords copy mechanism was added in the original UniLM, which enables it
to perform a copied-word classification task in the UniLM training. Moreover, a
prediction method was added to the UniLM inference model to decide whether the
next token is a copied word.

• A requirements-syntax-constrained decoding module that includes a semantics-related
metric used in the inference model with the original beam search to optimize the final
statements towards a specific syntax.
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Blue background: The method or module we proposed.

Grey background: The UniLM pretrained model.
Red arrows: The hidden representation of the Bert encoder layer is fed into the knowledge injection model.

Green arrows: Inject the hidden representation of injection knowledge into the Bert encoder layer.

Figure 2. The procedure of our ReqGen.

4.1. Knowledge Preparation Module

The purpose of this module is to produce the knowledge to be injected into the
backbone UniLM according to the input keywords from the domain ontology. It consists of
three steps: multi-hop knowledge search, pseudo-sentence construction, and knowledge
selection for the UniLM layers.

4.1.1. Multi-Hop Knowledge Search

This step aims to obtain the keywords-related concepts and their relationships from
a domain ontology. We would like to increase the probability of the co-occurrence of
these concepts and the input keywords by managing the attention in the knowledge
injection model.

We obtained knowledge from the domain ontology, which is a collection of all of the
relevant concepts and their relationships in a single domain. It is represented as a graph
structure composed of triples 〈Entity1, Relation, Entity2〉, built based on the OWL ontology
language rules [64].

To obtain the context information of the keywords, we first performed a multi-hop
graph search to acquire as much useful information as possible (five hops in this work),
starting from the keywords, and collecting all types of entities in the retrieved paths.

Because all of the input keywords are regarded as start nodes, there must be repeated
retrieved paths. We believe the concepts in the repeated paths are important; that is, the
more often they are retrieved, the more important they are. Following this principle, we
filtered some concepts according to the retrieval times to avoid noise.

4.1.2. Pseudo-Sentence Construction

We converted the extracted multi-hops 〈Entity1, Relation, Entity2〉 into pseudo-sentences
for the following injection task. In the OWL ontology language, entity types include Classes,
Object Properties, and Named Individuals. There are two types of relations between these
entities: the subclass relation and constraint relation. We set pseudo-sentence generation rules
for these two relation types as follows:

(1) The subclass type includes subClassOf and subPropertyOf relations:

• subClassOf or hasSuperClasses: For the triple of 〈a, subClassO f , b〉, we created a sen-
tence of “a is subclass of b”. We converted the triple of 〈a, hasSuperClasses, b〉 into
“a has super class b.”
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• subPropertyOf : For the triple of 〈a, subPropertyOf, b〉, we created a sentence like “a is
subproperty of b”.

(2) The Constraint type includes has domain and has range relations:

• has domain: specifies the domain of a property P, indicating that any resource with a given
property is an instance of the domain class (e.g., 〈teaching, hasdomain, teacher〉).

• has range: specifies the range of a property P, indicating that the value of a property is
an instance of the range class (e.g., 〈teaching, hasrange, lesson〉).
Generally, the relationships of has domain and has range are paired. If the prop-

erty has a has domain triple, there must be a corresponding has range triple simultane-
ously. Hence, we produced sentences for the relationship pairs. Taking the triples of
〈teaching, hasdomain, teacher〉 and 〈teaching, hasrange, lesson〉 as examples, we can
create the pseudo-sentence “Teacher is teaching lesson”.

Note that the grammar of the pseudo-sentences generated automatically may be
wrong. However, it can provide an important context for the concepts in sentences that is
required by the Bi-LSTM encoder.

4.1.3. Knowledge Selection towards the UniLM Layers

In the human learning process, when learning new things, we typically learn relatively
broad knowledge first and, then, pay more attention to the essential parts, which is a
repeated and gradual process. Inspired by this, we injected different keywords-related
knowledge three times into the UniLM encoder, and the injected knowledge was more
refined every time, rather than the common one-time knowledge injection into the pre-
trained model [39].

Following the traditional one-time knowledge injection into the first layer of the pre-
trained BERT model [39], we observed that the injected knowledge cannot be reflected in
the decoder of BERT. We believe the primary reason is the strong fitting ability of BERT on
training data, i.e., too small weights of the external knowledge injected once compared to
those of the training data.

Therefore, we designed a knowledge injection mechanism by increasing the number
of injections and selecting different knowledge for different layers of UniLM. In this work,
we injected the knowledge into the 1st, 2nd, and 4th layer of the UniLM encoder, as shown
in Figure 2. Moreover, we injected more valuable information into the higher layers. In
particular, we selected all 5-hop keywords-related information for the first layer, 2-hop
information for the second layer, and only 1-hop information for the fourth layer. This
gradual refinement of the injected knowledge should enhance the ability of UniLM to
absorb externally injected information. The evaluation and analysis of these three layers’
selection (i.e., 1, 2, 4) are shown in Section 5.2.2.

4.2. Knowledge Injection Model

As Figure 2 shows, the knowledge injection model is composed of three layers. The
multi-hop information in the format of pseudo-sentences is first embedded using BERT and,
then, encoded using Bi-LSTM. Finally, an attention layer is used to increase the weights of
the injected knowledge in the hidden representation layer of the UniLM encoder.

4.2.1. Pseudo-Sentence Embedding and Encoding

The basic unit of BERT embedding is a token. Thus, during the embedding phase, a
pseudo-sentence set (knowledge) is first given to the BERT tokenizer. The [CLS] and [SEP]
labels are added at the beginning and end of each sentence, respectively. Moreover, the
tokenizer separates words into sub-words including the root of the words (e.g., “flying” is
divided into [“fly”,“##ing”]).

There are three parts of the BERT embedding process: token embedding, position
embedding, and segment embedding. Token embedding converts the tokens into vector
representations in 768 dimensions ([1, n, 768], where n is the length of a sequence). Segment
embedding is used to distinguish between the keywords and target requirements in each
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input pair ([1, n, 768]). Position embedding converts the position information in the
sequence into a vector representation of 768 dimensions ([1, n, 768]). Then, we summed
these three embeddings and used this representation as the output of the BERT embedding.

We sent the embedding to the Bi-LSTM encoder [42] to obtain the pseudo-sentence
encodings. The shape of the encoded hidden representation is [b, n, 768], where b is the
batch size of UniLM and n is the sequence length.

4.2.2. Attention Mechanism
We used an attention mechanism to emphasize the importance of the injected knowl-

edge. An attention mechanism is formally defined as follows:

A = so f tmax(QKT/
√

d + M)

Hctxt = A ·V

Hknowledge = LayerNorm(WT · Hctxt + HUniLM)

(1)

Here, Q is a Query, which represents the hidden representation of the UniLM encoder
layer; K and V are the Key and Value, respectively representing the hidden representations
of the pseudo-sentences (knowledge) encoding. To obtain the attention weights of Q and
K, we used the scaled dot product method. M is the joint mask of the pseudo-sentence
and the original input of UniLM (i.e., source keywords and target specifications), and
d represents the length of the last dimension of K. According to experience, the use of√

d reduces the sensitivity of the method to the length of K and improves the stability of
network training. Then, we calculated the dot product between A and V to update V and
obtain the context representation of the attention. Finally, we summed the updated values
Hctxt and HUniLM and fed them into LayerNorm (i.e., the normalization layer) to obtain the
hidden representation of the knowledge.

4.3. UniLM Module

We modified UniLM in three ways, by adding multi-layer knowledge injection, a copy
mechanism in the training model, and a requirements-syntax-constrained decoding in the
inference model. The knowledge injection was discussed in Sections 4.1 and 4.2. Here, we
focus on the other two modifications.

4.3.1. Copy Mechanism

The copy mechanism is very popular in NLG tasks such as translation and conversa-
tion generation [65]. Its aim is to resolve the “hard-constraint” problem, which requires
the tokens or fragments of the source sequence to occur in the target sequence. However,
most copy mechanisms can only guarantee the copy of a single word, not continuous frag-
ments [66]. However, in our scenario, the input keywords (phrases), even the single-term
words, can be multi-term words after tokenization, making it a challenge to ensure the
integrity of words in the generated statements.

We adopted a simple, but novel copy mechanism [66]. In our implementation, this
mechanism first marks the copied fragments in the target requirements according to the
source keywords. Then, we added a new copied label prediction task in the training phase
of our seq2seq model to predict whether a token has been copied from the source keywords
or not. In the decoder prediction stage, the original next token prediction probability is
changed to a mixed probability model of the next token prediction probability and copied
token prediction probability.

4.3.2. Requirement-Syntax-Constrained Decoding

Well-formed requirements specifications should follow a certain syntax, and there
are several related guidelines or models, such as EARS [5], IEEE 29148:2018 [37] and M-
FRDL [36]. They all define the fine-grained elements of single requirements specifications,
and each indicates one semantic role.



Mathematics 2023, 11, 332 9 of 22

The requirements generated by ReqGen should attempt to follow at least one existing
syntax so that they can accurately capture stakeholder needs [37]. Hence, if requirements
analysts follow a specific requirements syntax when writing requirements specifications
and they could give the semantic roles that the keywords belong to (the content in brackets
of Figure 1), we would like to use this information to improve the generated sentence
further. We designed an indicator called RS4RE to evaluate the overlap of the semantic
constitution of the generated requirements with those set by engineers. The RS4RE value
of each generated candidate statement is used to help select the final statement by adding
it to the original probability score during beam search.

RS4RE is defined formally as follows. We measured the closeness of agreement of
each semantic element in the generated statement and the input of an analyst.

RS4RE = ∑ αi
|Ei(Raut) ∩ Ei_re f |

|Ei_re f |
where 1 ≤ i ≤ N (2)

Let N be the number of semantic elements in the syntax requirements analysts have
selected and Ei be the ith element. Here, Ei_re f is used to indicate the word set of the element
Ei given by the requirements analysts, and Ei(Raut) indicates the set of words of the element
Ei in the automatically generated sentence. The agreement on element i is calculated as the
ratio of the scale of overlapping words to the size of the manually given set. Moreover, αi is
a hyper-parameter that indicates the weight of element i, and the sum of all αi is 1.

In this work, we used M-FRDL [36] as the syntax because they shared the source code
with us. This enabled us to automatically identify the fine-grained elements in the natural
language requirements, which is required by the automated calculation of RS4RE.

5. Experimental Evaluation

We evaluated ReqGen by addressing the following research questions:

• RQ1: How well does ReqGen perform in comparison with existing NLG approaches
on requirements specification generation based on keywords?

• RQ2: To what extent does the multi-layer knowledge injection contribute to the
requirements specification generation?

• RQ3: To what extent does the knowledge frequency filtering contribute to the require-
ments specification generation?

• RQ4: To what extent does each proposed design component contribute to the require-
ments specification generation?

5.1. Experimental Design
5.1.1. Data Preparation

To evaluate our ReqGen, we used two datasets of open-source requirements specifica-
tions and two domain ontologies, i.e., the unmanned aerial vehicle (UAV) and building
automation system (BAS) domains, following previous work [38].

The UAV requirements are from the University of Notre Dame (https://dronology.
info/, accessed on 23 May 2018) including 99 requirements [67]. The public ontology for
the UAV domain (http://www.dronetology.net/, accessed on 2 February 2021) includes
400 entities. The BAS requirements are from the Standard BAS Specification (2015) [68]
and consist of 456 requirements, involving functional, performance, and security require-
ments. The open-domain model of BAS (https://gitlab.fi.muni.cz/xkucer16/semanticBMS,
accessed on 1 December 2017) includes 484 entities.

The requirements are represented using natural language sentences, and we required
the related keywords before the model training and testing. Thus, we performed a reverse
extraction process. To be specific, we automatically extracted the noun words or phrases
based on the parts-of-speech tagged by Stanford CoreNLP [69]. We extracted the noun
and noun phrases with a series of linguistic filters for the nested noun selection, such as

https://dronology.info/
https://dronology.info/
http://www.dronetology.net/
https://gitlab.fi.muni.cz/xkucer16/semanticBMS
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Noun+Noun. For each requirements, we randomly selected n noun phrases (n ∈ [2, N],
where N is the total number of noun and noun phrases in one requirement) as the keywords.

To evaluate the effectiveness of the requirements-syntax-constrained decoding de-
scribed in Section 4.3.2, we implemented the M-FRDL constraint [36] and manually assigned
the semantic roles to the randomly selected keywords according to their context in the
requirements statements. To ensure correctness, we invited one author of the work [36] to
check and revise them.

Another problem with the data is that the domain ontology may be unable to cover
all the content of the requirements because these datasets were generated by different
groups who have different concerns. Only if the keywords are contained in the domain
ontology will the ontology be helpful for the keywords-driven requirements generation.
Thus, we performed automated domain ontology completion using an approach of [70].
This approach first aligns the requirements and domain ontology using TransE [71]. Then,
it selects the requirements concepts that are related to the entities in the domain ontology
and adds them, as well as their corresponding relationships to the ontology.

Given the limited data, we performed 10-fold and 5-fold cross-validation on the
UAV and BAS requirements, respectively. In addition, we performed a batch knowl-
edge injection and injected the knowledge for all of the random keywords of the testing
requirements, considering the potential association of the requirements. In particular,
17,681 pseudo-sentences were created for the 10 test requirements of the UAV and 139,494
pseudo-sentences for the 93 test requirements of the BAS.

5.1.2. Baselines

We selected six popular constrained text generation approaches as the baseline meth-
ods, including four pre-trained models and two other NLG models (i.e., POINTER [72]
and CGMH [53]). Similarly, we trained these models using the UAV and BAS datasets
separately (10-fold and 5-fold cross-validation, respectively):

• BERT [40] jointly conditions on contextual information, which enables pre-training
and deep bidirectional representation from unlabeled text. We fine-tuned the BERT
base model on our task, and the number of parameters was 110 M.

• Generative Pre-trained Transformer 3 (GPT3) [58] uses the one-way language model
training of GPT2. The model size was increased to 175 billion, and 45 terabytes of data
were used for training. GPT3 can perform downstream tasks without fine-tuning in a
zero-shot setting. We also did not perform fine-tuning.

• Bidirectional and Auto-Regressive Transformers (BART) [63] is a denoising autoen-
coder built with a sequence-to-sequence model suitable for various tasks. It uses a
standard Transformer-based neural machine translation architecture. It is trained
using text corrupted with an arbitrary noising function and by learning to reconstruct
the original text. We used the BART-large model on our task, and the number of
parameters was 400 M.

• UniLM [32] uses three types of language modeling tasks for pre-training, which is
achieved by employing a shared Transformer network and using specific self-attention
masks to control the context of the prediction conditions. We used the UniLM base
model, whose parameter amount is 340 M.

• Zhang et al. [72] proposed POINTER, which is based on the inserted non-autoregressive
pre-training method. A beam search method was proposed to achieve log-level non-
autoregressive generation.

• The constrained generation by Metropolis–Hastings sampling (CGMH) method [53]
can cope with both hard and soft constraints during sentence generation. Different
from the traditional latent space usage, it directly samples from the sentence space
using the Metropolis–Hastings sampling.
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5.1.3. Metrics

We selected BLEU [73] as the first metric, which is commonly used in machine trans-
lation, NLG, and source code generation. It measures the degree of overlap between the
generated and reference sentences using n-grams. The higher the degree of overlap, the
higher the quality of the generated text. Here, BLEU1 measures word-level accuracy and
BLEU2 measures sentence fluency to a specific degree. In addition, we employed the
ROUGE metric [74]. ROUGE-N calculates the total sum of the number of n-grams occurring
in both the generated and target sentences, and ROUGE-L calculates the longest common
subsequence. We calculated the recall, precision, and F-measure for each kind of ROUGE
rather than the simple n-gram recall [74].

Besides, we used the RS4RE metric to evaluate the agreement of syntax compliance
between the generated and target sentences, as described in Section 4.3.2. Here, Ei_re f
refers to the set of words in the ith semantic element of the target requirement. We also
recorded the time used by each model (except GPT-3) for training and testing, considering
its practical value.

5.2. Experimental Results and Analysis
5.2.1. RQ1 Effectiveness of Our Approach

We illustrate the experimental results for the UAV and BAS cases in Table 1. The
average and standard deviation are given for each metric on the 5 and 10 runs on the UAV
and BAS, respectively. For better illustration, we highlight the cells with the best results for
each metric with grey background, and the second best results with yellow background.
Table 2 presents an example of the requirements generated by each baseline and ReqGen,
from which we can draw three conclusions:

(1) Our method achieves the best or second-best results for all metrics. In the UAV
case, our method yields the best results for five metrics and the second-best results for the
remaining eight metrics. BART achieves good performance with six best and five second-
best results, which demonstrates the benefits of its hard constraint design. However, it can
only embed a single input word and loses the complete semantic meaning of phrases (i.e.,
it obtains better BLEU1 and ROUGE-1 results, but weaker BLEU2 and ROUGE-2 results),
which can also be seen in the example in Table 2. Moreover, ReqGen obtains a better RS4RE
result than BART, indicating that it has a better semantic-oriented text generation ability.

On the BAS domain, our ReqGen achieves seven best and four second-best results, out-
performing all baselines. The basic UniLM performs moderately well because it considers
both the input and its context during the next token prediction. This is the reason that we
select it as the backbone of ReqGen.

(2) The four pre-trained models perform better than the other two baselines. Among
the four pre-trained models in the UAV domain, BART obtains the best ROUGE-1, ROUGE-
2, and ROUGE-L results. It even outperforms ReqGen in ROUGE-1, which is possible
because BART forces all keywords to be included in the output during decoding. However,
because it only sees the input, it performs worse in ROUGE-2. UniLM obtains good BLEU1
and BLEU2 results and the best ROUGE-2 results in the BAS case, indicating its better
ability to generate relatively fluent statements.

CGMH performs worst according to the two BLEU metrics and the F-measure of the
three ROUGE metrics, as shown in Tables 1 and 2. POINTER also has a weak performance,
and a possible reason for this performance could be that it places the entire generation
burden on the decoder, which means that the sentences it generates are very long, but the
correlation with the target is weak (see the example in Table 2).



Mathematics 2023, 11, 332 12 of 22

From the standard derivation values, we can observe that the stability of the four pre-
trained models is weaker than the other two baselines on the UAV. However, for the bigger
BAS case, all of the pre-trained models achieve more stable results. This indicates that more
domain knowledge is helpful for the stable results’ generation for the pre-trained models.

(3) Our method is slightly slower than UniLM and BART. As shown in the last
column of Table 1, we recorded the average time consumed by each method (in hours)
to perform the 10-fold cross-validation on the UAV and the 5-fold cross-validation on
the BAS data. We did not record the time used by GPT3 because it does not need extra
fine-tuning [58]. We observed that ReqGen needs slightly more time than UniLM and BART,
but less time than the other approaches, even though it uses extra knowledge injection, a
copy mechanism, and requirements-syntax-constrained decoding.

Table 1. Results of the baselines and our ReqGen (%).

Method BLEU1 BLEU2
ROUGE-1 ROUGE-2 ROUGE-L

RS4RE Time
(HRS)R. P. F. R. P. F. R. P. F.

UAV

Bert_base 37.92
±3.3

23.53
±2.54

54.33
±2.29

42.04
±3.61

47.40
±2.33

31.32
±2.37

24.88
±3.25

27.73
±2.57

51.29
±2.77

39.90
±3.38

44.88
±2.68

8.00 2

±1.27
1.5

GPT3 34.20
±6.64

18.28
±5.41

34.51
±8.66

59.42 1

±11.39
43.66
±9.39

16.49
±6.77

14.82
±8.05

15.61
±7.12

31.02
±8.39

56.22
±10.64

39.98
±8.89

1.31
±0.26 -

UniLM 34.27
±8.95

17.83
±5.69

55.15
±10.99

41.53
±13.26

47.38
±11.68

18.21
±6.71

14.44
±8.42

16.11
±7.19

49.73
±10.27

37.71
±12.42

42.89
±10.92

2.54
±0.14 1

BART 42.66
±7.90

23.99
±9.17

71.75
±6.23

52.12
±6.16

60.38
±4.85

37.86
±8.95

26.90
±7.70

31.45
±8.16

66.07
±7.20

47.79
±6.56

55.47
±5.89

5.76
±1.45 1

CGMH 12.07
±2.63

1.84
±0.56

35.06
±4.45

17.86
±9.99

23.66
±6.06

5.48
±0.92

2.47
±2.95

3.41
±1.39

32.42
±4.24

16.52
±9.34

21.89
±5.75

0.00
±0.00 22

POINTER 17.26
±3.63

2.46
±0.98

24.15
±3.86

38.66
±3.58

29.73
±3.72

2.83
±1.61

5.20
±1.09

3.67
±1.26

19.92
±2.60

32.07
±2.76

24.58
±2.80

4.60
±1.87 1

ReqGen 42.15
±6.55

25.04
±6.19

69.93
±5.44

49.91
±6.13

58.25
±5.66

39.03
±6.04

28.21
±8.27

32.75
±6.87

65.12
±5.96

46.47
±6.92

54.23
±6.27

8.89
±1.18

1.2

BAS

Bert_base 29.08
±2.23

9.28
±1.63

46.69
±2.58

35.90
±3.31

40.59
±2.54

12.84
±1.73

10.57
±1.86

11.60
±1.66

40.79
±2.51

31.64
±2.98

35.64
±2.45

12.48
±2.05 1

GPT3 28.34
±2.47

7.87
±1.21

37.17
±2.56

41.07
±4.25

33.56
±3.18

10.02
±1.15

9.64
±1.56

9.30
±1.28

31.98
±1.85

35.74
±3.12

30.53
±2.33

7.08
±1.33 -

UniLM 30.08
±2.15

13.31
±1.06

42.44
±1.36

33.58
±1.98

37.49
±1.29

24.42
±1.14

18.86
±0.99

21.28
±1.01

39.58
±1.41

31.47
±1.22

35.06
±1.16

13.56
±2.43 0.8

BART 27.05
±1.63

10.60
±0.55

63.67
±0.36

37.37
±3.93

47.10
±1.38

20.59
±0.56

12.43
±1.64

15.50
±0.77

58.78
±0.34

34.14
±3.73

43.19
±1.39

14.58
±1.79

0.7

CGMH 10.58
±2.25

1.85
±0.32

57.69
±4.33

20.94
±11.21

30.73
±5.99

4.23
±0.55

1.64
±1.41

2.36
±0.77

44.70
±3.06

16.41
±8.05

24.01
±4.26

3.26
±0.84 72

POINTER 21.34
±3.74

2.34
±0.75

25.34
±5.05

43.82
±3.36

32.11
±4.02

1.93
±1.43

3.69
±0.74

2.53
±0.96

21.01
±3.74

36.53
±2.59

26.68
±3.07

5.72
±0.57 1

ReqGen 38.07
±1.62

15.62
±0.87

58.96
±1.33

44.63
±3.21

50.80
±1.95

20.35
±1.35

16.45
±2.11

18.19
±1.62

52.82
±1.16

40.17
±2.76

45.63
±1.65

17.42
±2.83

0.9

1 Grey background: Best results for each metric. 2 Yellow background: Second-best results for each metric.
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Table 2. Examples showing the requirements generated by the baselines and our method from three
keywords.

Keywords: landing, internal simulator, ground
Target: When given a landing 1 command the internal simulator shall move the UAV from to the ground altitude corresponding
to its current longitude and latitude.

Alg. Generated Sentence Required Modifications

Bert_base when a flight simulator is activated the flight simulator shall
compute the location of the UAV.

Useless: no semantic overlap with the target.

GPT3 When a UAV lands the Internal Simulator shall record the time
of landing.

Useless: no semantic overlap with the target.

UniLM When a UAV is loaded the internal simulator shall display the
location of the UAV.

Useless:no semantic overlap with the target.

BART landing internal flight simulator shall compute the ground posi-
tion of a UAV.

The trigger is missing, and the main clause is partially right: when
given a landing command 2, the internal flight simulator shall
compute the ground position of a UAV and move the UAV to
ground latitude.

CGMH simulator owners for takeoff at a corresponding latitude. Useless: syntax errors and no semantic overlap with the target.

POINTER in which a single point landing system, when a single point that is
assigned a separate GPS system or for an active navigation system
has to orient at its current position and to display the current
ground coordinates.

Useless: syntax errors and no semantic overlap with the target.

ReqGen When a landing UAV is assigned to a UAV, the internal simulator
shall compute the ground longitude latitude and latitude of the
UAV.

The trigger is right, and the main clause is partially right: when a
landing UAV command is assigned to a UAV, the internal simu-
lator shall compute the ground longitude latitude and latitude of
the UAV and move the UAV to ground latitude.

1 Bold font: Keywords in the sentences generated by the all automated approaches. 2 Blue font: The parts added
by analysts manually.

5.2.2. RQ2 Effectiveness of Multi-Layer Knowledge Injection

We also evaluated the effectiveness of the multi-layer knowledge injection in the two
domains. To implement and evaluate ReqGen, given that we collected five-hop keywords-
related information and there are 12 layers in UniLM, we had to determine (1) which levels
should have knowledge injected and (2) what kind of knowledge should be injected into the different
layers. Because of the uncertainty in the injected layers and the injected knowledge for one
specific layer (i.e., which hop in the five hops), there are many combinations that could
have been used in our experiments. Thus, we pruned the candidate combinations for
the experiments.

As for the injected layers, Li et al. [39] injected knowledge into the first layer. Jawahar
et al. [75] experimented with different layers of BERT on 10 sentence-level detection tasks.
They observed that the 1st and 2nd layers learn surface information such as word detection
in sentences. Layers 4 to 7 learn syntactic information such as word order sensitivity. Layers
8 to 12 learn semantic-level information such as subject–verb agreement. Inspired by these
two studies, we focused on three combinations of shallow layers, shallow + syntactic layers,
and shallow + syntactic + semantic layers, with layer combinations of (1,2), (1, 2, 4), and (1,
2, 4,8), respectively. Moreover, considering the five hops in our collected information, we
made an extra evaluation on the combination (1, 2, 4,8,11), and each layer was assigned
one-hop information.

For the injected knowledge, we followed the cognitive process of human learning, in
which humans usually start from general and overview knowledge and, then, pay close
attention to the critical parts. Similarly, we assigned more keyword knowledge to the lower
layers. For example, for the layer combination (1,2), we assigned all 5-hop knowledge
to the first layer and the most-related 1-hop knowledge to the second layer. The injected
knowledge details of different layer combinations can be found in the layer (hop) of Table 3,
which presents the results of this experiment.

For the UAV case, we observed that the best BLEU1 and BLEU2 scores are achieved by
the (1, 2, 4) combination. For ROUGE-1, the best recall is achieved by injecting knowledge
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into Layers 1, 2, 4 and 8, the best precision is achieved by the (1,2) combination, and the best
of F-measure is achieved by the (1, 2, 4) combination. Similar phenomena were observed for
the ROUGE-2 and ROUGE-L metrics. In the BAS case, the best BLEU1 and BLEU2 results
are also achieved by the (1, 2, 4) combination. For ROUGE-1, the best F-value is achieved
by the (1,2) combination; however, for ROUGE-2 and ROUGE-L, the best performance is
achieved by the (1, 2, 4) combination. Besides, the stability of this configuration has no
obvious change.

In summary, the (1, 2, 4) combination with the 5-, 2-, and 1-hop knowledge injection
achieves seven best results in the UAV case and nine best results in the BAS case, out of all
11 metrics. Hence, we suggest three knowledge injections by injecting all 5-hop knowledge
into the first layer, 2-hop knowledge into the second layer, and the most-critical 1-hop
knowledge into the fourth layer.

Table 3. The effectiveness of different injection times (%).

Layer (Hop) BLEU1 BLEU2
ROUGE-1 ROUGE-2 ROUGE-L

R. P. F. R. P. F. R. P. F.

UAV

1(5), 2(1) 43.23
±5.76

24.63
±6.18

63.21
±5.44

50.511

±4.69
56.15
±4.18

34.90
±7.02

27.61
±6.00

29.86
±6.15

58.83
±5.25

47.04
±5.80

51.12
±4.96

1(5), 2(2), 4(1) 43.87
±6.07

25.05
±6.89

65.69
±6.82

50.34
±6.54

57.00
±6.15

35.59
±9.57

27.18
±7.04

30.82
±7.98

61.13
±7.60

46.86
±6.95

53.05
±6.91

1(5), 2(3), 4(2), 8(1) 42.57
±3.29

23.63
±4.65

66.22
±7.59

49.96
±3.98

56.95
±4.35

35.14
±9.76

26.10
±5.86

29.95
±6.52

61.39
±7.77

46.57
±4.72

52.95
±5.02

1(5), 2(4), 4(3), 8(2), 11(1) 40.2
±5.82

21.64
±5.97

63.04
±6.08

47.37
±5.91

54.09
±5.05

32.40
±8.58

24.17
±6.44

26.89
±7.04

58.65
±6.15

44.17
±7.07

49.42
±6.17

BAS

1(5), 2(1) 34.51
±2.69

13.25
±1.77

55.54
±3.00

41.74
±2.20

47.66
±2.36

17.86
±1.94

14.13
±1.82

15.78
±1.84

49.87
±2.38

37.66
±1.92

42.91
±1.96

1(5), 2(2), 4(1) 34.55
±2.28

13.73
±0.69

55.02
±2.97

41.76
±2.07

47.48
±2.38

18.30
±1.22

14.68
±0.99

16.29
±1.01

49.83
±2.54

38.03
±1.66

43.14
±1.95

1(5), 2(3), 4(2), 8(1) 33.26
±2.37

12.92
±1.20

54.51
±1.72

40.64
±2.53

46.56
±2.14

18.13
±0.99

14.19
±1.24

15.92
±1.14

49.21
±1.31

36.92
±2.08

42.19
±1.80

1(5), 2(4), 4(3), 8(2), 11(1) 32.33
±2.05

12.31
±1.12

54.27
±2.99

40.16
±2.43

46.16
±2.55

17.38
±1.49

13.77
±1.23

15.37
±1.30

49.02
±2.57

36.55
±2.14

41.88
±2.23

1 Grey background: Best results for each metric for each case.

5.2.3. RQ3 Effectiveness of Frequency Filtering in the Knowledge Search

We further evaluated the impact of different frequency sets in the knowledge search on
the final requirements generation (as described in Section 4.1.1). We regarded more-frequent
knowledge as more important, and our aim was to inject only important information into
ReqGen to reduce noise pollution in the data.

To evaluate the impact of a frequency filter (a single dependent variable), we set the
injected layer as a constant. We experimented with frequency thresholds of 0, 10, and 50 on
all five-hop knowledge injected into the first layer. In other words, we injected all traversed
entities, entities occurring more than 10 times, or those occurring more than 50 times in
the ontology graph traversal. The results are shown in Table 4, and the best result of each
metric is highlighted with bold font and grey background.

We observed different results for the two cases. For the UAV, no frequency filtering is
best, followed by 10 and 50 frequency filters, whereas, for the BAS, the best performance is
achieved with 10 frequency filters and with 50 frequency filters is the second best. There
is no obvious difference between the stability of their results. This result led us to the
following two observations. (1) Intuitively, the frequency set is strongly correlated with
the scale of injected knowledge. In our case, the five-hop knowledge of the UAV domain
includes 17,681 pseudo-sentences, and the BAS includes 139,494 sentences (approximately
7.9 times). (2) When there is a massive amount of information, less- and more-refined
knowledge is more valuable. For example, 50 frequency filters are better than no filter in the
BAS domain. However, when the information is small, all related knowledge is valuable
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(e.g., in the UAV case, no filter is better than the 10 frequency filters, which is better than
the 50 frequency filters). However, because of the limited available cases, we cannot give a
criterion for frequency filter selection temporarily in this initial study.

Table 4. The effectiveness of knowledge frequency filtering (%).

Frequency
Filtering BLEU1 BLEU2

ROUGE-1 ROUGE-2 ROUGE-L

R. P. F. R. P. F. R. P. F.

UAV

no 42.78
±3.84

24.14 1

±5.23
66.54
±6.54

49.85
±4.57

57.00
±4.25

35.51
±7.55

26.59
±5.37

30.41
±5.87

61.76
±6.55

46.45
±5.08

53.02
±4.79

10 43.50
±5.07

23.97
±5.04

65.80
±7.59

49.92
±5.27

56.77
±5.20

34.99
±8.68

26.22
±5.58

29.24
±6.14

61.75
±7.30

47.04
±6.11

52.46
±5.79

50 40.47
±5.80

21.39
±6.09

61.87
±4.00

46.58
±4.71

53.15
±4.27

32.05
±7.58

23.63
±6.10

27.21
±6.60

57.90
±4.34

43.70
±4.94

49.80
±4.58

BAS

no 34.15
±1.90

13.37
±1.03

54.75
±1.99

41.30
±1.10

47.08
±1.28

18.01
±1.22

14.49
±1.05

16.06
±1.03

49.41
±2.02

37.52
±1.34

42.65
±1.48

10 34.43
±1.80

13.65
±1.38

55.93
±2.41

41.76
±0.98

47.82
±1.10

18.84
±1.29

14.80
±0.92

16.58
±0.97

50.29
±2.22

37.76
±0.77

43.13
±0.96

50 34.33
±1.83

13.45
±1.31

55.68
±1.64

41.69
±0.96

47.68
±1.22

18.65
±1.59

14.66
±1.07

16.41
±1.28

50.28
±1.87

37.83
±1.09

43.18
±1.39

1 Grey background: Best results for each metric for each case.

5.2.4. RQ4 Ablation Experiment

The ablation experiment was designed to verify the effectiveness of each critical
proposed component in our ReqGen: multi-layer injection (including frequency filtering),
copy mechanism, and syntax-constrained decoding. Table 5 shows the results of ReqGen
and its four variants. For the convenience of comparison, we indicate the values that are
better than those in the previous row with an up-arrow.

Table 5. The ablation experiment (%).

Settings BLEU1 BLEU2
ROUGE-1 ROUGE-2 ROUGE-L

R. P. F. R. P. F. R. P. F.

UAV

Layer 1 42.78
±3.84

24.14
±5.23

66.54
±6.54

49.85
±4.57

57.00
±4.25

35.51
±7.55

26.59
±5.37

30.41
±5.87

61.76
±6.55

46.45
±5.08

53.02
±4.79

Layer 1, 2, 4 43.87
±6.07 ↑

1 25.05
±6.89 ↑

65.69
±6.82

50.34
±6.54 ↑

57.00
±6.15

35.59
±9.57 ↑

27.18
±7.04 ↑

30.82
±7.98 ↑

61.13
±7.60

46.86
±6.95 ↑

53.05
±6.91 ↑

Layer 1, 2, 4 + 10 Fre. 44.80 2

±4.00
↑ 25.12
±5.23 ↑

65.35
±6.64

52.18
±4.26

↑ 58.03
±4.22 ↑

35.48
±8.98

28.11
±5.62 ↑

31.37
±6.66 ↑

60.95
±7.35

48.93
±5.94

↑ 54.28
±5.56

↑

Layer 1, 2, 4 +
10 Fre. + Copy

42.15
±6.55

25.04
±6.19

69.93
±5.44

↑ 49.91
±6.13

58.25
±5.66

↑ 39.03
±6.04

↑ 28.21
±8.27

↑ 32.75
±6.87

↑ 65.12
±5.96

↑ 46.47
±6.92

54.23
±6.27

Layer 1, 2, 4 + 10 Fre. + Copy
+ Syntax cons. (ReqGen)

42.15
±6.55

25.04
±6.19

69.93
±5.44

49.91
±6.13

58.25
±5.66

39.03
±6.04

28.21
±8.27

32.75
±6.87

65.12
±5.96

46.47
±6.92

54.23
±6.27

BAS

Layer 1 34.15
±1.90

13.37
±1.03

54.75
±1.99

41.30
±1.10

47.08
±1.28

18.01
±1.22

14.49
±1.05

16.06
±1.03

49.41
±2.02

37.52
±1.34

42.65
±1.48

Layer 1, 2, 4 34.55
±2.28 ↑

13.73
±0.69 ↑

55.02
±2.97 ↑

41.76
±2.07 ↑

47.48
±2.38 ↑

18.30
±1.22 ↑

14.68
±0.99 ↑

16.29
±1.01 ↑

49.83
±2.54 ↑

38.03
±1.66 ↑

43.14
±1.95 ↑

Layer 1, 2, 4 + 10 Fre. 37.99
±1.61 ↑

15.57
±0.07 ↑

56.30
±2.27 ↑

45.05
±1.60

↑ 50.05
±1.67 ↑

19.58
±1.29 ↑

16.57
±0.85

↑ 17.95
±0.99 ↑

50.60
±2.14 ↑

40.68
±1.27

↑ 45.10
±1.38 ↑

Layer 1, 2, 4 +
10 Fre. + Copy

38.41
±2.51

↑ 15.06
±1.13

59.47
±3.23

↑ 44.93
±2.34

51.18
±2.82

↑ 19.46
±1.83

15.75
±1.00

17.41
±1.38

53.30
±2.70

↑ 40.48
±2.00

46.01
±2.40

↑

Layer 1, 2, 4 + 10 Fre. + Copy
+ Syntax cons. (ReqGen)

38.07
±1.62

15.62
±0.87

↑ 58.96
±1.33

44.63
±3.21

50.80
±1.95

20.35
±1.35

↑ 16.45
±2.11 ↑

18.19
±1.62

↑ 52.82
±1.16

40.17
±2.76

45.63
±1.65

1 Up-arrow: The value in one cell is better than that of the previous row for the same metric. 2 Grey background:
Best results for each metric for each case.

In the UAV case, compared with the one-layer knowledge injection, the three injections
into Layers 1, 2, and 4 yield an approximately 1% increase in BLEU1 and BLEU2. For the
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ROUGE results, the improvement is primarily in the three precision scores, which are
increased by 0.5%. However, the recall in ROUGE is slightly decreased, possibly due to
some related knowledge loss in Layers 2 and 4. However, the F-measure values remain
unchanged or become better with respect to the values obtained for the single-layer injection.
In the BAS case, all metrics, including the BLEU and three ROUGE metrics, are improved
by three-layer knowledge injection. This observation shows that the multi-layer injection
design mainly improves the BLEU metric and the precision of ROUGE, indicating that
this mechanism enhances the ratio of valid words in the final statements. In other words,
although the single-layer injection can help the model obtain the knowledge, the multi-layer
injection is further helpful for knowledge absorption.

The comparisons between the second and third rows in both the UAV and BAS
domains show the impact of 10 frequency filters on Layers 1, 2, and 4. We can see that the
two BLEU values in both cases are better with this frequency setting. For the UAV, the
precision and F-measure of the three ROUGE metrics increase further. However, the recall
values are weaker. This is expected because the filtering operation on a relatively small
set of knowledge would probably lessen the number of useful clues, whereas, for the BAS,
due to its larger scale, all metrics improve even after filtering. We note that the 10 frequency
filters indeed effectively reduce the noise.

Figure 3 shows one example of the effects of frequency filtering. In this example, when
no frequency filtering is used, the terms “loses” and “routing” in the domain ontology
are injected into ReqGen and reflected in the generated requirement, showing that noise
words are reflected in the lexical constitutions of the generated requirements, which then
determine the semantic meaning. By contrast, the example with 10 frequency filters shows
that our frequency filtering method helps reduce the noise in the injected knowledge.

Source: GCS, connected UAV, middleware

Target: The GCS shall report newly connected UAVs to the GCS middleware.

No frequency filtering: When the GCS loses the connection to a UAV the UAV Middleware shall transmit
the routing to an UAV.

10 frequency filtering: When a UAV is connected via the GCS middleware shall transmit the connection
to UAV.

Blue background: Keywords of the original input.
Pink background: The target requirement statement.
Yellow background: The sentence generated by our approach with no frequency filtering.
Green background: The sentence generated by our approach with 10 frequency filtering.
Bold font: Keywords in the target and generated sentences.

Figure 3. An example with or without frequency filtering.

The comparisons between the fourth and fifth rows of Table 5 for both domains show
the influence of the copy mechanism. From the results for the UAV domain, we observed
that six results, mainly ROUGE scores, improve and achieve the best values with this
design, whereas the two BLEU scores fall approximately 2%. Similarly, the results for five
metrics increase, and the remaining six decrease for the BAS domain. This shows that the
copy mechanism is helpful for the recall of the overlapping n-grams in the generated sentences.
However, because it was designed to guarantee that the given keywords must appear in
the generated sentence, this actually increases the length of the generated sentences. In
other words, it is highly likely to dilute the ratio of the overlapping n-grams in the whole
statements, which decreases the BLEU scores.

We also show the influence of the copy mechanism with an example in Figure 4,
and we can see that all keywords, including the multi-term phrases, can occur in the
final sentence. Without this mechanism, some keywords are abandoned, in favor of the
more important injected knowledge and the syntax learned during the pre-training process
of UniLM.
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Source: operator, trend log, setup information

Target: Operator shall be able to change trend log setup information.

No copy mechanism: Operator shall be able to use a trend log to share trend logs with other operators.

Copy mechanism: Operator shall be able to use a trend log for quick trend log setup information.
Blue background: Keywords of the original input.
Pink background: The target requirement statement.
Yellow background: The sentence generated by our approach with no copy mechanism.
Green background: The sentence generated by our approach with copy mechanism.
Bold font: Keywords in the target and generated sentences.

Figure 4. An example with or without the copy mechanism.

Finally, we added syntax-constrained decoding into the settings, and the results are
listed in the fifth row of each case in Table 5. We can see consistent enhancements of the
ROUGE-2 results for both cases and a positive effect on the BLEU2 in the BAS domain and
no change to the BLEU2 result of the UAV domain. This indicates that our syntax decoding
is helpful for valid two-gram generation, the semantic units with a larger granularity than
single-term words.

6. Discussion
6.1. Threats to Validity

Construct validity mainly concerns the evaluation metrics. We used BLEU1, BLEU2,
and the precision, recall, and F-measure of ROUGE-1, ROUGE-2, and ROUGE-L, which
are the most-common metrics of NLG [33,39,54]. Moreover, to consider the special syntax
constraints of well-formed software requirements [5,36,37], we designed the RS4RE metric,
which measures the syntax distance between the automated generated and target require-
ments. We also recorded the training and testing time of the automated approaches for
practical consideration.

Besides, the UAV and BAS ontologies were collected online by [38]. Their quality
will impact the construct validity. However, both ontologies have been peer-reviewed,
and there are series of follow-up peer-reviewed works (i.e., 3 for UAV [76–78] and 40 for
BAS [79]). We believe the quality of the two ontologies can be guaranteed.

Internal validity concerns the validity of the causal relations between the results and
our approaches. We reused the open-source code of UniLM, the backbone of our ReqGen
and the six baselines, to ensure the accuracy of experiments. Another threat comes from the
measure of RS4RE, which involves the manual annotation of the semantic elements of M-
FRDL [36] for the case requirements. In the two sets of requirements, the UAV requirements
were annotated by the work of [36], and we used their original annotations directly. For the
BAS domain, our authors performed pair annotations, which were then carefully checked
individually by the first author of [36]. We believe the annotations are trustworthy.

External validity concerns the generalization of the experimental results to other cases.
In this initial study, we experimented with two public datasets from different domains
with different scales. All of the requirements and ontologies were from different groups,
reflecting different writing styles. However, because of the data limitations, we only
performed 10- and 5-fold cross-validation on the UAV and BAS cases. Although the results
are promising, more diverse data for further experiments will be needed in the future.

6.2. Implications

Based on our results, the primary implication is that, like traditional large-scale text-
based fine-tuning, concept-net knowledge injection is beneficial for pre-trained models
performing downstream tasks. This means that our approach is potentially helpful for other
document generation, such as the description of software design. In addition, multiple
knowledge injections into the pre-trained model are better than once, and the knowledge
injected into higher layers should be more refined than that injected into the lower layers,
just as in the human learning process. Our experiments show that injection of all 5-hop



Mathematics 2023, 11, 332 18 of 22

knowledge into the first layer, 2-hop knowledge into the second layer, and only the most-
relevant 1-hop knowledge into the fourth layer achieves the best results on both domains
in our task (as shown in Table 3).

The second implication suggested by our study is that automated requirements gen-
eration requires related domain knowledge, but “more” does not always mean “better”.
In the BAS case, 10 frequency filters were better than no filtering. However, the injected
knowledge is also critical because the general UniLM has to learn the domain knowledge
for the valid requirements generation. Thus, for the small UAV case, no filtering is the best
(as shown in Table 4).

Besides, our study has two practical impacts. First, ReqGen can assist analysts in
generating the final correct requirements quickly since it can automatically generate the
keywords-driven, domain-knowledge-restricted, and syntax-compliant requirements draft.
As show in Figure 5, we used the example in Table 2 to illustrate the usefulness. The analyst
only needs to make two modifications by adding “command” and “add move the UAV to
ground latitude”, to obtain the target synonymous statement.

ReqGen: When a landing UAV is assigned to a UAV, the internal simulator 
shall compute the ground longitude latitude and latitude of the UAV.

After human edit: When a landing UAV command is assigned to a UAV, 
the internal simulator shall compute the ground longitude latitude and 
latitude of the UAV, and move the UAV to ground latitude.

Target: When given a landing command the internal simulator shall move 
the UAV to the ground altitude corresponding to its current longitude and 
latitude.

①This is a command. ②Add the move action.

synonymous with the target

Green background: The requirement draft generated by ReqGen.
Yellow background: The requirement statement edited by human based on our draft.
Pink background: The target requirement statement.
Dotted arrows: Modifications made by human. 

Figure 5. One example showing the usefulness of ReqGen.

Second, people may use different terms to represent the same concept, causing ambigu-
ity and difficulty for understandability and automation of follow-up tasks, e.g., traceability.
ReqGen generates the drafts based on the domain ontology and it can provide domain terms,
making the analyst start from the draft, rather than starting from scratch. After human
editing, some domain terms still remain. Thus, our approach is helpful for consistent usage
of domain terms.

6.3. Limitations

Temporarily, we only randomly selected a few keywords as the seeds of ReqGen for
the requirements statement generation and did not restrict their roles (e.g., specifying that
the subject is mandatory). We plan to explore the impact of syntax role configurations, that
the given keywords belong to, on the specifications generation.

Our method cannot replace the elicitation and analysis of users’ requirements. In other
words, our aim was only to assist engineers to quickly produce the requirements that they
already roughly know (i.e., the keywords). Meanwhile, we cannot guarantee that all the
specifications are generated with professional domain words and clear formal expressions.

We did not perform an empirical study of the practical usefulness of ReqGen in real-
world practice. In this initial study, we only evaluated its effectiveness by comparing it
with six popular NLG approaches on the common indicators of BLEU, ROUGE, and our
proposed RS4RE.
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7. Conclusions

This study aimed to automatically generate requirements statements based on pre-
defined keywords. We proposed an approach called ReqGen, which fine-tunes UniLM by
injecting keywords-related knowledge with repeated emphasis on the most-relevant ones,
integrates a copy mechanism to ensure the hard constraint of keyword inclusion, and uses
syntax-constrained decoding to cater to syntax requirements. Compared with six popular
baselines, we showed that ReqGen obtains superior performance on the requirements
specification generation task.
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